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1. Introduction 

An immersed hypersurface S in a riemannian manifold M will be called e-convex 
for some e > 0 if all principal curvatures have the same sign and absolute value at 
least e. Can one characterize all compact e-convex immersed hypersurfaces of a 
complete manifold M? If M is euclidean n-space, n > 3, this problem is solved by a 
theorem of Hadamard [14] generalized by Hopf [15]: S is embedded and bounds a 
convex n-disk (see 6.6, 6.3). If M is a flat space form, S is no longer necessarily 
embedded, but it still bounds an (immersed) convex n-disk. The aim of this paper is 
to show the same fact for a manifold M of curvature K > 0: 

Theorem A. Let M be a complete riemannian manifold with nonnegative sectional 
curvature and dimension n> 3. Let S be a compact connected C~176 of 
dimension n -  1 and y : S ~ M an e-convex immersion, for some ~ > O. Then there is an 
immersion ~ : D ~ M  where D is the standard n-disk, and a diffeomorphism 
q) :S" - I=t~D~S such that )~loo=yo~b and the mean curvature vector of y(S) is 
pointing towards ~(D). 

Theorem A is not true for negative curvature; e.g. S could be the boundary of a 
tubular neighborhood around a closed geodesic. It is also false for n=2 :  Any 
locally strongly convex closed plane curve of winding number 2 or more provides a 
counterexample. The idea of the proof is to contract the hypersurface by pushing it 
along the gradient lines of a smoothed modification of its local distance function. 
The distance function is essentially strictly convex, due to K > 0 ((Chap. 3), and the 
smoothing does not disturb the convexity (Chap. 4), and therefore, this motion is 
distance-decreasing with respect to the inner metric of S. In the case of the 
2-dimensional counterexample mentioned above, S would eventually develop a 
cusp and the motion would stop there. A main step of the proof is to show that this 
cannot happen in higher dimension. Since this is a local question, it can be treated 
in euclidean space (Chap. 6), by means of suitable coordinates (Chap. 5). So the 
contraction ends with a point and the hypersurface bounds an immersed disk 
(Chap. 7). 
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Convexity methods have been used extensively in the geometry of nonnegative 
curvature (see [11, 4, 9]). The main difference is that we have to work with 
functions which are defined only locally. 

A useful application of this theorem is a very short and direct proof of the 
sphere theorem of Berger and Klingenberg [2, 17, 10]: 

Theorem B. Let M be a complete connected riemannian manifold with bounded 
positive curvature 0 < Kmi n ~ K < Kma x and Kmax/Krnin < 4. Then M is diffeomorphi- 
cally covered by a twisted sphere. 

As usual, by a twisted sphere we mean the union of two discs D § and D_, 
pasted together by a diffeomorphism between OD+ and aD_ (see [3]). The proof of 
Theorem B uses neither Toponogov's theorem nor Klingenberg's estimate of the 
injectivity radius. In fact, this latter theorem is a consequence of the proof: 

Theorem C. Let M be complete, simply connected with 0 < Kmi n ~ K < Kma x and 
Km~x/Kmi ~ < 4. Then for any point p in M, the injectivity radius at p equals precisely 
the conjugate radius at p which is not less then ~ z / ~ .  

2. Proof of the Theorems B and C 

Let M be as in the assumption of Theorem B. Multiplying the metric of M by a 
suitable factor, we may assume  88 < K < 1. Choose an arbitrary point p e M. Due to 
K < 1, the conjugate distance r o ofp is strictly larger than n (see remark in 3.4). So 
for any r ~ (Tt, ro), the exponential map e : = expp has highest rank on the closed ball 
B,(0) in TpM. Let S: = OBr(O) and y: = els:S~M; this is an immersion. Let N:S  

TM be the unit normal vector field along y which points towards the interior, 
e(B,(O)). Then due to K >  88 there is an e > 0 such that (DxN, X ) >  e[I X II 2 for any 
tangent vector X of S. (Just apply Lemma 3.4(b) to the manifold Bro(0 ) with metric 
induced by expp and to the hypersurface S=OBr(0).) Thus the immersed 
hypersurface S in M is e-convex with mean curvature vector pointing towards the 
exterior. By Theorem A, there is a diffeomorphism ~:S" - I=OD~S and an 
immersion )3:D~M with )31oo=yo~ such that the normal field N along y is 
pointing outside )3(D). Let D + = B,(0) and D_ = D and consider the twisted sphere 
S~ = D + U D_. Then v? = e U )3 is a local diffeomorphism of S0 onto M and hence a 

covering map which proves Theorem B. If M is simply connected, W is even a 
global diffeomorphism and in particular, e = expp is injective on B,(0) for all r < ro. 
This proves Theorem C. 

3. Hypersurfaees and distance function 

3.1. Let M be a Riemannian manifold and S and S hypersurfaces in M which 
touch each other at some point p E M. Let N and N be unit normal fields on S and 
whith Np =/Vp. Let t o and t-o be the focal distances of S and Sin the direction of Np. 

Lemma 3.1. I f  (DxN, X )  < (DxN, X ) for every 04: X ~ TvS, then to<t- o. 
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Proof Let c be the geodesic with c(0)--p,  c ' (0)= Np. For  any parameter  t, we 
identify the subspace c'(t) • of T~(t)M with TpS = c'(0) • via parallel t ransport  along c. 
For any x ~ TpS let Jx(t) be the Jacobifield along c with Jx(0) = x and J'x(O) = D~N 
and similar fx(t) with J'~(0)=D~N. Thus we defined two families of linear 
mappings J(t), J(t)  on TpS by setting J(t)x = Jx(t), J(t)x =f~(t) ,  and these satisfy 
the Jacobi equation J"+RJ=O where R(t) is the symmetric linear map 
R(t)x=R(x,c'(t))c'(t). By symmetry of R and D~g, we get that J-'J-* is also 
symmetric. It follows that for 0 < t < t o ,  we have J(t)=J(t)X(t)C with 
C = D N  - DN and 

t 

x(t) = c 1 + I ( f * f ) - ' ( ~ ) d ~ .  
0 

Note that C is negative definite on TpS, in particular invertible, and that f and 
hence J*J is invertible on [0, }-o). For  t = 0, all eigenvalues of X(t) are negative. If t 

t 

comes close to Fo, then ~ (J'J)(z)dz gets a very large eigenvalue: Since [IJ(t)x[] 2 
0 

<k( t - to )  z [[xl[ z for some x:#0 and some k > 0 ,  we get 

t r a c e ( J ' f ) -  l(z) = t r ace ( J -  1. f -  1) (Q > ( f -  1. f -  l j x  ' Jx)  (z) 
(Jx, Jx)  

> k - , ( z _  Fo ) z, 

and so the trace of the integral goes to ~ as t~t-o. Thus for t l close enough to t-o, 
X(t 0 has a positive eigenvalue. So there is some t 2 ~ (0, t 0  where X(tz) and hence 
J(t2) is not invertible. Since t o is the first parameter  value where this happens, we 
have t o < t 2 < t-O" 

Remark. The ideas of this proof  go back to Green ([7], see also [5]). 

3.2. For  our purposes, the following form of the Jordan-Brouwer separation 
theorem is useful. 

Theorem. Let M be a simply connected smooth manifold and S a smooth closed 
connected hypersurface of M. Then M\S has exactly two connected components. 

Proof. Let p ~ S and U a small coordinate ball around p in M such that U\S has two 
connected components  U+ and U_. Choose points p+ E U+, p_ e U_. Assume 
that M\S is connected. Then there is a smooth curve cl in M\S which connects p+ 
to p _. Choose a curve c 2 in U connecting p _ to p + and intersecting S transversally. 
Then c = cl •c2 is a closed curve which can be assumed to be smooth and which 
intersects S exactly once and transversally. By simple connectivity, c is homotopic  
to a closed curve ~ which does not intersect S. Since the intersection number mod  2 
is a homotopy  invariant (see [13], p. 78), this is a contradiction. 

Moreover,  if M+ (M_)  denotes the connected component  of M\S containing 
U+(U_), then t?M+ and OM_ are open and closed in S. So there are no further 
components since S is connected. 

3.3. Now let M be a Riemannian manifold and S a connected, two-sided 
hypersurface in M with unit normal vector field N. We will say that a point q e M 
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projects onto S if there is a shortest geodesic from q to S. If M is complete and S is 
closed (as a subset of M), every point projects onto S. Let M'+ (M"_) denote the set 
of points which project onto the upper (lower) side of S, i.e. ifq E M"+ and c : [0, d] 
-~M is shortest with c(O)~S, c(d)=q, d=d(q ,S)>O,  then c '(0)= _+Nero). Put 
M" = M'+ u S u M"_. E.g. if M is complete and S = #B for some open subset B of M, 
and if N denotes the outer unit normal field, then M " =  M, M"_ = B, M'+ = M\/~. 
Further, let M'C M" be the interior of the set of points where the shortest geodesic 
to S is unique. This is an open neighborhood of S. Put  M'+ = M'nM"+. 

Lemma 3.3. Let M be a complete Riemannian manifold and S CM a twosided 
hypersurface. Let p ~ S and 0 < 6 < i(p) where i denotes the injectivity radius function 
on M, and assume that SnBo(p) is connected and Sn/~o(p) is closed in M. Then 
Ba/z(p) C M' .  

Proof If q ~ B,~/E(p ) = " B ,  there is a shortest geodesic c from q to the compact set S 
nBa(p). But since the length ofc has to be smaller than 6/2, the endpoint ofc  lies in 
the open subset SnB~(p) of S. Thus q projects onto S. Since S n B  is closed in B, the 
point q cannot project onto both sides of S, by 3.2, unless q ~ S. So B C M". 

3.4. On M", we may define the signed distance function d of S as follows: Jd(x)J is 
the distance d(x, S) from x to S, and d(x) is positive (negative) for x ~ M'% (x ~ M") .  
Then M'  is the set of points where d is smooth. Its gradient IV" -- [7d is the extension 
of N on M'  with DAN = 0. Let D2d denote the Hessean 2-form ofd. The proof of the 
following facts is based on an idea of Green [7]: 

Lemma 3.4(a). Let k, 2 e ~ .  Let M be a Riemannian manifold with curvature K >__ k 
and let S be a hypersurface in M with unit normal field N and (DxN,  X )  > 2tJXI] 2 
for every nonzero tangent vector X of S. Then D2d(X ,X)>v(d)  IIXll 2 for all 0 
4:X ~ T M "  with X_L Vd, where v is a solution of  

v '+v2+k=O,  v(0) =)v. 

I f  K > k or DN > 2, the inequality is strict. 

Lemma 3.4(b). Let M be as above, ~ ~ M and r < i(p). Let S = ~Br(~) and N the inner 
unit normal field on S. Then ( DxN, X )  > v(O) I] X ]12 for any nonzero tangent vector 
X of S, where v is a solution of 

v' + v 2 + k = 0 ,  lira 1/v(t)=O. 

I f  K > k, the inequality is strict. 

Proof Let ]Q = Vd, where d is the signed distance function of S in both cases. If c is 
an integral curve of N, i.e. a geodesic orthogonal to S, then as a consequence of the 
Jacobi equation, the familiy of linear maps U(t)x" = Dxlq for x ~ c'(t) • satisfies the 
Riccati equation 

U ' + U 2 + R = O  

with R(t) as in 3.1. Let us assume first that R > k ,  that means that R ( t ) - k I  is 
positive definite for all t. Let v be a solution of v' + v 2 + k = 0 and put V = vI. Then 

( u -  v) '< - (u  + v) ( u -  v). 
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I f ( U -  V) ( t l )>  0 for some t~, then the same is true for all t ~ (to, tl) where to is the 
largest parameter smaller then t 1 where U or V has a pole. Namely, if t-e (to, t~) was 
the largest parameter where this fails, there would be some x4:0 with 
( U - V ) ( t - ) x = 0 ,  hence we would have ((U-V)x,x) '(-{)<O which contradicts 
((U - v) x, x )  (t) > 0 for t-< t < t 1. (Here we identified x with its corresponding 
parallel field along c, as in 3.1.) In particular, if to is finite, it must be a pole of U 
since otherwise we would get a contradiction from lira v(t) = + ~ and U > V. 

t~.to 
This proves immediately 3.4(a) for K>k,  DN>2 .  Since v depends cont- 

inuously on k and 2, the result follows also for the weaker assumption. 
If S = OB~(p) and N the inner normal field, note that U(t)- ~ -*0 as t-*r, and 

( U - I ) ' = / +  U-1RU -1. Therefore, the singularities of U ~ and V -~ at t=r are 
removable, and (U 1)'(r)=(V-1)'(r)=I, (U-1)"(r)=(V-l)"(r)=O, (U-1)"(r) 
=2R(r )>2k=(V- l ) " ( r )  if R>k.  Thus for t I < r  sufficiently near to r, we have 
U(t l ) -a<V(tO -~, hence ( U - V ) ( t 0 < 0 .  So by the previous argument we get 
U(O) > v(O)l. The result for R > k follows by continuity, as above. 

Remark. Exactly the analogous arguments are valid under the assumption K < k 
which implies the opposite inequalities. In particular it follows that then the 
conjugate distance on M is larger than on a sphere of curvature k. 

3.5. Remark. The Rauch comparison theorems are an easy consequence of the 
previous section. E.g. if J is a Jacobi field along a geodesic c with J'(O)= 0, then J 
belongs to the normal flow of any hypersurface S through c(0) with N~to) = c'(0) 
and DNlCto)=0. Therefore, if d is the signed distance function of S and 
U(t) : = DVdI~to its Hessean, then J ' =  UJ. I fK > 0, then U(t) > 0 for t =< 0 up to the 
focal distance, by 3.4(a). Therefore, IIJll'= (U J, J)/llJII >0, hence IIJ(t)il < NJ(0)tl 
for t < 0. Reversing the orientation of c we get the same for t > 0. 

3.6. Let M be an arbitrary Riemannian manifold and S ( M a hypersurface which 
is e-convex with respect to a unit normal vector field N, that means (DxN, X )  
>ellXl] 2 for any X E TS. Let d" M"-*N~ be its signed distance function. Then for 
any q e M "  and t /<e we get a support function d=dq., of d at q as follows (see 
[18, 20]): Let c be a shortest geodesic from q to S and p e S its end point. Let S-be 
another hypersurface through p with normal field N and suppose that N v = N v and 
DxN = t/X for any X ~ TpS. We may choose 

~=  expv(~B~(- iqNp) c~ V), 

where /~= l/t/ and V an open neighborhood of Op in TpM which lies in the 
injectivity domain of expp. By Lemma 3.1, applied to the normal fields - N  and 
-N, the first focal point of S along c comes behind q. So the signed distance 
function i iof  Sis defined and smooth in a small neighborhood U of q, if V is small 
enough to exclude cut locus points near q. Moreover, ifT' [0, 6)-*Sis a geodesic in 
Swith 7(0) = p, and if we put ~b = d o 7, then ~b(0) = 0, ~b'(0) = 0, ~b"(0) > ~ -  t/> 0. Thus 
we have d > 0  on a neighborhood ofp in S. Making Seven smaller if necessary, we 
may assume SC M" and dl~ > 0. Let x E M"_ be in the domain of d and let p be a 
point in S with shortest distance to x. Then Id(x)-d(p)l<d(x,O)= ]d(x)l, hence 
d(x) > d(x) because d@)> 0. So we have shown: 
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Lemma 3.6. I f  q ~ Int (M"_) and rl < e, then d=  dq,, is a smooth support function of  d 
in q, more precisely, d is  defined and smooth on a neighborhood U of  q with d <  d and 
i[(q)=d(q). 

4. e-convex functions and smoothing 

In the following chapter, we use ideas of various authors [1, 6, 8, 9, 12, 18, 20] to 
describe the smoothing of a certain type of convex functions. We discuss details 
since our notion of e-convexity is sligtly different. 

4.1. Let M be a Riemannian manifold and e any real number. A continuous real 
valued function f on M is called e-convex if for any q ~ M and any r/< e there is a 
smooth support function fq,n of f in q (defined near q, fq. ~ < f,  fq, n(q) = f (q)), such 
that 

D2fq, ,(X,X)>rll}XIL z for all X ~ T q M .  

It is easy to see that e-convexity implies convexity for e > 0. (In fact, for e > 0, 
e-convexity implies strict convexity in the sense of [1, 20].) Namely, for a curve 
c:[a,  b ] ~ M  let ~b,,c.i=~b, be the real quadratic polynomial with 

~b,(a) = f (c(a)), ~b,(b) = f (c(b)), ~b~ = q. 

If c is a geodesic (parametrized by arc length), then f o c < ~b,: Otherwise f o c -  ~b, 
for some r/< e would attain an interior maximum at some point u ~ (a, b), and this 

" > r / ' -  would contradict to (fc~u),,, ~ c - ~b,) (u) = q > 0 for any q' E (q, ~). Moreover, a 
similar argument still holds if c is slightly curved: 

Lcmma 4.1. Let  f be an e-convex function on M with II Vfq,.(q)II <= L for any q ~ M 
and ~l < e. Let  c: [ a , b ] ~ M  be a curve with IID/ll  <~ and 11c'112__> 1 -/~ for small 
positive fl, 7. Let  r 1 = rl( fl, ~) = e - eft - LT. Then f o c < (~,. 

4.2. Clearly, a smooth function f is e-convex if and only if D 2 f  > e; this follows 
from 4.1. If S is a regular level hypersurface of a smooth function f with DZf  > e 
and II V f  I[ < L along S, then S is (~/L)-convex with respect to the unit normal vector 
field N =  V f /ll V f l[. 

4.3. Let U be an open subset of M such that curvature and injectivity radius are 
bounded on U. Let f be a continuous real valued function on U. For  any r > 0 
which is smaller than the convexity radius on U, we may approximate f by a 
smooth function f~ defined on Ur : = {x e M; Br(x)C U} as follows (see [8, 12]): 

f~(x)= S f(expx(u))w,(llull)d"u 
TxM 

= ~ f (y)~p,(d(x ,y))d#x(y) ,  
Br(x) 

where d"u denotes the volume element on T~M and d/~ the measure on B,(x) with 
exp*(d/~) = d"u, and q~, "R+ ~ R +  is a smooth function with w~lt0,,/21 = const > 0, 
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~rlt~, 0o)= 0 and i ~ , ( t ) t"-  1dr = l/re,_ 1 (where m,_ ~ denotes denotes the volume of 
o 

the unit sphere in R"). 
If f is a Lipschitz function with Lipschitz constant L, we get immediately 

I f -  f~l < Lr. (Note that ~ ~(t1 u t1)d"u = 1 .) Moreover, if K > 0 on U, then L has the 
same Lipschitz constant L: If x, y e U, are sufficiently near and P : T~M~ TrM 
denotes the parallel displacement along the shortest geodesic between x and y, 
then 

Ifr(x)--fr(Y)l < ~ If(exp~(u))--f(expy(Pu))lw,(llull)d"u 
TxM 

<=L ~ d(expx(u),exPr(Pu))~p,(llu!l)d"u 
T x M  

< Ld(x ,  y) 

by Rauch's theorem (see 3.5). 
Next we want to estimate the derivatives (see [12]): 

Lemma 4.3. Let O<K<_k  on U and f be a smooth function with IIDfll <L,  
IID2fll  <C. Then 

IIDL-DTII ~ Cr +  89 2 . 

Proof. Fix x ~ U r, v ~ TxM with II v II = 1. Let c be a geodesic with c(0) = x, c'(0) = v. 
For any u e TxM with tlu II < r let a,(s, t )= expc~t)sPtu where Pt denotes the parallel 

d d 
displacement along c. Let U = dss au, V = dt au. Then Vt(s ) = V(s, t) is the Jacobi 

D 
field along the geodesic ct(s) = a,(s, t) with Vt(0) = c'(t), Vt'(O) = dt  U(0, t) = 0. Since 

II U II = II u ll < r and II v II < II v II = 1, by 3.5, we have II v" tl = II R(V, U) U II < kr2, and so 
II V'll'____ II V" II _-< kr2, h e n c e  II Vt'(s)tl < kr2s. Now 

D f ~ ( v ) - D f ( v )  = d ~ (f(a ,(1,  t ) ) - f ( a . ( O ,  t))~r(tluII)d"u 
t=O TxM 

and 

d (f(a .(1,  t ) ) - f ( a . (O ,  t)) = J 
1 d d 
o dt  ds f (a"(s '  t)ds 

1 
= f [ D 2 f ( U (  s, t), V(s, t))+ Df(V/(s))]  ds, 

0 

so the result follows. 

4.4. Now we want to show that e-convexity is almost preserved by smoothing. 
Let M be any Riemannian manifold, M o a relatively compact open subset, and let 
t o > 0  be smaller than the convexity radius on M o. The following lemma is 
essentially due to Greene and Wu [8, 9]: 
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Lemma 4.4. For any s, L > 0 there is a monotonely decreasin9 function q : (0, r o ) - ~  
with q(r)~s  as r~O with the following property: I f  f is any e-convex function 
defined on some open convex subset U of M o, with II V fq,~(q)11 < L for all q ~ U, g< s, 
then the smoothin9 f~ of f is q(r)-convex, for any r ~ (0, ro). 

Proof. For  any x E )~o and u, v ~ TxM with [I u 11 < r, l[ v l[ = 1 let e = Cvo be the geodesic 
with c(0) = x, c'(0) = v; further let cv,(t) : = expc~t)(P~u ) where Pt denotes the parallel 
displacement along c. Let 

/t(v, u ) =  1 - [ l e M 0 ) I f  2 , ~(v, u ) =  IlOc~cG.(0)ll, 

and let fl(r), 7(r) be the maxima of these functions (note that the set of all (u, v) is 
compact). We have fl(r), 7 ( r )~0  as r ~ 0 .  Hence, if c: [a,b]--*Ur is a geodesic 
segment, then for any u ~ T~{,)M with II u II _-_ r, we have by Lemma 4. l for t ~ [a, b] 

f (expc~o(etu)) = f (c~,(t)) < q~,~) ..... y(t), 

where q(r) = e -  eft(r) - LT(r), and so f~ o c < ~b,(,),~,:. Since f~ is smooth, this implies 
D2L~q(r). 
4.5. Let M be any Riemannian manifold and S an s-convex hypersurface. Then 
its signed distance function d fails to be s-convex along S since we have 
Dzd(X, X) ~ s I[X [I 2 only for X ~ TS. Therefore, we consider the function f = X~ ~ d 
instead (compare [1]) with 

z~(t): =tq-~t 2. z 

Now f is s-convex with II Vfll = 1 along S. 
If K > 0 on M, then on M'_ we have D2d(X, X)  > s - 1 + s d  Ilxlt2 for  any X •  

by Lemma 3.4(a). Hence 

D2 f = sDd. Dd + (1 + sd) D2d ~ s 

on M'_. So for qeM"_ with d ( q ) > - R "  = - l / s ,  the function fq,," =z~odq,, 
(compare 3.6) is a smooth support function o f f  at q with DZfq,,(X, X)  > q II X II 2 for 
any X ~ TqM. Thus we have shown 

Lemma 4.5. I f  K > 0 on M and S is an s-convex hypersurface with siyned distance 
function d > - R ,  then f = X~ ~ d is s-convex on M"_. 

Further note that f has Lipschitz constant L t = 1 + st on the set {d < t} and we 
have d < f < d / 2  on {0>d_> - R } .  

Remark. Since the focal distance of S is not bigger than R, by Lemma 3.4(a), we 
have always d >  - R ,  and it is not difficult to show that d(q)= - R  for some q 
occurs only if S C OBR(q) and M"_ is flat (see [6]). However, one may avoid this 
argument by choosing s sligtly smaller, if necessary; then R = l/s gets larger and we 
have d > - R  for the new R. 

4.6. In particular we have shown: If K > 0 on M and B is a relatively compact 
open subset with smooth boundary S = 0B which is e-convex with respect to the 
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outer unit normal field, then f = )~ o d is e-convex on B. This remains true i fM = B, 
that means that M is a compact manifold with boundary S. Namely, f is e-convex 
on the subset M'_ where d is smooth. Moreover, the parallel hypersurfaces 
Sr = {d = - r }  are smooth for small positive r, and for the signed distance function 
dr of S, we have dr=d+r.  Since Sr is g-convex for g = ( R - r )  I with R =  1/e (see 
Lemma 3.4(a)), the function f = X~ ~ ( d r -  r) is e-convex on {d< - r } .  

5. Coordinates preserving convexity 

5.1. Let M be a Riemannian manifold and (U, ~b) a coordinate chart, i.e. U is an 
open subset of M and ~b a diffeomorphism of U onto an open subset V of R". Let 
ds2 = [I I[ 2 be the given metric on U and ds~ = [t II 2 the euclidean metric induced by 
~b, and let D, D o denote the corresponding Levi-Civita connections. Assume that 

IID - D O II < ~ and ds 2 < ds 2 < 4ds 2 . 

e 
Lemma 5.1. I f  S C U is an e-convex hypersurface, then ~b(S)C VC~"  is ~-convex.  

Proof Let d be the signed distance function of S and f = )~ o d. Then for any p e S we 
have IIDflollo<2[IDflpll =2,  and for all X e  TpM, 

I(D~ - DDf) (X, X)I = t D f ( D x X -  D~ (-_ fl Dftptl II DxX - D~ X tl ~ 2 tlx II 2. 

On the other hand, DDf(X,  X ) > e  ItXtl 2 (see 4.5) and so 

e 
Therefore, S is ]~-convex with respect to ds 2, by 4.2. 

5.2. A coordinate system satisfying the assumptions of 5.1 will be called a 9ood 
coordinate system. If M o C M is a relatively compact, open subset of M, then by 
continuity, there is a radius r > 0 such that the exponential coordinates in Bo(p) 
have this property, for any p ~ Mo. A more explicit lower bound for the radius of a 
good coordinate patch in terms of the injectivity radius and the curvature bounds 
has been given by Jost and Karcher [16] using almost-linear coordinates. 

5.3. Let y : S - , M  be an e-convex immersion. For  every s ~ S  let p=y(s) and 
(BQ(p), Op) be the good coordinate system of 5.2, Let S' be the connected component 

8 
of y-l(Bo(p) ) through s, Then x '  =~bpOyls,' S ' ~ I I "  is an ~ - c o n v e x  immersed 

hypersurface in ~". Thus on a small scale, the properties of e-convex immersions 
can be studied in euclidean space. 
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6. t-convexity in euclidean space 

6.1. Throughout  this chapter, we let M = IR" be the euclidean n-space. Let S be a 
connected hypersurface which is e-convex with respect to the unit normal field N 
on S, and let d denote its signed distance function. In the following, we always put 
R" = 1/e. A special property of the flat space is 

D2d(X,X)>=(d+R) -111X]I 2 for any X_LVd 

at any point where d is smooth, also on M+.  Hence, by 4.5, the function f = ;(~ o d is 
e-convex on M'uM"_.  Moreover,  we have canonical support  functions: For  any 
p e S let Bp : = BR(p-- RNp) and S v : = 0Bp. Let d v be the signed distance function of 
S v and f v = z ,  odv. The function fp is defined and smooth everywhere with 
D2fp(X, X) = e I IX II 2 for every tangent vector X. Hence g : = f -  fv is 0-convex with 
9(P) = O, Vg(p)= 0. So g attains a local minimum at p and consequently, f > fv on 
any convex neighborhood U ofp  in M'wM"_. It  follows that d > dp and therefore, S 
c~U C Bp. 

6.2. Lemma.  Let f be a continuous function on ]R" which is convex on a 
neighborhood U of the closed set B = { f  ~= 0}, and assume that B is connected. Then 
B is convex. 

Proof. Let p be an arbitrary point in B. Let C be the set of all q ~ B such that the 
straight line segment p-~ lies in B. Clearly, C is closed. We show that C is also open 
in B. Since ffqCB for q ~ C  and since U is a neighborhood of B, there is a 
neighborhood V of q such that  x-pC U for any x ~ V.. By convexity, f takes its 
max imum on x--fi at the end points, therefore UfiCB whenever x ~ VerB. So Vc~/3 
C C and therefore, C is open. Since p e C, we have C =/~ by connectivity which 
finishes the proof. 

6.3. Now let S C M = R"  be a compact,  e-convex hypersurface. By the Jordan- 
Brouwer separation theorem (see 3.2), S bounds an open domain B C ~ "  which lies 
on the side of the normal field - N on S. Then B = M"_ (see 3.3), and by 6.2,/3 is 
convex. Consequently, for any q ~ R"\B, there is a unique shortest line segment 
from q to S, and therefore, R~\/~= M~. So by 6.1 we have d~dp  on all o f R  ~, for 
every p e S, thus d ~ m a x  dp. On the other hand, for any q ~ ~ "  there is a closest 

p~S 
point p ~ S for which d(q)= dp(q), so we get in fact d = max d v. Consequently, 
B= N B,,. ,,~s 

peS 
More generally, a connected open subset B of ~," (with smooth boundary  or 

not) will be called e-convex for some e > 0 if for any p e 0B there is a neighborhood 
U of p and a ball B v of radius R = l/e with p ~ OB v (support ball or support  half 
space) such that Bm U C Bp. Applying the same arguments as above to the signed 
distance function d of OB which is negative on B and positive outside, we see again 
the convexity of B, more precisely: B = 0 By as above. 

peOB 

6.4. Lemma.  Let e = 1/R > 0 and B a connected, e-convex open domain containing a 
line segment of  length a. Then B contains a ball of radius a2/8R. 
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Proof. If B is a ball of radius R containing a line segment of length a with center q, 
then B contains the ball By(q) with r = R - ( R 2 - a Z / 4 ) l / Z > a 2 / 8 R .  Hence for an 
arbitrary e-convex open set B we have By(q)CBp for any p e 0B and so Br(q) 
C ('1 Bp=B (see 6.3). 

p~OB 

6.5. Let R ~ :  = { x ~ R " ;  x ,>0}  and IR~ its closure. Let S c R "  be an e-convex 
hypersurface such that S n R ~  is connected and SnR~_ compact. Thus SnlR~_ is 
closed in R~,  and hence it bounds an open set B in R"+ which lies on the side of the 
normal field - N  (see 3.2). So the full boundary of B in R" is contained in S w R " -  1 
and therefore, B is 0-convex and hence convex (6.3). However, in general B is no 
more contained in its support ball B, for arbitrary p ~ S n R ~ .  Nevertheless, there is 
one point p for which B C Bp remains true: 

Lemma 6.5. Let p ~ S be the point where the coordinate x,  attains its maximum on S. 
Then B C Bp. 

Proof. Let d, dp, f, fp be the functions defined in 6.1. Then 9 : = f - f p  is convex on 
M'uM"_. Since B is convex, every point of R"\B has a unique projection onto (?B 
from which we conclude M'+ = M+. So g is convex on M" with local minimum 0 on 
the line Lp: = ( p + R e , ) n M " .  All we have to show is that every point of S+ : = S  
nR"+ can be connected to some point of Lp by a straight line segment in M". Then 
by convexity we have g > 0  on S+ and hence S+ C{dp~0} =Bp which implies B 
CBp. 

Let T = B n R  "-~. Then 0 B = S + u T .  To examine the size of M", let d b e  the 
signed distance function of OB which is defined on all of R". Put  

A" = { d - x , < 0 } n R ~ _ ,  C: = { d + x , < 0 } n R ~ _ .  

These sets are convex since dis a convex function. We have S C A\C. Moreover, on 
A\C we have [d[ < x,. So the points of this set project on S+ and therefore A\CC M" 
with d = d o n  A\C. 

Let Z = T + R + e , C - "  R+ be the cylinder over T; this is a closed convex set. We 
claim that C C Z n B .  In fact, CCB since d, x , > 0  on Irl~\B. Moreover, for any 
q ~ B\Z,  the vertical ray L~ = q - R + e ,  starting at q intersects 0B at some point 
q' ~ OB\T = S +, so x,(q') > 0. Therefore, - d(q) < d(q, q') = x,(q) - x,(q') < x,(q) and 
hence q r C which proves the claim. 

Now for q e S+ the vertical rays L + = q + R+ e, do not meet the set Z n B  since 
either q r Z or the line Lq = q + Re ,  leaves B at q. In both cases there is an open cone 
Cq with vertex q around L + which does not meet Z n B ;  in the first case this is 
because Z n B  is contained in the truncated cylinder of hight x,(p) over T. So there 
is a line segment L from q to some point of L + within Cq. On the other hand, L~ 
CA, so L c A n C q c A \ C C M "  which finishes the proof. 

6.6. Lemma. [-14, 15]: Let S be a compact connected manifold of dimension n -  1 
and x : S ~ R "  an e-convex immersion. I f  n = 2, assume further that the closed plane 
curve x has winding number +_ 1. Then S is diffeomorphic to the ( n -  l )-sphere and x is 
an embedding. 
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Proof. Let v ' S ~ S " I - t  be the Gauss mapping of the immersion x. Due to the 
e-convexity, this is a local diffeomorphism and in particular a covering map. So it 
must be a global diffeomorphism since S]-  1 is simply connected for n > 3 and the 
degree of v is _+ 1 for n = 2. Consequently, for every v e S]-  1 C IR" the hight function 
by(s)= (v, x(s)) ,  s E S, has exactly two critical points: one maximum and one 
minimum. Therefore, x is an embedding: If s e S and v=v(s)  its outer normal 
vector, then hv attains its maximum only at s and so we have x(s') + x(s) for every s' 
:~s in  S. 

6.7. We now can prove the main result of this section. For  any immersion x" S 
--*R" and any s e S, r > 0 let Ur(s) be the connected component  of x-l(Br(x(s)))  
containing s. 

Lemma 6.7. Let x : S--*N" be an e-convex hypersurfaee immersion, for n> 3. Let 
s o ~ S and assume that S' : = Uo(so) is relatively compact in S, for some e > O. Let 
6 =  89 2 and S" : = U~(so). Then X[s,, is an embedding. 

Proof Let p : = X(So). We may assume that the n th basis vector e, of N" is the outer 
normal  vector of x at So so that the hight function x, = (x,  e , )  on S has a local 
maximum h: = x.(so)= p, at So. Since x(S) lies locally on one side of each of its 
tangent hyperplanes, every critical point o fx ,  is either a maximum or a minimum, 
so the set C of critical points is isolated. 

Let U be a neighborhood of So in S such that xlv is an embedding with x(U) 
C Be(p). For  every t < h let St denote the connected component  of {s ~ S; Xn(S ) > t} 
through s o. For  t sufficiently close to h we have StC UCS'. Let u: ~ i n f { t < h ;  St 
C S'}. The set Su is a closed subset of ~ and therefore compact,  and Su is ihvariant 
under the flow ~bt, t > 0, of the vector field Vx,. Every flow line ends at a maximum, 
so every point in S,\C lies in the domain of attraction of some maximum. Since 
these domains are open and Su\C is connected (here we need dim S > 2), there is no 
other local maximum then So on Su. Likewise, there is at most one local minimum 
on Su, and if there exists such a minimum, its domain of attraction under the flow of 
- VXn is Su\{So}. In this case we have S' = Su, so S' is compact  and connected and 
therefore embedded by 6.6. So we may assume that the interval [u, h) contains no 
critical values for xn. In particular, u < - ~ ,  and by choice of coordinates we may 
assume u =0 ,  so Su = So. 

For  0 < t < h let S"  = {s e So; Xn(S) = t}. This is a compact  regular hypersurface 
of S and the map  x'  : S t - ~  " -  1, x t ( s )=x( s )_  ten is an ~-convex immersion, by 
Meusnier's theorem. So for n > 4, the immersions x t are embeddings (6.6), and so 
the same is true for Xlso. For  n = 3 ,  note that the flow tpt of the vector field 
Vx,/H 17x.112 provides a diffeomorphism of S o onto S t, so we have a smooth family 
of closed plane curves x ' o p ~ : S ~  2. For  t sufficiently close to h, this is an 
embedding and so the winding number  is 1. Since the winding number  is constant 
for all t e [0, h), we get the same conclusion as in the case of higher dimension, by 
6.6. 

Now by 6.5, the hypersurface x(So)C~"+ is contained in the closure of the 
1 

support  ball B v : = B R ( p - R e , )  of radius R = - ,  and Bpn~xn+CBr(p) with 

r=(2Rh)  1/2. Since 0 = i n f { t < h ;  x(St)CBo(p)}, we have r> O and therefore 
h >  89 = 6. So S"C Uh(So)C So is embedded and the proof  is finished. 



Local convexity and nonnegative curvature 519 

7. Proof of Theorem A 

Throughout this chapter, let M be a complete Riemannian manifold of dimension 
n > 3 with nonnegative sectional curvature and y ' S ~ M  a compact, connected, 

1 
e-convex hypersurface immersion, for e = ~ > 0 .  Let M o: = { q ~ M ;  

d(q, y(S)) < 1 OR}. The contraction of S which we want to construct will take place 
within this set Mo. Since we also want to consider parallel hypersurfaces, let us 
assume more generally for the following sections 7.2-7.5 that Mo is an arbitrary 
relatively compact open subset of M with y(S) C MI" = {q c M; BR(q) Q Mo}. Let 
0 c (0, R) be a radius for good coordinates around any point of Mo (see 5.2). 

7.2. Lemma. For every s c S, there is an open, connected neighborhood S" of s in S 
such that Y]s" is an embedding and y(S")c~Ba(y(s)) is compact for 3" =2-8~Q 2. 
Proof. Put p = y(s). Let ~b : BQ(p)~lR" be the good coordinate system around p. Let 
S' be the connected component of y-I(BQ(p)) through s. Then x--~b o Y[s, is an 
e. 

- - -convex immersion (5.1). Since B~ where the suffix o refers to the 
16 
euclidean metric induced by ~b, the set x -  x(Bo/z(~b(p)) ) is compact. So we may apply 
6.7 for e/16 and Q/2 instead ofe and 0, and so the s-component S" of x -  l(Bza(~(p)) ) 

S H  - -  for 3--2-8~02 is embedded. Moreover, y( )c~Bo(p) is compact since B~(p) 
C B~ 

7.3. As before let M" be the subset of M where the signed distance function d of 
the hypersurface y(S") is defined. By Lemma 3.3 we have B~I2(P)C M" for p = y(s). 

Lemma 7.3. I f  y(S) is not entirely contained in B~/2(p), then there is a point 
q ~ B~/E(p) with d(q) <= - o~ for ~ = 2-1232e. 

Proof. We have B~ B,~/E(p), and B ~ o ,, e  9 = Bo/4(p)c~m_ is an 16-convex domain 

with respect to the euclidean metric induced by ~b since ~B ~ Cy(S")wOB~ (see 
6.3). Moreover, (~B~176 4= O, hence B ~ containes a euclidean straight line of 

132 
length 3/4 and by 6.4 a euclidean ball of radius r - 8 16 16 - 2:r Thus the center of 

this ball is a point q ~ B~/z(p)nM"_ with Riemannian distance d(q, y(S)) > r/2 and 
therefore d(q) < - ~. 

7.4. For  s c S let U(s) and V(s) be the connected components through s of the sets 
y-  l(B~(y(s))) and y l(B~/8(y(s)) ). We saw that U(s) is relatively compact and Y]v(s) 
is an embedding. Let us assume that U(s) + S for every s c S, that means that y(S) is 
contained in no ball of radius 3. Put 2 = 1 : r  Since 3 < R ,  we have 
2<2-163.  

Lemma 7.4. For every s e S  there is a smooth function g=gs defined on a 
neighborhood Ms of y(V(s)) with the following properties: 

(i) y(V(s)) C g-1 (0) C y(U(s)), 
(ii) HVgll <2 ,  D2g>=e/2, 



520 J.-H. Eschenburg 

(iii) [ - 2, 0] is a regular  interval for g, and g -  1 ( _ 2) is an e l -convex hypersur-  
face with el : =  1/(R-2/4)<~. 

(iv) Let  ~Pt denote  the flow of  the vector  field X = - Vg/]1179 ]I 2. Then  tpt(x) ~ Ms 
for every x E y(V(s)), t ~ [0, 2]. 

Moreover ,  if V(s )n  V(s')~ 0 for s, s ' e  S, then gs = gs, on MsnMs,. 
Proof. Let d be the signed distance function of y(U(s)) defined on B6/z(p ) for 
p=y(s), and let f=g~od. The function f is e-convex with d < f <  8 9  on {d<0} .  
Moreover ,  f is s m o o t h  on {]d[ < rl} where rl is the focal distance of the immersed  
hypersurface y(S), and we have  ]117f]]=l+ed.  Therefore,  if 2 < r l / 2 ,  we m a y  
choose g = f and Ms C B6/3(p) an open set containing {0 > d > - 22} nB6/3(p). If s '  is 
ano ther  point  in S with V(s)nV(s)+O, then d(p,p')<6/8 for p'=y(s'). So the 
signed distance functions of y(U(s)) and y(U(s')) agree on B6/3(p)nB6/3(p') since 
the endpoin t  of  a shortest  geodesic f rom q ~ B6/3(p) to y(U(s)) lies in B26/a(p ) 
ny(U(s)) C B6(p')ny(U(s))C y(U(s')) and vice versa. Therefore,  gs agrees to gs, on 
MsnMs,. 

N o w  assume 2 > rl/2. Put  ro = rJ6. For  r < ro < 2/3, we consider  the smooth ing  
fr o f f  (see 4.3) on B : = B~/4(y(s)). Since the Lipschitz cons tan t  o f f  is L t = 1 + et on 
{d<t} and in par t icular  L o =  1 on {d<0} ,  we have ] f - f~ l<r  and ]117f~][ < 1 on B 
n {d < - r} (see 4.3). Moreover ,  the suppor t  functions fq,, of  f satisfy ]] gfq,,(q)II < 1 
for all q e {d < 0} and q < e. Applying L e m m a  4.4 we get a funct ion t/(r) independent  
of s ~ S with q(r)Te as r+0, such that  fr is t/(r)-convex. 

Let  q ~ B6/4(p) with f~(q) = - 2. Then  fl(q) <= f(q) =< - 2 + r =< - 22 and hence 
II gf~(q)II < 1 + e(d(q) + r) < 1 -  89 = e(R - 2/3). N o w  we choose r so small  that  

R-,V3 
q(r) > R - -  2/4 e. 

Then  f , - 1 ( _  2) is an e l -convex hypersurface provided  tha t  - 2  is a regular  value 
(4.2). 

T o  satisfy (i), we have to connect  f and ft. Let  ~ b : R ~ [ 0 ,  1] be a smoo th  
funct ion with ~b(t) = 1 for t <  - 2 r  o and ~b(t) = 0  for t >  - r  o. Put  g = f  on {]dl<ro} 
and 

g = f + ~b(d) ( s  f )  

on { d < - t o } .  Since I f - f~ l<r  and ]D2dl is bounded  f rom above  on {]dl<2ro} 
independent ly  of s e S, we m a y  assume 11Vg 11 < 2, DZg ~ e/2 o n  { - -  r 0 ~ d > - 2to} 
by choosing r still smaller  if necessary. Since f is e-convex with 11Vf 11 < 1 on  
{0 > d > - ro} and f~ is t/(r)-convex with q(r) > -~e and ]1Vf~ 11 < 1 on {d < - 2r0}, the 
funct ion g satisfies (ii) on an open set MsCBa/g(p) containing {d<=O}nB6/4(p). If  
q ~ g-  1(--2), then d(q) <=f(q) __< - ~2__< - 2 r  o. So g -  1 ( - 2 )  = L -  1 ( - 2 )  . 

By 7.3 there is a point  qeB~/4(p) with d(q)<=-e, e = 1 6 2 .  Thus  
c( f(q)<= - ~ = - 8 2  and g(q)<=f(q)+r< - 7 2 .  So for all xeB6/4(p)n{g>= - 2 }  we 

have g(x ) -  g(q) > 62 and d(x, q) __< 6/2. Us ing  the convexi ty  o fg  a long the geodesic 

between x and  q in B6/4(p), we get II Vg(x)ll _>-- ~ 2  > 82/0. In  part icular ,  the interval  

[ -  2, 0] contains  no critical values for g which finishes the p roof  of (iii). 



Local convexity and nonnegative curvature 521 

If c is an integral curve of the vector field X = - Vg/1[ V9 I] 2 with c(0) t y(V(s)) 
(B~/s(P) c~ {g = 0}, then 9(c(t)) = - t and ]Ic'(t)11 = 11Vg(c(t)11 - 1 < 6/82, for t < 2. So 
the curve c(t) stays within B6/4(p) for 0 _< t < 2. In particular, c is defned on [-0, 2] 
with c([0, 2])C M~. This proves (iv). 

Note  that the choice of r was uniform for all s t S. If V(s)c~ V(s')4: O, then as 
above the signed distance functions of y(U(s)) and y(U(s')) agree on B6/3(p) 
c~B6/3(p') for p ' =  y(s3. Since r < 6/12, the smoothed functions f~ agree on B6/g(p) 
nB~/4(p'), hence 9~ = O~, on Ms~M~,. 
7.5. Now we define an immersion ya. S x [0, 2]--*M as follows: For s t V(so) let 
yX(s, t)= q~,(y(s)) where ~p, denotes the flow of the vector field X = - Vg/II Vg II 2 for 
g = g~o. In 7.4 we have shown that this is well defined. Let ds~ be the metric on S 
induced by the immersion y~. = Ylls • ~t~. Put ~c" = e ~/4. 

Lemma 7.5. ds 2 < ~cZ dsg. 

Proof. Let s t  V(so), so tS .  For  a t  TsS put A(t)=Dy~(a); this is a vector field 
along the curve c(t)= tp~(y(s)) with derivative A'(t)= DA(,)X. So 

IIAll ' =  (DAX, A>/llAll = - (DAVg, A>/(It W~ll 2 IIAII) ~ - ~ IIAtl 

by 7.4 (ii). Integrating, we get ]IA(2)H _-<KIIA(0)I] which proves the lemma. 

7.6. We now may replace the given immersion y with y]. By Lemma 7.4 (iii) this is 
an el-convex immersion of S. Since el > e and yl(S)C Mo (see 7.1), we may repeat 
the argument getting an immersion y2 :S x [2, 22] ~ M  such that the immersion 
y 2  = yZ[s • (2~) of S is e2-convex for e 2 = ( R - 2 2 / 4 ) - 1  and the induced metric ds2z 

 9 2 ~ 2 2 satisfies ds2a_~cads ~ for ~ = e  -~1x/4 and so on. Since we proved llVgl I <2,  any 
point of y~x(S) has distance < 22 from y~k-_al)a(S), so we do not leave mo  before k 
exceeds 5R/2. On the other hand, ek = (R -- k2/4)- 1 is finite only for k < 4R/2. So 
after, say, m steps with m < 4R/2, the set y~x(S) is contained in a ball of radius 6 < 0 
in Mo and in particular in the domain of a good coordinate system ~b. Therefore, 

e x = ~ o  m y,,a is an ]~-convex immersion of S into euclidean n-space. By Lemma 6.6, 

this is an embedding and x(S) bounds a convex disk (6.3). So y"~x(S) bounds a 
closed embedded disk B,,+~ in M. Providing B k : = S x  [ ( k - 1 ) 2 ,  k2] with the 
metric induced by yk and gluing together Bk and Bk + ~ at their common boundary,  
for 0 < k < m, we get a compact  Riemannian manifold D with boundary  (S, ds~), 
and an isometric immersion )): D ~ M  with S:[s=y. In particular, we have 
nonnegative curvature on D and the boundary S is an e-convex hypersurface. 

7.7. It  remains to construct a diffeomorphism of D onto the standard n-disk. 
Consider the e-convex function f =)~ o d where d is the negative distance to S on D 
(see 4.6). Let fr be the smoothing o f f  for small enough r and put 9 = f on {]dl < to} 
and g = f + ~b(d) (fr--  f )  on {[dl > ro} as in 7.4, but this time, g is defined globally on 

O. Thus g < 0  with S=9-~ (0 ) ,  and g is ~-convex if r is small enough. By strong 

convexity, the set of critical points, C, contains only minima, and the domain of 



522 J.-H. Eschenburg 

attraction of each minimum is a connected component of D\C; so there is exactly 
one minimum q e Int(D). By the Morse lemma (see [19]), for small 7 > 0, the set 
D~ = {x ~ D; g ( x ) -  g(q) < 7} is diffeomorphic to the standard disk. Using the flow 
of X - -  - V~!II Vg II- 2, we get a diffeomorphism of D onto D~. This finishes the proof 
of Theorem A. 
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