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O. Introduction

The investigation of minimal surfaces in complex projective n-space recently
gained interest in connection with physical applications. Din and Zakrzewski
[5, 6], Burns [2], and Glaser and Stora [ i  1] classified all harmonic mappings of
the 2-sphere into complex projective n-space. This was proved rigorously by Eells
and Wood  [7, 8] (who also obtained results for surfaces of higher genus) and, on a
different way, by Wolfson [25]. The main tool for showing the completeness of the
classification was the non-existence of global holomorphic differentials on S 2.

Our  intention was to give a characterization of minimal surfaces in terms of
local invariants alone. In case of a closed oriented surface, integration of these local
invariants should lead to topological restrictions for minimal surfaces. This could
be carried out successfully in the case of real codimension 2 where the geometry of
the normal  bundle is given by a single curvature function, called normal  curvature
K N. We were motivated by earlier work ([14], see also the forthcoming paper  [9])
in which such a characterization was given for minimal surfaces in S 4 in terms of
the Gaussian and the normal  curvature. Replacing S 4 with ~ p 2 ,  we need an
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additional invariant related to the complex structure: the K~ihler angle which was
introduced by Chern and Wolfson [4] (see Sect. 1 for definition). As a particular
case, we characterize the induced metrics of holomorphic and totally real minimal
immersions by a condition on the Gaussian curvature only. These local results are
stated in Sects. 1 and 2 while the proofs of the main theorems are given in Sect. 8
and 9. As a tool, we need an existence and congruence theorem for mappings into
symmetric spaces which is derived in Sect. 7. We wish to mention that all local
results can easily be generalized to K~ihler 4-manifolds of arbitrary constant
holomorphic sectional curvature x. Since the projective plane is the most
interesting space for global applications, we restrict our attention to the case ~ = 4.

Global applications are given in Sects. 4-6. We avoid refering to the Riemann-
Roch theorem but instead we use elementary properties of the Laplacian. In
particular, we get constraints for compact minimal immersions in terms of the
genus, the degree and the self-intersection number (Sects. 3 and 4). Curvature
conditions are given in Sect. 6.

1. Generalities

Let (M, ds 2) be an oriented 2-dimensional Riemannian manifold ("surface") and
(P, ( , ) )  an oriented Riemannian 4-manifold. The tangent bundles of M and P are
denoted by TM and TP. Let f :  M--*P be an isometric immersion with differential
df  By means of df we may consider TM as a subbundle of the induced bundle
f * T P  over M. This gives rise to the orthogonal decomposition
f * T P  = T M ~ N M ,  where N M  denotes the normal bundle of the immersion f. Let
17 denote the connection on f *  TP, induced by the Levi-Civita connection on TP,
and let 17 = 177"+ 17N be the corresponding decomposition. Then 17T is the Levi-
Civita connection of M and 17N the so called normal connection. Let R, R r, and R N
be the curvature tensors of 17, 17r, and 17N. Choose oriented orthonormal local
frames (el, e2) of TM and (ca, e4) of NM. The real valued functions

K=(Rr(el ,e2)e2,e l )  and KN=(RN(el,e2)e4,e3)

called Gaussian curvature and normal curvature, are independent of the choice of
the frames. The Gauss-Bonnet-Chern theorem relates these to the Euler numbers Z
of TM and ZN of NM:

X = 2n ~ Kdv, ZN = 2n ~ KNdv
M M

where dv denotes the volume element of (M, ds2).
The second fundamental form A : T M |  is defined by A(X, Y)

= (17x y)N. Locally, A can be expressed by the symmetric 2-forms A 3 = (A, e3) and
A 4 = (A, e4) with corresponding matrices A.,ij = (Ve,ej, e.) with i,j ~ { 1,2},
a e {3, 4}. These are related to the curvatures by Gauss and Ricci equations:

K = K + d e t A 3 + d e t A 4 ,  KN=I~N+([A3, A4]e2, e l ) ,

where

g = (R(ex, e2)e2, e l ) ,  /~n = (R(el, e2)e4, e3).
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The immersion f i s  called minimal if trace (A) = A 11 + A2 2 vanishes. In this case,
the matrices of A 3 and A 4 have the form

and the Gauss and Ricci equations become
K = / (  - ( a  2 + b 2 + c 2 + d 2 ) ,  (]. 1)

K N = I( N + 2 (ad-  bc). (1.2)

Define the bundle mapping A:TM--*NM by A ( X ) = A ( X , X ) .  Let TplM
denote the unit circle in TvM. Then A(Tp~M) is a (possibly degenerated) ellipse in
NvM, which is doubly covered by T i M  and in the minimal case centered at the
origin. This is called the ellipse of curvature. Namely, if X = (cos0)el +(sin0)e2,
then in the minimal case A l l = -  A22 we have A(X)= (cos20)All + sin(20)A12.
The oriented area surrounded by the ellipse is

rc det (A 11, A 1 z) = 7r(ad- bc) = ~ (K N -  KN).

Thus outside the zero section, ,4 has degree 2 if K s >/s and degree - 2 if K N </s
The ellipse of curvature is a circle if and only if A 1 t • A 12 and t[ A 11 [[ = [I A 12 [I, hence
iff a =  _+d, b = •

Now assume further that the manifold P is K/ihlerian, i.e. there is an
orthonormal  (1, l)-tensor field J on P with VJ=O and j 2 = - 1 .  J defines the
structure of a complex vector space on each tangent space of P: If c = a + ib is an
arbitrary complex number and X ~ TxP, then

cX : = aX + bJX ~ TxP.

The K~hler form ~b ~ Qz(p), defined by ~b(X, Y)= ( JX ,  Y) ,  represents a coho-
mology class in HZ(P, R). Let a be the smallest positive number such that a~b
represents an integral class. I fP  = C P  z with holomorphic sectional curvature 4 (see
below), then a = u -  1.

If an immersion f :  M-~ P is given, J is pulled back to an endomorphism of the
bundle f*TP which will be called J, too. We define a smooth function C : M ~ L
called Kdhler function, by

C = (Je 1, e2) = (f*~b) (el, e2).

The last expression shows that this definition does not depend on the choice of the
frame and hence C is globally well defined. Therefore, i fM is compact and oriented,

d: =aS Cdv
M

is an integral number, namely the degree of the map f, defined by its 2 "d
cohomology f *  : H2(p, Z)-~ HZ(M, 7Z).

It is convenient also to introduce the angle 0~ ~ [0, rc] between el and Je2; this
will be called Kdhler angle [4]. Note that C = cos~. In general, the function ~ is not
smooth at the points where C = + 1, however we will show that smoothness fails
only at isolated points.
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The immersion f is called (totally) real if C = 0 everywhere, i.e. if J(TM) = NM.
It is called complex if sin2~= 1 - C  2 = 0  everywhere, i.e. if J(TM)= TM. Then
either C =  1 and Je~ =e2 (holomorphic case) or C = -  1 and Je~ = - e 2  (anti-
holomorphic case). Since A is symmetric and J commutes with V, we have for
complex immersions A(e2, e2) = A(Jel, Je l )  = j2A(el, el) = - A(el, el), so a com-
plex immersion is always minimal. Moreover, A12 = _+ A(e 1, Je l) = -+ JA 11, hence
the ellipse of curvature is a circle.

Now we restrict our  attention to

P=IEP2=IE3-{O}/IE*=S5/S1 = { [ x ] ; x  E lE3, Ilxll = 1}

We choose the Riemannian metric on P so that the projection rr : S 5 -~P becomes a
Riemannian submersion. This is the Fubini-Study metric with holomorphic
sectional curvature 4. For  this metric, we have (e.g. see [19, Vol. II, p. 166])

/ (  = 3C 2 -t- 1, /(N = 3C2 --  1. (1.3)

The unitary group U(3) acts on P transitively by holomorphic isometries, more
precisely, the group PU(3) = U(3)/S ~ with S ~ = {~I; ~ e lE, I(I = 1} is the connected
component  of the isometry group of P.

It is well known that there is another distinguished family of minimal
immersions on P = lEp2 which can be constructed as follows [7, 8]. Let p ~ P and
x e rc - 1(./9) C S 5 ClE a. Then drc x maps the horizontal subspace H x = {v ~ TxS s ; v l i x }
=(lEx)• 3 isometrically onto TpP. At any other point x 'En-~(p )  we have
x' = ei~ for some real 0, thus drt~, = ei~ on Hx = H~,. Therefore, any complex line
L in TpP (considered as lE-vector space) has a horizontal lift L which is a complex
line in IE a, defined independently of the preimage point x e ~ - ~ (p). This line defines
an element [L] of p=lEp2. Now, if 7 : M ~ P  is a complex immersion, then
df(T~M) is a complex line Lm in Tit~)P for any m e M. Thus we get a mapping
f :  M--+P, f (m) = [Lm], called the associated map for f (no ta t ion  of [7, 8]). This map
is still defined if f is an arbitrary non-constant holomorphic or anti-holomorphic
mapping from M into P [7, 8]. We will show that f is an immersion if so is f ,
however, the converse is false. Following the notation of Eells and Wood,  we will
call an immersion isotropic if f is either complex or associated to a complex
immersion (called "associated" for short).

2. The Main Results

The results of this and the following chapter are local in the sense that we do not
need assumptions about  completeness or compactness of the surface.

Let (M, ds 2) be a connected oriented surface. It is well known that any point in
M has a neighborhood U which can be mapped conformally onto an open subset
of 113, i.e. there exists an oriented coordinate chart (called conformal coordinate)
z: U ~ l E  such that ds 2 =  ,~2dz d~ with some positive function 2 which we will call
the conformal factor of z. By means of these charts, M gets the structure of a
complex curve (Riemann surface), so that we may talk about  holomorphic
functions on M. Recall that the Laplace-Beltrami operator  A on M is related to the
euclidean Laplacean in the z-coordinate, A ~ =4dzde, by

A~ = 22A.
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Also recall

A log2 = - K ,

where K denotes the Gaussian curvature of M.
A smooth complex valued function t on M is called of holomorphic type if

locally t= to t l  where to is holomorphic and tl smooth without zeros. A non-
negative function a on M is called of absolute value type if there is a function t of
holomorphic type on M with a = Itl. The zero set of such a function is either isolated
or the whole of M, and outside its zeros, the function is smooth.

Now let f : M ~ P = C P  2 be an isometric minimal immersion. Subtracting
Eq. (1.1) from (1.2) and inserting (1.3), we see that the function

k: = K N - K  + 2=(a+d)2 + ( b - c )  2

is non-negative so that ]/~ is defined. Also, consider the non-negative functions

c:=cos~= (l+C)) ,

s" =s in~  = I - C  .

Note that f is (anti-)holomorphic if and only if s = 0 (c = 0) everywhere.

Theorem A. (i) Let f : M-~ P be an isometric minimal immersion. Then the functions
c, s, 1/~ defined above are of absolute value type and satisfy

A logc =  89 + KN)-- 3C, (2.1)

A logs =~(K + Ks) + 3C, (2.2)

A log]/~ = 2K - KN (2.3)

outside the corresponding zero sets. Moreover, f is associated if and only if k = 0
everywhere.

(ii) Let (M, ds 2) be a simply connected surface with curvature K and Laplacean
A. Let c, s, 1/~ be functions of absolute value type on M with c 2 + s 2 -- 1 and assume
that Eqs. (2.1), (2.2), (2.3) are satisfied. Then there exists an isometric minimal
immersion f : M ~ P with K?ihler function C = 2c 2 - 1 and normal curvature KN = k
+ K - 2 .

Remark. Equations (2.1), (2.2), (2.3) will be called the fundamental equations of the
immersion f Adding and subtracting (2.1) and (2.2), we get

A log sinct = K + KN, (2.4)

A log tan~ = 6 cos~, (2.5)

adding also (2.3) we have

A log(]/~ sin ~) = 3K. (2.6)
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Clearly, (2.4), (2.5), (2.6) are equivalent to the fundamental equations. Moreover,
we can rewrite (2.1), (2.2) in the form

1
I + C

1
1 - C

where VC denotes the gradient of the function C. Adding these two equations gives

II v C [I 2 = (1 - C 2) (6C 2 - ( g  + Ks)), (2.7)

while subtraction and application of (2.7) gives

AC = 2C(K + K s -  3(1 + C2)). (2.8)

- - - I l l T C I I 2 + A C = ( K + K N - 6 C ) ( 1  + C),

- ~ I l V C I I 2 - A C ~ ( K + K N + 6 C ) ( 1  - C )

By continuity, (2.7) and (2.8) hold on all of M.

Theorem B. (i) Let (M, ds 2) be a simply connected surface and f :  M-~ P an isometric
minimal immersion. Then there exists a one-parameter family fo : M-~P,  0 ~ S 1, of
isometric minimal immersions with the same normal curvature K s and Kdhler
function C as f = f l .  Moreover, any isometric minimal immersion with the same
normal curvature and Kdhler function belongs to this family, up to isometries of P.
The immersion f is isotropic if and only if fo= f for all 0 ~ S l.

(ii) The family (fo)o~sl is constant up to reparametrization, i.e. there is a one-
parameter group ( ~ ) t ~  of isometries of M with fo = f ~  ~t for 0 = e it, if and only if
(~ t ) t~  is a group of rotations with a common f ixed point and C and K s are invariant
functions.

Remark. Examples of the last type will be constructed later on (see Remark 3
following Theorem 3.11).

Theorem C. Let f : M ~ P  be a complex immersion. Then the associated map
f :  M-~ P is also an immersion and the induced metrics ds 2 off  and dg 2 o f f  are

conformal, more precisely dg2=#2ds 2 with # = s = s i n  2 if f is

holomorphic (antiholomorphic), where ~ denotes the Kiihler angle o f f .

Theorem D. Let f :  M - .  P be a minimal immersion. Then the ellipse of curvature is a
circle everywhere if and only if f is either isotropic or real.

The proof of these theorems will be given in Sect. 9.

3. Local Consequences

Theorem3.1. Let f : M ~ P  be a minimal immersion with curvature K, normal
curvature K N and Kdhler function C. Then

K + K s ~ 6 C  2

with equality if and only if f is complex or real.
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Proof. Since 1 -  C 2 =  4s2c 2 is an absolute value function, by (2.7) we have either
C 2 -- 1 everywhere or K + K N < 6C 2. In the first case, we get either C = l, c -- 1 or
C = -  1, s =  1 and either (2.1) or  (2.2) imply the equality. Conversely,  if K + K  N
= 6 C  2, then C = c o n s t  by (2.7), and from (2.5) we get either C = 0  or s = 0  or c = 0 ,
thus f is either real or complex.

Corol lary 3.2. Let f :  M ~ P be a minimal immersion with curvature K and normal
curvature KN. Then

K - 2 < = K N < _ 6 - K ,

and K N = K - 2 everywhere if and only if f is associated, and KN = 6-- K everywhere
if and only if  f is complex.

Proof. The  lower bound  together  with the equali ty discussion follows from
T h e o r e m  A(i). F r o m  Theorem 3.1 we get

6 - ( K  + K N ) > 6 C 2 - ( K  + KN)>O

with equali ty if and only if C 2 = 1.
The following lemma is due to a remark  of Kenmotsu :

L e m m a  3.3. Let (M, ds 2) be a surface and C : M-oN.  a smooth function with

IlVCll2=u(C), AC=v(C)

for smooth functions u, v : N--* N`. Then on M" : = { V C + O} the Gaussian curvature
K satisfies

K = -w(C) /u(C) ,

w: = ( v -  u3 (v-  89 + u(v'-  89 . (,)

Proof. Put  D = r o C where r is a principal function of u -  1/2, defined on C(M3. Then
II VD II = 1 and hence the integral curves of the vector  field X = VD are geodesics
which intersect the level curves S t = { C = t }  orthogonally.  Thus, the geodesic
curvature  x(m) of St at m ~ St equals AD(m). On the other  hand,

AD = r"( C) II v c l[ z + r'( C)A C = (u- 1/2(v-  89 ) o C .

N o t e  further  that  the Jacobi  fields d separat ing the integral curves of X satisfy
Vxd = xY, hence VxVxd = ( X x  + xz)J, and so the curvature  is

with

K = - (X~: + ~2) = _ (x,u,/2 + x2)

= u-  1/2(v -  8 9

Insert ing proves the lemma.

Theorem 3.4. Let f :  M--* P be a minimal immersion. Then f is real if and only if
K + K N = 0 everywhere.



578                        

Proof. If f is real minimal, then C = 0  and the equation follows from (2.7).
Conversely, if K + K N = 0, then by (2.7) and (2.8) the assumptions of Lemma 3.3 are
satisfied with

u(C) = 6C2(1 - C2), v(C) = - 6C(1 + C2).

Hence either C = const which implies C = 0 everywhere, i.e. f is real, or K satisfies
(*)  on some open non-empty subset M'. Moreover  we have w = 24u, so we get
K = - 24 on M'. But this implies 1/~ = const ~ 0 and 2K - KN = 3K ~e 0 which
contradicts (2.3).

Theorem 3.5. Let f :  M ~ P be an associated immersion with constant curvature K.
Then f ( M )  is totally geodesic, i.e. f ( M) C IE P 1 or f (M)C R P  2 up to isometries of P.

Proof. Since K N = K - 2, we have K + K N = 2K - 2 = const. Setting x : =~(K + KN),
we get again the assumptions of Lemma 3.3, but this time,

u ( C ) = 6 ( - C "  +(x  + l ) C 2 - x ) ,  v ( C ) = 6 ( - C 3  + ( 2 x - 1 ) C ) .

Thus (*) says that some polynomial in C vanishes identically. Comparison of
coefficients gives a contradiction unless C is constant. Now by (2.5) either C = 0 or
c = 0  or s=0 ,  s o f i s  real or complex. In the first case K = - K  N = 1 and C = 0  as for
R P  2, thus by Theorem B, f ( M )  is a part of R P  2, up to isometries of P. In the
second case we get K + K N = 6, hence K = 4, K N = 2 and we get in the same way
f ( M ) E ~ P  1 up to isometries of P (see below).

Theorem 3.6. Let (M, ds 2) be a simply connected surface, K its Gaussian curvature.
Then there is a complex isometric immersion f :  M ~ P if and only if K <4 and the
function ~ is of absolute value type satisfying

d log 4 ~ - K -  K = 3 (g  - 2) (3.1)

outside its zero set. This immersion is unique up to isometries of P.

Proof. Under the assumption C2= 1, K + K N = 6  (see Corollary 3.2) Eq. (2.3)
becomes (3.1) while one of the conditions (2.1), (2.2) is trivial, the other void. Thus
the result follows from Theorem A and Theorem B(i).

Corollary3.7. Any complex immersion f : M--*P of constant curvature K, up
to isometries of P is a parametrization of an open subset of the Veronese surface

v: = {Ex] P ;  Xo + + = 0}

with K = 2, K N = 4, or of the totally geodesic projective line

~ e l  : = {Ix] m P; x 2 =0}

with K = 4, K N = 2.

Proof. By the preceding theorem, we have K = 4 if and only if f (M)C ~p1  up to
isometries of P. If K = c o n s t : ~ 4  then K = 2  by (3.1). So there exists a unique
complex immersion with K = 2, K N = 4. On the other hand, the inclusion map of
the complex curve Visa holomorphic immersion, and Vis an orbit of the subgroup
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0(3) of U(3) acting by isometries, so Vhas constant curvature. But as an algebraic
curve of degree 2, it is not congruent to the line tl;P 1. So it must be the surface in
question.

Remark. To get a simple parametrization, it is sometimes more convenient to
consider the algebraic curve

V'" = {[x] e P; x 2 = 2XoX2}

instead of V. Since the defining quadratic forms are conjugate under U(3), the
surfaces V and V' are congruent. We have V'=f (~)  for the immersion
f(z) :  = [1, z, 89 2] (cf. [7]).

Theorem 3.8. Let ( M, ds 2) be a simply connected surface with Gaussian curvature K.
There exists an isometric real minimal immersion f : M ~ P if and only if K < 1 and the
function ]//1 - K  is of absolute value type satisfyin9

A log~/1 - K = 3K (3.2)

outside its zero set. In fact, there is exactly a one-parameter family of such
immersions (up to isometries of P) which has constant image if and only if(M, ds 2) is
a surface of revolution.

Proof. This is another special case of the Theorems A and B under the assumption
C = 0, K + KN = 0 (see Theorem 3.4).

Considering the real minimal immersions of constant curvature, we already
know two examples. The first is the real projective plane

~.p2 .. ={[x]ep;~a=x"  for a=O, 1,2}.

This is the fixed point set of the complex conjugation of the coordinates which is an
isometry of P; hence R P  2 it totally geodesic. The second is the surface introduced
in [22] which we would like to call Clifford torus CT:

CT: = {[x] e P; Xo~ o = x121 = x 2 9 ~ 2 }  .

This is an orbit of the subgroup U(1) x U(1) x U(1) of U(3), hence K, KN, C and
the length of the mean curvature vector field r/are constant. Now the permutation
group of the coordinates, $3 C U(3), acts linearly on TpP for p = [1, 1, 1] with t/(p)
fixed which implies t/(p)= 0; hence CT is minimal. Since C = const and CT is not
complex, we have C = 0  by (2.5), and K = 0  because CTis a torus. It is well known
that the inclusion of CTis the only flat real minimal immersion in P [22, 18]. The
following is a generalization:

CorolLary 3.9. Any real minimal immersion f :  M ~ P of constant curvature K, up to
isometries of P is a parametrization of an open subset of R P  2 or of CT.

Proof. By (3.2) either K = 1 or K =0,  and the corresponding minimal surfaces are
uniquely determined up to isometries of P, due to Theorem 3.6. So the two surfaces
introduced above are the only examples.

A submanifold M of P which is an orbit of a subgroup of the isometry group of
P is called homogeneous. For homogeneous surfaces in P, the functions K, KN, and
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C are constant, and in particular C = 0  or C2= 1 by (2.5). Therefore, we have also
proved:

Corollary 3.10. The only homogeneous minimal surfaces in P are (EP 1, V, R p 2  and
CT, up to isometrics of P.

The following theorem shows how to construct locally all non-complex
minimal immersions in P. We use the following notion: If a, b are functions of
absolute value type on a surface M, then a dominates b if a/b is bounded near any
zero of b.

Theorem 3.11. Let U be an open, simply connected subset of ~ ,  h a holomorphic
function on U and a : = Ihl. Let p, q be nonzero functions of absolute value type on U
which have no common zeros and which are dominated by a. Suppose that p, q satisfy
the following equations:

d o logp = aZ/(2pZq 2) --4p 2 + 2q 2 , (3.3)

A ~ logq = a2/(2p2q 2) + 2p 2 - 4q 2 . (3.4)

Then there exists a conformal minimal immersion f :  U ~ P  with KdhIer angle
= 2 arctan(p/q) and conformalfactor 2 = (p2  q_ q2)1 /2 .  In fact, there is exactly a one-

parameter family of such immersions. The immersion f is associated iff a = 0
everywhere, and f is real iff p = q.

Conversely, any conformal local parametrization of a non-complex immersed
minimal surface in P is of this type.

Proof. We start proving the last statement. If a minimal immersion f :  M ~ P  is
given, we may pull back all functions on M to an open ball U in ~ by means of a
coordinate z which is conformal with respect to the induced metric on M. Put
p = 2c, q = 2s, a = 2V~pq. Now by (2.6) we have

A loga = A logV~cs + 3A log2 = 0 .

Therefore, a=lhl  for some holomorphic function h: See the subsequent Lem-
ma 3.12. Moreover,  a dominates p and q. Now (3.3) and (3.4) follow from (2.1) and
(2.2) since 22 = p 2  + q2 ,  k = aZ/(p2q222), and A 0 = 22A.

Conversely, assume that functions p, q on U are given which satisfy the
assumptions of the theorem. Put  22 = p2 d- q2 > 0, C ----/9/2, S ---- q/2, and let K be the
curvature of the metric ds 2 = 22dz d5 on U. Set k = a2/(p2q222) and K N = k + K - 2.
Then (3.3) and (3.4) imply (2.1) and (2.2), and (2.6) and hence (2.3) follow from
A log2 = - K  unless a = 0 everywhere. In the latter case we get k = 0 which is the
associated case. So the result follows from the Theorems A and B. Clearly, p = q iff
c = s which is the case of a real minimal immersion.

Remarks. 1. Locally, we may always assume that U is a disk around 0 and a = r" for
some-non-negative integer n, where r(z) : = Izl, unless a = 0 everywhere. Namely, if
f :  M ~ P  is given and m e M fixed, the absolute value type function a = 231/~cs is of
some order n > 0 in m, i.e. for any conformal coordinate z around p with z(m) =- 0
there is a holomorphic function h with h (0 )#0  such that a=lz"h(z)l (see
Lemma3.12).  If z=~p(w) is a biholomorphic transformation, for the new
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coordinate  w we have dz = ~p'(w)dw, so  d s  2 =  2Zdw d# with ,~= 21 ~'1. Hence, with
respect to the coordinate w we get a new function ~ = Ih0'] 3. a o~ instead of a. We
are looking for a t ransformation q~ with ~ = Iwl", i.e. we have to solve the differential
equat ion

W'(w) 3. W(w)" �9 h(w(w)) = w".

Instead, we look for the inverse map ~/= ~p- 1, r/(z) = w. This satisfies the differential
equat ion

q'(z) 3q(z)" = z"h(z)

which has a nonsingular  solution around z =  0, according to Lemma 3.13 below.
2. Since p and q have no c o m m o n  zeros, we may assume that p is nowhere zero

a round  0 while q = rkq~ with k a nonegative integer and qt nowhere vanishing.
Put t ing

u = log(qlp) ,  v = log(qt/p)

and assuming a-= r k + rn with m > 0, we get from (3.3), (3.4) the equivalent equations

AOu = rZme- 2 ,_  2eU(e- v + r2kev), (3.5)

A~ = 6e"(e- v _ r2kd), (3.6)

while in the case a = 0 (3.5) is replaced with

A~ = - 2e"(e- ~ + r2keO (3.5)'

No te  that  we may apply the Cauchy-Kowalewski  Theorem to these equations [1 7]
so that we get local solutions for any k and m.

3. In particular, we may consider the case where all functions are circular
symmetric.  For  a circular symmetric function t = t(r) we have

d ~  + l-t'= -1-(rt')'= : Dt.
r r

Note  that the equation Dt(r) = 9(r) has a unique solution t with t(0) = t'(0) = 0, for
any given function 9, namely

r |  s

and iflg[ < fl on [0, r], then Itl_-< ~ r z ' This s h o w s  that the Eq. (3.5), (3.6) have always

circular symmetric solutions t = (u(r), v(r)) with t(0) = t'(0) = 0. The corresponding
minimal surface in P has a rotation-invariant metric, and the rotations leave also
invariant  the functions c, s, k. So its one-parameter  family of minimal surfaces has
constant  image in the sense of  Theorem B(ii).

L e m m a  3.12. Let a be an absolute value type function on an open, simply connected
subset U of  l~, and assume d ~ loga = 0. Then there exists a holomorphic function h on
U with Ihl = a.
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Proof In a neighborhood of any z o e U  we have a=[z--zolkal for a positive
function al and some nonnegative integer k. Let b = l o g a  1, then A~
Therefore, b is the real part of a holomorphic function g. So the function
h:=(Z--zo)ke g is holomorphic and satisfies Ihl=a. Any other holomorphic
function with this property differs from h only by a constant factor of unit length.
Since U is simply connected, we may choose this factor constant on the whole of U
and thus extend h to all of U.

Lemma 3.13. Let h be a holomorphic function defined in a neighborhood of 0 in rE,
with h(O):t: O. Then the complex differential equation

y,ayn = x"h(x) (*)

has a holomorphic solution y around 0 with y(0)= 0, y ' (0)~ 0 (in fact exactly n + 3
such solutions).

Proof Let h x be a holomorphic function, defined on some open neighborhood U~
of 0, with h a --h. There is an analytic solution yl of the equation

3
n+3XY'x +Yl =hi ,

defined on some neighborhood U2 of 0, contained in U1. This solution is obtained
easily as a convergent power series. In particular, y l (0 )=  h~(0):~ 0. On an even
smaller neighborhood U3, there is a holomorphic function Y2 with ~2 § 3 = y~. Now
y : = xy2 is a solution of the Eq. (*) with y(0) = 0, y'(0) = y2(0) + 0.

4. Topological Restrictions

Throughout  this section, let (M, ds z) be a compact oriented surface. If a is a
positive function on M, then ~ A l o g a = 0  by the divergence theorem. If a is a

M
nonzero function of absolute value type, i.e. locally a = Ito[. al with t o holomorphic
and a 1 smooth, positive, then A loga is still bounded on M - { a = O } ,  and the
integral can be computed as follows: For  any p E M with a(p) = 0, the order k => 1 of
a at p, by definition is the order of to at p. Let N(a) be the sum of all orders for all
zeros of a.

Lemma 4.1. ~ A l o g a =  -2nN(a ) .
M

Proof Let Z:=a-1(0);  this is a finite set. For  any Po ~ Z, choose a conformal
coordinate z around Po with conformal factor 2, and let

u~(po) = {p ~ M;  Iz(p)-  z(Po)l < ~}.

For  small e, the U,(po), Po ~ Z, are disjoint. Put  M, : = M -  U U~(po). Then by
the divergence theorem, po~z

S Alogadv= 5~ ~ (Floga, v)ds,
M~ poEZ OUs(po)
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where dv denotes the volume element of M, ds the line element of ~ U,(Po ) and v the
unit normal vector of OU~(po) pointing inward. Fix a zero poeZ and let
r: = Iz-z(Po)l. If a has order k at Po, we have a = rkal around Po for some smooth
positive function al. Now (IZ logal, v) is bounded, and so its integral over ~U,(p0)
gets arbitrarily small as/3~0. So we are left with the remaining integrand which is

So we get

k d  k(171ogrk, v) =kv(logr)= - - ~ ( l o g r ) =  2r"

. - k  k
S (IZloga, v)ds= ~ - ~ r d S = - -  ~ Idzl=-2nk,

~U~(po) {r = ~) /3 {r = ~)

and the result follows as we let/3 go to 0.
Note that the orientability was not needed in this proof. Applying this lemma

to the functions c, s, ]/~ defined in Sect. 2, we get immediately from Theorem A(i)
and the integral formulas of Sect. 1:

T h e o r e m  4.2. Let f :  M ~ P  be a minimal immersion with degree d and normal
characteristic XN. Then

unless f is anti-holomorphic,

unless f is holomorphic, and

unless f is associated.

1 +~(g XN-- 3d) = -- N(c)

 89 + ZN + 3d) = - N(s)

(4.1)

(4.2)

Adding these equations, we see

Corollary 4.3. Either f is isotropic or

z(M)= -N(csl//k). (4.4)

In particular, i fM is a sphere, f must be isotropic which is well known [2, 4-8, 25].
Moreover, inserting (4.3) in (4.1), (4.2) we get

3 (z_d)=  - N(c2[/~) (4.5)

unless f is antiholomorphic or associated, and

3(Z + d) = - N(s2l//k) (4.6)

unless f is holomorphic or associated. In particular, we get

Corollary 4.4. Eittfer f is isotropic or
z(M) < - Id l .

2Z+XN= - N(]/~) (4.3)
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This has also been proved by Eells and Wood [7], using the Riemann-Roch
theorem.

Furthermore, integrating the inequalities of Corollary 3.2 we get

Theorem 4.5. Let f :  M ~ P be a minimal immersion. Then

area (M) > n(X - XN) (4.7)

with equality if and only if f is associated, and

7~
area (M) > ~- (Z + XN) (4.8)

with equality if and only if f is complex.

In particular, for isotropic minimal immersions there are no other minimal
immersions in the same isotopy class which have smaller area.

By means of the following lemma, we often may remove XN in the equations
above, using the self-intersection number If:

Lemma 4.6. Let f : M ~ P be an immersion of degree d and self-intersection number
I y which has only regular self intersections which are of multiplicity 2. Then

ZN = d 2  - -  2Ii-  (4.9)

Proof Let S c f ( M )  be the set of points which have two pre-images under f. S is a
finite subset of P. Let s ~ S and x, y 6 M the two pre-images. We define s to have the
weight w(s) = + 1 if df(TxM) and df(TrM ) together define the positive orientation
on T~P, otherwise w(s)= - 1. The self-intersection number is defined as

I f  = 5~ w(s).
sen

Put X" = f -  1 (S) C M, and for x e X let w(x) : = w(f (x)) .  To X, we assign the zero-
cycle

IX] = Z w(x)x = 2Ifg ~ Ho(M ) ,
x~X

where g denotes the generator of Ho(M ) dual to 1 ~ H~ Call D e : H * P ~ H , P
and D u ' H * M ~ H , M  the Poincar6 duality maps and [M] e H2(M) the funda-
mental class of M. Let e e HZM denote the Euler class of the normal bundle N M  of
f. By Herbert [16, pp. ix, x] and Lashof and Smale [21],

IX] = Ou( f *  O e I f ,  [M] - e).

If we denote the pairing H * |  by ( , ) ,  we have

(1 ,DMf*D e l  , -1 f , [ M ] )  = ( f  Dp f , [ M ] ,  [ M ] )  = (D~ ~f,[M],  f , [ M ] ) .

Let w be a generator of H2(P ). Then f , [ M ] = + _ d . w  and ( D ~ w , w ) = l .
Moreover, Due =)~u- g. Therefore 2If  = d z -)~u which finishes the proof.

In particular, the last result yields necessary conditions for a minimal
embedding where we have ZN = d2. By choice of the orientation of M, we may
always assume d > 0.
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Theorem 4.7. Let M be a compact orientable surface of genus g and f :  M-~ P a
minimal embedding of degree d > O.

(i) I f  f is not isotropic, then 29>__dZ + 3d+ 2.
(ii) I f  f is complex, then 29 = d E - -  3d + 2.

(iii) I f  f is associated, then g = 0 and f (M)=~p1 .

Proof. (i) and (ii) are immediate from (4.1) and (4.2) since Z - - 2 - 2 0 ,  ZN = dE and in
the holomorphic case c = 1, hence N(c) = 0. If f is associated and not complex, then
Z - ZN > 0 by (4.7) and X + XN --< 0 by (4.1) + (4.2). Hence d E : ZN < 0, a contradiction.
I f f  is associated and complex, it has constant curvature K =4  by Corollary 3.2,
and so f (M)  =ff~p1 up to isometries of P, by Corollary 3.7.

Statement (ii) is well known (see [12]). Statement (iii) can be expressed as
follows: Any full associated immersion f :  M ~ P  has nontrivial self-intersections.

5. Complex Maps and Associated Immersions

Let (M, ds 2) be a compact orientable surface and f : M - * P  a holomorphic or
antiholomorphic mapping. By the choice of orientation on M we may always
assume that f i s  in fact holomorphic. Let f : M - ~ P  be the associated map, and
assume that f is an immersion. Then the holomorphic map f i s  not necessarily an
immersion, too; there may be isolated points where df vanishes. An example is
provided by the Nell Parabola where M = ~ and f(z) = [l ,  z 2, z3]. The associated
map is

f (z)=[-(2+3r)~2,2-r6,(3+r4)z] with r := lz ] .

Note that f has no singularity at z = 0 while f has.
Let ds z, dr, K, K N etc. be induced metric, volume element, curvatures etc. with

respect to f, while the corresponding quantities for f a r e  denoted by dg 2, dO,/(,/(N.
By Theorem C we have

dff 2 =sZds 2 , (5.1)

where s: = sin ~, ~ the K/ihler angle o f f  As above, let N(s) denote the number of

zeros of s, counted with multiplicities.

Lemma 5.1. ~/(d0 = 2~C((M) + N(s)).
M

Proof Comparing the curvatures, we get from (5.1)

s2/( = K - A logs, (5.2)

hence by means of Lemma 4.1
S ff~dO=S s2I(dv =~ K d v -  ~ A logsdv
M

= 2~z(x(M) + U(s)) .

Note that a holomorphic curve f :  M ~ P  has a well defined complex tangent
line even at the points where dr= 0, by Taylor expansion. Therefore also the
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normal bundle ]VM is defined everywhere, and it inherits a connection and a
curvature from f * T P  as defined in Sect. 1. The curvature form is still expressed by
/('sdfi, by continuity. Hence we still have the Gauss-Bonnet formula
~(N = 2~ S/(Ndg. Denote the degrees o f f  and f b y  d and a 7. Note that a rea(f )  = ~d
since C = 1.

Theorem 5.2.

ZN + ZN = Z, (5.3)

d+~=z+N(s). (5.4)
Proof. From (5.2) and (2.2) we have

s2/( = K - A logs =  8 9  Ks) -- 3(1 - 2s 2) = 6s 2 - 2

since K- -  K s = 2 for associated immersions f (Corollary 3.2). So

s z = 2 / ( 6 - / ( )  = 21gs,

by Corollary 3.2 again. It follows that ds 2 = 89 2, hence dv =  89 and by
integration

area ( f )  = rc~N. (5.5)

On the other hand area(f)  = n(X-Ks) [equality case of (4.7)], whence we get (5.3).
Further, integrating 6 - / ~  =/s (Corollary 3.2), we get from Lemma 5.1 and (5.5)

3 area ( f )  - rc(z + N(s)) = nZN = area ( f ) .

On the other hand, we integrate df=s2dv=  89 C)dv to get

area(f) = nd + 2 area(f) .

Inserting into the equation above yields (5.4).

6. Curvature Restrictions

Theorem 6.1. Let (M, ds 2) be a complete surface, f :  M ~ P  an isometric minimal
immersion. Assume either

(a) K=>0
o1"

(b) K <=O and b" =ksin2a_>_6>0.
Then either f is isotropic or M is fiat with constant b.

Proof Assume that f is not isotropic. Then b is positive outside a discrete set, and
from (2.6)we have A logb=6K,  hence db=JJVbjj2/b+6Kb. In case(a) this is
nonnegative, so b is a subharmonic function. Moreover recall that KN ~ 6 - K
(Corollary 3.2), hence k = 2 + K N-  K__< 2 ( 4 -  K) ~ 8. Thus b is bounded and
therefore constant (see Huber [15]). Consequently, K =~A logb =0.

In case (b), we may proceed as in Yau [26] and Klotz and Ossermann [20]. We
may assume that M is simply connected. The metric ds 2 : = bl/3ds 2 on M is flat and
complete since b is bounded away from zero. If A o denotes the Laplacean of ds 2, we
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have A~ and so we get from (2.6) A~ Therefore,
- logb is a bounded subharmonic function on the euclidean plane which must be a
constant. This proves (b).

Remark. Case (b) is a generalization of Theorem 7 in Yau [26]. Namely, if f is real,
then b = k = 2 ( 1 - K ) .  In this case, the assumption K <0  implies b>2.

Theorem6.2. Let M be a compact oriented surface and f : M - , P  a minimal
immersion.

(i) I f  KN + K > O, then f is complex or real.
(ii) I f  K N + K < O, then M is a sphere of area 6re and f is associated with deoree

d=0 .
(iii) I f  K N < 2K, then f is associated with K > - 2 or f ( M )  = V or f ( M )  = CT.

Proof. (i) From (2.4) and Lemma 4.1 we see that either f is complex or

I (K + KN) = -- 2~N(sin ~) < 0
n

which would imply that K + K N = 0 everywhere, hence f real by Theorem 3.4.
(ii) F rom (2.7) we can see that the only critical points of the function C occur

where C z = 1 ; hence they are maxima or minima. By a standard Morse theory
argument we see that there is exactly one maximum and one minimum and that M
is diffeomorphic to a sphere. In particular, f is isotropic, by Corollary 4.4. So f is
associated since in the complex case we would have K N + K = 6 (Corollary 3.2).
Hence K - K N = 2 which implies K N < - 1. Since/(N = 3 C 2  - 1 ~ - 1 [see (1.3)], the
oriented area of the ellipse of curvature (in this case a circle) is everywhere strictly
negative (cf. Sect. 1). Therefore the bundle map A : T M ~ N M ,  A(X)= A(X, X),
has degree - 2  outside the zero section, as explained in Sect. 1. We now use an
argument of Asperti et al. [1, Theorem 1]: The index formula for the Euler number,
applied to a generic tangent vector field X and to the normal field A ,, X yields
zN=deg( .4 )Z=- -2Z=- -4 .  Now from (4.1), (4.2) we get Z+ZN+3[d l<-2 ,  thus
d = 0 .  Moreover, the equality case of (4.7) shows area(M)= 6n.

(iii) I f f  is associated, i.e. K N = K - 2 ,  then KN<2K if and only if K > - 2 .
Otherwise we see from (2.3) and Lemma 4.1 that I ( 2 K - K N ) = - N ( I / ~ ) < 0 ,

M
hence K N = 2K everywhere and k = const. So both K and KN are constant. Since
K + K N < 0 is excluded by (ii), we are in case (i). Then the result follows from the
Corollaries 3.7 and 3.9, since ~P1 and R P  2 are also associated.

Remark. In case (ii), we have N(c)=N(s)= 1, by (4.1), (4.2). Thus Theorem 5.2
implies that f is associated to a holomorphic curve of degree 3 with one singular
point on ~ .  E.g. the Nell parabola f(z)  = [1, z 2, z 3] has this property. It is an open
question whether the assumption of (ii) can be realized by such a curve.

7. Structure Equations and an Imbedding Theorem

Let (P, ( , ) ,  J) be a 4-dimensional K/ihler manifold. On any tangent space TpP we
define an hermitean inner product (,) by

(X, Y): = ( X ,  Y ) + i ( X ,  J Y ) .
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A unitary frame at p is a pair of vectors El ,  E 2 E TrP such that (El,  E~) = (~ij. Let UP
denote the bundle of all unitary frames on P. A local unitary frame is a local section
E of UP, denoted by E(p) = (p; E l(p); Ez(p)), defined on some open subset U of P.
By means of E we may define complex valued exterior forms ~oi, coi~ ~ Q~(U) and
f2~j ~ f22(U):

~o,(x) = (x ,  e , ) ,
~%(x) = (VxE. E) ,

f2,j(X, Y) = (R(X, Y)E,, E~).

These satisfy

(~)ij = - -  O)ji,  ~ i j  = - -  ~'~ji

and the Cartan structure equations

d ( D i = ~ O ) k A O ) k i  , d(J.) i j=~~ij+ ~'~(DikAO.)kj. (7.1)
k k

In our case p = ~ p 2 ,  the curvature form is well known from the curvature
tensor (see e.g. [19, Vol. II, p. 166])

~ i j  = --(~)i A O)j "~-(~ij ~,, (Dk /k (Dk" (7.2)
J

Note that the sign convention for the curvature tensor is different in [19].
Alternatively, one could use the Maurer-Cartan equations of the group PU(3) to
derive (7.2).

It is well known that the forms ~ ,  ~ ,  Q~i are pull backs of corresponding forms
r d~j, ~ on UP via the section E, and these forms satisfy equations formally
identical to (7.1), (7.2) (e.g. see [19, Vol. I]). Moreover, real and imaginary part of&~
and tb o span the cotangent bundle of UP. For p = ~ p 2 ,  the Lie group PU(3)
= U(3)/S ~ (see Sect. 1) acts simply transitively on UP and may be identified with
UP. In particular, UP has (real) dimension 8.

Now let M be a surface and f :  M ~ P  a smooth mapping. Let E = (E~ ; E2) be a
unitary frame along f, i.e. a map E : M ~  UP with z o E = fwhe re  T : U P ~ P  denotes
the bundle projection. This defines complex valued 1-forms on M, namely

o9 i = (df, Ei), ~ij  = (VEi, E j) ,

where I z and (,) are now pulled back to the bundle f * T P .  Since ogi=E*d,~,
o9 o = E'd9 o, these forms satisfy the same structure equations

d~ = ~, ~ ^ r
k (7.3)

do2ij = ~, O)ik /X (J)kj - -  (~i A (Dj "4- t~ij ~ ,  0) k/X (~)k "
k k

The following theorem shows the converse:

Theorem 7. Let  M be a simply connected surface and oJ i, ~oijfor i , j  ~ {1,2} complex
valued 1-forms on M satisfying t o i l = - @ j  and (7.3). Then there exist a smooth
mapping f :  M - 4 P  and a unitary frame E = (E 1 ; E2) along f such that

o9 i = (df, El), ~ij = (VEi, E j).
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Moreover, (f;  E) is uniquely determined up to isometries of  P.

Remark. Consider the quadratic form dsZ:=e91&~ +~o2o52 on M. The theorem
implies that ds 2 = f * d g  2 where dg 2 denotes the Riemannian metric on P. Thus f is
an immersion if and only if ds 2 is everywhere positive, and then f is isometric with
respect to ds 2.

Proof  of  the theorem. We proceed as in Spivak [23, p. 67]. It suffices to construct a
map E : M ~  UP with co i = E*d~i, co u = E*d~ u. This will be done by constructing the
graph of E, called F C M • UP. We consider 09~, tou, &~, tb u as being forms on
M • UP, by pulling back via the projections ~ ,  7t z of M • UP onto M and UP.
Consider the difference forms

~i  = (Di - -  ( f ) i ,  ~(ij = (Dij  - -  (~)ij

which define 8 real valued 1-forms: the real and imaginary parts of Z~, Z E, Z~2 and
i-1Z11, i-1~(22. These are linearly independent since real and imaginary parts of
r span the 8-dimensional cotangent spaces of UP. Thus the subbundle
{Zi = 0, Zu = 0} of T ( M  x UP) is a 2-dimensional distribution on M x UP since it
has codimension 8. Now by the structure equations we have

dz~ = F~ (o~k ̂  (~k~ - d~k ̂  d)k~)
k

dz i  J = ~., (COik A COkj - -  O)ik A COkj ) - -  ( t9 i A O~j - -  tb i IX d~j)
k

- 6u  ~ (cok ^ ~k -  oak ^ tbk ) .
k

These 2-forms belong to the ideal generated by Zi, Zu since in any ring we have the
identity

2(ab - cd) = (a + c) (b - d) + ( a -  c) (b + d) .

Thus, by the Frobenius theorem, the distribution is integrable.
Let F be a maximal integral leaf through some point u = (m; E~ ; E2) e M • UP

and let x e T ,  F. If dz l (x)=0 ,  we have O=gi(x)=d~i(dTt2(x)) and 0=Zu(x)
= o3ij(d~z2(x)), so d~2(x)= 0 and thus x = 0. Therefore, 7t 1 IF is an immersion and F
is locally a graph over M. Hence there exists a neighborhood U of m in M and a
map E: U ~ U P  such that graph(E) is an open subset of F.

We now extend the action of the group G" = PU(3) on UP to M x UP by
letting G act trivially on the factor M. If (E'~ ; E2) ~ UP is another frame, there exists
a transformation g e G with E~ = dg(Ei). Thus g(F) is an integral leaf through the
point (m;E'~;E'2), and by the uniqueness part of the Frobenius theorem, any
integral leaf over m arises in this way. On the other hand, the graph of any map
E : U ~ P  which satisfies the assumption of the theorem, is an integral leaf. So E is
uniquely determined up to the action of the holomorphic isometry group G. This
uniqueness together with the paracompactness and simple connectivity of M
allows to extend E to all of M. This proves the theorem.

Remark. We did not use the fact that M is a surface. Moreover, a similar argument
is valid for any symmetric space instead of P. A similar result was obtained by
Wettstein [24].
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8. A Special Unitary Frame for Immersions
We will prove Theorem A by showing that the fundamental equations (2.1), (2.2),
(2.3) are equivalent to the structure equations for some special unitary local frame
E 1, E 2 along the immersion f.

Let M be an oriented surface and f :  M-~P an immersion. Let (el;ez) be an
oriented orthonormal local tangent frame on M (with respect to the induced
metric) and put

sa = 89 -Je2) ,  s2 =  89 +Jez), (8.1)

where J denotes the complex structure of P as above, s ~ and s2 are sections o f f*  TP
which are no longer tangential in general. Note that (s~, s2) = 0, where (,) denotes
the hermitean product introduced above. The sections sl and Sz cannot have a
common zero. So we may define two complex line bundles L1, Lz (subbundles of
f *TP)  as follows:

Ll=ff~sx, Lz=(Csl)  • whereever sl:t=0,
L l = ( l ~ s 2 )  -1- , L 2 : ~ s  2 whereever S2:#:0.

(Recall that we defined a lI]-scalar multiplication on TP.) If we rotate our frame
el, ez by an angle z varying on M, we just have to multiply sl by e i~, sz by e -it, so
~Sl and IEs2 are independent of the choice of the frame e~, e 2. Therefore, the
bundles L 1 and L 2 are well defined globally on M.

Remark. If T'PC TP| denotes the set of (1,0)-vectors, i.e. the holomorphic
tangent bundle, a n d '  the projection on this subbundle, i.e. X'=  89
then L', is spanned by (Of/Oz)" and L~ by (Of/Of)' for any conformal coordinate z,
whereever these derivatives are nonzero. However, we will not pass to the
complexified tangent bundle.

Now choose local sections E1 of L~ and E 2 o f L  2 which have unit length. Then
(E1;E2) is a unitary frame along f which will be called special. Since
Is~1= 89 and ] s z l =  8 9  (see Sect. 2), we have

S 1 : u E 1 ,  S 2 = fE z (8.2)

for some ~-valued smooth functions u, v on M with

lul=c, Ivl=s. (8.3)
In turn, we have

el=uEl  +fE2,  ez=i(uEl-6E2) .  (8.4)

Further, we get an oriented orthonormal frame (e3 ; e4) of the normal bundle NM
by putting

e3= --tTE 1 +uE2, e4=i(fE 1 +uE2). (8.5)

Let coi= (df, Ei), coij= (VEi, Ej) as above and put

Oi = (df, el), ~k :" O1 "k iO 2 .
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A complex  valued 1-form on M is a (1, O)-form if it is pointwise a multiple of~b. Now
by (8.1)7 (8.2) we have

0)1 = u~,  032 = v~b, (8.6)

thus these forms are (1,0).

L e m m a  8.1. Let f :  M--* P be an immersion and El,  E 2 a unitary frame along f The
frame (E l ;E2)  is special if and only if 0)1 and (D2 are (1, O)-forms.

Proof. We only have to prove  the " i f ' -par t  yet. Let e l , e  2 be an or thonormal
tangent  f rame on M with coframe 01, 02 and ~b = 0 1 + iO 2. Assume 0)1 = u~b, 032 = l)~
for some complex functions u,v. Put  st=uE1, S E = / ~ g  2 and f l=sx+s2,
f2 = J(Sl - s2). We claim that  f l  = el,  f2 = e v

Define 03i:f* T P ~ r  by 03i(X)= (X, Ei). Then 03 1, 05 2 form a local basis of the
bundle  H o m e ( f * T P , ~ ) ,  and 03iITM=0) i. Since v0)l=u032, the form
v : = v03 1 - u ~ 2  has kernel TM. Note  that  v( f  0 = v( f2)=  0, so f l  andf2  are tangent
vectors.  Fur the r  note that  u~(f/) = 031 (f/) = uq~(ei) and v~b(f 3 = ~2(f/) -'- vq~(ei). Since
~ =  ds 2 = O)103 1 -]- 0)203 2 ~- (Ul,/"-[- I~V)r the functions u and v have no c o m m o n  zero,
and so we conclude r  d/(ei) which means  f / =  ei. Looking  back we see that
sx = ( e l - J e 2 ) / 2 ,  s 2 = ( e l  +Je2)/2, and therefore E1 and E 2 span L 1 and L 2.

Remark. In  fact we only have to assume that  either 0)1 or 03 2 is a (1,0)-form. E.g.
assume tha t  0)i = ur for some function u 4: 0. Since 0)2t32 = $ ~ -  0)1031 = (l - u t i )~ ,
the form 0)2 must  be a multiple of  r or ~. But if 0)2 = re, then TM would be the
kernel  of  the complex linear form v031- u032; thus f would be holomorphic  and
v- -0 .  So 0)2 is always a multiple of ~.

Next  we compute  the second fundamental  form A o f f  with respect to the frame
(el,  e2, e3, e4) defined above. Let

W : = udv -  vdu-  uv((/) 11 "[- (D22) "

Then  we get f rom (8.4) and (8.5)

(Vex,e3)--i(Ve2,e3)=0)12 + IP , (8.7)
(Ve2 ,e4) - i (Ve l ,e4)=o~12- tp .

Let h 3, h 4 denote  the mean  curvatures o f f ,  i.e.

h3e3 + h4e4 =  89 1 + A22)'

Then  the matrices A a = (A,  e3), A 4 = (A,  e , )  have the form

Putting
w : = ~((a + d) + i ( c -  b)),

and h: = h a + ih 4, we get from (8.7)

0),2 = w4 +  89162

~" =  8 9  + i(c + b)),

,e = + 89

(8.8)
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Note that f is minimal if and only if h=0 .  So we get in particular:

Lemma 8.2. Let f :  M ~ P  be an immersion and E 1, E2 local unit sections of L1, L 2
(special unitary frame). Then f is minimal if and only if (012 is a (1, O)-form, more
precisely,

(012 = wt, b (8.9)

with w defined by (8.8).

Now assume f to be minimal. Then we obtain the absolute values of w, ff by
Gauss and Ricci equations (1.1), (1.2) together with (1.3):

]2wl 2 = K s -  K + 2 = k,
(8.10)

IZkl 2 = 6C 2 - (K + Ks).

Moreover, due to the fact that (01,032, (0t2 are (1, 0)-forms, the structure equations
(7.3) for (f; E l ;E2)  simplify as follows:

d(01 : ( 0 1 A  (011 ,

d(0 2 = 092 A (022,

d(012 = (012 A ((022 --  (011),

d(011 =0312 ^ (011-2031 ^ (0~ +(02 A 032,
d(022 -- -0312 A ~12--031 A (01 + 2(02 A 032.

(8.11a)
(8.11b)
(8.11c)
(8.11d)
(8.11e)

Remark. From these equations it is easy to compute the Euler numbers of the line
bundles L 1 and L2 in case that M is compact: Using Ek, JEk as a frame for Lk
(k = 1,2), the connection form is i-  l(0kk and therefore its curvature form i -  ~d(0kk.
From (8.11d), (8.11e) and (8.3), (8.6), (8.9), (8.10) we get

d(011 = a(K N -  K - 6C)~ ^ ~b, (8.12a)
d(022 =  8 8  K N + K - 6C)~A ~b. (8.12b)

Integrating and using the Gauss-Bonnet-Chern theorem we get

z(L1) =  89 + Z + Zu),

z(L2) =  89  )~ + Zs).

[We already knew from (4.1), (4.2) that these numbers are integers.] In the
holomorphic case L 1 = TM, and we get again Z + )~N = 3d as in the equality case of
(4.8).

9. Proof of the Main Results

Choose a conformal coordinate z = x + iy on M with conformal factor 2. We will
use the orthonormal frame

e i = 0x/2, e2 = ~y/~"



                           593

Let 01, 0 2 be the corresponding coframe and put ~b= 01 + i02 a s  above; we have
(~ = 2dz. (In fact we have ~b = ~dz for any orthonormal frame, where/l is IE-valued
with I/~1 =2.) Putting

we have

p = 2 u ,  q = 2 v ,  r = 2 w ,

~o t =pdz, ~2=qdz,  o912=rdz.

Now the first three structure equations (8.11a}-(8.1 lc) become

(dp + pco 11) Adz = O,
( d q -  qco22 ) Adz = O,

(dr+r(oozz-~~ 1)) Adz = 0 .

(9.1a)
(9.1b)
(9.1c)

In particular, d(pqr)A dz = 0. Therefore, pqr is a holomorphic function, and

A : = o91ff~2% 2 = pqr dz 3 (9.2)

is a holomorphic cubic form. Note that the definition of A does not depend on the
choice of the special unitary frame El, E2. In fact, a global definition is

A(x)  = (VxXl, x2)
for any tangent field x of M, where x =xl  + x2 denotes the decomposition with
respect to the subbundles L~ and L 2 o f f *  TP. This global holomorphic form has
been used before, e.g. see [4] and [7]. However, (9.1) has stronger consequences:

Lemma 9.1. Let (M, ds 2) be a surface and z a conformal coordinate on some open
subset U of M. Let t be a smooth complex valued function and o9 a purely imaginary
1-form on U, i.e. i-~o9~(2~(U). Assume

(dt + t~o) Adz = O. (*)

Then
O) t is of holomorphic type,

(ii) co= 2i lm ( f-~ logt-dz) ,

(iii) &o=  89 logltl ~A ~b,
where q~ = 2dz as above and A the Laplacean of M.

Remark. Note that, by (i), the expression in (ii) and (iii) make still sense at a zero oft
unless t = 0 everywhere. Part (i) goes back to Chern ([3], see also [25]).

Proof By (*), the dS-part of the form dt+ to9 vanishes. Since ~o is purely imaginary,
we have

~o = bdz - bdz= 2i Im (bdz)

for some complex valued function b. Hence (*) implies

Ot=t6, (**)
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where O:=O/Oz  and ~-: =O/O~. Let u be any solution of the inhomogeneous
Cauchy-Riemann equation

17u=6

on U (e.g. see [-10, 13]). Then tl =e" is a nowhere vanishing solution of(**), and so
J ( t / t l )  = 0. Thus to : = t/t1 is holomorphic which proves (i). By (**) we have 6=  •t/t
= ~-(logt), hence b = 0(logt-) which gives (ii). Moreover,

do9 = db ^ dz - d b  ^ d~ = (~b + Ob)dY~ ̂  dz

= (~-O(log t-) + a~-(log t))di A dz

= 20~-(log Itl)d~ ̂  dz

=  89 logltl ~ ^  ~b

which proves (iii).
Replacing (*) with either of the equations (9.1a)-(9.1c), we see that p, q, r and

hence u, v, w are of holomorphic type, so c, s, 1/~ are of absolute value type [see
(8.3), (8.10)]. Furthermore, we can compute d o l l  , d(022, d((Dll--0)22 ) on two
different ways: By means of Lemma 9.1(iii) and by the structure equations, see
(8.12). Equating the two results yields the fundamental equations (2.1), (2.2), (2.3) in
Theorem A.

To prove the converse [-part (ii) of Theorem A], assume first that none of the
given functions c, s, 1/~ vanishes identically. Let z be a conformal coordinate on an
arbitrary open disk U in M, and let 2 denote the conformal factor. Adding (2.1),
(2.2), (2.3), we see that the absolute value type function a . =  8 9  ~ satisfies
A(loga) = 0. Hence by Lemma 3.12, we have a = Ihl for some holomorphic function
h on U which is uniquely determined up to a constant phase factor e ~.

Now choose holomorphic type functions p, q on U with IP[ = 2c, Iql = 2s which
exist since c, s are of absolute value type. Put r = h/(pq). Since I rl =  89 is bounded
near the zeros ofp and q, the singularities of r are removable and r is a holomorphic
type function on all of U. Now we set

co 1 = pdz  , ~2  = q d z  , co12 = rdz,

and Lemma 9.1(ii) motivates us to put

col 1 -- 2i Im(0(logi6)dz), (9.3)
( D  2 2 ~ - -  2i Im (a(log ?l)dz). (9.4)

As a consequence of J ( l o g p q r ) =  0, we also get

0922 - o911 = 2i Im (0(log r-)dz). (9.5)

It is now easy to check that these 1-forms on M satisfy the structure equations
(8.11) and hence (7.3). By Theorem 7, they define a mapping f :  U ~ P  together with
a unitary frame El,  E2 along f such that o9i = (df, El), o~ij = (IZE~, E j). Since co le5~
+ COzO32 = (c 2 + sZ)d?~= ds 2, this map f is an isometric immersion. By Lemma 8. I,
the unitary frame El,  E2 is special, hence f is minimal, by Lemma 8.2. Note that
A = hdz 3 is well determined up to the constant factor e ~.
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In case k = 0  everywhere, we choose p and q as above and define
0)1, 0)z, 0911, 0)22 as before while setting 0)12 = 0. In case s = 0 everywhere, we put
0)1, 0)11 as above, choose a holomorphic type function r with Irl =  89 put 0)2 = 0,
0912 = rdz and define 0)22 by (9.5). If both s and k vanish identically, we put 0)1, 0)11
as above, 0)2 =0,  0)12 =0,  and choose an arbitrary imaginary form 0)22 with

d0)22 = - 0 3 1  A 0) 1 = --,~2d~A dz.

If c instead of s vanishes identically, the roles of 0)1, 0)11 and 0)2,0)22 are
interchanged. In all these cases the structure equations (8.11) and (7.3) are satisfied,
and 0 ) 1 ( / ' ) 1  - ] - 0 ) 2 0 " ) 2  = ds 2, so by Theorem 7 and Lemma 8.1, 8.2, we get an isometric
minimal immersion f :  U ~ P  together with a special unitary frame El, E 2 along f,
a n d f i s  either complex (c = 0 or s = 0) or satisfies k = 0, i.e. 0)12 = 0. This finishes the
local part of the existence theorem.

It remains to show that the last case 0)12 = 0 Occurs if and only if f is associated.
This is well known [4, 7]. For  completeness we present the argument: Let Zo: U
~ S  5 CC 3 be a lift off, i.e. ~z o Z o =f ,  where ~z : S ~ ~ P  is the canonical projection. Let
Z 1 , Z 2 : U - + S  s be horizontal lifts of E1 ,E  2 at Zo, i.e. Z I , Z 2  are pointwise
orthogonal to •Z o and drczo(Zi)=E i. We claim that f l - - rcoZ1 in an anti-
holomorphic and f2 = ~ ~ Z2 a holomorphic map from U to P. In fact, we have

df  x = ( dZ  l , Zo)dltz, ( Zo) + ( d Z  l , Z2)dnz , ( Z 2) ,

df2 = (dZ 2, Zo)dTzz2(Zo) -4- (dZ 2, Zl)d~zz2(Zl) ,

where (,) denotes also the hermitean inner product on IE 3. Since it is a Riemannian
submersion, we have

- (dZi, Zo) = ( Z i ,  d Z o )  = ( E l ,  d f )  = ~ i ,

(dZi, Z j )=  (vSz i ,  Zj)  = (V E i, E j )= 0)i j ,

where V s denotes the Levi-civita connection of the sphere S 5. Hence (dZl ,  Zo)
= - f i de ,  (dZ2, Z o ) =  - q d z ,  (dZl ,  Z2)= 0 = (dZ 2, Z 0 and so

dfl = - O d~. drc z , (Zo) ,  df2 = - q dz dnz2(Zo). (9.6)

Thus f l  is antiholomorphic and f2 holomorphic, and the complex lines GZo which
define f are the horizontal lifts of the tangent lines off1 and f2.

Conversely, let f :  M ~ P  be associated to an antiholomorphic map fl : M ~ P
and let Zo, Z 1 : U ~ S  s be local lifts o f f  and fl .  Then the horizontal lift ofd f l (TmM )
is the complex line ~Zo(m) ,  m ~ U. In particular, (Zo, Z1) = 0, and the image ofdZ~
is contained in the G-linear span of Z 0 and Z1. Choosing a unit vector Z 2
(C~-dependent on m ~ U) orthogonal to this subspace, we define a unitary frame
E 1, E 2 along f by setting E~=dnzo(Zi). Since f l  is anitholomorphic, the
corresponding 1-form

0), = (df, El) = (dZo, Zl)  = - ( Z o ,  dZ~)

is (1, 0), and so, by Lemma 8.1 and the subsequent remark, the unitary frame E ~, E2
is special. Moreover,

0) 12 =(VE1,  E2)=(dZ1 ,  2 2 ) = 0
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which proves k = 0. The case where f is associated to a holomorphic map  fz is
obtained by reversing orientation.

We also get the proof  of Theorem C from (9.6). Namely, for any x ~ T,~M,
m ~ U, we have

Ildfl(x) II = [P(m)l IdL,(x)L = s(m) II x IL,
Il df 2( x ) ll = Iq(m)l [dzm( x )l = c( m) Il x ll ,

which proves Theorem C.
To prove Theorem B, for a given surface (M, ds 2) and smooth functions C, KN

on M we consider the set F(M, C, KN) of all isometric minimal immersions
f :  M ~ P  with Kfihler function C and normal curvature K N. We claim that the
holomorphic 3-form A introduced in (9.2) separates the congruence classes in
F(M, C, Ks):

Lemma 9.2. Let M be any connected surface and f l , f 2 e F ( M , C ,  Ks) with
corresponding 3-forms A I, A z. Then fz = g ~ f l  for some holomorphic isometry g of P
if and only if A1 =Az.
Proof. For  k = 1,2 let El,  E L be a special unitary frame along fk, defined on some

k kopen subset U of M, and let coi,~oij be the corresponding 1-forms. We have
Io#l=t~offl, Ic0~21=1~21 by (8.3), (8.6), (8.9), (8.10). Multiplying E~ z and E~ by
suitable phase functions e i~ , e i~2 if necessary, we may assume ~o] = m~2, m,~ = coi~,2" this"
follows from Lemma 9.1(ii) applied to the equations (9.1) in case ~o~+0, and
otherwise from the transformation rule eS~ = o~ + idz i. Now A~ = A z if and only if
(D12=6922, and in this case we have ( f z ;E] ;E~)=go( f  1 2. 2 ;E~,E2) for some
holomorphic isometry g of P, by the uniqueness part  of Theorem 7. So the subset
of M where f2 and g ~ agree, is closed and open, since we can do the same
construction around a possible boundary point, and it contains U. Therefore
f2 = g ~ on the whole of M. The converse statement is clear.

In particular, it follows from Lemma 9.2 that all members of F(M, C, Ks) are
congruent in case A = 0 which is the isotropic case s = 0 or c = 0 or k = 0. If A 4= 0,
then IA~I= Idz[ implies A 2 = ei~Al for some constant z ~ R,  and any of these forms
is possible, as we saw earlier. So for any f ~  F(M, C, Ks) for a simply connected
surface M, we get a one-parameter  family of immersions fo ~ F(M, C, Ks), 0 ~ S ~,
which are incongruent among each other, and a n y f ~  F(M, C, Ks) is congruent to
one of the fo. This proves Theorem B(i).

To  prove (ii), assume that M is simply connected and .f: M ~ P  a minimal
immersion with A 4: 0, i.e. f is not isotropic. It follows from Theorem A(i) that M is
not diffeomorphic to the sphere [see (4.4)]. Hence we may assume M C IE. Now let
(~Pt)~R be a group of isometrics of M such that fo=fo~p~ for O=e it. Hence
eUA=Ao=tp*A. We have A=hdz  3 for some holomorphic function h. Then
~p* = h o ~Pt" (lPt) 3dz3, hence

h o ~p,. (q :~3  = eith. (,)

(Note that ~Pt is conformal and orientation preserving, hence holomorphic.) Either
h has a zero Zo ~ M; then (*) implies ~Pt(Zo) = Zo for small t since the zero set of h is
isolated and preserved by ~Pr Or  h has no zeros. Then there is a holomorphic 3 ~d
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root 9 ofh. Let w be a primitive function of 0. Then A =dw 3. So by a change of the
conformal coordinate, we may assume h = 1. Now (,) becomes (q~3 3 = e", hence
~p~ = e it/3. Thus (~t) is a group of rotations around some point z o ~ C which must lie
in M, by simple connectivity. In either case, (~Pt) is a group of rotations around
some common fixed point zoeM.  Since f owr=fo~F(M,C,  KN) for all t, the
functions C and KN are invariant under this group.

Conversely, let (~P~)t~a be a group of rotations of M with fixed point m o, and
assume that f o~o~F(M,  C, KN) for all t. Let z be a conformal coordinate with
z(mo) = 0 such that r:  = Iz] is a ~p~-invariant function. [This is possible since M is
biholomorphically equivalent to �9 or the unit disk and (W~) is a group of conformal
transformations of M with a common fixed point.] Then the functions 2, k, c, s
depend only on r. Thus ifA = hdz 3, we get that also Ihl =  89 is a function of r
and therefore, h(z) = flz" for some nonnegative integer n and a complex constant ft.
Moreover,  ~p~(z)= e i ' .  z for some non-zero a ~ R, so

~p*A = h o ~Pt' (lPt) 3dz3 = ei~" + 3)a~A �9

1
Choosing a = 7 '  we get the result, and Theorem B is proved.

Now we can finish the proof  of the existence part  of Theorem A. We cover the
surface M by open coordinate discs (U,z), and doing the local construction
described earlier in any of the U's, we choose the holomorphic function h so that
A = h d z  3 is well defined globally. This is possible since A is uniquely determined up
to a constant factor and M is simply connected. Now two local immersions
fv:  U - , M ,  f v : V ~ M  are congruent on Uc~V, by Lemma 9.2, therefore the local
immersions fv  can be patched together to give a global immersion f :  M-~P.

It remains to prove Theorem D. The ellipse of curvature of a minimal
immersion f :  M ~  P is a circle everywhere if and only if either a + d = b -  c = 0 or
a - d = b + c = O  (see Sect. 1). By (8.8) this means either w = 0  or ~ = 0  everywhere
(recall that w is a function of holomorphic type). Now by (8.10), w=O i f f f  is
associated and ~ = 0 iff f is complex or real, see Theorem 3.1. This finishes the
proof  of Theorem D.
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Note added in proof. If p = ~ , p 2  is replaced with an arbitrary Kfihler surface P~ of constant
holomorphic curvature x = 4a, the values of the curvature forms t]~j in (7.2) have to be multiplied
by a. Therefore, the fundamental equations (2.1), (2.2), (2.3) in Theorem A remain valid if we
replace C by aC and put k=  K N -  K + 2a. If P~ is compact, Theorem 4.2 is still true with

ff
d= - S Cdv (Sect. 1). However, d is not necessarily an integer, but 3d is since the first Chern form

~ M
is

1 3~r
c1= ~n/(f~11 +t222) =

O"
where ~ denotes the K/ihler form of P~, and so 3 -  ~ represents an integral cohomology class of
p~.


