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1. Introduction

An immersed hypersurface S in a riemannian manifold M will be called e-convex
for some ¢ >0 if all principal curvatures have the same sign and absolute value at
least &. Can one characterize all compact g-convex immersed hypersurfaces of a
complete manifold M? If M is euclidean n-space, n= 3, this problem is solved by a
theorem of Hadamard [ 14] generalized by Hopf [15]: S is embedded and bounds a
convex n-disk (see 6.6, 6.3). If M is a flat space form, S is no longer necessarily
embedded, but it still bounds an (immersed) convex n-disk. The aim of this paper is
to show the same fact for a manifold M of curvature K =0:

Theorem A. Let M be a complete riemannian manifold with nonnegative sectional
curvature and dimension n=3. Let S be a compact connected C®-manifold of
dimensionn—1 and y : S— M an g-convex immersion, for some ¢>0. Then there is an
immersion j:D—M where D is the standard n-disk, and a diffeomorphism
¢:8" " '=0D—S such that y|,p=yo¢ and the mean curvature vector of y(S) is
pointing towards y(D).

Theorem A is not true for negative curvature; e.g. S could be the boundary of a
tubular neighborhood around a closed geodesic. It is also false for n=2: Any
locally strongly convex closed plane curve of winding number 2 or more provides a
counterexample. The idea of the proofiis to contract the hypersurface by pushing it
along the gradient lines of a smoothed modification of its local distance function.
The distance function is essentially strictly convex, due to K =0 ((Chap. 3), and the
smoothing does not disturb the convexity (Chap. 4), and therefore, this motion is
distance-decreasing with respect to the inner metric of S. In the case of the
2-dimensional counterexample mentioned above, S would eventually develop a
cusp and the motion would stop there. A main step of the proof is to show that this
cannot happen in higher dimension. Since this is a local question, it can be treated
in euclidean space (Chap. 6), by means of suitable coordinates (Chap. 5). So the
contraction ends with a point and the hypersurface bounds an immersed disk
(Chap. 7).
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Convexity methods have been used extensively in the geometry of nonnegative
curvature (see [11, 4, 9]). The main difference is that we have to work with
functions which are defined only locally.

A useful application of this theorem is a very short and direct proof of the
sphere theorem of Berger and Klingenberg [2, 17, 10]:

Theorem B. Let M be a complete connected riemannian manifold with bounded
positive curvature 0< K, K <K, . and K, /K .. <4. Then M is diffeomorphi-
cally covered by a twisted sphere.

As usual, by a twisted sphere we mean the union of two discs D, and D _,
pasted together by a diffeomorphism between ¢D . and 6D _ (see [3]). The proof of
Theorem B uses neither Toponogov’s theorem nor Klingenberg’s estimate of the
injectivity radius. In fact, this latter theorem is a consequence of the proof:

Theorem C. Let M be complete, simply connected with 0<K_;, S K=<K,,, and

K nax/Kmin <4. Then for any point p in M, the injectivity radius at p equals precisely
the conjugate radius at p which is not less then n/]/ K s,

2. Proof of the Theorems B and C

Let M be as in the assumption of Theorem B. Multiplying the metric of M by a
suitable factor, we may assume 4 < K < 1. Choose an arbitrary point pe M. Due to
K <1, the conjugate distance r,, of p is strictly larger than = (see remark in 3.4). So
foranyre(n,r,), the exponential map e : =exp, has highest rank on the closed ball
B,(0) in T,M. Let S: =3B,(0) and y: =el|s: S—M; this is an immersion. Let N: §
—TM be the unit normal vector field along y which points towards the interior,
e(B,(0)). Then due to K =%, there is an ¢ >0 such that (DyN, X) 2 ¢ X|? for any
tangent vector X of S. (Just apply Lemma 3.4(b) to the manifold B, (0) with metric
induced by exp, and to the hypersurface S=0B,(0).) Thus the immersed
hypersurface S in M is e-convex with mean curvature vector pointing towards the
exterior. By Theorem A, there is a difftomorphism ¢:8""!'=0D-S and an
immersion y:D—M with j|,p=yo¢ such that the normal field N along y is
pointing outside (D). Let D, = B,(0) and D _ =D and consider the twisted sphere

Se=D,\D_.Theny=e {J gisalocal diffeomorphism of S, onto M and hence a
s

)
covering map which proves Theorem B. If M is simply connected, v is even a
global diffeomorphism and in particular, e =exp,, is injective on B,(0) for all r <r,,.
This proves Theorem C.

3. Hypersurfaces and distance function

3.1. Let M be a Riemannian manifold and S and § hypersurfaces in M which
touch each other at some point p e M. Let N and N be unit normal fields on S and S
whith N,=N,. Let t, and t, be the focal distances of S and §'in the direction of N,

Lemma 3.1. If (DxN,X)»<{(DxN,X) for every 0 X € T,S, then t,<t,.
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Proof. Let ¢ be the geodesic with ¢(0)=p, ¢'(0)=N,. For any parameter ¢, we
identify the subspace ¢'(t)* of T,,)M with T,,S =¢’(0)* via parallel transport along c.
For any x € T,S let J (t) be the Jacobifield along ¢ with J (0)=x and J (0)=D,N
and similar J(t) with J(0)=D_.N. Thus we defined two families of linear
mappings J(t), J(t) on T,S by setting J(¢)x =J (t), J(t)x = J (), and these satisfy
the Jacobi equation J”+RJ=0 where R(¢) is the symmetric linear map
R(H)x=R(x,c(1))c'(). By symmetry of R and DN, we get that J'J* is also
symmetric. It follows that for 0<i<r, we have J()=J()X()C with
C=DN-DN and

t
X@O=C '+ [(J*)) Yr)dz.
0
Note that C is negative definite on TS, in particular invertible, and that J and
hence J*J is invertible on [0, ,). For t =0, all eigenvalues of X (f) are negative. If t
t
comes close to t,, then | (J*J) (t)dt gets a very large eigenvalue: Since ||J(£)x|)?
0
<k(t—1tg)?||x||? for some x+0 and some k>0, we get

T T x, X
Ix, Ix>

trace(J*J) " () =trace(J '*J ()= (1)

gk—l(ﬁ[’._t—o)72 s

and so the trace of the integral goes to oo as t—t,. Thus for ¢, close enough to 1,
X (t,) has a positive eigenvalue. So there is some ¢, € (0, t,) where X (¢,) and hence
J(t,) is not invertible. Since ¢, is the first parameter value where this happens, we
have t,<t, <t,.

Remark. The ideas of this proof go back to Green ([7], see also [5]).

3.2, For our purposes, the following form of the Jordan-Brouwer separation
theorem is useful.

Theorem. Let M be a simply connected smooth manifold and S a smooth closed
connected hypersurface of M. Then M\S has exactly two connected components.

Proof. Let pe S and U a small coordinate ball around pin M such that U\S has two
connected components U, and U_. Choose points p, e U,, p_ e U_. Assume
that M\S is connected. Then there is a smooth curve ¢, in M\S which connects p.,
top_.Choosea curve ¢, in U connecting p _ to p,, and intersecting S transversally.
Then c=c;uc, is a closed curve which can be assumed to be smooth and which
intersects S exactly once and transversally. By simple connectivity, ¢ is homotopic
to a closed curve ¢ which does not intersect S. Since the intersection number mod 2
is a homotopy invariant (see [13], p. 78), this is a contradiction.

Moreover, if M, (M _) denotes the connected component of M\S containing
U,.(U.), then &M, and M _ are open and closed in S. So there are no further
components since S is connected.

33. Now let M be a Riemannian manifold and S a connected, two-sided
hypersurface in M with unit normal vector field N. We will say that a point ge M
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projects onto S if there is a shortest geodesic from ¢ to S. If M is complete and S is
closed (as a subset of M), every point projects onto S. Let M’ (M”) denote the set
of points which project onto the upper (lower) side of S, i.e. if ge M, and ¢: [0, d]
—M is shortest with c(0)€S, c(d)=q, d=d(q,5)>0, then ¢'(0)= £+ N, Put

"=M", uSUM” . E.g. if M is complete and S = B for some open subset B of M,
and if N denotes the outer unit normal field, then M"=M, M”. =B, M", = M\B.
Further, let M’C M” be the interior of the set of points where the shortest geodesic
to S is unique. This is an open neighborhood of §. Put M, =M'nM",.

Lemma 3.3. Let M be a complete Riemannian manifold and SCM a twosided
hypersurface. Let p e S and 0 <6 <i(p) where i denotes the injectivity radius function
on M, and assume that SNBy(p) is connected and SO By(p) is closed in M. Then
B;(p)CM”.

Proof. If g € B;;»(p) = : B, there is a shortest geodesic ¢ from g to the compact set S
N By(p). But since the length of ¢ has to be smaller than 0/2, the endpoint of ¢ lies in
the open subset SN B4(p) of S. Thus g projects onto S. Since SN B s closed in B, the
point g cannot project onto both sides of S, by 3.2, unless ge S. So BCM”.

34. On M”, we may define the signed distance function d of S as follows: |d(x)| is
the distance d(x, S) from x to S, and d(x) is positive (negative)for xe M”, (x e M").
Then M’ is the set of points where d is smooth. Its gradient N : = Vd is the extension
of N on M’ with D3N =0. Let Dd denote the Hessean 2-form of d. The proof of the
following facts is based on an idea of Green [7]:

Lemma 3.4(a). Let k, AcR. Let M be a Riemannian manifold with curvature K >k
and let S be a hypersurface in M with unit normal field N and (DyN,X>2A||X|?
for every nonzero tangent vector X of S. Then D*d(X, X)Zv(d) | X||* for all 0
+XeTM' with X LVd,where v is a solution of

vV4+0*+k=0,0(0)=21.
If K>k or DN > 4, the inequality is strict.

Lemma 3.4(b). Let M be as above, pe M and r <i(p). Let S=B,(p) and N the inner
unit normal field on S. Then (DyN, X > 2 v(0) | X |2 for any nonzero tangent vector
X of S, where v is a solution of

v+vr+k=0,1lim 1/o(t)=0.
tr
If K>k, the inequality is strict.

Proof. Let N =Vd, where d is the signed distance function of § in both cases. If ¢ is
an integral curve of N, i.e. a geodesic orthogonal to S, then as a consequence of the
Jacobi equation, the familiy of linear maps U(t)x : =D _N for x € ¢/(t)* satisfies the
Riccati equation

U+U*+R=0

with R(¢) as in 3.1. Let us assume first that R >k, that means that R(t)— kI is
positive definite for all ¢. Let v be a solution of v’ +v*+ k=0 and put ¥V =vl. Then

U-VY<—(U+WV)(U-Y).
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If (U—V)(t,) >0 for some ¢,, then the same is true for all t € (¢,, 1) where t,, is the
largest parameter smaller then ¢, where U or ¥ has a pole. Namely, if t € (¢, t,) was
the largest parameter where this fails, there would be some x#0 with
(U—V)()x=0, hence we would have {(U—V)x,x)>'(f)<0 which contradicts
(U —v)x,x)(t)>0 for t<t<t,. (Here we identified x with its corresponding
parallel field along c, as in 3.1.) In particular, if ¢, is finite, it must be a pole of U
since otherwise we would get a contradiction from lim v(t)= + o0 and U> V.

tltg

This proves immediately 3.4(a) for K>k, DN > 1. Since v depends cont-
inuously on k and 4, the result follows also for the weaker assumption.

If §=0B,(p) and N the inner normal field, note that U(t)"' -0 as t—r, and
(U™'Y=I+U"'RU™"'. Therefore, the singularities of U ' and ¥V ! at t=r are
removable, and (U™ Y (") =V Y =I, (U Y @)=V #)=0, (U Y
=2R(r)>2k=(V "1 (r) if R>k. Thus for t, <r sufficiently near to r, we have
U(t))"'<V(t,) ™", hence (U~ V)(t,)<0. So by the previous argument we get
U{0)>v(0)I. The result for R=k follows by continuity, as above.

Remark. Exactly the analogous arguments are valid under the assumption K <k
which implies the opposite inequalities. In particular it follows that then the
conjugate distance on M is larger than on a sphere of curvature k.

3.5. Remark. The Rauch comparison theorems are an easy consequence of the
previous section. E.g. if J is a Jacobi field along a geodesic ¢ with J'(0)=0, then J
belongs to the normal flow of any hypersurface S through ¢(0) with N, =c'(0)
and DN|,=0. Therefore, if d is the signed distance function of S and
U(t): = DVd|., its Hessean, then J'=UJ. If K 20, then U(t)= 0 for t <0 up to the
focal distance, by 3.4(a). Therefore, {J||'=<UJ, J)/|J|| 20, hence | J(){ £ |1J(0)]]
for t £0. Reversing the orientation of ¢ we get the same for ¢t =0.

3.6. Let M beanarbitrary Riemannian manifold and S C M a hypersurface which
is e-convex with respect to a unit normal vector field N, that means {(DyN, X)
el X||*forany X e TS. Let d: M”—IR be its signed distance function. Then for
any ge M” and n<e we get a support function d=d, , of d at g as follows (sce
[18, 20]): Let ¢ be a shortest geodesic from g to S and p € S its end point. Let S be
another hypersurface through p with normalfield N and suppose that N, =N, and
DyN =nX for any X € T,S. We may choose

S=exp,(0Br(— RNp)m V),

where R=1/# and V an open neighborhood of 0, in T,M which lies in the
injectivity domain of exp,. By Lemma 3.1, applied to the normal fields —N and
— N, the first focal point of S along ¢ comes behind q. So the signed distance
function d of Sis defined and smooth in a small neighborhood U of g, if V is small
enough to exclude cut locus points near . Moreover, if y : [0, 8)—Sis a geodesic in
Swith y(0)=p, and if we put ¢ = d o , then $(0) =0, ¢'(0) =0, ¢"(0) 2 & —# >0. Thus
we have d >0 on a neighborhood of p in §. Making S even smaller if necessary, we
may assume SCM” and d|g=>0. Let xe M” be in the domain of d and let j be a
point in § with shortest distance to x. Then |d(x)—d ()| < d(x, p)=|d(x)|, hence
d(x) = d(x) because d(p)=0. So we have shown:
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Lemma 3.6. If g Int(M”)and n<e, thend=d,,, is a smooth support function of d
in q, more precisely, d is defined and smooth on a neighborhood U of q withd<d and
d(g)=d(9).

4. g-convex functions and smoothing

In the following chapter, we use ideas of various authors [1, 6, 8,9, 12, 18, 20] to
describe the smoothing of a certain type of convex functions. We discuss details
since our notion of e-convexity is sligtly different.

4.1. Let M be a Riemannian manifold and ¢ any real number. A continuous real
valued function f on M is called e-convex if for any g€ M and any n<e¢ thereis a
smooth support function f, , of f in q (defined near q, f, , < f, £, (q@) = f(q)), such
that

D*f, (X, X)zn|X|* forall XeT,M.

It is easy to see that g-convexity implies convexity for ¢ 0. (In fact, for >0,
e-convexity implies strict convexity in the sense of [1, 20].) Namely, for a curve
c:[a,b]—>M let ¢, . ,=4, be the real quadratic polynomial with

p@)=f(c@), @ b)=1(cb)), d=n.

If c is a geodesic (parametrized by arc length), then foc<¢,: Otherwise foc—4¢,
for some 1 <& would attain an interior maximum at some point u € (a, b), and this
would contradict to (f,,,, cc—¢,)" (W) =n"—n>0 for any "€ (4, ¢). Moreover, a
similar argument stiil holds if ¢ is slightly curved:

Lemma 4.1. Let f be an e-convex function on M with |Vf, ()| £L for any ge M
and n<e. Let c:[a,b]—=M be a curve with |D,c’| <y and ||c’||>*=1—p for small
positive B,y. Let n=n(B,7)=e—¢ef—Ly. Then foc<¢,.

4.2. Clearly, a smooth function f is e-convex if and only if D? f > ¢; this follows
from 4.1. If S is a regular level hypersurface of a smooth function f with D*f >¢
and ||Ff|| £ Lalong S, then S is (¢/L)-convex with respect to the unit normal vector
field N=Vf/|Vf].

4.3. Let U be an open subset of M such that curvature and injectivity radius are
bounded on U. Let f be a continuous real valued function on U. For any r>0
which is smaller than the convexity radius on U, we may approximate f by a
smooth function f, defined on U,: ={xe M; B.(x)C U} as follows (see [8, 12]):

Jx) TfM fexp )y (lul)d"u

. { . SO wd(x, y)dpy)

i

where d"u denotes the volume element on T,M and du, the measure on B,(x) with
exp¥(du,)=d"u, and p,: IR, IR, is a smooth function with | 2= const >0,
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Wil oy =0and {0t 'dt=1/w,_, (where w, ., denotes denotes the volume of
0

the unit sphere in R").

If fis a Lipschitz function with Lipschitz constant L, we get immediately
|f — f.| £ Lr. (Note that § y,(Jlul)d"u=1.) Moreover, if K =20 on U, then f, has the
same Lipschitz constant L: If x, ye U, are sufficiently near and P: TM->TM
denotes the parallel displacement along the shortest geodesic between x and y,
then

1) = f )= TIM |f (exp(w) — f (exp(Pu))w,([|ul)d"u
=L T§M d(exp,(u), exp,(Pu)) p,(I|ul)d"u

<Ld(x,y)

by Rauch’s theorem (see 3.5).
Next we want to estimate the derivatives (see [12]):

Lemma 4.3. Let 0K <k on U and f be a smooth function with |Df| £L,
|ID2f|| £C. Then

|Df.—Df | Cr+ 3 Lkr*.
Proof. Fix xe U,, ve T.M with ||v|=1. Let ¢ be a geodesic with ¢(0) = x, ¢'(0)=v.
For any ue T.M with |jul| <r let a,(s, t) =exp,,sP,u where P, denotes the parallel
d
;s a, V= 25 M Then V(s)= V(s t) is the Jacobi
field along the geodesic ¢,(s) = a,(s, t) with V,(0)=c'(¢), V,(0) = U(O t)=0. Since

IUll=llull <rand | V]| < |v] =1, by 3.5, we have | V|| = | R(V, U)Ullékr ; and so
IV I’< V") <kr?, hence [[V/(s)| <kr’s. Now

displacement along ¢. Let U=

Df(v) - Df(v)~3; or f (f (a1, 0) = f (a0, ), ((|ul)d"u

and

f(as, t)ds

Q..ig__
&Ig_‘

w*(f (a.(1,1)— f (a0, 1)) 2({

—

=[[D*f(U(s,0), V(s,0)+Df (V/(s)]ds,

0
so the result follows.

44. Now we want to show that e-convexity is almost preserved by smoothing.
Let M be any Riemannian manifold, M a relatively compact open subset, and let
ro>0 be smaller than the convexity radius on M,. The following lemma is
essentially due to Greene and Wu [8, 91:
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Lemma4.4. Foranye, L>0there isamonotonely decreasing functionn : (0,r,)>R
with n(r)—¢ as r—0 with the following property: If f is any e-convex function
defined on some open convex subset U of My, with |Vf, {(@)|SL forallqe U, é<e,
then the smoothing f. of f is n(r)-convex, for any re (0, ry).

Proof. Forany x e Myand u,ve T.M with ||lu| <r, |v]| =1 let c=c,, be the geodesic
with ¢(0) =x, ¢'(0) =v; further let c,,(t) : =exp,,(P,u) where P, denotes the parallel
displacement along ¢. Let

Blo,w)=1—lc, (0%,  y@,u)=IDg, O,

and let §(r), y(r) be the maxima of these functions (note that the set of all (u, v) is
compact). We have f(r), y(r)—»0 as r—0. Hence, if c:[a,b]—- U, is a geodesic
segment, then for any u e T, ,M with |u|| <r, we have by Lemma 4.1 for te[a, b]

f(expc(t)(Ptu)) = f(cvu(t)) § ¢n(r),cvu,f(t) 3

where n(r)=¢—ef(r)— Ly(r),and so f,c c < ¢, . s, Since f, is smooth, this implies
D*f,zn(r).

4.5. Let M be any Riemannian manifold and S an e-convex hypersurface. Then
its signed distance function d fails to be g-convex along S since we have
D?d(X,X)=e| X|* only for X € TS. Therefore, we consider the function f =y, od
instead (compare [1]) with

£
Di=t+-=t*.
xA) +5

Now f is e-convex with ||V f] =1 along S. .
If K20 on M, then on M"_ we have D?d(X, X)= —— || X% for any X L Vd,
14ed
by Lemma 3.4(a). Hence

D2f=¢eDd-Dd+(1 +ed)D*dz¢

on M”_. So for ge M”. with d(q)> —R: = —1/e, the function f, ,:=y, d,,
(compare 3.6) is a smooth support function of f at g with Df, (X, X) 25| X ||* for
any X € T M. Thus we have shown

Lemma 4.5. If K=0 0n M and S is an e-convex hypersurface with signed distance
function d> —R, then f=y,od is ¢-convex on M"_.

Further note that f has Lipschitz constant L,= | + &t on the set {d <t} and we
have d< f<d/2 on {0=zd= —R}.

Remark. Since the focal distance of S is not bigger than R, by Lemma 3.4(a), we
have always d= —R, and it is not difficult to show that d(q)= —R for some ¢
occurs only if SCOBg(q) and M” is flat (see [6]). However, one may avoid this
argument by choosing ¢ sligtly smaller, if necessary; then R = 1/e gets larger and we
have d> —R for the new R.

4.6. In particular we have shown: If K=0 on M and B is a relatively compact
open subset with smooth boundary S =4dB which is e-convex with respect to the
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outer unit normal field, then f'=y, o dis e-convex on B. This remains true if M = B,
that means that M is a compact manifold with boundary S. Namely, f is e-convex
on the subset M”_ where d is smooth. Moreover, the parallel hypersurfaces
§,={d= —r} are smooth for small positive r, and for the signed distance function
d, of S, we have d,=d +r. Since S, is é&-convex for £=(R—r)"* with R=1/e (see
Lemma 3.4(a)), the function f =y,(d,~r) is e-convex on {d< —r}.

5. Coordinates preserving convexity

5.1. Let M be a Riemannian manifold and (U, ¢) a coordinate chart, i.e. U is an
open subset of M and ¢ a difftomorphism of U onto an open subset V of R". Let
ds* =1 ||* be the given metricon U and ds3 = || |2 the euclidean metric induced by
#, and let D, D° denote the corresponding Levi-Civita connections. Assume that

1
ID-D°<~ and Zd52<alsg<4ds2.

£
4

Lemma S.1. If SCU is an e-convex hypersurface, then ¢(S)CVCR" is 1—86—conuex.
Proof. Let d be the signed distance functionof Sand f =y, d. Thenforanype S we
have |Df|,llo <2|Df|,ll=2, and for all X € T,M,

(D°Df = DDF)(X, X)|=|Df (Dx X — DY X) SUDfI,Il [DxX — DX | < % (X102
On the other hand, DDf (X, X)=¢| X|? (see 4.5) and so
D°Df 2 ZIIX172 ¢ I XI3.

€

Th i
erefore, S is 6

convex with respect to ds3, by 4.2.

5.2. A coordinate system satisfying the assumptions of 5.1 will be called a good
coordinate system. If M,C M is a relatively compact, open subset of M, then by
continuity, there is a radius ¢ >0 such that the exponential coordinates in B,(p)
have this property, for any pe M,. A more explicit lower bound for the radius of a
good coordinate patch in terms of the injectivity radius and the curvature bounds
has been given by Jost and Karcher [16] using almost-linear coordinates.

5.3. Let y:S—M be an e-convex immersion. For every seS let p=y(s) and

(B(p), 4,) be the good coordinate system of 5.2. Let §” be the connected component
. € .

of y"Y(B,(p)) through s. Then x: =¢,°yls:S'>R" is an Tg-convex immersed

hypersurface in R”. Thus on a small scale, the properties of e-convex immersions

can be studied in euclidean space.
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6. c-convexity in euclidean space

6.1. Throughout this chapter, we let M =R" be the euclidean n-space. Let S be a

connected hypersurface which is e-convex with respect to the unit normal field N

on §, and let d denote its signed distance function. In the following, we always put
:=1/e. A special property of the flat space is

D*d(X,X)z(d+R)"'|X|* forany X_L1Vd

at any point where d is smooth, also on M’, . Hence, by 4.5, the function f =y, d is
e-convex on M'UM” . Moreover, we have canonical support functions: For any
peSlet B,: =Bp(p—RN,)and S,: =0B,. Let d, be the signed distance function of
S, and f,=y.od, The function f, is defined and smooth everywhere with
D*f(X, X)=¢| X|* for every tangent vector X. Hence g : = f — f, is 0-convex with
g(p)=0, Vg(p)=0. So g attains a local minimum at p and consequently, f'= f, on
any convex neighborhood U of pin M'UM”_. It follows that d = d, and therefore, S
NUCB,.

6.2. Lemma. Let f be a continuous function on IR" which is convex on a
neighborhood U of the closed set B={ { <0}, and assume that B is connected. Then
B is convex.

Proof. Let p be an arbitrary point in B. Let C be the set of all g € B such that the
straight line segment pq lies in B. Clearly, C is closed. We show that C is also open
in B. Since pgCB for ge C and since U is a neighborhood of B, there is a
neighborhood V of g such that xpC U for any x e V. By convexity, [ takes its
maximum on Xp at the end points, therefore XpC B whenever xe VnB. So VnB
CC and therefore, C is open. Since p e C, we have C= B by connectivity which
finishes the proof.

6.3. Now let SCM=IR" be a compact, e-convex hypersurface. By the Jordan-
Brouwer separation theorem (see 3.2), S bounds an open domain BCIR” which lies
on the side of the normal field — N on S. Then B=M"_ (see 3.3), and by 6.2, B is
convex. Consequently, for any g e R™ B, there is a unique shortest line segment
from g to S, and therefore, R"\B=M’,. So by 6.1 we have dzd, on all of R", for
every pe S, thus d= n;easx d,. On the other hand, for any g € IR" there is a closest

point pe S for which d(q)=d,(q), so we get in fact d= max d,. Consequently,
B=() B, e
€S

I\’;Iore generally, a connected open subset B of R" (with smooth boundary or
not) will be called e-convex for some ¢ = 0 if for any p € dB there is a neighborhood
U of p and a ball B, of radius R=1/e with p e 0B, (support ball or support half
space) such that BAU C B,. Applying the same arguments as above to the signed
distance function d of 6B which is negative on B and positive outside, we see again
the convexity of B, more precisely: B= (| B, as above.

pedB

6.4. Lemma. Let e=1/R >0 and B a connected, e-convex open domain containing a
line segment of length a. Then B contains a ball of radius a*/8R.
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Proof. If Bis a ball of radius R containing a line segment of length a with center g,
then B contains the ball B,(g) with r=R—(R*—a?/4)!/?>a?/8R. Hence for an
arbitrary e-convex open set B we have B,(q)CB, for any pedB and so B,(q)
C () B,=B (see 6.3).

pedB

6.5. Let R%:={xeR"; x,>0} and R" its closure. Let SCIR” be an e-convex
hypersurface such that SNIR", is connected and SNR” compact. Thus SAR”, is
closed in R” , and hence it bounds an open set Bin IR”, which lies on the side of the
normal field — N (see 3.2). So the full boundary of Bin IR"is contained in SUIRR" "1
and therefore, B is 0-convex and hence convex (6.3). However, in general B is no
more contained inits support ball B, for arbitrary pe SnR",. Nevertheless, there is
one point p for which BC B, remains true:

Lemma 6.5. Let p € S be the point where the coordinate x, attains its maximum on S.
Then BCB,,.

Proof. Let d, d,, f, f, be the functions defined in 6.1. Then g: = f — f, is convex on
M'uM” . Since B is convex, every point of R"\B has a unique projection onto dB
from which we conclude M”. = M’,. So g is convex on M” with local minimum O on
the line L : =(p+Re,)nM". All we have to show is that every point of S, : =S
nR" can be connected to some point of L, by a straight line segment in M”. Then
by convexity we have g=0 on S, and hence S, C{d,<0}=B, which implies B
CB,.

iet T=BnR""! Then 0B=S,uT To examine the size of M”, let d be the
signed distance function of 0B which is defined on all of R”. Put

A:={d—x,<0}nR%, C:={d+x,<0}nR%.

These sets are convex since d is a convex function. We have S C A\C. Moreover, on
A\C we have |d| < x,. So the points of this set project on S, and therefore A\C C M”
with d=d on A\C.

Let Z=T+IR,e,CR" be the cylinder over T; this is a closed convex set. We
claim that CCZnB. In fact, CCB since d, x,=0 on R"%\B. Moreover, for any
g€ B\Z, the vertical ray L, =q—IR _ e, starting at g intersects B at some point
q'edB\T=S,,s0x,(q")>0. Therefore, —d(q) Zd(q, ¢) = x,(q) — x.(q") < x,(q) and
hence g ¢ C which proves the claim.

Now for ge S, the vertical rays L, =q+IR , e, do not meet the set ZnB since
cither g ¢ Z or theline L, =g + Re, leaves Bat g. In both cases there is an open cone
C, with vertex g around L; which does not meet ZnB; in the first case this is
because Zn B is contained in the truncated cylinder of hight x,(p) over T. So there
is a line segment L from q to some point of L, within C,. On the other hand, L;
CA, so LCANC,CA\CCM” which finishes the proof.

6.6. Lemma. [14, 15]: Let S be a compact connected manifold of dimension n— 1
and x : S—»R" an e-convex immersion. If n=2, assume further that the closed plane
curve x has winding number + 1. Then S is diffeomorphic to the (n— 1)-sphere and x is
an embedding.
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Proof. Let v:S—87"! be the Gauss mapping of the immersion x. Due to the
g-convexity, this is a local diffefomorphism and in particular a covering map. So it
must be a global diffeomorphism since $% ! is simply connected for n>3 and the
degree of vis + 1 for n=2. Consequently, for every ve 85~ ! CIR" the hight function
h,(s)=<v,x(s)>, seS, has exactly two critical points: one maximum and one
minimum. Therefore, x is an embedding: If se S and v=v(s) its outer normal
vector, then h, attains its maximum only at s and so we have x(s5") % x(s) for every s’
*sin S.

6.7. We now can prove the main result of this section. For any immersion x: S
—R" and any se S, r>0 let U,(s) be the connected component of x ~}(B,(x(s)))
containing s.

Lemma 6.7. Let x:S—IR" be an g-convex hypersurface immersion, for n=3. Let
So €S and assume that S': = U (s,) is relatively compact in S, for some ¢>0. Let
=1e9? and S”: = Uy(s,). Then xls. is an embedding.

Proof. Let p: = x(s,). We may assume that the n'® basis vector e, of R" is the outer
normal vector of x at s, so that the hight function x,=<{x,e,) on S has a local
maximum h: =Xx,(sy)=p, at s,. Since x(S) lies locally on one side of each of its
tangent hyperplanes, every critical point of x,, is either a maximum or a minimum,
so the set C of critical points is isolated.

Let U be a neighborhood of s, in S such that x|, is an embedding with x(U)
CB,(p). For every t <h let S, denote the connected component of {s€ §; x,(s) =t}
through s,. For ¢t sufficiently close to h we have S,CUCS’". Let u: =inf{t <h; S,
CS’}. The set S,, is a closed subset of §” and therefore compact, and S, is invariant
under the flow ¢,, t = 0, of the vector field V'x,. Every flow line ends at a maximum,
so every point in S,\C lies in the domain of attraction of some maximum. Since
these domains are open and S,\C is connected (here we need dim S = 2), there is no
other local maximum then s, on S,,. Likewise, there is at most one local minimum
on S,, and if there exists such a minimum, its domain of attraction under the flow of
—Vx,is S,\{so}. In this case we have §’'=3§,, so §” is compact and connected and
therefore embedded by 6.6. So we may assume that the interval [u, k) contains no
critical values for x,. In particular, u < — oo, and by choice of coordinates we may
assume u=0, so §,=S,.

ForO<t<hletS':={seS,; x,(s)=t}. This is a compact regular hypersurface
of § and the map x':S'>R"™ 1, x(s)=x(s)—te, is an ¢-convex immersion, by
Meusnier’s theorem. So for n=4, the immersions x* are embeddings (6.6), and so
the same is true for x|g,. For n=3, note that the flow vy, of the vector field
Vx,/|lV x,||* provides a diffeomorphism of S° onto ', so we have a smooth family
of closed plane curves x'o,:S°—IR2 For ¢ sufficiently close to h, this is an
embedding and so the winding number is 1. Since the winding number is constant
for all t € [0, h), we get the same conclusion as in the case of higher dimension, by
6.6.

Now by 6.5, the hypersurface x(S,)CIR" is contained in the closure of the

1 .
support ball B,:=Bg(p—Re,) of radius R=g, and B,nR" CB,(p) with

r=(2Rh)"?. Since 0=inf{t<h; x(S)CB,(p)}, we have r=¢ and therefore
hz%0%=4. So §”CU,(s0)CS, is embedded and the proof is finished.
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7. Proof of Theorem A

Throughout this chapter, let M be a complete Riemannian manifold of dimension
n=3 with nonnegative sectional curvature and y:S—M a compact, connected,

. . 1
e-convex hypersurface immersion, for &= R >0. Let My:={qeM;

d(q, y(S)) <10R}. The contraction of S which we want to construct will take place
within this set M. Since we also want to consider parallel hypersurfaces, let us
assume more generally for the following sections 7.2-7.5 that M, is an arbitrary
relatively compact open subset of M with y(S)CM,: ={qe M; Br(q)CM,}. Let
0€(0,R) be a radius for good coordinates around any point of M, (see 5.2).

7.2. Lemma, For every s€ S, there is an open, connected neighborhood S” of sin S
such that ylg. is an embedding and y(S")nBy(y(s)) is compact for §: =27 3¢p>.

Proof. Put p=y(s). Let ¢ : B,(p)»R" be the good coordinate system around p. Let
S’ be the connected component of y~'(B,(p)) through s. Then x=go y| is an
%—convex immersion (5.1). Since Bg,(p) C B,(p), where the suffix © refers to the
euclidean metric induced by ¢, the set x ™ '(B,,,(¢(p))) is compact. So we may apply
6.7 for ¢/16 and ¢/2 instead of ¢ and g, and so the s-component §” of x = }( B, 5(#(p)))
for 6=2"8¢0? is embedded. Moreover, y(S")nB,(p) is compact since By(p)
CB34(p).

7.3.  As before let M” be the subset of M where the signed distance function d of
the hypersurface y(S”) is defined. By Lemma 3.3 we have B;;,(p) CM” for p= y(s).

Lemma 7.3. If y(S) is not entirely contained in B;,(p), then there is a point
‘IGB(;/Z([J) with d(q)< —a for a=2"1252

Proof. We have BY,,(p)CB;;,(p), and B®: =B}, (p)nM” is an %-convex domain

with respect to the euclidean metric induced by ¢ since B® C y(S")UdBg,,(p) (see
6.3). Moreover, dB°ndBY,,(p) +§, hence B® containes a euclidean straight line of

2 ¢

length 6/4 and by 6.4 a euclidean ball of radius r = % %6 16 =2g. Thus the center of

this ball is a point g € B;,(p)nM” with Riemannian distance d(q, y(S))>r/2 and
therefore d(q) < —a.

74. ForseSlet U(s)and V(s) be the connected components through s of the sets
v 1(Bs(y(s))) and y~ 1(By5(y(s))). We saw that U(s)is relatively compact and y|y
isan embedding. Let us assume that U(s) % S for every s € S, that means that y(S) is
contained in no ball of radius 6. Put A=+a=2"1%5%. Since <R, we have
A<2716g,

Lemma 7.4. For every seS there is a smooth function g=g, defined on a
neighborhood M, of y(V(s)) with the following properties:

@) y(V(s))Cg 1(0)Cy(U(s),

(i) Vgl =2,D*gz¢/2,
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(iii) [—4,0]is a regular interval for g,and g~ '(—4) isang,-convex hypersur-
face with ¢,:= 1/(R—i/4) <.

(iv) Let y, denote the flow of the vector field X = —Vg/||Vg|*. Then p(x) e M,
for every x e y(V(s)), te[0, A].

Moreover, if V(s)nV(s)+0 for s,s'€ S, then g,=g,, on M,nM,.

Proof. Let d be the signed distance function of y(U(s)) defined on B;,(p) for
p=y(s), and let f =y, od. The function f is e-convex with d< f<1d on {d<0}.
Moreover, f is smooth on {|d| <r,} where r, is the focal distance of the immersed
hypersurface y(S), and we have |V f| =1+s&d. Therefore, if A<r,/2, we may
choose g= f and M;C B;;3(p) an open set containing {0 = d = — 24} B 3(p). If s”is
another point in S with V(s)nV(s) %0, then d(p, p) < /8 for p’=y(s"). So the
signed distance functions of y(U(s)) and y(U(s")) agree on B;3(p)nB;5(p’) since
the endpoint of a shortest geodesic from ge B;;3(p) to y(U(s)) lies in Bys5(p)
Ny(U(8)) CBs(p)ny(U(s)) Cy(U(s")) and vice versa. Therefore, g, agrees to g, on
MM,

Now assume A =r,/2. Putry,=r,/6. Forr <ry, = 1/3, we consider the smoothing
f,of f (see 4.3) on B: = B;4(y(s)). Since the Lipschitz constant of fis L,=1+¢t on
{d <t} and in particular Ly=1 on {d <0}, we have |f — f,|<rand |[V'f,| <1l on B
N{d < —r} (see 4.3). Moreover, the support functions f, , of f satisfy [V f, (@[ <1
forall g e {d <0} and y < e. Applying Lemma 4.4 we get a function #(r) independent
of se S with n(r)Te as r|0, such that f is n(r)-convex.

Let g€ B;,(p) with f(q)=—A. Then d(q)< f(q)< —A+r<—3%4 and hence
IVf(D £1+e(d(q)+r)<1—4ed=e(R—1/3). Now we choose r so small that

R—7/3
R—ija"

nr)z

Then f,”'(—A) is an ¢,-convex hypersurface provided that — 1 is a regular value
4.2).

To satisfy (i), we have to connect f and f,. Let ¢:IR—[0,1] be a smooth
function with ¢(t) =1 for t < —2r, and ¢(¢t) =0 for t = —r,. Put g=f on {|d|Zr,}

and
g=f+é@d(f,—f)

on {d< —ry}. Since |f— f,|<r and |D?d| is bounded from above on {|d|<2r,}
independently of s € S, we may assume ||V g £2, D*g=¢/2 on {—ry=d2= —2ro}
by choosing r still smaller if necessary. Since f is ¢-convex with |Ff| <1 on
{0=2d= —r,} and £, is 5(r)-convex with n(r)>2eand |V f,| £1on {d< —2r,}, the
function g satisfies (i) on an open set M C B;4(p) containing {d <0} B;(p). If
geg '(=2), then d(@)< (@< —32= —2ro. So g~ (=)= f," (4.

By 7.3 there is a point gqeB;,(p) with d(qg)<—a, a=164. Thus

fs-— % =—84 and g(¢) = f(q)+r< —7A. So for all x € B;,(p)n{g= — A} we
have g(x)—g(q) = 6/ and d(x, q) £ /2. Using the convexity of g along the geodesic
between x and g in B;,(p), we get |V g(x)| 2 A3 > 84/6. In particular, the interval

—4/2
[ —4,0] contains no critical values for g which finishes the proof of (iii).
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If ¢ is an integral curve of the vector field X = —Vg/||Fgl|* with ¢(0) € p(V(s))
CB;5(p)n{g =0}, then g(c(t)) = —tand |’ ()| = [Vg(c(®)|| "' <5/84, for t <A. So
the curve c(t) stays within B;,(p) for 0=t < A. In particular, c is defined on [0, 4]
with ¢([0, A]) C M,. This proves (iv).

Note that the choice of » was uniform for all se S. If V(s)nV(s) %0, then as
above the signed distance functions of y(U(s)) and y(U(s")) agree on B;;(p)
NBy3(p’) for p’= y(s). Since r < /12, the smoothed functions f, agree on B, ,(p)
NB;4(p), hence g,=g, on M;n M.

7.5. Now we define an immersion y': S x [0, A]— M as follows: For se V(s,) let
yi(s, t)=p,y(s)) where p, denotes the flow of the vector field X = —Vg/|Vg||? for
g=g,, In 7.4 we have shown that this is well defined. Let ds? be the metric on S
induced by the immersion y; : =y!|s, 4. Put k: =e %,

Lemma 7.5. ds? <«?ds?.

Proof. Let se V(sy), so€S. For ae T,S put A(t)=Dy; (a); this is a vector field
along the curve c(t) =y,(y(s)) with derivative A(t)=D 4, X. So

1Al =<D X, A/ All= —<{D 4V g, A>/(IVgllI* | Al) = — 2 A

by 7.4 (ii). Integrating, we get || A(D)|| £x||A(0)| which proves the lemma.

7.6. Wenow may replace the given immersion y with y}. By Lemma 7.4 (ii) this is
an g,-convex immersion of S. Since ¢, > ¢ and y3(S)C M, (see 7.1), we may repeat
the argument getting an immersion y*: S x [4,24]— M such that the immersion
V3:=Y?ls x 22 Of S is &,-convex for &,=(R—24/4)"" and the induced metric ds3,
satisfies ds3, <x?ds? for x, =e™**** and so on. Since we proved |Vg| <2, any
point of yf,(S) has distance <24 from yf;),(S), so we do not leave M, before k
exceeds SR/A. On the other hand, & =(R—kA/4)™ ! is finite only for k<4R/A. So
after, say, m steps with m <4R/4, the set y7,(S) is contained in a ball of radius é <
in M, and in particular in the domain of a good coordinate system ¢. Therefore,

. & . . . .
X=¢goyn isan ¢ convex immersion of S into euclidean n-space. By Lemma 6.6,

this is an embedding and x(S) bounds a convex disk (6.3). So yy,(S) bounds a
closed embedded disk B,.; in M. Providing B,:=S x[(k—1)4,kA] with the
metric induced by y* and gluing together B, and B, , at their common boundary,
for 0<k<m, we get a compact Riemannian manifold D with boundary (S, ds),
and an isometric immersion y: D—»M with jlg=y. In particular, we have
nonnegative curvature on D and the boundary S is an e-convex hypersurface.

7.7. 1t remains to construct a diffcomorphism of D onto the standard n-disk.
Consider the e-convex function f =y, o d where d is the negative distance to S on D
(see 4.6). Let f, be the smoothing of f for small enough r and put g= f on {|d|<r}
and g=f+¢(d) (f,— f) on {|d| 2 r,} as in 7.4, but this time, g is defined globally on

D. Thus g<0 with S=g~1(0), and g is %—convex if r is small enough. By strong

convexity, the set of critical points, C, contains only minima, and the domain of
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attraction of each minimum is a connected component of D\C; so there is exactly
one minimum g € Int(D). By the Morse lemma (see [19]), for small y >0, the set
D,={xeD;g(x)—g(q)<v} is diffeomorphic to the standard disk. Using the flow

of X = —Vg/| Vgl 2, we get a difftomorphism of D onto D.. This finishes the proof
of Theorem A.
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