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AN ELEMENTARY PROOF OF THE 

CHEEGER-GROMOLL SPLITTING THEOREM 

Jost Eschenburg 

and 

Ernst Heintze 

We give a short proof of the Cheeger-Gromoll Splitting 
Theorem which says that a line in a complete manifold of 
nonnegative Ricci curvature splits off isometrically. Our 
proof avoids the existence and regularity theory of 
elliptic PDE's. 

I. Introduction 

The purpose of this note is to give an elementary proof 

of the following 

Splitting Theorem: Let M be a complete connected Rie- 

mannian manifold of nonnegative Ricci curvature. If M 

contains a line (i.e. a complete geodesic which realizes 

the distance between any two of its points) then M splits 

isometrically as M = M' x ~. 
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The theorem is of fundamental importance in Riemannian geo- 

metry and has many applications. It is due to Cohn-Vossen 

[4, Satz 5] in the 2-dimensional case, to Toponogov [8] 

under the assumption of nonnegative sectional curvature and 

finally to Cheeger and Gromoll in its above generality. 

As a principal tool Cheeger and Gromoll use the existence 

and regularity theory of elliptic equations. Actually, they 

prove a stronger result, namely the subharmonicity of any 

Busemann function and deduce the Splitting Theorem as an easy 

corollary. For a simplified proof of the subharmonicity see 

Wu [9]. It ks our purpose to point out that the Splitting. 

Theorem is more elementary in nature and can be proved quickly 

by a direct application of the maximum principle (Lemma 3) 

together with a closer look at the geometry of the Busemann 

function associated to a line (Lemma 2). For convenience we 

give full proofs of all the details. 

We would like to thank Prof. Brtining and Prof. Wu for 

hints and helpful discussions. 

2. Busemann functions 

Let M be a complete connected Riemannian manifold and 

7 a ray, i.e. a geodesic defined on [0,-) which realizes 

the distance between any two of its points. The functions 

br(X) = r - d(x,7(r)) for r > o are increasing with r, 

bounded by d (x, 7 (o)) and equicontinuous. Therefore, the 

Busemann function (associated to 7) b : = limb r exists 
r~ 

and is continuous. Its level sets are called horospheres. 
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For each p E M and any positive sequence r n ~ | a 

subsequence of the unit tangent vectors of m~nimal geodesics 

from p to Y(rn) ~onverges. The geodesic in such a limit 

direction is a ray, called an asymptote of Y- Asymptotes 

are not necessarily unique. 

If v s TpM is the direction of an asymptote, we put 

bp,r(X) ": = b(p) - r + d~,exp rv) 

for each r > o. It follows easily from the triangle 

inequality that bp, r is a support function of b at p, 

i.e. a continuous function with bp,r(p) = b(p) and 

b ~ b [5]. F~rthermore, b is C | in a neighbor- p,r p,r 
hood of p (depending on ri, since p is not in the cut 

locus of exp rv. 

The splitting of M as stated in the theorem willbe 

achieved by the level sets and gradient curves of the 

Busemann function associated to the given lihe. 

3. Nonne~ative Ric~i curvature 

The assumption of nonnegative Ricci curvature will enter only 

via the following well known lemma. 

Lemma 1: Let M be a Riemannian manifold and f E C| 

with II grad flI = I. If c is an integral curve of grad f, 

then c is a geodesic realizing the distance between any two 

of its points and 
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-Ric (c,c) = 
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(Af o c)' + II Hess f o cll 2. 
o c)' + _1 (af o c) 2 (Af 

where Af = + tr Hess f. 

Remark I: The equality is a special case of the Bochner- 

Lichnerowicz formula (cf. [1], p. 131), the inequality was 

already known to Calabi [2]. 

Proof: Since f is a Riemannian submersion, it does not 
i 

increase the length of any curve while the length of integral 

curves of grad f (horizontal curves) remains unchanged. Thus, 

if c is an integral curve it is a minimizing geodesic. Now 

choose a basis EI,...,E n of orthonormal vector fields in a 

neighborhood U of c(t o) for t o E ~, such that 

E n = grad f and E i are parallel along c for i = 1,...,n. 
As in 43], one has along c i~ U 

n 
Ric (En,En) = T <R (Ei,En) En,Ei> 

i=I 
n 
Z (- <rE VE En'Ei> - <VV E En'Ei>) 

i=1 n i E i n 

n n 
= - En(i=lZ <V EiEn,Ei>)-i,j=IZ <VEiEn,Ej><VE]En,Ei> 

2 
= - En(Af) - II Hess fll 



ESCHENBURG - HEINTZE 145 

Therefore, 

n-1 
RiC(En,E n) < - En(Af) - Z <Hess f(Ei),Ei>2 

i=I 
I 2 < - En(Af) n-1 (Af) 

by Schwarz' inequality which finishes the proof. 

Remark 2: From the differential inequality above for 

= Af o c, one can easily derive: If M is complete with 

Ric a O and f : M ~ ~ is C ~ (in fact C 2 suffices) 

with II grad fll = I, then M splits isometrically as 

M = M' • ~. In fact, if ~ is a primitive of ~-I' the 
function e ~ is concave, hence constant, and thus ~ and 

Hess f have to vanish. This can be used for another proof 

of the Splitting Theorem (see w 

For a connected Riemannian manifold M and p E M, we 

denote by pp the distance to p, i.e. pp(X) = d(x,p). 

Note that pp is C | outside p and its cut locus C(p) , 

with II grad Ppll = I 

Corollary: (cf. [2], [3]) If M is a complete connected 

Riemannian manifold of nonnegative Ricci curvature and di- 

mension n , then 

App < n-1 
Pp 

in M ~ ({p} U C(p)) 
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~roof: Let c be an integral curve of grad pp with 

c(O) = p . For ~ := A pp o c we have lim ~(t) = = , as 
t~o 

in the euclidean case. The corollary now is proved by look- 

ing at the derivative of I/~ . 

Lemma 2: (cf. [6], Lemma 6) Let M be a complete con- 

nected Riemannian manifold of nonnegative Ricci curvature. 
• 

If c is a line in M and b r := r - Pc(~r) , then 

• (c(t)) = O for all t 6 IR lim Hess b r 
r ~  

Remark: Geometrically this means that horospheres associ- 

at~ to a line are totally geodesic at the point8of inter- 

section with the line. 

Proof: As follows easily from the triangle inequality, 
+ 

the functions b~ are monotonously increasing with r , 

and b+r - < - b ~ ,  f o r  r , r '  ~ 0 w i t h  e q u a l i t y  a t  c ( s )  
+ + 

for s 6 [-r',r] . Hence L~(s) := Hess b~ (c(s)) con- 
+ 

verge monotonously from below to some limit L-(s) as 

r ~ - , and L+(s) S - L-(s) . The preceding corollary 
r + 

implies tr L~ = - Apc(~r ) Z 0 so that tr (L + + L-) ~ 0 . 
_ + 

Thus L + = - L " with tr L- = O . Since the convergence 

of L + and - L- to L + is monotonous, it is also loc- r r 
a l l y  u n i f o r m .  T h e r e f o r e ,  L + ( t )  ~ 0 f o r  s o m e  t 6 m 

+112 would imDlV IIL r > e in an interval around t , for 

some e > O and sufficiently large r . But this contra- 

dicts IIL + 11 2 N - (tr L~)' from Lemma I @ince tr L + r ' r 
is n o n ~ x ) s i t i v e  a n d  l : ~ i n t w i s e  c o n v e r g e n t  t o  z e r o  a s  r * ~ 
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4. Proof of the SplittingTheorem 

From now on, let M be a complete connected Riemannian 

manifold of nonnegative Ricci curvature and Y : ]R - M 
+ 

a line. Let b-(x) := lim (r - d(x,y(• be the Busemann 
r-| y• function associated to the rays := y(• , t ~ O . 

As follows from the triangle inequality, b + + b- S O . 

On the other hand, b + + b- = O on y . Using a slight 

generalization of E. Hopf's maximum principle due to 

Calabi (see w 6), we get: 

Lemma 3: b + + ~-  9 O , and b + is once differentiable 
+ 

with llgrad b+II = I . The asymptotes of Y- are uniquely 

determined at each point and fit together to a line. 

Proof: Let b • be a support function of b • at p as p,r 
in w 2 . Then b+p,r + bp, r- is a support function of 
b + + b- at p and by the corollary of Lemma I we get 

w A(b~, r + bp,r) (p) k - 2(n'1)/r . Now the maximum prin- 

ciple implies b + + b- - O . 

From + ~ b + - b- ~ - with equality at p bp, r = - bp, r 
we get that b ~ is once differentiable at p ,and 

+ b • (p) in particular II grad bfll grad b- (p) = grad p,r 
= I . Consequently, the asymptotes of y + and Y- at any 

point p E M are uniquely determined and fit together to 

an unbroken geodesic. Since the restriction of an asymptote 

to any unbounded interval is an asymptote itself, such a 

geodesic must be a line. This completes the proof of Lemma 3. 
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+ 
Now, it follows from Lemma 2 that lim Hess b- (p) 

r~ p,r 
= O . Thus, for any geodesic c , the functions b • o c 

have support funcions at anv t 6 ]R with arbitrarily 

small 2 nd derivative at t. If 1 : [a,b] ~ IR is any 
+ 

affine funcion, the same is true for b- o c - 1 

Hence the functions b • o c are convex by the (trivial 

one-dimensional) maximum principle. Therefore, b + = - b- 

is convex and concave and thus has totally geodesic level 

sets. Now grad b + is 9 parallel vector field (in parti- 

cular Killing), and it follows easily that the mapping 

(b+)-1(O) x ~ ~ M , (p,t) ~ exp(t.grad b(p)) 

is an isometry. 

5. Conc ludin 9 Remarks 

I. 
w 

If one admits the use of the existence and regularity 

theory of elliptic equations, one does not need Lemma 

2 and parts of Lemma 3. For one may apply the maximum 

+ h • h • principle directly to b- - where is a har- 

monic function on some ball with the same boundary 

b • , i.e. values as . This shows that b • S h • b • 

is subharmonic. (This argument applies to a n y 

Busemann function.) From b + + b- = O in Lemma 3 

(from the maximum DrinciDle again) it follows that b + 

is sub- and suDerharmonic, hence harmonic and thus C ~. 

By Lemma I, Hess b + m O . This argument also simpli- 

fies the proofs of the subharmonicity of the Busemann 

functions given in [3] and [9]. 
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2. In case of nonpositive sectional curvature the proof 

simplifies considerably. The statements analogous to 

Lemma I and its corollary together with the 

l-dimensional maximum principle immediately imply s 

convexity of any Busemann function as well as that of 

b + + b-. 

3. Using Remark 2 of w we finally indicate another ele- 
mentary proof of the Splitting Theorem. By that remark 

it is only necessary to show b ~ s C2(M). As above we 

conclude b + = - b-, hence b • 6 CI(M) (note that a 

limit of asymptotes is an asymptote) and the unique 

asymptotes extend to lines. Now, if L~(p) : = 

Hess b • (p) then L • : = lim L r• are continuous, p,r r--= 
L + = - L- and L~ - L • monotonously (cf. the first 

part of Lemma 2). Working locally (i.e. in ~n), it 

is enough to show that Hess b !  9 ~n ~ L• locally uni- 
formly where {~n } is a smooth approximation of the 

6-function. This follows from 

Hess b • ~ ~n(p) _> Hess b • ~ ~n (p) = Lr~ ~ ~n (p) ' 

where b • ~ S b• (x+u) du p,r ~n (x) = p+u,r ~n (u) " 

6. The maximum principle 

For completeness and to demonstrate its simplicity we give 

a proof of the Hopf-Calabi maximum principle. 
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Lemma: (E. Hopf [7], E. Calabi [2]). 

Let M be a connected Riemannian manifold and f E C~ 

If for each p E M and any r > O there is a support 

function fp,E of f at p which is C 2 in a neigh- 

borhood of p and satisfies Afp,E(p) ~ - c then f 

attains no maximum unless it is constant. 

Proof: If f attains a maximum at p s M and is not 

constant in any neighborhood of p, we choose a neighbor- 

hood U diffeomorphic to an open ball such that 

aU # a'U : = {x E ~ U; f(x) = f(p)). Further pick a C = 

function h with the properties (i) h(p) = O, 

(ii) ~ h > O in U and (iii) h < O on ~'U. 

h can be constructed easily in the form e ~ - I with 

sufficiently large s > O, since ~(ea~-1) = 

( 2 II grad ~II 2 + e A~) e a~. If n > O is sufficiently 

small, we have (f+nh)(x) < f(p) = (f+nh)(p) for all 

x E aU . This shows that f + n h attains a maximum in 

U, say at q. Since fq, e + n h is a support function of 

f + n h at q, also fq,~ + n h has maximum at q . But 

A(fq, c + nh) (q) > O for sufficiently small c 

contradicting the fact that the Hessean of a function at a 

maximum must be negative semidefinite. 

Thus the set of points where f attains its maximum 

is open and closed. 
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