(C) Springer-Verlag 1986

Local convexity and nonnegative curvature Gromov's proof of the sphere theorem

J.-H. Eschenburg
Mathematisches Institut der WWU, Einsteinstr. 62, D-4400 Münster, Federal Republic of Germany

Dedicated to Wilhelm Klingenberg

1. Introduction

An immersed hypersurface S in a riemannian manifold M will be called ε-convex for some $\varepsilon>0$ if all principal curvatures have the same sign and absolute value at least ε. Can one characterize all compact ε-convex immersed hypersurfaces of a complete manifold M ? If M is euclidean n-space, $n \geqq 3$, this problem is solved by a theorem of Hadamard [14] generalized by Hopf [15]: S is embedded and bounds a convex n-disk (see $6.6,6.3$). If M is a flat space form, S is no longer necessarily embedded, but it still bounds an (immersed) convex n-disk. The aim of this paper is to show the same fact for a manifold M of curvature $K \geqq 0$:

Theorem A. Let M be a complete riemannian manifold with nonnegative sectional curvature and dimension $n \geqq 3$. Let S be a compact connected C^{∞}-manifold of dimension $n-1$ and $y: S \rightarrow M$ an ε-convex immersion, for some $\varepsilon>0$. Then there is an immersion $\hat{y}: D \rightarrow M$ where D is the standard n-disk, and a diffeomorphism $\phi: S^{n-1}=\partial D \rightarrow S$ such that $\left.\hat{y}\right|_{\partial D}=y \circ \phi$ and the mean curvature vector of $y(S)$ is pointing towards $\hat{y}(D)$.

Theorem A is not true for negative curvature; e.g. S could be the boundary of a tubular neighborhood around a closed geodesic. It is also false for $n=2$: Any locally strongly convex closed plane curve of winding number 2 or more provides a counterexample. The idea of the proof is to contract the hypersurface by pushing it along the gradient lines of a smoothed modification of its local distance function. The distance function is essentially strictly convex, due to $K \geqq 0$ ((Chap. 3), and the smoothing does not disturb the convexity (Chap. 4), and therefore, this motion is distance-decreasing with respect to the inner metric of S. In the case of the 2-dimensional counterexample mentioned above, S would eventually develop a cusp and the motion would stop there. A main step of the proof is to show that this cannot happen in higher dimension. Since this is a local question, it can be treated in euclidean space (Chap. 6), by means of suitable coordinates (Chap. 5). So the contraction ends with a point and the hypersurface bounds an immersed disk (Chap. 7).

Convexity methods have been used extensively in the geometry of nonnegative curvature (see [11, 4, 9]). The main difference is that we have to work with functions which are defined only locally.

A useful application of this theorem is a very short and direct proof of the sphere theorem of Berger and Klingenberg [2, 17, 10]:

Theorem B. Let M be a complete connected riemannian manifold with bounded positive curvature $0<K_{\min } \leqq K \leqq K_{\max }$ and $K_{\max } / K_{\min }<4$. Then M is diffeomorphically covered by a twisted sphere.

As usual, by a twisted sphere we mean the union of two discs D_{+}and D_{-}, pasted together by a diffeomorphism between ∂D_{+}and ∂D_{-}(see [3]). The proof of Theorem B uses neither Toponogov's theorem nor Klingenberg's estimate of the injectivity radius. In fact, this latter theorem is a consequence of the proof:

Theorem C. Let M be complete, simply connected with $0<K_{\min } \leqq K \leqq K_{\max }$ and $K_{\max } / K_{\min }<4$. Then for any point p in M, the injectivity radius at p equals precisely the conjugate radius at p which is not less then $\pi / \sqrt{K_{\max }}$.

2. Proof of the Theorems B and C

Let M be as in the assumption of Theorem B. Multiplying the metric of M by a suitable factor, we may assume $\frac{1}{4} \leqq K<1$. Choose an arbitrary point $p \in M$. Due to $K<1$, the conjugate distance r_{0} of p is strictly larger than π (see remark in 3.4). So for any $r \in\left(\pi, r_{0}\right)$, the exponential map $e:=\exp _{p}$ has highest rank on the closed ball $\bar{B}_{r}(0)$ in $T_{p} M$. Let $S:=\partial B_{r}(0)$ and $y:=\left.e\right|_{S}: S \rightarrow M$; this is an immersion. Let $N: S$ $\rightarrow T M$ be the unit normal vector field along y which points towards the interior, $e\left(B_{r}(0)\right)$. Then due to $K \geqq \frac{1}{4}$, there is an $\varepsilon>0$ such that $\left\langle D_{X} N, X\right\rangle \geqq \varepsilon\|X\|^{2}$ for any tangent vector X of S. (Just apply Lemma $3.4(\mathrm{~b})$ to the manifold $B_{r_{0}}(0)$ with metric induced by $\exp _{p}$ and to the hypersurface $S=\partial B_{r}(0)$.) Thus the immersed hypersurface S in M is ε-convex with mean curvature vector pointing towards the exterior. By Theorem A, there is a diffeomorphism $\phi: S^{n-1}=\partial D \rightarrow S$ and an immersion $\hat{y}: D \rightarrow M$ with $\left.\hat{y}\right|_{\partial D}=y \circ \phi$ such that the normal field N along y is pointing outside $\hat{y}(D)$. Let $D_{+}=B_{r}(0)$ and $D_{-}=D$ and consider the twisted sphere $S_{\phi}=D_{+} \bigcup_{\phi} D_{-}$. Then $\psi=e \bigcup_{\phi} \hat{y}$ is a local diffeomorphism of S_{ϕ} onto M and hence a covering map which proves Theorem B. If M is simply connected, ψ is even a global diffeomorphism and in particular, $e=\exp _{p}$ is injective on $\bar{B}_{r}(0)$ for all $r<r_{0}$. This proves Theorem C.

3. Hypersurfaces and distance function

3.1. Let M be a Riemannian manifold and S and \bar{S} hypersurfaces in M which touch each other at some point $p \in M$. Let N and \bar{N} be unit normal fields on S and \bar{S} whith $N_{p}=\bar{N}_{p}$. Let t_{0} and \bar{t}_{0} be the focal distances of S and \bar{S} in the direction of N_{p}.
Lemma 3.1. If $\left\langle D_{X} N, X\right\rangle<\left\langle D_{X} \bar{N}, X\right\rangle$ for every $0 \neq X \in T_{p} S$, then $t_{0}<\bar{t}_{0}$.

Proof. Let c be the geodesic with $c(0)=p, c^{\prime}(0)=N_{p}$. For any parameter t, we identify the subspace $c^{\prime}(t)^{\perp}$ of $T_{c(t)} M$ with $T_{p} S=c^{\prime}(0)^{\perp}$ via parallel transport along c. For any $x \in T_{p} S$ let $J_{x}(t)$ be the Jacobifield along c with $J_{x}(0)=x$ and $J_{x}^{\prime}(0)=D_{x} N$ and similar $\bar{J}_{x}(t)$ with $\bar{J}_{x}^{\prime}(0)=D_{x} \bar{N}$. Thus we defined two families of linear mappings $J(t), \bar{J}(t)$ on $T_{p} S$ by setting $J(t) x=J_{x}(t), \bar{J}(t) x=\bar{J}_{x}(t)$, and these satisfy the Jacobi equation $J^{\prime \prime}+R J=0$ where $R(t)$ is the symmetric linear map $R(t) x=R\left(x, c^{\prime}(t)\right) c^{\prime}(t)$. By symmetry of R and $D \bar{N}$, we get that $\bar{J}^{\prime} \bar{J}^{*}$ is also symmetric. It follows that for $0 \leqq t<t_{0}$, we have $J(t)=\bar{J}(t) X(t) C$ with $C=D N-D \bar{N}$ and

$$
X(t)=C^{-1}+\int_{0}^{t}\left(\bar{J}^{*} \bar{J}\right)^{-1}(\tau) d \tau
$$

Note that C is negative definite on $T_{p} S$, in particular invertible, and that \bar{J} and hence $\bar{J}^{*} \bar{J}$ is invertible on [$0, \bar{t}_{0}$). For $t=0$, all eigenvalues of $X(t)$ are negative. If t comes close to \bar{t}_{0}, then $\int_{0}^{t}\left(\bar{J}^{*} \bar{J}\right)(\tau) d \tau$ gets a very large eigenvalue: Since $\|\bar{J}(t) x\|^{2}$ $\leqq k\left(t-t_{0}\right)^{2}\|x\|^{2}$ for some $x \neq 0$ and some $k>0$, we get

$$
\begin{aligned}
\operatorname{trace}\left(\bar{J}^{*} \bar{J}\right)^{-1}(\tau) & =\operatorname{trace}\left(\bar{J}^{-1 *} \bar{J}^{-1}\right)(\tau) \geqq \frac{\left\langle\bar{J}^{-1 *} \bar{J}^{-1} J x, J x\right\rangle}{\langle J x, J x\rangle}(\tau) \\
& \geqq k^{-1}\left(\tau-\bar{t}_{0}\right)^{-2}
\end{aligned}
$$

and so the trace of the integral goes to ∞ as $t \rightarrow \bar{t}_{0}$. Thus for t_{1} close enough to \bar{t}_{0}, $X\left(t_{1}\right)$ has a positive eigenvalue. So there is some $t_{2} \in\left(0, t_{1}\right)$ where $X\left(t_{2}\right)$ and hence $J\left(t_{2}\right)$ is not invertible. Since t_{0} is the first parameter value where this happens, we have $t_{0} \leqq t_{2}<\bar{t}_{0}$.

Remark. The ideas of this proof go back to Green ([7], see also [5]).
3.2. For our purposes, the following form of the Jordan-Brouwer separation theorem is useful.

Theorem. Let M be a simply connected smooth manifold and S a smooth closed connected hypersurface of M. Then $M \backslash S$ has exactly two connected components.

Proof. Let $p \in S$ and U a small coordinate ball around p in M such that $U \backslash S$ has two connected components U_{+}and U_{-}. Choose points $p_{+} \in U_{+}, p_{-} \in U_{-}$. Assume that $M \backslash S$ is connected. Then there is a smooth curve c_{1} in $M \backslash S$ which connects p_{+} to p_{-}. Choose a curve c_{2} in U connecting p_{-}to p_{+}and intersecting S transversally. Then $c=c_{1} \cup c_{2}$ is a closed curve which can be assumed to be smooth and which intersects S exactly once and transversally. By simple connectivity, c is homotopic to a closed curve \bar{c} which does not intersect S. Since the intersection number mod 2 is a homotopy invariant (see [13], p. 78), this is a contradiction.

Moreover, if $M_{+}\left(M_{-}\right)$denotes the connected component of $M \backslash S$ containing $U_{+}\left(U_{-}\right)$, then ∂M_{+}and ∂M_{-}are open and closed in S. So there are no further components since S is connected.
3.3. Now let M be a Riemannian manifold and S a connected, two-sided hypersurface in M with unit normal vector field N. We will say that a point $q \in M$
projects onto S if there is a shortest geodesic from q to S. If M is complete and S is closed (as a subset of M), every point projects onto S. Let $M_{+}^{\prime \prime}\left(M_{-}^{\prime \prime}\right)$ denote the set of points which project onto the upper (lower) side of S, i.e. if $q \in M_{ \pm}^{\prime \prime}$ and $c:[0, d]$ $\rightarrow M$ is shortest with $c(0) \in S, c(d)=q, d=d(q, S)>0$, then $c^{\prime}(0)= \pm N_{c(0)}$. Put $M^{\prime \prime}=M_{+}^{\prime \prime} \cup S \cup M_{-}^{\prime \prime}$. E.g. if M is complete and $S=\partial B$ for some open subset B of M, and if N denotes the outer unit normal field, then $M^{\prime \prime}=M, M_{-}^{\prime \prime}=B, M_{+}^{\prime \prime}=M \backslash \bar{B}$. Further, let $M^{\prime} \subset M^{\prime \prime}$ be the interior of the set of points where the shortest geodesic to S is unique. This is an open neighborhood of S. Put $M_{ \pm}^{\prime}=M^{\prime} \cap M_{ \pm}^{\prime \prime}$.

Lemma 3.3. Let M be a complete Riemannian manifold and $S \subset M$ a twosided hypersurface. Let $p \in S$ and $0<\delta<i(p)$ where i denotes the injectivity radius function on M, and assume that $S \cap B_{\delta}(p)$ is connected and $S \cap \bar{B}_{\delta}(p)$ is closed in M. Then $B_{\delta / 2}(p) \subset M^{\prime \prime}$.

Proof. If $q \in B_{\delta / 2}(p)=: B$, there is a shortest geodesic c from q to the compact set S $\cap B_{\delta}(p)$. But since the length of c has to be smaller than $\delta / 2$, the endpoint of c lies in the open subset $S \cap B_{\delta}(p)$ of S. Thus q projects onto S. Since $S \cap B$ is closed in B, the point q cannot project onto both sides of S, by 3.2 , unless $q \in S$. So $B \subset M^{\prime \prime}$.
3.4. On $M^{\prime \prime}$, we may define the signed distance function d of S as follows: $|d(x)|$ is the distance $d(x, S)$ from x to S, and $d(x)$ is positive (negative) for $x \in M_{+}^{\prime \prime}\left(x \in M_{-}^{\prime \prime}\right)$. Then M^{\prime} is the set of points where d is smooth. Its gradient $\hat{N}:=\nabla d$ is the extension of N on M^{\prime} with $D_{\hat{N}} \hat{N}=0$. Let $D^{2} d$ denote the Hessean 2-form of d. The proof of the following facts is based on an idea of Green [7]:
Lemma 3.4(a). Let $k, \lambda \in \mathbb{R}$. Let M be a Riemannian manifold with curvature $K \geqq k$ and let S be a hypersurface in M with unit normal field N and $\left\langle D_{X} N, X\right\rangle \geqq \lambda\|X\|^{2}$ for every nonzero tangent vector X of S. Then $D^{2} d(X, X) \geqq v(d)\|X\|^{2}$ for all 0 $\neq X \in T M_{-}^{\prime}$ with $X \perp \nabla d$, where v is a solution of

$$
v^{\prime}+v^{2}+k=0, v(0)=\lambda \text {. }
$$

If $K>k$ or $D N>\lambda$, the inequality is strict.
Lemma 3.4(b). Let M be as above, $\bar{p} \in M$ and $r<i(p)$. Let $S=\partial B_{r}(\bar{p})$ and N the inner unit normal field on S. Then $\left\langle D_{X} N, X\right\rangle \geqq v(0)\|X\|^{2}$ for any nonzero tangent vector X of S, where v is a solution of

$$
v^{\prime}+v^{2}+k=0, \lim _{t \rightarrow r} 1 / v(t)=0 .
$$

If $K>k$, the inequality is strict.
Proof. Let $\hat{N}=\nabla d$, where d is the signed distance function of S in both cases. If c is an integral curve of \hat{N}, i.e. a geodesic orthogonal to S, then as a consequence of the Jacobi equation, the familiy of linear maps $U(t) x:=D_{x} \hat{N}$ for $x \in c^{\prime}(t)^{\perp}$ satisfies the Riccati equation

$$
U^{\prime}+U^{2}+R=0
$$

with $R(t)$ as in 3.1. Let us assume first that $R>k$, that means that $R(t)-k I$ is positive definite for all t. Let v be a solution of $v^{\prime}+v^{2}+k=0$ and put $V=v I$. Then

$$
(U-V)^{\prime}<-(U+V)(U-V)
$$

If $(U-V)\left(t_{1}\right)>0$ for some t_{1}, then the same is true for all $t \in\left(t_{0}, t_{1}\right)$ where t_{0} is the largest parameter smaller then t_{1} where U or V has a pole. Namely, if $\bar{t} \in\left(t_{0}, t_{1}\right)$ was the largest parameter where this fails, there would be some $x \neq 0$ with $(U-V)(\bar{t}) x=0$, hence we would have $\langle(U-V) x, x\rangle^{\prime}(\bar{t})<0$ which contradicts $\langle(U-v) x, x\rangle(t)>0$ for $\bar{t}<t \leqq t_{1}$. (Here we identified x with its corresponding parallel field along c, as in 3.1.) In particular, if t_{0} is finite, it must be a pole of U since otherwise we would get a contradiction from $\lim v(t)=+\infty$ and $U>V$.

This proves immediately 3.4 (a) for $K>k, D N>\lambda$. Since v depends continuously on k and λ, the result follows also for the weaker assumption.

If $S=\partial B_{\mathrm{r}}(p)$ and N the inner normal field, note that $U(t)^{-1} \rightarrow 0$ as $t \rightarrow r$, and $\left(U^{-1}\right)^{\prime}=I+U^{-1} R U^{-1}$. Therefore, the singularities of U^{-1} and V^{-1} at $t=r$ are removable, and $\left(U^{-1}\right)^{\prime}(r)=\left(V^{-1}\right)^{\prime}(r)=I,\left(U^{-1}\right)^{\prime \prime}(r)=\left(V^{-1}\right)^{\prime \prime}(r)=0,\left(U^{-1}\right)^{\prime \prime \prime}(r)$ $=2 R(r)>2 k=\left(V^{-1}\right)^{\prime \prime \prime}(r)$ if $R>k$. Thus for $t_{1}<r$ sufficiently near to r, we have $U\left(t_{1}\right)^{-1}<V\left(t_{1}\right)^{-1}$, hence $(U-V)\left(t_{1}\right)<0$. So by the previous argument we get $U(0)>v(O) I$. The result for $R \geqq k$ follows by continuity, as above.

Remark. Exactly the analogous arguments are valid under the assumption $K \leqq k$ which implies the opposite inequalities. In particular it follows that then the conjugate distance on M is larger than on a sphere of curvature k.
3.5. Remark. The Rauch comparison theorems are an easy consequence of the previous section. E.g. if J is a Jacobi field along a geodesic c with $J^{\prime}(0)=0$, then J belongs to the normal flow of any hypersurface S through $c(0)$ with $N_{c(0)}=c^{\prime}(0)$ and $\left.D N\right|_{c(0)}=0$. Therefore, if d is the signed distance function of S and $U(t):=\left.D \nabla d\right|_{c(t)}$ its Hessean, then $J^{\prime}=U J$. If $K \geqq 0$, then $U(t) \geqq 0$ for $t \leqq 0$ up to the focal distance, by $3.4(\mathrm{a})$. Therefore, $\|J\|^{\prime}=\langle U J, J\rangle /\|J\| \geqq 0$, hence $\|J(t)\| \leqq\|J(0)\|$ for $t \leqq 0$. Reversing the orientation of c we get the same for $t \geqq 0$.
3.6. Let M be an arbitrary Riemannian manifold and $S \subset M$ a hypersurface which is ε-convex with respect to a unit normal vector field N, that means $\left\langle D_{X} N, X\right\rangle$ $\geqq \varepsilon\|X\|^{2}$ for any $X \in T S$. Let $d: M^{\prime \prime} \rightarrow \mathbb{R}$ be its signed distance function. Then for any $q \in M^{\prime \prime}$ and $\eta<\varepsilon$ we get a support function $\bar{d}=d_{q, \eta}$ of d at q as follows (see [18, 20]): Let c be a shortest geodesic from q to S and $p \in S$ its end point. Let \bar{S} be another hypersurface through p with normal field \bar{N} and suppose that $\bar{N}_{p}=N_{p}$ and $D_{X} \vec{N}=\eta X$ for any $X \in T_{p} S$. We may choose

$$
\bar{S}=\exp _{p}\left(\partial B_{\bar{R}}\left(-\bar{R} N_{p}\right) \cap V\right),
$$

where $\bar{R}=1 / \eta$ and V an open neighborhood of O_{p} in $T_{p} M$ which lies in the injectivity domain of $\exp _{p}$. By Lemma 3.1, applied to the normal fields $-N$ and $-\bar{N}$, the first focal point of \bar{S} along c comes behind q. So the signed distance function \bar{d} of \bar{S} is defined and smooth in a small neighborhood U of q, if V is small enough to exclude cut locus points near q. Moreover, if $\gamma:[0, \delta) \rightarrow \bar{S}$ is a geodesic in \bar{S} with $\gamma(0)=p$, and if we put $\phi=d \circ \gamma$, then $\phi(0)=0, \phi^{\prime}(0)=0, \phi^{\prime \prime}(0) \geqq \varepsilon-\eta>0$. Thus we have $d \geqq 0$ on a neighborhood of p in \bar{S}. Making \bar{S} even smaller if necessary, we may assume $\bar{S} \subset M^{\prime \prime}$ and $\left.d\right|_{\bar{s}} \geqq 0$. Let $x \in M_{-}^{\prime \prime}$ be in the domain of \bar{d} and let \bar{p} be a point in \bar{S} with shortest distance to x. Then $|d(x)-d(\bar{p})| \leqq d(x, \bar{p})=|\bar{d}(x)|$, hence $d(x) \geqq \bar{d}(x)$ because $d(\bar{p}) \geqq 0$. So we have shown:

Lemma 3.6. If $q \in \operatorname{Int}\left(M_{-}^{\prime \prime}\right)$ and $\eta<\varepsilon$, then $\bar{d}=d_{q, \eta}$ is a smooth support function of d in q, more precisely, \bar{d} is defined and smooth on a neighborhood U of q with $\bar{d} \leqq d$ and $\bar{d}(q)=d(q)$.

4. ε-convex functions and smoothing

In the following chapter, we use ideas of various authors $[1,6,8,9,12,18,20]$ to describe the smoothing of a certain type of convex functions. We discuss details since our notion of ε-convexity is sligtly different.
4.1. Let M be a Riemannian manifold and ε any real number. A continuous real valued function f on M is called ε-convex if for any $q \in M$ and any $\eta<\varepsilon$ there is a smooth support function $f_{q, \eta}$ of f in q (defined near $\left.q, f_{q, \eta} \leqq f, f_{q, \eta}(q)=f(q)\right)$, such that

$$
D^{2} f_{q, \eta}(X, X) \geqq \eta\|X\|^{2} \quad \text { for all } \quad X \in T_{q} M .
$$

It is easy to see that ε-convexity implies convexity for $\varepsilon \geqq 0$. (In fact, for $\varepsilon>0$, ε-convexity implies strict convexity in the sense of $[1,20]$.) Namely, for a curve $c:[a, b] \rightarrow M$ let $\phi_{n, c, f}=\phi_{\eta}$ be the real quadratic polynomial with

$$
\phi_{\eta}(a)=f(c(a)), \quad \phi_{\eta}(b)=f(c(b)), \quad \phi_{\eta}^{\prime \prime}=\eta .
$$

If c is a geodesic (parametrized by arc length), then $f \circ c \leqq \phi_{\varepsilon}$: Otherwise $f \circ c-\phi_{\eta}$ for some $\eta<\varepsilon$ would attain an interior maximum at some point $u \in(a, b)$, and this would contradict to $\left(f_{c(u), \eta^{\prime}} c-\phi_{\eta}\right)^{\prime \prime}(u) \geqq \eta^{\prime}-\eta>0$ for any $\eta^{\prime} \in(\eta, \varepsilon)$. Moreover, a similar argument still holds if c is slightly curved:

Lemma 4.1. Let f be an ε-convex function on M with $\left\|\nabla f_{q, \eta}(q)\right\| \leqq L$ for any $q \in M$ and $\eta<\varepsilon$. Let $c:[a, b] \rightarrow M$ be a curve with $\left\|D_{c^{\prime}} c^{\prime}\right\| \leqq \gamma$ and $\left\|c^{\prime}\right\|^{2} \geqq 1-\beta$ for small positive β, γ. Let $\eta=\eta(\beta, \gamma)=\varepsilon-\varepsilon \beta-L \gamma$. Then $f \circ c \leqq \phi_{\eta}$.
4.2. Clearly, a smooth function f is ε-convex if and only if $D^{2} f \geqq \varepsilon$; this follows from 4.1. If S is a regular level hypersurface of a smooth function f with $D^{2} f \geqq \varepsilon$ and $\|V f\| \leqq L$ along S, then S is (ε / L)-convex with respect to the unit normal vector field $N=\nabla f /\|\nabla f\|$.
4.3. Let U be an open subset of M such that curvature and injectivity radius are bounded on U. Let f be a continuous real valued function on U. For any $r>0$ which is smaller than the convexity radius on U, we may approximate f by a smooth function f_{r} defined on $U_{r}:=\left\{x \in M ; B_{r}(x) \subset U\right\}$ as follows (see [8, 12]):

$$
\begin{aligned}
f_{r}(x) & =\int_{T_{x} M} f\left(\exp _{x}(u)\right) \psi_{r}(\|u\|) d^{n} u \\
& =\int_{B_{r}(x)} f(y) \psi_{r}(d(x, y)) d \mu_{x}(y)
\end{aligned}
$$

where $d^{n} u$ denotes the volume element on $T_{x} M$ and $d \mu_{x}$ the measure on $B_{r}(x)$ with $\exp _{x}^{*}\left(d \mu_{x}\right)=d^{n} u$, and $\psi_{r}: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is a smooth function with $\left.\psi_{r}\right|_{[0, r / 2]}=$ const >0,
$\left.\psi_{r}\right|_{(r, \infty)}=0$ and $\int_{0}^{r} \psi_{r}(t) t^{n-1} d t=1 / \omega_{n-1}$ (where ω_{n-1} denotes denotes the volume of the unit sphere in \mathbb{R}^{n}).

If f is a Lipschitz function with Lipschitz constant L, we get immediately $\left|f-f_{r}\right| \leqq L r$. (Note that $\int \psi_{r}(\|u\|) d^{n} u=1$.) Moreover, if $K \geqq 0$ on U, then f_{r} has the same Lipschitz constant L : If $x, y \in U_{r}$ are sufficiently near and $P: T_{x} M \rightarrow T_{y} M$ denotes the parallel displacement along the shortest geodesic between x and y, then

$$
\begin{aligned}
\left|f_{r}(x)-f_{r}(y)\right| & \leqq \int_{r_{x} M}\left|f\left(\exp _{x}(u)\right)-f\left(\exp _{y}(P u)\right)\right| \psi_{r}(\|u\|) d^{n} u \\
& \leqq L \int_{T_{x} M} d\left(\exp _{x}(u), \exp _{y}(P u)\right) \psi_{r}(\|u\|) d^{n} u \\
& \leqq L d(x, y)
\end{aligned}
$$

by Rauch's theorem (see 3.5).
Next we want to estimate the derivatives (see [12]):
Lemma 4.3. Let $0 \leqq K \leqq k$ on U and f be a smooth function with $\|D f\| \leqq L$, $\left\|D^{2} f\right\| \leqq C$. Then

$$
\left\|D f_{r}-D f\right\| \leqq C r+\frac{1}{2} L k r^{2}
$$

Proof. Fix $x \in U_{r}, v \in T_{x} M$ with $\|v\|=1$. Let c be a geodesic with $c(0)=x, c^{\prime}(0)=v$. For any $u \in T_{x} M$ with $\|u\| \leqq r$ let $a_{u}(s, t)=\exp _{c(t)} s P_{t} u$ where P_{t} denotes the parallel displacement along c. Let $U=\frac{d}{d s} a_{u}, V=\frac{d}{d t} a_{u}$. Then $V_{t}(s)=V(s, t)$ is the Jacobi field along the geodesic $c_{t}(s)=a_{u}(s, t)$ with $V_{t}(0)=c^{\prime}(t), V_{t}^{\prime}(0)=\frac{D}{d t} U(0, t)=0$. Since $\|U\|=\|u\| \leqq r$ and $\|V\| \leqq\|v\|=1$, by 3.5 , we have $\left\|V^{\prime \prime}\right\|=\|R(V, U) U\| \leqq k r^{2}$, and so $\left\|V^{\prime}\right\|^{\prime} \leqq\left\|V^{\prime \prime}\right\| \leqq k r^{2}$, hence $\left\|V_{t}^{\prime}(s)\right\| \leqq k r^{2} s$. Now

$$
D f_{r}(v)-D f(v)=\left.\frac{d}{d t}\right|_{t=0} \int_{T_{x} M}\left(f\left(a_{u}(1, t)\right)-f\left(a_{u}(0, t)\right) \psi_{r}(\|u\|) d^{n} u\right.
$$

and

$$
\begin{aligned}
\frac{d}{d t} & \left(f\left(a_{u}(1, t)\right)-f\left(a_{u}(0, t)\right)=\int_{0}^{1} \frac{d}{d t} \frac{d}{d s} f\left(a_{u}(s, t) d s\right.\right. \\
& =\int_{0}^{1}\left[D^{2} f(U(s, t), V(s, t))+D f\left(V_{t}^{\prime}(s)\right)\right] d s
\end{aligned}
$$

so the result follows.
4.4. Now we want to show that ε-convexity is almost preserved by smoothing. Let M be any Riemannian manifold, M_{0} a relatively compact open subset, and let $r_{0}>0$ be smaller than the convexity radius on M_{0}. The following lemma is essentially due to Greene and $\mathrm{Wu}[8,9]$:

Lemma 4.4. For any $\varepsilon, L>0$ there is a monotonely decreasing function $\eta:\left(0, r_{0}\right) \rightarrow \mathbb{R}$ with $\eta(r) \rightarrow \varepsilon$ as $r \rightarrow 0$ with the following property: If f is any ε-convex function defined on some open convex subset U of M_{0}, with $\left\|\nabla f_{q, \bar{\varepsilon}}(q)\right\| \leqq L$ for all $q \in U, \bar{\varepsilon}<\varepsilon$, then the smoothing f_{r} of f is $\eta(r)$-convex, for any $r \in\left(0, r_{0}\right)$.
Proof. For any $x \in \bar{M}_{0}$ and $u, v \in T_{x} M$ with $\|u\| \leqq r,\|v\|=1$ let $c=c_{v o}$ be the geodesic with $c(0)=x, c^{\prime}(0)=v$; further let $c_{v u}(t):=\exp _{c t(t)}\left(P_{t} u\right)$ where P_{t} denotes the parallel displacement along c. Let

$$
\beta(v, u)=1-\left\|c_{v u}^{\prime}(0)\right\|^{2}, \quad \gamma(v, u)=\left\|D_{c_{v u}^{\prime}}, \quad c_{v u}^{\prime}(0)\right\|,
$$

and let $\beta(r), \gamma(r)$ be the maxima of these functions (note that the set of all (u, v) is compact). We have $\beta(r), \gamma(r) \rightarrow 0$ as $r \rightarrow 0$. Hence, if $c:[a, b] \rightarrow U_{r}$ is a geodesic segment, then for any $u \in T_{c(a)} M$ with $\|u\| \leqq r$, we have by Lemma 4.1 for $t \in[a, b]$

$$
f\left(\exp _{c(t)}\left(P_{t} u\right)\right)=f\left(c_{v u}(t)\right) \leqq \phi_{\eta(r), c_{u u}, f}(t),
$$

where $\eta(r)=\varepsilon-\varepsilon \beta(r)-L \gamma(r)$, and so $f_{r} \circ c \leqq \phi_{\eta(r), c, f_{r}}$. Since f_{r} is smooth, this implies $D^{2} f_{r} \geqq \eta(r)$.
4.5. Let M be any Riemannian manifold and S an ε-convex hypersurface. Then its signed distance function d fails to be ε-convex along S since we have $D^{2} d(X, X) \geqq \varepsilon\|X\|^{2}$ only for $X \in T S$. Therefore, we consider the function $f=\chi_{\varepsilon} \circ d$ instead (compare [1]) with

$$
\chi_{\varepsilon}(t):=t+\frac{\varepsilon}{2} t^{2} .
$$

Now f is ε-convex with $\|\nabla f\|=1$ along S.
If $K \geqq 0$ on M, then on M_{-}^{\prime} we have $D^{2} d(X, X) \geqq \frac{\varepsilon}{1+\varepsilon d}\|X\|^{2}$ for any $X \perp \nabla d$, by Lemma 3.4(a). Hence

$$
D^{2} f=\varepsilon D d \cdot D d+(1+\varepsilon d) D^{2} d \geqq \varepsilon
$$

on M_{-}^{\prime}. So for $q \in M_{-}^{\prime \prime}$ with $d(q)>-R:=-1 / \varepsilon$, the function $f_{q, \eta}:=\chi_{\varepsilon} \circ d_{q, \eta}$ (compare 3.6) is a smooth support function of f at q with $D^{2} f_{q, \eta}(X, X) \geqq \eta\|X\|^{2}$ for any $X \in T_{q} M$. Thus we have shown
Lemma 4.5. If $K \geqq 0$ on M and S is an ε-convex hypersurface with signed distance function $d>-R$, then $f=\chi_{\varepsilon}{ }^{\circ} d$ is ε-convex on $M_{-}^{\prime \prime}$.

Further note that f has Lipschitz constant $L_{t}=1+\varepsilon t$ on the set $\{d \leqq t\}$ and we have $d \leqq f \leqq d / 2$ on $\{0 \geqq d \geqq-R\}$.
Remark. Since the focal distance of S is not bigger than R, by Lemma 3.4(a), we have always $d \geqq-R$, and it is not difficult to show that $d(q)=-R$ for some q occurs only if $S \subset \partial B_{R}(q)$ and $M_{-}^{\prime \prime}$ is flat (see [6]). However, one may avoid this argument by choosing ε sligtly smaller, if necessary; then $R=1 / \varepsilon$ gets larger and we have $d>-R$ for the new R.
4.6. In particular we have shown: If $K \geqq 0$ on M and B is a relatively compact open subset with smooth boundary $S=\partial B$ which is ε-convex with respect to the
outer unit normal field, then $f=\chi_{\varepsilon} \circ d$ is ε-convex on \bar{B}. This remains true if $M=\bar{B}$, that means that M is a compact manifold with boundary S. Namely, f is ε-convex on the subset M_{-}^{\prime} where d is smooth. Moreover, the parallel hypersurfaces $S_{r}=\{d=-r\}$ are smooth for small positive r, and for the signed distance function d_{r} of S_{r} we have $d_{r}=d+r$. Since S_{r} is $\bar{\varepsilon}$-convex for $\bar{\varepsilon}=(R-r)^{-1}$ with $R=1 / \varepsilon$ (see Lemma 3.4(a)), the function $f=\chi_{\varepsilon}{ }^{\circ}\left(d_{r}-r\right)$ is ε-convex on $\{d \leqq-r\}$.

5. Coordinates preserving convexity

5.1. Let M be a Riemannian manifold and (U, ϕ) a coordinate chart, i.e. U is an open subset of M and ϕ a diffeomorphism of U onto an open subset V of \mathbb{R}^{n}. Let $d s^{2}=\| \|^{2}$ be the given metric on U and $d s_{0}^{2}=\| \|_{0}^{2}$ the euclidean metric induced by ϕ, and let D, D^{0} denote the corresponding Levi-Civita connections. Assume that

$$
\left\|D-D^{0}\right\| \leqq \frac{\varepsilon}{4} \quad \text { and } \quad \frac{1}{4} d s^{2}<d s_{0}^{2}<4 d s^{2} .
$$

Lemma 5.1. If $S \subset U$ is an ε-convex hypersurface, then $\phi(S) \subset V \subset \mathbb{R}^{n}$ is $\frac{\varepsilon}{16}$-convex.
Proof. Let d be the signed distance function of S and $f=\chi_{\varepsilon} \circ d$. Then for any $p \in S$ we have $\left\|\left.D f\right|_{p}\right\|_{0}<2\left\|\left.D f\right|_{p}\right\|=2$, and for all $X \in T_{p} M$,

$$
\left|\left(D^{0} D f-D D f\right)(X, X)\right|=\left|D f\left(D_{X} X-D_{X}^{0} X\right)\right| \leqq\left\|\left.D f\right|_{p}\right\|\left\|D_{X} X-D_{x}^{0} X\right\| \leqq \frac{\varepsilon}{2}\|X\|^{2} .
$$

On the other hand, $D D f(X, X) \geqq \varepsilon\|X\|^{2}$ (see 4.5) and so

$$
D^{0} D f \geqq \frac{\varepsilon}{2}\|X\|^{2} \geqq \frac{\varepsilon}{8}\|X\|_{0}^{2} .
$$

Therefore, S is $\frac{\varepsilon}{16}$-convex with respect to $d s_{0}^{2}$, by 4.2.
5.2. A coordinate system satisfying the assumptions of 5.1 will be called a good coordinate system. If $M_{0} \subset M$ is a relatively compact, open subset of M, then by continuity, there is a radius $\varrho>0$ such that the exponential coordinates in $B_{e}(p)$ have this property, for any $p \in M_{0}$. A more explicit lower bound for the radius of a good coordinate patch in terms of the injectivity radius and the curvature bounds has been given by Jost and Karcher [16] using almost-linear coordinates.
5.3. Let $y: S \rightarrow M$ be an ε-convex immersion. For every $s \in S$ let $p=y(s)$ and ($\left.B_{e}(p), \phi_{p}\right)$ be the good coordinate system of 5.2. Let S^{\prime} be the connected component of $y^{-1}\left(B_{e}(p)\right)$ through s. Then $x:=\left.\phi_{p} \circ y\right|_{s^{\prime}}: S^{\prime} \rightarrow \mathbb{R}^{n}$ is an $\frac{\varepsilon}{16}$-convex immersed hypersurface in \mathbb{R}^{n}. Thus on a small scale, the properties of ε-convex immersions can be studied in euclidean space.

6. e-convexity in euclidean space

6.1. Throughout this chapter, we let $M=\mathbb{R}^{n}$ be the euclidean n-space. Let S be a connected hypersurface which is ε-convex with respect to the unit normal field N on S, and let d denote its signed distance function. In the following, we always put $R:=1 / \varepsilon$. A special property of the flat space is

$$
D^{2} d(X, X) \geqq(d+R)^{-1}\|X\|^{2} \quad \text { for any } \quad X \perp \nabla d
$$

at any point where d is smooth, also on M_{+}^{\prime}. Hence, by 4.5, the function $f=\chi_{\varepsilon} \circ d$ is ε-convex on $M^{\prime} \cup M_{-}^{\prime \prime}$. Moreover, we have canonical support functions: For any $p \in S$ let $B_{p}:=B_{R}\left(p-R N_{p}\right)$ and $S_{p}:=\partial B_{p}$. Let d_{p} be the signed distance function of S_{p} and $f_{p}=\chi_{\varepsilon} \circ d_{p}$. The function f_{p} is defined and smooth everywhere with $D^{2} f_{p}(X, X)=\varepsilon\|X\|^{2}$ for every tangent vector X. Hence $g:=f-f_{p}$ is 0 -convex with $g(p)=0, \nabla g(p)=0$. So g attains a local minimum at p and consequently, $f \geqq f_{p}$ on any convex neighborhood U of p in $M^{\prime} \cup M_{-}^{\prime \prime}$. It follows that $d \geqq d_{p}$ and therefore, S $\cap U \subset \bar{B}_{p}$.
6.2. Lemma. Let f be a continuous function on \mathbb{R}^{n} which is convex on a neighborhood U of the closed set $\bar{B}=\{f \leqq 0\}$, and assume that \bar{B} is connected. Then \bar{B} is convex.

Proof. Let p be an arbitrary point in \bar{B}. Let C be the set of all $q \in \bar{B}$ such that the straight line segment $\overline{p q}$ lies in \bar{B}. Clearly, C is closed. We show that C is also open in \bar{B}. Since $\overline{p q} \subset \bar{B}$ for $q \in C$ and since U is a neighborhood of \bar{B}, there is a neighborhood V of q such that $\overline{x p} \subset U$ for any $x \in V$. By convexity, f takes its maximum on $\overline{x p}$ at the end points, therefore $\overline{x p} \subset B$ whenever $x \in V \cap \bar{B}$. So $V \cap \bar{B}$ $C C$ and therefore, C is open. Since $p \in C$, we have $C=\bar{B}$ by connectivity which finishes the proof.
6.3. Now let $S \subset M=\mathbb{R}^{n}$ be a compact, ε-convex hypersurface. By the JordanBrouwer separation theorem (see 3.2), S bounds an open domain $B \subset \mathbb{R}^{n}$ which lies on the side of the normal field $-N$ on S. Then $B=M_{-}^{\prime \prime}$ (see 3.3), and by $6.2, \bar{B}$ is convex. Consequently, for any $q \in \mathbb{R}^{n} \backslash \bar{B}$, there is a unique shortest line segment from q to S, and therefore, $\mathbb{R}^{n} \backslash \bar{B}=M_{+}^{\prime}$. So by 6.1 we have $d \geqq d_{p}$ on all of \mathbb{R}^{n}, for every $p \in S$, thus $d \geqq \max _{p \in S} d_{p}$. On the other hand, for any $q \in \mathbb{R}^{n}$ there is a closest point $p \in S$ for which $d(q)=d_{p}(q)$, so we get in fact $d=\max _{p \in S} d_{p}$. Consequently, $\bar{B}=\bigcap_{p \in S} \bar{B}_{p}$.

More generally, a connected open subset B of \mathbb{R}^{n} (with smooth boundary or not) will be called ε-convex for some $\varepsilon \geqq 0$ if for any $p \in \partial B$ there is a neighborhood U of p and a ball B_{p} of radius $R=1 / \varepsilon$ with $p \in \partial B_{p}$ (support ball or support half space) such that $B \cap U \subset B_{p}$. Applying the same arguments as above to the signed distance function d of ∂B which is negative on B and positive outside, we see again the convexity of B, more precisely: $B=\bigcap_{p \in \partial B} B_{p}$ as above.
6.4. Lemma. Let $\varepsilon=1 / R>0$ and B a connected, ε-convex open domain containing a line segment of length a. Then B contains a ball of radius $a^{2} / 8 R$.

Proof. If B is a ball of radius R containing a line segment of length a with center q, then B contains the ball $B_{r}(q)$ with $r=R-\left(R^{2}-a^{2} / 4\right)^{1 / 2} \geqq a^{2} / 8 R$. Hence for an arbitrary ε-convex open set B we have $B_{r}(q) \subset B_{p}$ for any $p \in \partial B$ and so $B_{r}(q)$ $\subset \bigcap_{p \in \partial B} B_{p}=B$ (see 6.3).
6.5. Let $\mathbb{R}_{+}^{n}:=\left\{x \in \mathbb{R}^{n} ; x_{n}>0\right\}$ and $\overline{\mathbb{R}}_{+}^{n}$ its closure. Let $S \subset \mathbb{R}^{n}$ be an ε-convex hypersurface such that $S \cap \mathbb{R}_{+}^{n}$ is connected and $S \cap \overline{\mathbb{R}}_{+}^{n}$ compact. Thus $S \cap \mathbb{R}_{+}^{n}$ is closed in \mathbb{R}_{+}^{n}, and hence it bounds an open set B in \mathbb{R}_{+}^{n} which lies on the side of the normal field $-N$ (see 3.2). So the full boundary of B in \mathbb{R}^{n} is contained in $S \cup \mathbb{R}^{n-1}$ and therefore, B is 0 -convex and hence convex (6.3). However, in general B is no more contained in its support ball B_{p} for arbitrary $p \in S \cap \mathbb{R}_{+}^{n}$. Nevertheless, there is one point p for which $B \subset B_{p}$ remains true:

Lemma 6.5. Let $p \in S$ be the point where the coordinate x_{n} attains its maximum on S. Then $B \subset B_{p}$.

Proof. Let d, d_{p}, f, f_{p} be the functions defined in 6.1. Then $g:=f-f_{p}$ is convex on $M^{\prime} \cup M_{-}^{\prime \prime}$. Since B is convex, every point of $\mathbb{R}^{n} \backslash B$ has a unique projection onto ∂B from which we conclude $M_{+}^{\prime \prime}=M_{+}^{\prime}$. So g is convex on $M^{\prime \prime}$ with local minimum 0 on the line $L_{p}^{\prime \prime}:=\left(p+\mathbb{R} e_{n}\right) \cap M^{\prime \prime}$. All we have to show is that every point of $S_{+}:=S$ $\cap \mathbb{R}_{+}^{n}$ can be connected to some point of $L_{p}^{\prime \prime}$ by a straight line segment in $M^{\prime \prime}$. Then by convexity we have $g \geqq 0$ on S_{+}and hence $S_{+} \subset\left\{d_{p} \leqq 0\right\}=\bar{B}_{p}$ which implies B C B_{p}.

Let $T=\bar{B} \cap \mathbb{R}^{n-1}$. Then $\partial B=S_{+} \cup T$. To examine the size of $M^{\prime \prime}$, let \bar{d} be the signed distance function of ∂B which is defined on all of \mathbb{R}^{n}. Put

$$
A:=\left\{\bar{d}-x_{n}<0\right\} \cap \mathbb{R}_{+}^{n}, \quad C:=\left\{\bar{d}+x_{n}<0\right\} \cap \mathbb{R}_{+}^{n} .
$$

These sets are convex since \bar{d} is a convex function. We have $S \subset A \backslash \bar{C}$. Moreover, on $A \backslash \bar{C}$ we have $|\bar{d}|<x_{n}$. So the points of this set project on S_{+}and therefore $A \backslash \bar{C} \subset M^{\prime \prime}$ with $d=\bar{d}$ on $A \backslash \bar{C}$.

Let $Z=T+\overline{\mathbb{R}}_{+} e_{n} \subset \overline{\mathbb{R}}_{+}^{n}$ be the cylinder over T; this is a closed convex set. We claim that $C \subset Z \cap B$. In fact, $C \subset B$ since $\bar{d}, x_{n} \geqq 0$ on $\overline{\mathbb{R}}_{+}^{n} \backslash B$. Moreover, for any $q \in B \backslash Z$, the vertical ray $L_{q}^{-}=q-\mathbb{R}_{+} e_{n}$ starting at q intersects ∂B at some point $q^{\prime} \in \partial B \backslash T=S_{+}$, so $x_{n}\left(q^{\prime}\right)>0$. Therefore, $-\bar{d}(q) \leqq d\left(q, q^{\prime}\right)=x_{n}(q)-x_{n}\left(q^{\prime}\right)<x_{n}(q)$ and hence $q \notin C$ which proves the claim.

Now for $q \in S_{+}$the vertical rays $L_{q}^{+}=q+\mathbb{R}_{+} e_{n}$ do not meet the set $Z \cap B$ since either $q \notin Z$ or the line $L_{q}=q+\mathbb{R} e_{n}$ leaves B at q. In both cases there is an open cone C_{q} with vertex q around L_{q}^{+}which does not meet $Z \cap B$; in the first case this is because $Z \cap B$ is contained in the truncated cylinder of hight $x_{n}(p)$ over T. So there is a line segment L from q to some point of L_{p}^{+}within C_{q}. On the other hand, L_{p}^{+} $\subset A$, so $L \subset A \cap C_{q} \subset A \backslash \bar{C} \subset M^{\prime \prime}$ which finishes the proof.
6.6. Lemma. $[14,15]$: Let S be a compact connected manifold of dimension $n-1$ and $x: S \rightarrow \mathbb{R}^{n}$ an ε-convex immersion. If $n=2$, assume further that the closed plane curve x has winding number ± 1. Then S is diffeomorphic to the $(n-1)$-sphere and x is an embedding.

Proof. Let $v: S \rightarrow S_{1}^{n-1}$ be the Gauss mapping of the immersion x. Due to the ε-convexity, this is a local diffeomorphism and in particular a covering map. So it must be a global diffeomorphism since S_{1}^{n-1} is simply connected for $n \geqq 3$ and the degree of v is ± 1 for $n=2$. Consequently, for every $v \in S_{1}^{n-1} \subset \mathbb{R}^{n}$ the hight function $h_{v}(s)=\langle v, x(s)\rangle, s \in S$, has exactly two critical points: one maximum and one minimum. Therefore, x is an embedding: If $s \in S$ and $v=v(s)$ its outer normal vector, then h_{v} attains its maximum only at s and so we have $x\left(s^{\prime}\right) \neq x(s)$ for every s^{\prime} $\neq s$ in S.
6.7. We now can prove the main result of this section. For any immersion $x: S$ $\rightarrow \mathbb{R}^{n}$ and any $s \in S, r>0$ let $U_{r}(s)$ be the connected component of $x^{-1}\left(B_{r}(x(s))\right)$ containing s.

Lemma 6.7. Let $x: S \rightarrow \mathbb{R}^{n}$ be an ε-convex hypersurface immersion, for $n \geqq 3$. Let $s_{0} \in S$ and assume that $S^{\prime}:=U_{e}\left(s_{0}\right)$ is relatively compact in S, for some $\varrho>0$. Let $\delta=\frac{1}{2} \varepsilon \varrho^{2}$ and $S^{\prime \prime}:=U_{\delta}\left(s_{0}\right)$. Then $\left.x\right|_{S^{\prime \prime}}$ is an embedding.
Proof. Let $p:=x\left(s_{0}\right)$. We may assume that the $n^{\text {th }}$ basis vector e_{n} of \mathbb{R}^{n} is the outer normal vector of x at s_{0} so that the hight function $x_{n}=\left\langle x, e_{n}\right\rangle$ on S has a local maximum $h:=x_{n}\left(s_{0}\right)=p_{n}$ at s_{0}. Since $x(S)$ lies locally on one side of each of its tangent hyperplanes, every critical point of x_{n} is either a maximum or a minimum, so the set C of critical points is isolated.

Let U be a neighborhood of s_{0} in S such that $\left.x\right|_{U}$ is an embedding with $x(U)$ $\subset B_{\varrho}(p)$. For every $t<h$ let S_{t} denote the connected component of $\left\{s \in S ; x_{n}(s) \geqq t\right\}$ through s_{0}. For t sufficiently close to h we have $S_{t} \subset U \subset S^{\prime}$. Let $u: \neq \inf \left\{t<h ; S_{t}\right.$ $\left.\subset S^{\prime}\right\}$. The set S_{u} is a closed subset of $\overline{S^{\prime}}$ and therefore compact, and S_{u} is invariant under the flow $\phi_{t}, t \geqq 0$, of the vector field ∇x_{n}. Every flow line ends at a maximum, so every point in $S_{u} \backslash C$ lies in the domain of attraction of some maximum. Since these domains are open and $S_{u} \backslash C$ is connected (here we need $\operatorname{dim} S \geqq 2$), there is no other local maximum then s_{0} on S_{u}. Likewise, there is at most one local minimum on S_{u}, and if there exists such a minimum, its domain of attraction under the flow of $-\nabla x_{n}$ is $S_{u} \backslash\left\{s_{0}\right\}$. In this case we have $S^{\prime}=S_{u}$, so S^{\prime} is compact and connected and therefore embedded by 6.6. So we may assume that the interval [u, h) contains no critical values for x_{n}. In particular, $u<-\infty$, and by choice of coordinates we may assume $u=0$, so $S_{u}=S_{0}$.

For $0 \leqq t<h$ let $S^{t}:=\left\{s \in S_{0} ; x_{n}(s)=t\right\}$. This is a compact regular hypersurface of S and the map $x^{t}: S^{t} \rightarrow \mathbb{R}^{n-1}, x^{t}(s)=x(s)-t e_{n}$ is an ε-convex immersion, by Meusnier's theorem. So for $n \geqq 4$, the immersions x^{t} are embeddings (6.6), and so the same is true for $\left.x\right|_{s_{0}}$. For $n=3$, note that the flow ψ_{t} of the vector field $\nabla x_{n} /\left\|\nabla x_{n}\right\|^{2}$ provides a diffeomorphism of S^{0} onto S^{t}, so we have a smooth family of closed plane curves $x^{t} \circ \psi_{t}: S^{0} \rightarrow \mathbb{R}^{2}$. For t sufficiently close to h, this is an embedding and so the winding number is 1 . Since the winding number is constant for all $t \in[0, h)$, we get the same conclusion as in the case of higher dimension, by 6.6.

Now by 6.5 , the hypersurface $x\left(S_{0}\right) \subset \overline{\mathbb{R}}_{+}^{n}$ is contained in the closure of the support ball $B_{p}:=B_{R}\left(p-R e_{n}\right)$ of radius $R=\frac{1}{\varepsilon}$, and $B_{p} \cap \mathbb{R}_{+}^{n} \subset B_{r}(p)$ with $r=(2 R h)^{1 / 2}$. Since $0=\inf \left\{t<h ; x\left(S_{t}\right) \subset B_{Q}(p)\right\}$, we have $r \geqq \varrho$ and therefore $h \geqq \frac{1}{2} \varrho^{2} \varepsilon=\delta$. So $S^{\prime \prime} \subset U_{h}\left(s_{0}\right) \subset S_{0}$ is embedded and the proof is finished.

7. Proof of Theorem A

Throughout this chapter, let M be a complete Riemannian manifold of dimension $n \geqq 3$ with nonnegative sectional curvature and $y: S \rightarrow M$ a compact, connected, ε-convex hypersurface immersion, for $\varepsilon=\frac{1}{R}>0$. Let $M_{0}:=\{q \in M$; $d(q, y(S))<10 R\}$. The contraction of S which we want to construct will take place within this set M_{0}. Since we also want to consider parallel hypersurfaces, let us assume more generally for the following sections $7.2-7.5$ that M_{0} is an arbitrary relatively compact open subset of M with $y(S) \subset M_{1}:=\left\{q \in M ; B_{R}(q) \subset M_{0}\right\}$. Let $\varrho \in(0, R)$ be a radius for good coordinates around any point of M_{0} (see 5.2).
7.2. Lemma. For every $s \in S$, there is an open, connected neighborhood $S^{\prime \prime}$ of $\sin S$ such that $\left.y\right|_{s^{\prime \prime}}$ is an embedding and $y\left(S^{\prime \prime}\right) \cap \bar{B}_{\delta}(y(s))$ is compact for $\delta:=2^{-8} \varepsilon \varrho^{2}$.

Proof. Put $p=y(s)$. Let $\phi: B_{\ell}(p) \rightarrow \mathbb{R}^{n}$ be the good coordinate system around p. Let S^{\prime} be the connected component of $y^{-1}\left(B_{e}(p)\right)$ through s. Then $x=\left.\phi \circ y\right|_{s^{\prime}}$ is an $\frac{\varepsilon}{16}$-convex immersion (5.1). Since $\bar{B}_{\varrho / 2}^{0}(p) \subset B_{\varrho}(p)$, where the suffix ${ }^{0}$ refers to the euclidean metric induced by ϕ, the set $x^{-1}\left(\bar{B}_{\varrho / 2}(\phi(p))\right)$ is compact. So we may apply 6.7 for $\varepsilon / 16$ and $\varrho / 2$ instead of ε and ϱ, and so the s-component $S^{\prime \prime}$ of $x^{-1}\left(B_{2 \delta}(\phi(p))\right)$ for $\delta=2^{-8} \varepsilon \varrho^{2}$ is embedded. Moreover, $y\left(S^{\prime \prime}\right) \cap \bar{B}_{\delta}(p)$ is compact since $\bar{B}_{\delta}(p)$ $\subset B_{2 \delta}^{0}(p)$.
7.3. As before let $M^{\prime \prime}$ be the subset of M where the signed distance function d of the hypersurface $y\left(S^{\prime \prime}\right)$ is defined. By Lemma 3.3 we have $B_{\delta / 2}(p) \subset M^{\prime \prime}$ for $p=y(s)$.

Lemma 7.3. If $y(S)$ is not entirely contained in $B_{\delta / 2}(p)$, then there is a point $q \in B_{\delta / 2}(p)$ with $d(q) \leqq-\alpha$ for $\alpha=2^{-12} \delta^{2} \varepsilon$.

Proof. We have $\bar{B}_{\delta / 4}^{0}(p) \subset B_{\delta / 2}(p)$, and $B^{0}:=B_{\delta / 4}^{0}(p) \cap M_{-}^{\prime \prime}$ is an $\frac{\varepsilon}{16}$-convex domain with respect to the euclidean metric induced by ϕ since $\partial B^{0} \subset y\left(S^{\prime \prime}\right) \cup \partial B_{\delta / 4}^{0}(p)$ (see 6.3). Moreover, $\partial B^{0} \cap \partial B_{\delta / 4}^{0}(p) \neq \emptyset$, hence B^{0} containes a euclidean straight line of length $\delta / 4$ and by 6.4 a cuclidean ball of radius $r=\frac{1}{8} \frac{\delta^{2}}{16} \frac{\varepsilon}{16}=2 \alpha$. Thus the center of this ball is a point $q \in B_{\delta / 2}(p) \cap M^{\prime \prime}$, with Riemannian distance $d(q, y(S))>r / 2$ and therefore $d(q)<-\alpha$.
7.4. For $s \in S$ let $U(s)$ and $V(s)$ be the connected components through s of the sets $y^{-1}\left(B_{\delta}(y(s))\right)$ and $y^{-1}\left(B_{\delta / 8}(y(s))\right)$. We saw that $U(s)$ is relatively compact and $\left.y\right|_{U(s)}$ is an embedding. Let us assume that $U(s) \neq S$ for every $s \in S$, that means that $y(S)$ is contained in no ball of radius δ. Put $\lambda=\frac{1}{16} \alpha=2^{-16} \delta^{2}$. Since $\delta<R$, we have $\lambda<2^{-16} \delta$.

Lemma 7.4. For every $s \in S$ there is a smooth function $g=g_{s}$ defined on a neighborhood M_{s} of $y(V(s))$ with the following properties:
(i) $y(V(s)) \subset g^{-1}(0) \subset y(U(s))$,
(ii) $\|\nabla g\| \leqq 2, D^{2} g \geqq \varepsilon / 2$,
(iii) $[-\lambda, 0]$ is a regular interval for g, and $g^{-1}(-\lambda)$ is an ε_{1}-convex hypersurface with $\varepsilon_{1}:=1 /(R-\lambda / 4)<\varepsilon$.
(iv) Let ψ_{t} denote the flow of the vector field $X=-\nabla g /\|\nabla g\|^{2}$. Then $\psi_{t}(x) \in M_{s}$ for every $x \in y(V(s)), t \in[0, \lambda]$.

Moreover, if $V(s) \cap V\left(s^{\prime}\right) \neq \emptyset$ for $s, s^{\prime} \in S$, then $g_{s}=g_{s^{\prime}}$ on $M_{s^{\prime}} \cap M_{s^{\prime}}$.
Proof. Let d be the signed distance function of $y(U(s))$ defined on $B_{\delta / 2}(p)$ for $p=y(s)$, and let $f=\chi_{\epsilon} \circ d$. The function f is ε-convex with $d \leqq f \leqq \frac{1}{2} d$ on $\{d \leqq 0\}$. Moreover, f is smooth on $\left\{|d| \leqq r_{1}\right\}$ where r_{1} is the focal distance of the immersed hypersurface $y(S)$, and we have $\|\nabla f\|=1+\varepsilon d$. Therefore, if $\lambda<r_{1} / 2$, we may choose $g=f$ and $M_{s} \subset B_{\delta / 3}(p)$ an open set containing $\{0 \geqq d \geqq-2 \lambda\} \cap B_{\delta / 3}(p)$. If s^{\prime} is another point in S with $V(s) \cap V\left(s^{\prime}\right) \neq \emptyset$, then $d\left(p, p^{\prime}\right)<\delta / 8$ for $p^{\prime}=y\left(s^{\prime}\right)$. So the signed distance functions of $y(U(s))$ and $y\left(U\left(s^{\prime}\right)\right)$ agree on $B_{\delta / 3}(p) \cap B_{\delta / 3}\left(p^{\prime}\right)$ since the endpoint of a shortest geodesic from $q \in B_{\delta / 3}(p)$ to $y(U(s))$ lies in $B_{2 \delta / \beta}(p)$ $\cap y(U(s)) \subset B_{\delta}\left(p^{\prime}\right) \cap y(U(s)) \subset y\left(U\left(s^{\prime}\right)\right)$ and vice versa. Therefore, g_{s} agrees to $g_{s^{\prime}}$ on $M_{s} \cap M_{s^{\prime}}$.

Now assume $\lambda \geqq r_{1} / 2$. Put $r_{0}=r_{1} / 6$. For $r<r_{0} \leqq \lambda / 3$, we consider the smoothing f_{r} of $f\left(\right.$ see 4.3) on $B:=B_{\delta / 4}(y(s))$. Since the Lipschitz constant of f is $L_{t}=1+\varepsilon t$ on $\{d \leqq t\}$ and in particular $L_{0}=1$ on $\{d \leqq 0\}$, we have $\left|f-f_{r}\right| \leqq r$ and $\left\|\nabla f_{r}\right\| \leqq 1$ on B $\cap\{d \leqq-r\}$ (see 4.3). Moreover, the support functions $f_{q, \eta}$ of f satisfy $\left\|\nabla f_{q, \eta}(q)\right\| \leqq 1$ for all $q \in\{d \leqq 0\}$ and $\eta<\varepsilon$. Applying Lemma 4.4 we get a function $\eta(r)$ independent of $s \in S$ with $\eta(r) \uparrow \varepsilon$ as $r \downarrow 0$, such that f_{r} is $\eta(r)$-convex.

Let $q \in B_{\delta / 4}(p)$ with $f_{r}(q)=-\lambda$. Then $d(q) \leqq f(q) \leqq-\lambda+r \leqq-\frac{2}{3} \lambda$ and hence $\left\|\nabla f_{r}(q)\right\| \leqq 1+\varepsilon(d(q)+r)<1-\frac{1}{3} \varepsilon \lambda=\varepsilon(R-\lambda / 3)$. Now we choose r so small that

$$
\eta(r) \geqq \frac{R-\lambda / 3}{R-\lambda / 4} \varepsilon .
$$

Then $f_{r}^{-1}(-\lambda)$ is an ε_{1}-convex hypersurface provided that $-\lambda$ is a regular value (4.2).

To satisfy (i), we have to connect f and f_{r}. Let $\phi: \mathbb{R} \rightarrow[0,1]$ be a smooth function with $\phi(t)=1$ for $t \leqq-2 r_{0}$ and $\phi(t)=0$ for $t \geqq-r_{0}$. Put $g=f$ on $\left\{|d| \leqq r_{0}\right\}$ and

$$
g=f+\phi(d)\left(f_{r}-f\right)
$$

on $\left\{d \leqq-r_{0}\right\}$. Since $\left|f-f_{r}\right|<r$ and $\left|D^{2} d\right|$ is bounded from above on $\left\{|d| \leqq 2 r_{0}\right\}$ independently of $s \in S$, we may assume $\|\nabla g\| \leqq 2, D^{2} g \geqq \varepsilon / 2$ on $\left\{-r_{0} \geqq d \geqq-2 r_{0}\right\}$ by choosing r still smaller if necessary. Since f is ε-convex with $\|\nabla f\| \leqq 1$ on $\left\{0 \geqq d \geqq-r_{0}\right\}$ and f_{r} is $\eta(r)$-convex with $\eta(r)>\frac{2}{3} \varepsilon$ and $\left\|\nabla f_{r}\right\| \leqq 1$ on $\left\{d \leqq-2 r_{0}\right\}$, the function g satisfies (ii) on an open set $M_{s} \subset B_{\delta / 4}(p)$ containing $\{d \leqq 0\} \cap B_{\delta / 4}(p)$. If $q \in g^{-1}(-\lambda)$, then $d(q) \leqq f(q) \leqq-\frac{2}{3} \lambda \leqq-2 r_{0}$. So $g^{-1}(-\lambda)=f_{r}^{-1}(-\lambda)$.

By 7.3 there is a point $q \in B_{\delta / 4}(p)$ with $d(q) \leqq-\alpha, \alpha=16 \lambda$. Thus $f(q) \leqq-\frac{\alpha}{2}=-8 \lambda$ and $g(q) \leqq f(q)+r \leqq-7 \lambda$. So for all $x \in B_{\delta / 4}(p) \cap\{g \geqq-\lambda\}$ we have $g(x)-g(q) \geqq 6 \lambda$ and $d(x, q) \leqq \delta / 2$. Using the convexity of g along the geodesic between x and q in $B_{\delta / 4}(p)$, we get $\|\nabla g(x)\| \geqq \frac{6 \lambda}{\delta / 2}>8 \lambda / \delta$. In particular, the interval $[-\lambda, 0]$ contains no critical values for g which finishes the proof of (iii).

If c is an integral curve of the vector field $X=-\nabla g /\|\nabla g\|^{2}$ with $c(0) \in y(V(s))$ $\subset B_{\delta / 8}(p) \cap\{g=0\}$, then $g(c(t))=-t$ and $\left\|c^{\prime}(t)\right\|=\| \nabla g\left(c(t) \|^{-1}<\delta / 8 \lambda\right.$, for $t \leqq \lambda$. So the curve $c(t)$ stays within $B_{\delta / 4}(p)$ for $0 \leqq t \leqq \lambda$. In particular, c is defined on [0, $\left.\lambda\right]$ with $c([0, \lambda]) \subset M_{s}$. This proves (iv).

Note that the choice of r was uniform for all $s \in S$. If $V(s) \cap V\left(s^{\prime}\right) \neq \emptyset$, then as above the signed distance functions of $y(U(s))$ and $y\left(U\left(s^{\prime}\right)\right)$ agree on $B_{\delta / 3}(p)$ $\cap B_{\delta / 3}\left(p^{\prime}\right)$ for $p^{\prime}=y\left(s^{\prime}\right)$. Since $r<\delta / 12$, the smoothed functions f_{r} agree on $B_{\delta / 4}(p)$ $\cap B_{\delta / 4}\left(p^{\prime}\right)$, hence $g_{s}=g_{s^{\prime}}$ on $M_{s} \cap M_{s^{\prime}}$.
7.5. Now we define an immersion $y^{1}: S \times[0, \lambda] \rightarrow M$ as follows: For $s \in V\left(s_{0}\right)$ let $y^{1}(s, t)=\psi_{t}(y(s))$ where ψ_{t} denotes the flow of the vector field $X=-\nabla g /\|\nabla g\|^{2}$ for $g=g_{s_{0}}$. In 7.4 we have shown that this is well defined. Let $d s_{t}^{2}$ be the metric on S induced by the immersion $y_{t}^{1}:=\left.y^{1}\right|_{S \times\{t}$. Put $\kappa:=e^{-\varepsilon \lambda / 4}$.

Lemma 7.5. $d s_{\lambda}^{2} \leqq \kappa^{2} d s_{0}^{2}$.
Proof. Let $s \in V\left(s_{0}\right), s_{0} \in S$. For $a \in T_{s} S$ put $A(t)=D y_{t}^{1}(a)$; this is a vector field along the curve $c(t)=\psi_{t}(y(s))$ with derivative $A^{\prime}(t)=D_{A(t)} X$. So

$$
\|A\|^{\prime}=\left\langle D_{A} X, A\right\rangle /\|A\|=-\left\langle D_{A} \nabla g, A\right\rangle /\left(\|\nabla g\|^{2}\|A\|\right) \leqq-\frac{\varepsilon}{4}\|A\|
$$

by 7.4 (ii). Integrating, we get $\|A(\lambda)\| \leqq \kappa\|A(0)\|$ which proves the lemma.
7.6. We now may replace the given immersion y with y_{λ}^{1}. By Lemma 7.4 (iii) this is an ε_{1}-convex immersion of S. Since $\varepsilon_{1}>\varepsilon$ and $y_{\lambda}^{1}(S) \subset M_{0}$ (see 7.1), we may repeat the argument getting an immersion $y^{2}: S \times[\lambda, 2 \lambda] \rightarrow M$ such that the immersion $y_{2 \lambda}^{2}=\left.y^{2}\right|_{S \times\{2 \lambda\}}$ of S is ε_{2}-convex for $\varepsilon_{2}=(R-2 \lambda / 4)^{-1}$ and the induced metric $d s_{2 \lambda}^{2}$ satisfies $d s_{2 \lambda}^{2} \leqq \kappa_{1}^{2} d s_{\lambda}^{2}$ for $\kappa_{1}=e^{-\varepsilon_{1} \lambda / 4}$ and so on. Since we proved $\|\nabla g\| \leqq 2$, any point of $y_{k \lambda}^{k}(S)$ has distance $\leqq 2 \lambda$ from $y_{(k-1) \lambda}^{k-1}(S)$, so we do not leave M_{0} before k exceeds $5 R / \lambda$. On the other hand, $\varepsilon_{k}=(R-k \lambda / 4)^{-1}$ is finite only for $k<4 R / \lambda$. So after, say, m steps with $m<4 R / \lambda$, the set $y_{m \lambda}^{m}(S)$ is contained in a ball of radius $\delta<\varrho$ in M_{0} and in particular in the domain of a good coordinate system ϕ. Therefore, $x=\phi \circ y_{m \lambda}^{m}$ is an $\frac{\varepsilon}{16}$-convex immersion of S into euclidean n-space. By Lemma 6.6, this is an embedding and $x(S)$ bounds a convex disk (6.3). So $y_{m \lambda}^{m}(S)$ bounds a closed embedded disk B_{m+1} in M. Providing $B_{k}:=S \times[(k-1) \lambda, k \lambda]$ with the metric induced by y^{k} and gluing together B_{k} and B_{k+1} at their common boundary, for $0 \leqq k \leqq m$, we get a compact Riemannian manifold D with boundary $\left(S, d s_{0}^{2}\right)$, and an isometric immersion $\hat{y}: D \rightarrow M$ with $\left.\hat{y}\right|_{S}=y$. In particular, we have nonnegative curvature on D and the boundary S is an ε-convex hypersurface.
7.7. It remains to construct a diffeomorphism of D onto the standard n-disk. Consider the ε-convex function $f=\chi_{\varepsilon} \circ d$ where d is the negative distance to S on D (see 4.6). Let f_{r} be the smoothing of f for small enough r and put $g=f$ on $\left\{|d| \leqq r_{0}\right\}$ and $g=f+\phi(d)\left(f_{r}-f\right)$ on $\left\{|d| \geqq r_{0}\right\}$ as in 7.4, but this time, g is defined globally on D. Thus $g \leqq 0$ with $S=g^{-1}(0)$, and g is $\frac{\varepsilon}{2}$-convex if r is small enough. By strong convexity, the set of critical points, C, contains only minima, and the domain of
attraction of each minimum is a connected component of $D \backslash C$; so there is exactly one minimum $q \in \operatorname{Int}(D)$. By the Morse lemma (see [19]), for small $\gamma>0$, the set $D_{\gamma}=\{x \in D ; g(x)-g(q) \leqq \gamma\}$ is diffeomorphic to the standard disk. Using the flow of $X=-\nabla g /\|\nabla g\|^{-2}$, we get a diffeomorphism of D onto D_{γ}. This finishes the proof of Theorem A.

Acknowledgements. An outline of the proofs for these theorems was given by M. Gromov at the DMVSeminar on differential geometry 1982 at Düsseldorf. The present paper is essentially an elaboration of these ideas. It is a pleasure for me to thank Professor Gromov for his lectures and for several useful discussions later which helped to make clear the ideas to me. For hints and discussion I have to thank also H. Karcher, E. Heintze, and M. Strake.

References

1. Bangert, V.: Über die Approximation von lokal konvexen Mengen. Manuscr. Math. 25, 397-420 (1978)
2. Berger, M.: Les variétés riemanniennes (1/4)-pincées. Ann. Sc. Norm. Super. Pisa, III. 14, 161-170 (1960)
3. Cheeger, J., Ebin, D.G.: Comparison theorems in Riemannian geometry. Amsterdam: North Holland 1975
4. Cheeger, J., Gromoll, D.: On the structure of complete manifolds of nonnegative curvature. Ann. Math. 96, 413-443 (1972)
5. Eschenburg, J.H., O’Sullivan, J.J.: Jacobi tensors and Ricci curvature. Math. Ann. 252, 1-26 (1980)
6. Eschenburg, J.H., Heintze, E.: An elementary proof of the Cheeger-Gromoll Splitting Theorem. Ann. Glob. Analysis and Geometry 2, 141-151 (1984)
7. Green, L.W.: A theorem of E. Hopf. Mich. Math. J. 5, 31-34 (1958)
8. Greene, R.E., Wu, H.: On the subharmonicity and plurisubharmonicity of geodesically convex functions. Indiana Univ. Math. J. 22, 641-653 (1973)
9. Greene, R.E., $\mathrm{Wu}, \mathrm{H} .: C^{\infty}$ convex functions and manifolds of positive curvature. Acta Math. 137, 209-245 (1976)
10. Gromoll, D., Klingenberg, W., Meyer, W.: Riemannsche Geometrie im Großen. Lect. Notes Math. 55 (1968)
11. Gromoll, D., Meyer, W.: On complete open manifolds of positive curvature. Ann. Math. 90, 75-90 (1969)
12. Grove, K., Shiohama, K.: A generalized sphere theorem. Ann. Math. 106, 201-211 (1977)
13. Guilleman, V., Pollack, A.: Differential Topology. Englewood Cliffs: Prentice Hall 1974
14. Hadamard, J.: Sur certaines propriétés des trajectories en dynamique. J. Math. Pures Appl. (5) 3, 331-387 (1897)
15. Hopf, H.: Differential Geometry in the Large, Ch. IV: Hadamard's characterization of the ovaloids. Stanford Lectures 1956. Lect. Notes Math. 1000, 1983
16. Jost, J., Karcher, H.: Geometrische Methoden zur Gewinnung von a-priori-Schranken für harmonische Abbildungen. Manuscr. Math. 40, 27-77 (1982)
17. Klingenberg, W.: Über Riemannsche Mannigfaltigkeiten mit positiver Krümmung. Commun. Math. Helv. 35, 47-54 (1961)
18. Kobayashi, S., Wu, H.: Complex differential geometry. DMV-Seminar Bd. 3. Basel: Birkhäuser 1983
19. Milnor, J.: Morse theory. Ann. Math. Stud. 51, Princeton, N.J. 1963
20. Wu, H.: An elementary method in the study of nonnegative curvature. Acta Math. 142, 57-78 (1979)
