

Local convexity and nonnegative curvature – Gromov's proof of the sphere theorem

J.-H. Eschenburg

Mathematisches Institut der WWU, Einsteinstr. 62, D-4400 Münster, Federal Republic of Germany

Dedicated to Wilhelm Klingenberg

1. Introduction

An immersed hypersurface S in a riemannian manifold M will be called ε -convex for some $\varepsilon > 0$ if all principal curvatures have the same sign and absolute value at least ε . Can one characterize all compact ε -convex immersed hypersurfaces of a complete manifold M? If M is euclidean n-space, $n \ge 3$, this problem is solved by a theorem of Hadamard [14] generalized by Hopf [15]: S is embedded and bounds a convex n-disk (see 6.6, 6.3). If M is a flat space form, S is no longer necessarily embedded, but it still bounds an (immersed) convex n-disk. The aim of this paper is to show the same fact for a manifold M of curvature $K \ge 0$:

Theorem A. Let M be a complete riemannian manifold with nonnegative sectional curvature and dimension $n \ge 3$. Let S be a compact connected C^{∞} -manifold of dimension n-1 and $y: S \to M$ an ε -convex immersion, for some $\varepsilon > 0$. Then there is an immersion $\hat{y}: D \to M$ where D is the standard n-disk, and a diffeomorphism $\phi: S^{n-1} = \partial D \to S$ such that $\hat{y}|_{\partial D} = y \circ \phi$ and the mean curvature vector of y(S) is pointing towards $\hat{y}(D)$.

Theorem A is not true for negative curvature; e.g. S could be the boundary of a tubular neighborhood around a closed geodesic. It is also false for n=2: Any locally strongly convex closed plane curve of winding number 2 or more provides a counterexample. The idea of the proof is to contract the hypersurface by pushing it along the gradient lines of a smoothed modification of its local distance function. The distance function is essentially strictly convex, due to $K \ge 0$ ((Chap. 3), and the smoothing does not disturb the convexity (Chap. 4), and therefore, this motion is distance-decreasing with respect to the inner metric of S. In the case of the 2-dimensional counterexample mentioned above, S would eventually develop a cusp and the motion would stop there. A main step of the proof is to show that this cannot happen in higher dimension. Since this is a local question, it can be treated in euclidean space (Chap. 6), by means of suitable coordinates (Chap. 5). So the contraction ends with a point and the hypersurface bounds an immersed disk (Chap. 7).

Convexity methods have been used extensively in the geometry of nonnegative curvature (see [11, 4, 9]). The main difference is that we have to work with functions which are defined only locally.

A useful application of this theorem is a very short and direct proof of the sphere theorem of Berger and Klingenberg [2, 17, 10]:

Theorem B. Let M be a complete connected riemannian manifold with bounded positive curvature $0 < K_{\min} \leq K \leq K_{\max}$ and $K_{\max}/K_{\min} < 4$. Then M is diffeomorphically covered by a twisted sphere.

As usual, by a twisted sphere we mean the union of two discs D_+ and D_- , pasted together by a diffeomorphism between ∂D_+ and ∂D_- (see [3]). The proof of Theorem B uses neither Toponogov's theorem nor Klingenberg's estimate of the injectivity radius. In fact, this latter theorem is a consequence of the proof:

Theorem C. Let M be complete, simply connected with $0 < K_{\min} \leq K \leq K_{\max}$ and $K_{\max}/K_{\min} < 4$. Then for any point p in M, the injectivity radius at p equals precisely the conjugate radius at p which is not less then $\pi/\sqrt{K_{\max}}$.

2. Proof of the Theorems B and C

Let M be as in the assumption of Theorem B. Multiplying the metric of M by a suitable factor, we may assume $\frac{1}{4} \leq K < 1$. Choose an arbitrary point $p \in M$. Due to K < 1, the conjugate distance r_0 of p is strictly larger than π (see remark in 3.4). So for any $r \in (\pi, r_0)$, the exponential map $e := \exp_p$ has highest rank on the closed ball $\overline{B}_r(0)$ in T_nM . Let $S := \partial B_r(0)$ and $y := e|_S : S \to M$; this is an immersion. Let N : S $\rightarrow TM$ be the unit normal vector field along y which points towards the interior, $e(B_r(0))$. Then due to $K \ge \frac{1}{4}$, there is an $\varepsilon > 0$ such that $\langle D_X N, X \rangle \ge \varepsilon ||X||^2$ for any tangent vector X of S. (Just apply Lemma 3.4(b) to the manifold $B_{ro}(0)$ with metric induced by exp_n and to the hypersurface $S = \partial B_r(0)$.) Thus the immersed hypersurface S in M is *e*-convex with mean curvature vector pointing towards the exterior. By Theorem A, there is a diffeomorphism $\phi: S^{n-1} = \partial D \rightarrow S$ and an immersion $\hat{y}: D \to M$ with $\hat{y}|_{\partial D} = y \circ \phi$ such that the normal field N along y is pointing outside $\hat{v}(D)$. Let $D_+ = B_r(0)$ and $D_- = D$ and consider the twisted sphere $S_{\phi} = D_{+} \bigcup D_{-}$. Then $\psi = e \bigcup \hat{y}$ is a local diffeomorphism of S_{ϕ} onto M and hence a covering map which proves Theorem B. If M is simply connected, ψ is even a global diffeomorphism and in particular, $e = \exp_{n}$ is injective on $\overline{B}_{r}(0)$ for all $r < r_{0}$. This proves Theorem C.

3. Hypersurfaces and distance function

3.1. Let *M* be a Riemannian manifold and *S* and \overline{S} hypersurfaces in *M* which touch each other at some point $p \in M$. Let *N* and \overline{N} be unit normal fields on *S* and \overline{S} whith $N_p = \overline{N}_p$. Let t_0 and $\overline{t_0}$ be the focal distances of *S* and \overline{S} in the direction of N_p .

Lemma 3.1. If $\langle D_X N, X \rangle < \langle D_X \overline{N}, X \rangle$ for every $0 \neq X \in T_p S$, then $t_0 < \overline{t_0}$.

Proof. Let c be the geodesic with c(0) = p, $c'(0) = N_p$. For any parameter t, we identify the subspace $c'(t)^{\perp}$ of $T_{c(t)}M$ with $T_pS = c'(0)^{\perp}$ via parallel transport along c. For any $x \in T_pS$ let $J_x(t)$ be the Jacobifield along c with $J_x(0) = x$ and $J'_x(0) = D_xN$ and similar $\overline{J}_x(t)$ with $\overline{J}'_x(0) = D_x\overline{N}$. Thus we defined two families of linear mappings $J(t), \overline{J}(t)$ on T_pS by setting $J(t)x = J_x(t), \overline{J}(t)x = \overline{J}_x(t)$, and these satisfy the Jacobi equation J'' + RJ = 0 where R(t) is the symmetric linear map R(t)x = R(x, c'(t))c'(t). By symmetry of R and $D\overline{N}$, we get that $\overline{J'}\overline{J}^*$ is also symmetric. It follows that for $0 \leq t < t_0$, we have $J(t) = \overline{J}(t)X(t)C$ with $C = DN - D\overline{N}$ and

$$X(t) = C^{-1} + \int_{0}^{t} (\bar{J}^* \bar{J})^{-1}(\tau) d\tau.$$

Note that C is negative definite on T_pS , in particular invertible, and that \overline{J} and hence $\overline{J}^*\overline{J}$ is invertible on $[0, \overline{t_0})$. For t = 0, all eigenvalues of X(t) are negative. If t comes close to $\overline{t_0}$, then $\int_0^t (\overline{J}^*\overline{J})(\tau)d\tau$ gets a very large eigenvalue: Since $\|\overline{J}(t)x\|^2 \leq k(t-t_0)^2 \|x\|^2$ for some $x \neq 0$ and some k > 0, we get

$$\operatorname{trace}(\bar{J}^*\bar{J})^{-1}(\tau) = \operatorname{trace}(\bar{J}^{-1}*\bar{J}^{-1})(\tau) \ge \frac{\langle \bar{J}^{-1}*\bar{J}^{-1}Jx, Jx \rangle}{\langle Jx, Jx \rangle}(\tau)$$
$$\ge k^{-1}(\tau - \bar{t}_0)^{-2},$$

and so the trace of the integral goes to ∞ as $t \to \overline{t_0}$. Thus for t_1 close enough to $\overline{t_0}$, $X(t_1)$ has a positive eigenvalue. So there is some $t_2 \in (0, t_1)$ where $X(t_2)$ and hence $J(t_2)$ is not invertible. Since t_0 is the first parameter value where this happens, we have $t_0 \leq t_2 < \overline{t_0}$.

Remark. The ideas of this proof go back to Green ([7], see also [5]).

3.2. For our purposes, the following form of the Jordan-Brouwer separation theorem is useful.

Theorem. Let M be a simply connected smooth manifold and S a smooth closed connected hypersurface of M. Then $M \setminus S$ has exactly two connected components.

Proof. Let $p \in S$ and U a small coordinate ball around p in M such that $U \setminus S$ has two connected components U_+ and U_- . Choose points $p_+ \in U_+$, $p_- \in U_-$. Assume that $M \setminus S$ is connected. Then there is a smooth curve c_1 in $M \setminus S$ which connects p_+ to p_- . Choose a curve c_2 in U connecting p_- to p_+ and intersecting S transversally. Then $c = c_1 \cup c_2$ is a closed curve which can be assumed to be smooth and which intersects S exactly once and transversally. By simple connectivity, c is homotopic to a closed curve \bar{c} which does not intersect S. Since the intersection number mod 2 is a homotopy invariant (see [13], p. 78), this is a contradiction.

Moreover, if $M_+(M_-)$ denotes the connected component of $M \setminus S$ containing $U_+(U_-)$, then ∂M_+ and ∂M_- are open and closed in S. So there are no further components since S is connected.

3.3. Now let M be a Riemannian manifold and S a connected, two-sided hypersurface in M with unit normal vector field N. We will say that a point $q \in M$

projects onto S if there is a shortest geodesic from q to S. If M is complete and S is closed (as a subset of M), every point projects onto S. Let $M''_+(M''_-)$ denote the set of points which project onto the upper (lower) side of S, i.e. if $q \in M''_+$ and c : [0, d] $\rightarrow M$ is shortest with $c(0) \in S$, c(d) = q, d = d(q, S) > 0, then $c'(0) = \pm N_{c(0)}$. Put $M'' = M''_+ \cup S \cup M''_-$. E.g. if M is complete and $S = \partial B$ for some open subset B of M, and if N denotes the outer unit normal field, then M'' = M, $M''_- = B$, $M''_+ = M \setminus \overline{B}$. Further, let $M' \subset M''$ be the interior of the set of points where the shortest geodesic to S is unique. This is an open neighborhood of S. Put $M'_{\pm} = M' \cap M''_{\pm}$.

Lemma 3.3. Let M be a complete Riemannian manifold and $S \subset M$ a twosided hypersurface. Let $p \in S$ and $0 < \delta < i(p)$ where i denotes the injectivity radius function on M, and assume that $S \cap B_{\delta}(p)$ is connected and $S \cap \overline{B}_{\delta}(p)$ is closed in M. Then $B_{\delta/2}(p) \subset M''$.

Proof. If $q \in B_{\delta/2}(p) = : B$, there is a shortest geodesic *c* from *q* to the compact set $S \cap B_{\delta}(p)$. But since the length of *c* has to be smaller than $\delta/2$, the endpoint of *c* lies in the open subset $S \cap B_{\delta}(p)$ of *S*. Thus *q* projects onto *S*. Since $S \cap B$ is closed in *B*, the point *q* cannot project onto both sides of *S*, by 3.2, unless $q \in S$. So $B \subset M''$.

3.4. On M'', we may define the signed distance function d of S as follows: |d(x)| is the distance d(x, S) from x to S, and d(x) is positive (negative) for $x \in M''_+$ ($x \in M''_-$). Then M' is the set of points where d is smooth. Its gradient $\hat{N} := \nabla d$ is the extension of N on M' with $D_{\hat{N}}\hat{N} = 0$. Let D^2d denote the Hessean 2-form of d. The proof of the following facts is based on an idea of Green [7]:

Lemma 3.4(a). Let $k, \lambda \in \mathbb{R}$. Let M be a Riemannian manifold with curvature $K \ge k$ and let S be a hypersurface in M with unit normal field N and $\langle D_X N, X \rangle \ge \lambda ||X||^2$ for every nonzero tangent vector X of S. Then $D^2d(X, X) \ge v(d) ||X||^2$ for all $0 = X \in TM'_-$ with $X \perp Vd$, where v is a solution of

$$v' + v^2 + k = 0, v(0) = \lambda$$
.

If K > k or $DN > \lambda$, the inequality is strict.

Lemma 3.4(b). Let M be as above, $\bar{p} \in M$ and r < i(p). Let $S = \partial B_r(\bar{p})$ and N the inner unit normal field on S. Then $\langle D_X N, X \rangle \ge v(0) ||X||^2$ for any nonzero tangent vector X of S, where v is a solution of

$$v' + v^2 + k = 0$$
, $\lim_{t \to r} 1/v(t) = 0$.

If K > k, the inequality is strict.

Proof. Let $\hat{N} = \nabla d$, where d is the signed distance function of S in both cases. If c is an integral curve of \hat{N} , i.e. a geodesic orthogonal to S, then as a consequence of the Jacobi equation, the familiy of linear maps $U(t)x := D_x \hat{N}$ for $x \in c'(t)^{\perp}$ satisfies the Riccati equation

$$U' + U^2 + R = 0$$

with R(t) as in 3.1. Let us assume first that R > k, that means that R(t) - kI is positive definite for all t. Let v be a solution of $v' + v^2 + k = 0$ and put V = vI. Then

$$(U-V)' < -(U+V)(U-V).$$

If $(U-V)(t_1) > 0$ for some t_1 , then the same is true for all $t \in (t_0, t_1)$ where t_0 is the largest parameter smaller then t_1 where U or V has a pole. Namely, if $\overline{t} \in (t_0, t_1)$ was the largest parameter where this fails, there would be some $x \neq 0$ with $(U-V)(\overline{t})x=0$, hence we would have $\langle (U-V)x, x \rangle'(\overline{t}) < 0$ which contradicts $\langle (U-v)x, x \rangle(t) > 0$ for $\overline{t} < t \le t_1$. (Here we identified x with its corresponding parallel field along c, as in 3.1.) In particular, if t_0 is finite, it must be a pole of U since otherwise we would get a contradiction from $\lim v(t) = +\infty$ and U > V.

This proves immediately 3.4(a) for K > k, $DN > \lambda$. Since v depends continuously on k and λ , the result follows also for the weaker assumption.

If $S = \partial B_r(p)$ and N the inner normal field, note that $U(t)^{-1} \rightarrow 0$ as $t \rightarrow r$, and $(U^{-1})' = I + U^{-1}RU^{-1}$. Therefore, the singularities of U^{-1} and V^{-1} at t = r are removable, and $(U^{-1})'(r) = (V^{-1})'(r) = I$, $(U^{-1})''(r) = (V^{-1})''(r) = 0$, $(U^{-1})'''(r) = 2R(r) > 2k = (V^{-1})'''(r)$ if R > k. Thus for $t_1 < r$ sufficiently near to r, we have $U(t_1)^{-1} < V(t_1)^{-1}$, hence $(U - V)(t_1) < 0$. So by the previous argument we get U(0) > v(O)I. The result for $R \ge k$ follows by continuity, as above.

Remark. Exactly the analogous arguments are valid under the assumption $K \leq k$ which implies the opposite inequalities. In particular it follows that then the conjugate distance on M is larger than on a sphere of curvature k.

3.5. Remark. The Rauch comparison theorems are an easy consequence of the previous section. E.g. if J is a Jacobi field along a geodesic c with J'(0) = 0, then J belongs to the normal flow of any hypersurface S through c(0) with $N_{c(0)} = c'(0)$ and $DN|_{c(0)} = 0$. Therefore, if d is the signed distance function of S and $U(t) := DVd|_{c(t)}$ its Hessean, then J' = UJ. If $K \ge 0$, then $U(t) \ge 0$ for $t \le 0$ up to the focal distance, by 3.4(a). Therefore, $||J||' = \langle UJ, J \rangle / ||J|| \ge 0$, hence $||J(t)|| \le ||J(0)||$ for $t \le 0$. Reversing the orientation of c we get the same for $t \ge 0$.

3.6. Let *M* be an arbitrary Riemannian manifold and $S \subset M$ a hypersurface which is ε -convex with respect to a unit normal vector field *N*, that means $\langle D_X N, X \rangle \ge \varepsilon ||X||^2$ for any $X \in TS$. Let $d: M'' \to \mathbb{R}$ be its signed distance function. Then for any $q \in M''$ and $\eta < \varepsilon$ we get a support function $\overline{d} = d_{q,\eta}$ of *d* at *q* as follows (see [18, 20]): Let *c* be a shortest geodesic from *q* to *S* and $p \in S$ its end point. Let \overline{S} be another hypersurface through *p* with normal field \overline{N} and suppose that $\overline{N}_p = N_p$ and $D_X \overline{N} = \eta X$ for any $X \in T_p S$. We may choose

$$\overline{S} = \exp_p(\partial B_{\overline{R}}(-\overline{R}N_p) \cap V),$$

where $\overline{R} = 1/\eta$ and V an open neighborhood of O_p in T_pM which lies in the injectivity domain of \exp_p . By Lemma 3.1, applied to the normal fields -N and $-\overline{N}$, the first focal point of \overline{S} along c comes behind q. So the signed distance function \overline{d} of \overline{S} is defined and smooth in a small neighborhood U of q, if V is small enough to exclude cut locus points near q. Moreover, if $\gamma : [0, \delta) \rightarrow \overline{S}$ is a geodesic in \overline{S} with $\gamma(0) = p$, and if we put $\phi = d \circ \gamma$, then $\phi(0) = 0$, $\phi'(0) = 0$, $\phi''(0) \ge \varepsilon - \eta > 0$. Thus we have $d \ge 0$ on a neighborhood of p in \overline{S} . Making \overline{S} even smaller if necessary, we may assume $\overline{S} \subset M''$ and $d|_{\overline{S}} \ge 0$. Let $x \in M''_{-}$ be in the domain of \overline{d} and let \overline{p} be a point in \overline{S} with shortest distance to x. Then $|d(x) - d(\overline{p})| \le d(x, \overline{p}) = |\overline{d}(x)|$, hence $d(x) \ge \overline{d}(x)$ because $d(\overline{p}) \ge 0$. So we have shown:

Lemma 3.6. If $q \in \text{Int}(M''_{-})$ and $\eta < \varepsilon$, then $\overline{d} = d_{q,\eta}$ is a smooth support function of d in q, more precisely, \overline{d} is defined and smooth on a neighborhood U of q with $\overline{d} \leq d$ and $\overline{d}(q) = d(q)$.

4. ε-convex functions and smoothing

In the following chapter, we use ideas of various authors [1, 6, 8, 9, 12, 18, 20] to describe the smoothing of a certain type of convex functions. We discuss details since our notion of ε -convexity is sligtly different.

4.1. Let *M* be a Riemannian manifold and ε any real number. A continuous real valued function *f* on *M* is called ε -convex if for any $q \in M$ and any $\eta < \varepsilon$ there is a smooth support function $f_{q,\eta}$ of *f* in *q* (defined near *q*, $f_{q,\eta} \leq f$, $f_{q,\eta}(q) = f(q)$), such that

$$D^2 f_{q,\eta}(X,X) \ge \eta \|X\|^2$$
 for all $X \in T_q M$.

It is easy to see that ε -convexity implies convexity for $\varepsilon \ge 0$. (In fact, for $\varepsilon > 0$, ε -convexity implies strict convexity in the sense of [1, 20].) Namely, for a curve $c:[a,b] \rightarrow M$ let $\phi_{\eta,c,f} = \phi_{\eta}$ be the real quadratic polynomial with

$$\phi_n(a) = f(c(a)), \quad \phi_n(b) = f(c(b)), \quad \phi_n'' = \eta.$$

If c is a geodesic (parametrized by arc length), then $f \circ c \leq \phi_{\varepsilon}$: Otherwise $f \circ c - \phi_{\eta}$ for some $\eta < \varepsilon$ would attain an interior maximum at some point $u \in (a, b)$, and this would contradict to $(f_{c(u),\eta'} \circ c - \phi_{\eta})''(u) \geq \eta' - \eta > 0$ for any $\eta' \in (\eta, \varepsilon)$. Moreover, a similar argument still holds if c is slightly curved:

Lemma 4.1. Let f be an ε -convex function on M with $\|\nabla f_{q,\eta}(q)\| \leq L$ for any $q \in M$ and $\eta < \varepsilon$. Let $c: [a, b] \to M$ be a curve with $\|D_{c'}c'\| \leq \gamma$ and $\|c'\|^2 \geq 1 - \beta$ for small positive β, γ . Let $\eta = \eta(\beta, \gamma) = \varepsilon - \varepsilon \beta - L\gamma$. Then $f \circ c \leq \phi_{\eta}$.

4.2. Clearly, a smooth function f is ε -convex if and only if $D^2 f \ge \varepsilon$; this follows from 4.1. If S is a regular level hypersurface of a smooth function f with $D^2 f \ge \varepsilon$ and $||\nabla f|| \le L$ along S, then S is (ε/L) -convex with respect to the unit normal vector field $N = \nabla f/||\nabla f||$.

4.3. Let U be an open subset of M such that curvature and injectivity radius are bounded on U. Let f be a continuous real valued function on U. For any r > 0 which is smaller than the convexity radius on U, we may approximate f by a smooth function f_r defined on $U_r := \{x \in M; B_r(x) \in U\}$ as follows (see [8, 12]):

$$f_r(x) = \int_{T_xM} f(\exp_x(u))\psi_r(||u||)d^n u$$
$$= \int_{B_r(x)} f(y)\psi_r(d(x, y))d\mu_x(y),$$

where $d^n u$ denotes the volume element on $T_x M$ and $d\mu_x$ the measure on $B_r(x)$ with $\exp_x^*(d\mu_x) = d^n u$, and $\psi_r : \mathbb{R}_+ \to \mathbb{R}_+$ is a smooth function with $\psi_r|_{[0,r/2]} = \text{const} > 0$,

 $\psi_r|_{[r,\infty)} = 0$ and $\int_0^r \psi_r(t) t^{n-1} dt = 1/\omega_{n-1}$ (where ω_{n-1} denotes denotes the volume of the unit sphere in \mathbb{R}^n).

If f is a Lipschitz function with Lipschitz constant L, we get immediately $|f - f_r| \leq Lr$. (Note that $\int \psi_r(||u||) d^n u = 1$.) Moreover, if $K \geq 0$ on U, then f_r has the same Lipschitz constant L: If $x, y \in U_r$ are sufficiently near and $P: T_x M \to T_y M$ denotes the parallel displacement along the shortest geodesic between x and y, then

$$\begin{aligned} |f_r(x) - f_r(y)| &\leq \int_{T_x M} |f(\exp_x(u)) - f(\exp_y(Pu))|\psi_r(||u||) d^n u \\ &\leq L \int_{T_x M} d(\exp_x(u), \exp_y(Pu))\psi_r(||u||) d^n u \\ &\leq L d(x, y) \end{aligned}$$

by Rauch's theorem (see 3.5).

Next we want to estimate the derivatives (see [12]):

Lemma 4.3. Let $0 \leq K \leq k$ on U and f be a smooth function with $||Df|| \leq L$, $||D^2f|| \leq C$. Then

$$\|Df_r - Df\| \leq Cr + \frac{1}{2}Lkr^2.$$

Proof. Fix $x \in U_r$, $v \in T_x M$ with ||v|| = 1. Let *c* be a geodesic with c(0) = x, c'(0) = v. For any $u \in T_x M$ with $||u|| \leq r$ let $a_u(s, t) = \exp_{c(t)}sP_t u$ where P_t denotes the parallel displacement along *c*. Let $U = \frac{d}{ds}a_u$, $V = \frac{d}{dt}a_u$. Then $V_t(s) = V(s, t)$ is the Jacobi field along the geodesic $c_t(s) = a_u(s, t)$ with $V_t(0) = c'(t)$, $V'_t(0) = \frac{D}{dt}U(0, t) = 0$. Since $||U|| = ||u|| \leq r$ and $||V|| \leq ||v|| = 1$, by 3.5, we have $||V''|| = ||R(V, U)U|| \leq kr^2$, and so $||V'||' \leq ||V''|| \leq kr^2$, hence $||V'_t(s)|| \leq kr^2 s$. Now

$$Df_{r}(v) - Df(v) = \frac{d}{dt} \int_{t=0}^{t} \int_{T_{x}M} (f(a_{u}(1,t)) - f(a_{u}(0,t))\psi_{r}(||u||) d^{n}u$$

and

$$\frac{d}{dt} (f(a_u(1,t)) - f(a_u(0,t)) = \int_0^1 \frac{d}{dt} \frac{d}{ds} f(a_u(s,t)) ds$$
$$= \int_0^1 [D^2 f(U(s,t), V(s,t)) + Df(V_t'(s))] ds,$$

so the result follows.

4.4. Now we want to show that ε -convexity is almost preserved by smoothing. Let *M* be any Riemannian manifold, M_0 a relatively compact open subset, and let $r_0 > 0$ be smaller than the convexity radius on M_0 . The following lemma is essentially due to Greene and Wu [8, 9]: **Lemma 4.4.** For any ε , L>0 there is a monotonely decreasing function $\eta: (0, r_0) \to \mathbb{R}$ with $\eta(r) \to \varepsilon$ as $r \to 0$ with the following property: If f is any ε -convex function defined on some open convex subset U of M_0 , with $\|\nabla f_{q,\overline{\varepsilon}}(q)\| \leq L$ for all $q \in U, \overline{\varepsilon} < \varepsilon$, then the smoothing f_r of f is $\eta(r)$ -convex, for any $r \in (0, r_0)$.

Proof. For any $x \in \overline{M}_0$ and $u, v \in T_x M$ with $||u|| \leq r$, ||v|| = 1 let $c = c_{vo}$ be the geodesic with c(0) = x, c'(0) = v; further let $c_{vu}(t) := \exp_{c(t)}(P_t u)$ where P_t denotes the parallel displacement along c. Let

$$\beta(v, u) = 1 - \|c'_{vu}(0)\|^2, \qquad \gamma(v, u) = \|D_{c'_{vu}}c'_{vu}(0)\|,$$

and let $\beta(r)$, $\gamma(r)$ be the maxima of these functions (note that the set of all (u, v) is compact). We have $\beta(r)$, $\gamma(r) \rightarrow 0$ as $r \rightarrow 0$. Hence, if $c : [a, b] \rightarrow U_r$ is a geodesic segment, then for any $u \in T_{c(a)}M$ with $||u|| \leq r$, we have by Lemma 4.1 for $t \in [a, b]$

$$f(\exp_{c(t)}(P_t u)) = f(c_{vu}(t)) \leq \phi_{\eta(r), c_{vu}, f}(t),$$

where $\eta(r) = \varepsilon - \varepsilon \beta(r) - L\gamma(r)$, and so $f_r \circ c \leq \phi_{\eta(r), c, f_r}$. Since f_r is smooth, this implies $D^2 f_r \geq \eta(r)$.

4.5. Let *M* be any Riemannian manifold and *S* an ε -convex hypersurface. Then its signed distance function *d* fails to be ε -convex along *S* since we have $D^2d(X, X) \ge \varepsilon ||X||^2$ only for $X \in TS$. Therefore, we consider the function $f = \chi_{\varepsilon} \circ d$ instead (compare [1]) with

$$\chi_{\varepsilon}(t) := t + \frac{\varepsilon}{2} t^2 \, .$$

Now f is ε -convex with $\|\nabla f\| = 1$ along S.

If $K \ge 0$ on M, then on M'_{-} we have $D^2 d(X, X) \ge \frac{\varepsilon}{1 + \varepsilon d} ||X||^2$ for any $X \perp V d$, by Lemma 3.4(a). Hence

$$D^2 f = \varepsilon D d \cdot D d + (1 + \varepsilon d) D^2 d \ge \varepsilon$$

on M'_{-} . So for $q \in M''_{-}$ with $d(q) > -R := -1/\varepsilon$, the function $f_{q,\eta} := \chi_{\varepsilon} \circ d_{q,\eta}$ (compare 3.6) is a smooth support function of f at q with $D^2 f_{q,\eta}(X, X) \ge \eta ||X||^2$ for any $X \in T_q M$. Thus we have shown

Lemma 4.5. If $K \ge 0$ on M and S is an ε -convex hypersurface with signed distance function d > -R, then $f = \chi_{\varepsilon} \circ d$ is ε -convex on M''_{-} .

Further note that f has Lipschitz constant $L_t = 1 + \varepsilon t$ on the set $\{d \leq t\}$ and we have $d \leq f \leq d/2$ on $\{0 \geq d \geq -R\}$.

Remark. Since the focal distance of S is not bigger than R, by Lemma 3.4(a), we have always $d \ge -R$, and it is not difficult to show that d(q) = -R for some q occurs only if $S \subset \partial B_R(q)$ and M''_- is flat (see [6]). However, one may avoid this argument by choosing ε sligtly smaller, if necessary; then $R = 1/\varepsilon$ gets larger and we have d > -R for the new R.

4.6. In particular we have shown: If $K \ge 0$ on M and B is a relatively compact open subset with smooth boundary $S = \partial B$ which is ε -convex with respect to the

outer unit normal field, then $f = \chi_{\varepsilon} \circ d$ is ε -convex on \overline{B} . This remains true if $M = \overline{B}$, that means that M is a compact manifold with boundary S. Namely, f is ε -convex on the subset M'_{-} where d is smooth. Moreover, the parallel hypersurfaces $S_r = \{d = -r\}$ are smooth for small positive r, and for the signed distance function d_r of S_r we have $d_r = d + r$. Since S_r is $\overline{\varepsilon}$ -convex for $\overline{\varepsilon} = (R - r)^{-1}$ with $R = 1/\varepsilon$ (see Lemma 3.4(a)), the function $f = \chi_{\varepsilon} \circ (d_r - r)$ is ε -convex on $\{d \leq -r\}$.

5. Coordinates preserving convexity

5.1. Let *M* be a Riemannian manifold and (U, ϕ) a coordinate chart, i.e. *U* is an open subset of *M* and ϕ a diffeomorphism of *U* onto an open subset *V* of \mathbb{R}^n . Let $ds^2 = \| \|^2$ be the given metric on *U* and $ds_0^2 = \| \|_0^2$ the euclidean metric induced by ϕ , and let *D*, D^0 denote the corresponding Levi-Civita connections. Assume that

$$||D - D^0|| \leq \frac{\varepsilon}{4}$$
 and $\frac{1}{4} ds^2 < ds_0^2 < 4ds^2$.

Lemma 5.1. If $S \in U$ is an ε -convex hypersurface, then $\phi(S) \in V \in \mathbb{R}^n$ is $\frac{\varepsilon}{16}$ -convex.

Proof. Let *d* be the signed distance function of *S* and $f = \chi_{\varepsilon} \circ d$. Then for any $p \in S$ we have $\|Df|_p\|_0 < 2 \|Df|_p\| = 2$, and for all $X \in T_pM$,

$$|(D^{0}Df - DDf)(X, X)| = |Df(D_{X}X - D_{X}^{0}X)| \le ||Df|_{p}|| ||D_{X}X - D_{X}^{0}X|| \le \frac{\varepsilon}{2} ||X||^{2}.$$

On the other hand, $DDf(X, X) \ge \varepsilon ||X||^2$ (see 4.5) and so

$$D^0 D f \ge \frac{\varepsilon}{2} \|X\|^2 \ge \frac{\varepsilon}{8} \|X\|_0^2.$$

Therefore, S is $\frac{\varepsilon}{16}$ -convex with respect to ds_0^2 , by 4.2.

5.2. A coordinate system satisfying the assumptions of 5.1 will be called a *good* coordinate system. If $M_0 \,\subset\, M$ is a relatively compact, open subset of M, then by continuity, there is a radius $\rho > 0$ such that the exponential coordinates in $B_{\varrho}(p)$ have this property, for any $p \in M_0$. A more explicit lower bound for the radius of a good coordinate patch in terms of the injectivity radius and the curvature bounds has been given by Jost and Karcher [16] using almost-linear coordinates.

5.3. Let $y: S \to M$ be an ε -convex immersion. For every $s \in S$ let p = y(s) and $(B_{\varrho}(p), \phi_p)$ be the good coordinate system of 5.2. Let S' be the connected component of $y^{-1}(B_{\varrho}(p))$ through s. Then $x: = \phi_p \circ y|_{S'}: S' \to \mathbb{R}^n$ is an $\frac{\varepsilon}{16}$ -convex immersed hypersurface in \mathbb{R}^n . Thus on a small scale, the properties of ε -convex immersions can be studied in euclidean space.

6. E-convexity in euclidean space

6.1. Throughout this chapter, we let $M = \mathbb{R}^n$ be the euclidean *n*-space. Let S be a connected hypersurface which is ε -convex with respect to the unit normal field N on S, and let d denote its signed distance function. In the following, we always put $R := 1/\varepsilon$. A special property of the flat space is

$$D^2 d(X, X) \ge (d+R)^{-1} ||X||^2$$
 for any $X \perp \nabla d$

at any point where d is smooth, also on M'_+ . Hence, by 4.5, the function $f = \chi_{\varepsilon} \circ d$ is ε -convex on $M' \cup M''_-$. Moreover, we have canonical support functions: For any $p \in S$ let $B_p := B_R(p - RN_p)$ and $S_p := \partial B_p$. Let d_p be the signed distance function of S_p and $f_p = \chi_{\varepsilon} \circ d_p$. The function f_p is defined and smooth everywhere with $D^2 f_p(X, X) = \varepsilon ||X||^2$ for every tangent vector X. Hence $g := f - f_p$ is 0-convex with g(p) = 0, $\nabla g(p) = 0$. So g attains a local minimum at p and consequently, $f \ge f_p$ on any convex neighborhood U of p in $M' \cup M''_-$. It follows that $d \ge d_p$ and therefore, $S \cap U \subset \overline{B}_p$.

6.2. Lemma. Let f be a continuous function on \mathbb{R}^n which is convex on a neighborhood U of the closed set $\overline{B} = \{f \leq 0\}$, and assume that \overline{B} is connected. Then \overline{B} is convex.

Proof. Let p be an arbitrary point in \overline{B} . Let C be the set of all $q \in \overline{B}$ such that the straight line segment \overline{pq} lies in \overline{B} . Clearly, C is closed. We show that C is also open in \overline{B} . Since $\overline{pq} \subset \overline{B}$ for $q \in C$ and since U is a neighborhood of \overline{B} , there is a neighborhood V of q such that $\overline{xp} \subset U$ for any $x \in V$. By convexity, f takes its maximum on \overline{xp} at the end points, therefore $\overline{xp} \subset B$ whenever $x \in V \cap \overline{B}$. So $V \cap \overline{B} \subset C$ and therefore, C is open. Since $p \in C$, we have $C = \overline{B}$ by connectivity which finishes the proof.

6.3. Now let $S \,\subset M = \mathbb{R}^n$ be a compact, ε -convex hypersurface. By the Jordan-Brouwer separation theorem (see 3.2), S bounds an open domain $B \subset \mathbb{R}^n$ which lies on the side of the normal field -N on S. Then $B = M''_-$ (see 3.3), and by 6.2, \overline{B} is convex. Consequently, for any $q \in \mathbb{R}^n \setminus \overline{B}$, there is a unique shortest line segment from q to S, and therefore, $\mathbb{R}^n \setminus \overline{B} = M'_+$. So by 6.1 we have $d \ge d_p$ on all of \mathbb{R}^n , for every $p \in S$, thus $d \ge \max_{p \in S} d_p$. On the other hand, for any $q \in \mathbb{R}^n$ there is a closest point $p \in S$ for which $d(q) = d_p(q)$, so we get in fact $d = \max_{p \in S} d_p$. Consequently, $\overline{B} = \bigcap_{p \in S} \overline{B}_p$.

More generally, a connected open subset B of \mathbb{R}^n (with smooth boundary or not) will be called ε -convex for some $\varepsilon \ge 0$ if for any $p \in \partial B$ there is a neighborhood U of p and a ball B_p of radius $R = 1/\varepsilon$ with $p \in \partial B_p$ (support ball or support half space) such that $B \cap U \subset B_p$. Applying the same arguments as above to the signed distance function d of ∂B which is negative on B and positive outside, we see again the convexity of B, more precisely: $B = \bigcap_{n \in B_p} B_p$ as above.

6.4. Lemma. Let $\varepsilon = 1/R > 0$ and B a connected, ε -convex open domain containing a line segment of length a. Then B contains a ball of radius $a^2/8R$.

Proof. If B is a ball of radius R containing a line segment of length a with center q, then B contains the ball $B_r(q)$ with $r = R - (R^2 - a^2/4)^{1/2} \ge a^2/8R$. Hence for an arbitrary ε -convex open set B we have $B_r(q) \subset B_p$ for any $p \in \partial B$ and so $B_r(q) \subset \bigcap_{p \in \partial B} B_p = B$ (see 6.3).

6.5. Let $\mathbb{R}_{+}^{n} := \{x \in \mathbb{R}^{n}; x_{n} > 0\}$ and \mathbb{R}_{+}^{n} its closure. Let $S \subset \mathbb{R}^{n}$ be an ε -convex hypersurface such that $S \cap \mathbb{R}_{+}^{n}$ is connected and $S \cap \mathbb{R}_{+}^{n}$ compact. Thus $S \cap \mathbb{R}_{+}^{n}$ is closed in \mathbb{R}_{+}^{n} , and hence it bounds an open set B in \mathbb{R}_{+}^{n} which lies on the side of the normal field -N (see 3.2). So the full boundary of B in \mathbb{R}^{n} is contained in $S \cup \mathbb{R}^{n-1}$ and therefore, B is 0-convex and hence convex (6.3). However, in general B is no more contained in its support ball B_{p} for arbitrary $p \in S \cap \mathbb{R}_{+}^{n}$. Nevertheless, there is one point p for which $B \subset B_{n}$ remains true:

Lemma 6.5. Let $p \in S$ be the point where the coordinate x_n attains its maximum on S. Then $B \subset B_p$.

Proof. Let d, d_p, f, f_p be the functions defined in 6.1. Then $g := f - f_p$ is convex on $M' \cup M''_-$. Since B is convex, every point of $\mathbb{R}^n \setminus B$ has a unique projection onto ∂B from which we conclude $M''_+ = M'_+$. So g is convex on M'' with local minimum 0 on the line $L''_p := (p + \mathbb{R}e_n) \cap M''$. All we have to show is that every point of $S_+ := S \cap \mathbb{R}^n_+$ can be connected to some point of L''_p by a straight line segment in M''. Then by convexity we have $g \ge 0$ on S_+ and hence $S_+ \subset \{d_p \le 0\} = \overline{B}_p$ which implies $B \subset B_p$.

Let $T = \overline{B} \cap \mathbb{R}^{n-1}$. Then $\partial B = S_+ \cup T$. To examine the size of M'', let \overline{d} be the signed distance function of ∂B which is defined on all of \mathbb{R}^n . Put

$$A := \{ \overline{d} - x_n < 0 \} \cap \mathbb{R}^n_+, \quad C := \{ \overline{d} + x_n < 0 \} \cap \mathbb{R}^n_+.$$

These sets are convex since \overline{d} is a convex function. We have $S \subset A \setminus \overline{C}$. Moreover, on $A \setminus \overline{C}$ we have $|\overline{d}| < x_n$. So the points of this set project on S_+ and therefore $A \setminus \overline{C} \subset M''$ with $d = \overline{d}$ on $A \setminus \overline{C}$.

Let $Z = T + \overline{\mathbb{R}}_+ e_n \subset \overline{\mathbb{R}}_+^n$ be the cylinder over *T*; this is a closed convex set. We claim that $C \subset Z \cap B$. In fact, $C \subset B$ since \overline{d} , $x_n \ge 0$ on $\overline{\mathbb{R}}_+^n \setminus B$. Moreover, for any $q \in B \setminus Z$, the vertical ray $L_q^- = q - \mathbb{R}_+ e_n$ starting at *q* intersects ∂B at some point $q' \in \partial B \setminus T = S_+$, so $x_n(q') > 0$. Therefore, $-\overline{d}(q) \le d(q, q') = x_n(q) - x_n(q') < x_n(q)$ and hence $q \notin C$ which proves the claim.

Now for $q \in S_+$ the vertical rays $L_q^+ = q + \mathbb{R}_+ e_n$ do not meet the set $Z \cap B$ since either $q \notin Z$ or the line $L_q = q + \mathbb{R} e_n$ leaves B at q. In both cases there is an open cone C_q with vertex q around L_q^+ which does not meet $Z \cap B$; in the first case this is because $Z \cap B$ is contained in the truncated cylinder of hight $x_n(p)$ over T. So there is a line segment L from q to some point of L_p^+ within C_q . On the other hand, L_p^+ $\subset A$, so $L \subset A \cap C_q \subset A \setminus \overline{C} \subset M''$ which finishes the proof.

6.6. Lemma. [14, 15]: Let S be a compact connected manifold of dimension n-1 and $x: S \to \mathbb{R}^n$ an ε -convex immersion. If n=2, assume further that the closed plane curve x has winding number ± 1 . Then S is diffeomorphic to the (n-1)-sphere and x is an embedding.

Proof. Let $v: S \to S_1^{n-1}$ be the Gauss mapping of the immersion x. Due to the ε -convexity, this is a local diffeomorphism and in particular a covering map. So it must be a global diffeomorphism since S_1^{n-1} is simply connected for $n \ge 3$ and the degree of v is ± 1 for n = 2. Consequently, for every $v \in S_1^{n-1} \subset \mathbb{R}^n$ the hight function $h_v(s) = \langle v, x(s) \rangle$, $s \in S$, has exactly two critical points: one maximum and one minimum. Therefore, x is an embedding: If $s \in S$ and v = v(s) its outer normal vector, then h_v attains its maximum only at s and so we have $x(s') \neq x(s)$ for every $s' \neq s$ in S.

6.7. We now can prove the main result of this section. For any immersion $x: S \to \mathbb{R}^n$ and any $s \in S$, r > 0 let $U_r(s)$ be the connected component of $x^{-1}(B_r(x(s)))$ containing s.

Lemma 6.7. Let $x: S \to \mathbb{R}^n$ be an ε -convex hypersurface immersion, for $n \ge 3$. Let $s_0 \in S$ and assume that $S': = U_{\varrho}(s_0)$ is relatively compact in S, for some $\varrho > 0$. Let $\delta = \frac{1}{2} \varepsilon \varrho^2$ and $S'': = U_{\delta}(s_0)$. Then $x|_{S''}$ is an embedding.

Proof. Let $p:=x(s_0)$. We may assume that the n^{th} basis vector e_n of \mathbb{R}^n is the outer normal vector of x at s_0 so that the hight function $x_n = \langle x, e_n \rangle$ on S has a local maximum $h:=x_n(s_0)=p_n$ at s_0 . Since x(S) lies locally on one side of each of its tangent hyperplanes, every critical point of x_n is either a maximum or a minimum, so the set C of critical points is isolated.

Let U be a neighborhood of s_0 in S such that $x|_U$ is an embedding with $x(U) \\\subset B_{\varrho}(p)$. For every t < h let S_t denote the connected component of $\{s \in S; x_n(s) \ge t\}$ through s_0 . For t sufficiently close to h we have $S_t \subset U \subset S'$. Let $u: = \inf\{t < h; S_t \subset S'\}$. The set S_u is a closed subset of $\overline{S'}$ and therefore compact, and S_u is invariant under the flow $\phi_t, t \ge 0$, of the vector field ∇x_n . Every flow line ends at a maximum, so every point in $S_u \setminus C$ lies in the domain of attraction of some maximum. Since these domains are open and $S_u \setminus C$ is connected (here we need dim $S \ge 2$), there is no other local maximum then s_0 on S_u . Likewise, there is at most one local minimum on S_u , and if there exists such a minimum, its domain of attraction under the flow of $-\nabla x_n$ is $S_u \setminus \{s_0\}$. In this case we have $S' = S_u$, so S' is compact and connected and therefore embedded by 6.6. So we may assume that the interval [u, h) contains no critical values for x_n . In particular, $u < -\infty$, and by choice of coordinates we may assume u = 0, so $S_u = S_0$.

For $0 \le t < h$ let $S^t := \{s \in S_0; x_n(s) = t\}$. This is a compact regular hypersurface of S and the map $x^t : S^t \to \mathbb{R}^{n-1}$, $x^t(s) = x(s) - te_n$ is an ε -convex immersion, by Meusnier's theorem. So for $n \ge 4$, the immersions x^t are embeddings (6.6), and so the same is true for $x|_{S_0}$. For n=3, note that the flow ψ_t of the vector field $\nabla x_n / \|\nabla x_n\|^2$ provides a diffeomorphism of S^0 onto S^t , so we have a smooth family of closed plane curves $x^t \circ \psi_t : S^0 \to \mathbb{R}^2$. For t sufficiently close to h, this is an embedding and so the winding number is 1. Since the winding number is constant for all $t \in [0, h)$, we get the same conclusion as in the case of higher dimension, by 6.6.

Now by 6.5, the hypersurface $x(S_0) \subset \overline{\mathbb{R}}^n_+$ is contained in the closure of the support ball $B_p := B_R(p - Re_n)$ of radius $R = \frac{1}{\varepsilon}$, and $B_p \cap \mathbb{R}^n_+ \subset B_r(p)$ with $r = (2Rh)^{1/2}$. Since $0 = \inf\{t < h; x(S_t) \subset B_\varrho(p)\}$, we have $r \ge \varrho$ and therefore $h \ge \frac{1}{2}\varrho^2 \varepsilon = \delta$. So $S'' \subset U_h(s_0) \subset S_0$ is embedded and the proof is finished.

7. Proof of Theorem A

Throughout this chapter, let M be a complete Riemannian manifold of dimension $n \ge 3$ with nonnegative sectional curvature and $y: S \rightarrow M$ a compact, connected,

for $\varepsilon = \frac{1}{p} > 0$. Let $M_0 := \{q \in M;$ immersion, hypersurface ε-convex

d(q, y(S)) < 10R. The contraction of S which we want to construct will take place within this set M_0 . Since we also want to consider parallel hypersurfaces, let us assume more generally for the following sections 7.2–7.5 that M_0 is an arbitrary relatively compact open subset of M with $y(S) \in M_1 := \{q \in M; B_R(q) \in M_0\}$. Let $\rho \in (0, R)$ be a radius for good coordinates around any point of M_0 (see 5.2).

7.2. Lemma. For every $s \in S$, there is an open, connected neighborhood S" of s in S such that $y|_{S''}$ is an embedding and $y(S'') \cap \overline{B}_{\delta}(y(s))$ is compact for $\delta := 2^{-8} \varepsilon \varrho^2$.

Proof. Put p = y(s). Let $\phi: B_o(p) \to \mathbb{R}^n$ be the good coordinate system around p. Let S' be the connected component of $y^{-1}(B_o(p))$ through s. Then $x = \phi \circ y|_{S'}$ is an $\frac{\varepsilon}{16}$ -convex immersion (5.1). Since $\bar{B}_{\varrho/2}^0(p) \subset B_{\varrho}(p)$, where the suffix ⁰ refers to the euclidean metric induced by ϕ , the set $x^{-1}(\overline{B}_{\rho/2}(\phi(p)))$ is compact. So we may apply 6.7 for $\varepsilon/16$ and $\varrho/2$ instead of ε and ϱ , and so the s-component S'' of $x^{-1}(B_{2\delta}(\phi(p)))$ for $\delta = 2^{-8}\varepsilon \varrho^2$ is embedded. Moreover, $y(S'') \cap \overline{B}_{\delta}(p)$ is compact since $\overline{B}_{\delta}(p)$ $\in B^0_{2\delta}(p).$

7.3. As before let M'' be the subset of M where the signed distance function d of the hypersurface y(S'') is defined. By Lemma 3.3 we have $B_{\delta/2}(p) \in M''$ for p = y(s).

Lemma 7.3. If y(S) is not entirely contained in $B_{\delta/2}(p)$, then there is a point $q \in B_{\delta/2}(p)$ with $d(q) \leq -\alpha$ for $\alpha = 2^{-12} \delta^2 \varepsilon$.

Proof. We have $\overline{B}^0_{\delta/4}(p) \in B_{\delta/2}(p)$, and $B^0 := B^0_{\delta/4}(p) \cap M''_-$ is an $\frac{\varepsilon}{16}$ -convex domain with respect to the euclidean metric induced by ϕ since $\partial B^0 \subset y(S'') \cup \partial B^0_{\delta/4}(p)$ (see 6.3). Moreover, $\partial B^0 \cap \partial B^0_{\delta/4}(p) \neq \emptyset$, hence B^0 containes a euclidean straight line of length $\delta/4$ and by 6.4 a euclidean ball of radius $r = \frac{1}{8} \frac{\delta^2}{16} \frac{\varepsilon}{16} = 2\alpha$. Thus the center of this ball is a set of this ball is a set of the ball is a set of t this ball is a point $q \in B_{\delta/2}(p) \cap M''_{-}$ with Riemannian distance d(q, y(S)) > r/2 and therefore $d(q) < -\alpha$.

7.4. For $s \in S$ let U(s) and V(s) be the connected components through s of the sets $y^{-1}(B_{\delta}(y(s)))$ and $y^{-1}(B_{\delta/8}(y(s)))$. We saw that U(s) is relatively compact and $y|_{U(s)}$ is an embedding. Let us assume that $U(s) \neq S$ for every $s \in S$, that means that y(S) is contained in no ball of radius δ . Put $\lambda = \frac{1}{16}\alpha = 2^{-16}\delta^2 \epsilon$. Since $\delta < R$, we have $\lambda < 2^{-16}\delta$.

Lemma 7.4. For every $s \in S$ there is a smooth function $g = g_s$ defined on a neighborhood M_s of y(V(s)) with the following properties: (i) $y(V(s)) \in g^{-1}(0) \in y(U(s))$,

- (ii) $\|\nabla g\| \leq 2, D^2 g \geq \varepsilon/2,$

(iii) $[-\lambda, 0]$ is a regular interval for g, and $g^{-1}(-\lambda)$ is an ε_1 -convex hypersurface with $\varepsilon_1 := 1/(R - \lambda/4) < \varepsilon$.

(iv) Let ψ_t denote the flow of the vector field $X = -\nabla g / \|\nabla g\|^2$. Then $\psi_t(x) \in M_s$ for every $x \in y(V(s)), t \in [0, \lambda]$.

Moreover, if $V(s) \cap V(s') \neq \emptyset$ for $s, s' \in S$, then $g_s = g_{s'}$ on $M_s \cap M_{s'}$.

Proof. Let *d* be the signed distance function of y(U(s)) defined on $B_{\delta/2}(p)$ for p = y(s), and let $f = \chi_{\varepsilon} \circ d$. The function *f* is ε -convex with $d \le f \le \frac{1}{2}d$ on $\{d \le 0\}$. Moreover, *f* is smooth on $\{|d| \le r_1\}$ where r_1 is the focal distance of the immersed hypersurface y(S), and we have $||\nabla f|| = 1 + \varepsilon d$. Therefore, if $\lambda < r_1/2$, we may choose g = f and $M_s \subset B_{\delta/3}(p)$ an open set containing $\{0 \ge d \ge -2\lambda\} \cap B_{\delta/3}(p)$. If *s'* is another point in *S* with $V(s) \cap V(s') \ne \emptyset$, then $d(p, p') < \delta/8$ for p' = y(s'). So the signed distance functions of y(U(s)) and y(U(s')) agree on $B_{\delta/3}(p) \cap B_{\delta/3}(p')$ since the endpoint of a shortest geodesic from $q \in B_{\delta/3}(p)$ to y(U(s)) lies in $B_{2\delta/3}(p) \cap Y(U(s)) \subset Y(U(s'))$ and vice versa. Therefore, g_s agrees to $g_{s'}$ on $M_s \cap M_{s'}$.

Now assume $\lambda \ge r_1/2$. Put $r_0 = r_1/6$. For $r < r_0 \le \lambda/3$, we consider the smoothing f_r of f (see 4.3) on $B := B_{\delta/4}(y(s))$. Since the Lipschitz constant of f is $L_t = 1 + \varepsilon t$ on $\{d \le t\}$ and in particular $L_0 = 1$ on $\{d \le 0\}$, we have $|f - f_r| \le r$ and $||\nabla f_r|| \le 1$ on $B \cap \{d \le -r\}$ (see 4.3). Moreover, the support functions $f_{q,\eta}$ of f satisfy $||\nabla f_{q,\eta}(q)|| \le 1$ for all $q \in \{d \le 0\}$ and $\eta < \varepsilon$. Applying Lemma 4.4 we get a function $\eta(r)$ independent of $s \in S$ with $\eta(r)\uparrow\varepsilon$ as $r\downarrow 0$, such that f_r is $\eta(r)$ -convex.

Let $q \in B_{\delta/4}(p)$ with $f_r(q) = -\lambda$. Then $d(q) \leq f(q) \leq -\lambda + r \leq -\frac{2}{3}\lambda$ and hence $\|\nabla f_r(q)\| \leq 1 + \varepsilon(d(q) + r) < 1 - \frac{1}{3}\varepsilon\lambda = \varepsilon(R - \lambda/3)$. Now we choose r so small that

$$\eta(r) \geq \frac{R-\lambda/3}{R-\lambda/4} \varepsilon.$$

Then $f_r^{-1}(-\lambda)$ is an ε_1 -convex hypersurface provided that $-\lambda$ is a regular value (4.2).

To satisfy (i), we have to connect f and f_r . Let $\phi : \mathbb{R} \to [0, 1]$ be a smooth function with $\phi(t) = 1$ for $t \leq -2r_0$ and $\phi(t) = 0$ for $t \geq -r_0$. Put g = f on $\{|d| \leq r_0\}$ and

$$g = f + \phi(d)(f_r - f)$$

on $\{d \leq -r_0\}$. Since $|f - f_r| < r$ and $|D^2d|$ is bounded from above on $\{|d| \leq 2r_0\}$ independently of $s \in S$, we may assume $||\nabla g|| \leq 2$, $D^2g \geq \varepsilon/2$ on $\{-r_0 \geq d \geq -2r_0\}$ by choosing r still smaller if necessary. Since f is ε -convex with $||\nabla f|| \leq 1$ on $\{0 \geq d \geq -r_0\}$ and f_r is $\eta(r)$ -convex with $\eta(r) > \frac{2}{3}\varepsilon$ and $||\nabla f_r|| \leq 1$ on $\{d \leq -2r_0\}$, the function g satisfies (ii) on an open set $M_s \subset B_{\delta/4}(p)$ containing $\{d \leq 0\} \cap B_{\delta/4}(p)$. If $q \in g^{-1}(-\lambda)$, then $d(q) \leq f(q) \leq -\frac{2}{3}\lambda \leq -2r_0$. So $g^{-1}(-\lambda) = f_r^{-1}(-\lambda)$.

By 7.3 there is a point $q \in B_{\delta/4}(p)$ with $d(q) \leq -\alpha$, $\alpha = 16\lambda$. Thus $f(q) \leq -\frac{\alpha}{2} = -8\lambda$ and $g(q) \leq f(q) + r \leq -7\lambda$. So for all $x \in B_{\delta/4}(p) \cap \{g \geq -\lambda\}$ we have $g(x) - g(q) \geq 6\lambda$ and $d(x, q) \leq \delta/2$. Using the convexity of g along the geodesic between x and q in $B_{\delta/4}(p)$, we get $\|\nabla g(x)\| \geq \frac{6\lambda}{\delta/2} > 8\lambda/\delta$. In particular, the interval $[-\lambda, 0]$ contains no critical values for g which finishes the proof of (iii).

If c is an integral curve of the vector field $X = -\nabla g / \|\nabla g\|^2$ with $c(0) \in y(V(s)) \subset B_{\delta/8}(p) \cap \{g=0\}$, then g(c(t)) = -t and $\|c'(t)\| = \|\nabla g(c(t)\|^{-1} < \delta/8\lambda$, for $t \le \lambda$. So the curve c(t) stays within $B_{\delta/4}(p)$ for $0 \le t \le \lambda$. In particular, c is defined on $[0, \lambda]$ with $c([0, \lambda]) \subset M_s$. This proves (iv).

Note that the choice of r was uniform for all $s \in S$. If $V(s) \cap V(s') \neq \emptyset$, then as above the signed distance functions of y(U(s)) and y(U(s')) agree on $B_{\delta/3}(p) \cap B_{\delta/3}(p')$ for p' = y(s'). Since $r < \delta/12$, the smoothed functions f_r agree on $B_{\delta/4}(p) \cap B_{\delta/4}(p')$, hence $g_s = g_{s'}$ on $M_s \cap M_{s'}$.

7.5. Now we define an immersion $y^1: S \times [0, \lambda] \to M$ as follows: For $s \in V(s_0)$ let $y^1(s, t) = \psi_t(y(s))$ where ψ_t denotes the flow of the vector field $X = -\nabla g / \|\nabla g\|^2$ for $g = g_{s_0}$. In 7.4 we have shown that this is well defined. Let ds_t^2 be the metric on S induced by the immersion $y_t^1 := y^1|_{S \times \{t\}}$. Put $\kappa := e^{-\varepsilon \lambda/4}$.

Lemma 7.5. $ds_{\lambda}^2 \leq \kappa^2 ds_0^2$.

Proof. Let $s \in V(s_0)$, $s_0 \in S$. For $a \in T_s S$ put $A(t) = Dy_t^1(a)$; this is a vector field along the curve $c(t) = \psi_t(y(s))$ with derivative $A'(t) = D_{A(t)}X$. So

$$\|A\|' = \langle D_A X, A \rangle / \|A\| = - \langle D_A \nabla g, A \rangle / (\|\nabla g\|^2 \|A\|) \leq -\frac{\varepsilon}{4} \|A\|$$

by 7.4 (ii). Integrating, we get $||A(\lambda)|| \le \kappa ||A(0)||$ which proves the lemma.

7.6. We now may replace the given immersion y with y_{λ}^1 . By Lemma 7.4 (iii) this is an ε_1 -convex immersion of S. Since $\varepsilon_1 > \varepsilon$ and $y_{\lambda}^1(S) \subset M_0$ (see 7.1), we may repeat the argument getting an immersion $y^2 : S \times [\lambda, 2\lambda] \to M$ such that the immersion $y_{2\lambda}^2 = y^2|_{S \times \{2\lambda\}}$ of S is ε_2 -convex for $\varepsilon_2 = (R - 2\lambda/4)^{-1}$ and the induced metric $ds_{2\lambda}^2$ satisfies $ds_{2\lambda}^2 \leq \kappa_1^2 ds_{\lambda}^2$ for $\kappa_1 = e^{-\varepsilon_1 \lambda/4}$ and so on. Since we proved $||Vg|| \leq 2$, any point of $y_{k\lambda}^k(S)$ has distance $\leq 2\lambda$ from $y_{(k-1)\lambda}^{k-1}(S)$, so we do not leave M_0 before k exceeds $5R/\lambda$. On the other hand, $\varepsilon_k = (R - k\lambda/4)^{-1}$ is finite only for $k < 4R/\lambda$. So after, say, m steps with $m < 4R/\lambda$, the set $y_{m\lambda}^m(S)$ is contained in a ball of radius $\delta < \varrho$ in M_0 and in particular in the domain of a good coordinate system ϕ . Therefore,

 $x = \phi \circ y_{m\lambda}^m$ is an $\frac{\varepsilon}{16}$ -convex immersion of S into euclidean *n*-space. By Lemma 6.6,

this is an embedding and x(S) bounds a convex disk (6.3). So $y_{m\lambda}^m(S)$ bounds a closed embedded disk B_{m+1} in M. Providing $B_k := S \times [(k-1)\lambda, k\lambda]$ with the metric induced by y^k and gluing together B_k and B_{k+1} at their common boundary, for $0 \le k \le m$, we get a compact Riemannian manifold D with boundary (S, ds_0^2) , and an isometric immersion $\hat{y}: D \to M$ with $\hat{y}|_S = y$. In particular, we have nonnegative curvature on D and the boundary S is an ε -convex hypersurface.

7.7. It remains to construct a diffeomorphism of D onto the standard n-disk. Consider the ε -convex function $f = \chi_{\varepsilon} \circ d$ where d is the negative distance to S on D (see 4.6). Let f_r be the smoothing of f for small enough r and put g = f on $\{|d| \le r_0\}$ and $g = f + \phi(d) (f_r - f)$ on $\{|d| \ge r_0\}$ as in 7.4, but this time, g is defined globally on D. Thus $g \le 0$ with $S = g^{-1}(0)$, and g is $\frac{\varepsilon}{2}$ -convex if r is small enough. By strong convexity, the set of critical points, C, contains only minima, and the domain of attraction of each minimum is a connected component of $D \setminus C$; so there is exactly one minimum $q \in \text{Int}(D)$. By the Morse lemma (see [19]), for small $\gamma > 0$, the set $D_{\gamma} = \{x \in D; g(x) - g(q) \leq \gamma\}$ is diffeomorphic to the standard disk. Using the flow of $X = -\nabla g / \|\nabla g\|^{-2}$, we get a diffeomorphism of D onto D_{γ} . This finishes the proof of Theorem A.

Acknowledgements. An outline of the proofs for these theorems was given by M. Gromov at the DMV-Seminar on differential geometry 1982 at Düsseldorf. The present paper is essentially an elaboration of these ideas. It is a pleasure for me to thank Professor Gromov for his lectures and for several useful discussions later which helped to make clear the ideas to me. For hints and discussion I have to thank also H. Karcher, E. Heintze, and M. Strake.

References

- Bangert, V.: Über die Approximation von lokal konvexen Mengen. Manuscr. Math. 25, 397–420 (1978)
- 2. Berger, M.: Les variétés riemanniennes (1/4)-pincées. Ann. Sc. Norm. Super. Pisa, III. 14, 161–170 (1960)
- 3. Cheeger, J., Ebin, D.G.: Comparison theorems in Riemannian geometry. Amsterdam: North Holland 1975
- Cheeger, J., Gromoll, D.: On the structure of complete manifolds of nonnegative curvature. Ann. Math. 96, 413–443 (1972)
- 5. Eschenburg, J.H., O'Sullivan, J.J.: Jacobi tensors and Ricci curvature. Math. Ann. 252, 1-26 (1980)
- 6. Eschenburg, J.H., Heintze, E.: An elementary proof of the Cheeger-Gromoll Splitting Theorem. Ann. Glob. Analysis and Geometry 2, 141–151 (1984)
- 7. Green, L.W.: A theorem of E. Hopf. Mich. Math. J. 5, 31-34 (1958)
- Greene, R.E., Wu, H.: On the subharmonicity and plurisubharmonicity of geodesically convex functions. Indiana Univ. Math. J. 22, 641–653 (1973)
- Greene, R.E., Wu, H.: C[∞] convex functions and manifolds of positive curvature. Acta Math. 137, 209–245 (1976)
- Gromoll, D., Klingenberg, W., Meyer, W.: Riemannsche Geometrie im Großen. Lect. Notes Math. 55 (1968)
- Gromoll, D., Meyer, W.: On complete open manifolds of positive curvature. Ann. Math. 90, 75–90 (1969)
- 12. Grove, K., Shiohama, K.: A generalized sphere theorem. Ann. Math. 106, 201-211 (1977)
- 13. Guilleman, V., Pollack, A.: Differential Topology. Englewood Cliffs: Prentice Hall 1974
- Hadamard, J.: Sur certaines propriétés des trajectories en dynamique. J. Math. Pures Appl. (5) 3, 331–387 (1897)
- 15. Hopf, H.: Differential Geometry in the Large, Ch. IV: Hadamard's characterization of the ovaloids. Stanford Lectures 1956. Lect. Notes Math. 1000, 1983
- Jost, J., Karcher, H.: Geometrische Methoden zur Gewinnung von a-priori-Schranken f
 ür harmonische Abbildungen. Manuscr. Math. 40, 27–77 (1982)
- Klingenberg, W.: Über Riemannsche Mannigfaltigkeiten mit positiver Krümmung. Commun. Math. Helv. 35, 47-54 (1961)
- Kobayashi, S., Wu, H.: Complex differential geometry. DMV-Seminar Bd. 3. Basel: Birkhäuser 1983
- 19. Milnor, J.: Morse theory. Ann. Math. Stud. 51, Princeton, N.J. 1963
- 20. Wu, H.: An elementary method in the study of nonnegative curvature. Acta Math. 142, 57-78 (1979)