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1.  Introduction

Microfluidic  biochips  are  used  in  pharmaceutical,  medical,  and  forensic  applications  for  high  throughput  screening,
genotyping, and  sequencing  in  genomics,  protein  profiling  in  proteomics,  and  cytometry  in  cell  analysis  [28,31].  They
provide a  much  better  sensitivity  and  a  greater  flexibility  than  traditional  approaches.  More  importantly,  they  give
rise to  a  significant  speed-up  of  the  hybridization processes  and  allow  the  in  situ  investigation of  these  processes  at
an extremely  high  time  resolution.  This  can  be  achieved  by  integrating  the  fluidics  on  top  of  the  chip  by  means  of  a
lithographically produced  network  of  channels  and  reservoirs  (cf.  Fig.  1 (left)).

The idea  is  to  inject  a DNA  or  protein  containing  probe  and  to  transport  it  in  the  fluid  to  a  reservoir  where  a  chemical
analysis is  performed.  The  fluid  flow  can  be  taken  care  of  by  external  pumps  which,  however,  do  not  guarantee
a very  precise  control  of  the  fluid  flow  and  are  subject  to  wear.  A  new  generation  of  biochips  is  based  on  a  surface
acoustic waves  (SAW)  driven  fluid  flow  [15,21,33–35]. Surface  acoustic  waves  are  generated  by  interdigital  transducers
(IDT), well-known  from  Micro-Electro-Mechanical  Systems  (MEMS).  They  propagate through  the  base  of  the  device
with amplitudes  in  the  range  of  nanometers  and  enter  the  fluid  filled  microchannels  creating  sharp  jets  (cf.  Fig.  1
(right)). This  happens  within  nanoseconds.  In  the  microchannels,  the  SAW  get  significantly  damped  so  that  an  almost
stationary fluid  pattern  emerges  which  is  called  acoustic  streaming.  This  relaxation  process  occurs  on  a  time  scale  of
milliseconds.

This paper  is  concerned  with  the  numerical  solution  of  a  shape  optimization  problem  in  which  pressure  driven
capillary barriers  between  the  microchannels  and  the  reservoirs  are  determined  such  that  a very  precise  and  bubble-
free filling  of  the  reservoirs  can  be  guaranteed.  This  leads  to  an  optimization  problem  governed  by  a  system  of time
dependent partial  differential  equations  (PDEs),  the  so-called  state  PDEs.  The  numerical  solution  of  such  problems
using gradient  based  methods  involves  a  coupled  system  of  PDEs  consisting  of  the  forward  in  time  system  of  state  PDEs
and the  backward  in  time  system  of  adjoint  PDEs.  Because  of  the  size  of  this  coupled  system  of  state  and  adjoint  PDEs,
the numerical  solution  is  very  costly,  both  in  terms  of  computing  time  and  memory  requirements.  We  will  apply  model
reduction to  replace  the  original  state  equation  by  a much  smaller  system  of  ordinary  differential  equations  (ODEs)  in
such a way  that  the  solution  of  the  optimization  problem  governed  by  the  reduced  order  system  has  approximately  the
same solution  as  the  original  optimization  problem.  This  is  achieved  by  a combination  of  balanced  truncation  model
reduction and  domain  decomposition  and  a  careful  exploitation  of  the  problem  structure.

The paper  is  organized as  follows:  in  Section  2,  we  introduce  the  mathematical  model  describing  the  operational
behavior of  microfluidic  biochips  with  emphasis  on  the  SAW  induced  fluid  flow  as  described  by  the  compressible
Navier–Stokes equations  and  on  the  homogenization  approach  for  a  proper  separation  of  the  time  scales.  Section  3  is
devoted to  the  optimal  design  of  microfluidic  biochips  based  on  the  optimization  of  objective  functionals  subject  to
the equations  describing  the  acoustic  streaming.  For  model  reduction  purposes,  we  present  the  basic  idea  of  balanced
truncation model  reduction  and  its  combination  with  the  domain  decomposition  methodology.  Finally,  in  Section  4
we provide  a  detailed  documentation  of  simulation  results  that  illustrate  both  the  validity  of  our  model  as  well  as  the
feasibility of  the  model  reduction  based  optimization.

Fig. 1. Microfluidic biochip (left) and sharp jet created by surface acoustic waves (right).
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2.  Modeling  and  simulation  of  piezoelectrically  actuated  acoustic  streaming  in  microfluidic  biochips

The operational  behavior  of  SAW  driven  microfluidic  biochips  is modeled  by  a coupled  system  consisting  of  the
linearized equations  of  piezoelectricity  and  the  compressible  Navier–Stokes  equations  (see,  e.g.  [1,2]).  In  the  sequel,
we will  focus  on  the  SAW  induced  fluid  flow  in  the  fluidic  network  on  top  of  the  biochip.  For  a  detailed  description  of
the piezoelectrics,  we  refer  to  [16].

We  denote  by  �(t)  ⊂  R
2,  t ∈  [0,  T  ],  the  time  dependent  domain  occupied  by  the  fluid  with  boundary  �(t)  = �̄D(t)  ∪

�̄N (t),  �D(t) ∩ �N (t)  =  ∅. Here,  �D(t)  is  that  part  of  the  boundary  where  the  SAW  enter  the  fluid  filled  microchannels.
We denote  by  v and  p  the  velocity  and  the  pressure,  and  we  refer  to  ρ,  η,  and  ξ as  the  density  of  the  fluid,  the  standard
and bulk  viscosities.  The  pair  (v,  p)  satisfies  the  following  initial-boundary  value  problem

ρ

(
∂v
∂t

+  v ·  ∇v
)

= ∇ · σ in  �(t),  t ∈  (0,  T  ],  (1a)

∂ρ

∂t
+  ∇  · (ρv)  =  0  in  �(t),  t ∈  (0,  T  ],  (1b)

v(· +  u(·,  t),  t)  = ∂u
∂t

(·,  t)  on  �D(t),  t ∈  (0,  T  ], (1c)

σn =  0  on  �N (t),  t  ∈  (0,  T  ],  (1d)

v(·, 0)  =  v0,  p(·,  0)  =  p0 in  �(0),  (1e)

whereσ =  (σij)2
i,j=1, σij :=  −pδij +  2ηεij(v)  +  δij(ξ  −  2η/3)∇  · v  and  u  in  (1c)  stands  for  the  deflection  of  the  walls

of the  microchannels caused  by  the  SAW.  We  note  that  u  can  be  computed  by  the  solution  of  the  linearized  equations
of piezoelectricity  (see  [16]).

Since the  deflection  of  the  walls  of  the  microchannels  by  the  SAW  is  approximately  10−9 m  compared  to  lengths,
widths, and  heights  of  the  microchannels  in  the  range  of  micrometer  to  millimeter,  we  will  henceforth  neglect  the  time
dependence of  �.

As  mentioned  in  Section  1,  the  SAW  induced  fluid  flow  exhibits  two  different  time  scales.  When  the  SAW  enter
the fluid  filled  microchannels,  sharp  jets  are  created  within  nanoseconds  (cf.  Fig.  1  (right)).  The  SAW  propagate
along the  channels  and  experience  a  significant  damping  which  results  in  an  almost  stationary  flow  pattern  (acoustic
streaming). This  relaxation  process  happens  on  a  time  scale  of  milliseconds.  The  multiscale  character  of  the  problem
can be  appropriately  taken  care  of  by  a homogenization  approach.  Following  [1,25],  we  introduce  a  scale  parameter
0 < ε � 1 which  represents  the  maximum  deflection  of  the  walls  of  the  microchannels,  and  we  consider  the  asymptotic
expansions

ρ = ρ0 +  ερ′ +  ε2ρ′′ +  O(ε3),

v = v0 +  εv′ +  ε2v′′ +  O(ε3),

p = p0 +  εp′ +  ε2p′′ +  O(ε3).

We assume  v0 ≡  0  and  p0 ≡  0  (fluid  at  rest,  if  no  SAW  actuation)  and  choose  ρ0 as  the  density  of  the  carrier  fluid.  Then,
collecting all  terms  of  order  O(ε)  and  setting  ρ1 =  ερ′,  v1 :=  εv′,  p1 :=  εp′, we  find  that  the  triple  (ρ1,  v1, p1)  satisfies
the following  initial-boundary  value  problem  for  linear  compressible  Navier–Stokes  equations  with  time  periodic
boundary conditions  on  �D

ρ0
∂v1

∂t
−  ∇  · σ1 =  0  in  �  ×  (0,  T1],  (2a)

∂ρ1

∂t
+  ρ0∇  · v1 =  0  in  �  ×  (0,  T1],  (2b)

v1 =  g1 on  �D ×  (0,  T1],  (2c)

σ1n  =  0 on  �N × (0,  T1],  (2d)

v1(·,  0)  =  0,  p1(·,  0)  =  0  in  �,  (2e)
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where  T1 :=  2π/ω  with  ω  being  the  angular  frequency  of  the  time  harmonic  SAW  excitation,  g1 :=  ∂u/∂t  in  (2c),  and

σ1 =  ((σ1)ij)2
i,j=1,  (σ1)ij :=  −p1δij +  2ηεij(v1)  +  δij(ξ  −  2η/3)∇  · v1.

Moreover, p1 and  ρ1 are  related  by  the  constitutive  equation

p1 =  c2
0ρ1 in  �  ×  (0,  T1].  (3)

Here, c0 stands  for  the  small  signal  sound  speed  in  the  fluid.  The  system  describes  the  propagation  and  damping  of
the acoustic  waves  in  the  microchannels.

For the  weak  formulation  of  (2a)–(2e),  we  adopt  standard  notation  from  Lebesgue  and  Sobolev  space  theory  [26].
In particular,  bold  letters  will  refer  to  Lebesgue  and  Sobolev  spaces  of  vector-valued  functions.  We  substitute  ρ1 in
(2b) by  means  of  (3)  and  introduce  the  function  spaces

Vg1
:=  {v  ∈  H1((0,  T1);  H−1(�))  ∩  L2((0,  T1);  H1(�))|v|�D =  g1},

W :=  H1((0,  T1);  L2(�)).

We note  that  H1((0,  T1);  H−1(�))  ∩  L2((0,  T1);  H1(�))  is  continuously  embedded  in  C([0,  T1],  L2(�)).  The  weak
formulation of  (2a)–(2e)  amounts  to  the  computation  of  (v1,  p1)  ∈  Vg1

×  W  such  that〈
ρ0

∂v1

∂t
, w
〉

+ a(v1, w)  +  b(p1,  w)  =  0,  w  ∈  H1
0,�D

(�),  (4a)(
ρ−1

0 c−2
0

∂p1

∂t
, q

)
0,�2

− b(q,  v1)  =  0,  q  ∈ L2(�), (4b)

.v1(·,  0)  =  0,  p1(·,  0)  =  0.  (4c)

Here, 〈·,  ·〉  stands  for  the  respective  dual  pairing,  and  the  bilinear  forms  a(·,  ·)  and  b(·,  ·)  are  given  by

a(v, w)  :=  η

∫
�2

∇v : ∇w  dx  +
(
ξ + η

3

) ∫
�2

∇ · v ∇ · w dx, (5a)

b(p, w)  :=  −
∫

�2

p ∇ · w dx. (5b)

Theorem 1.  For  the  solution  of  the  variational  problem  (4a)–(4c)there  holds:
If g1 ∈  L2((0,  T  );  H1/2

00 (�D)),  then  there  exists  a  unique  solution  (v1,  p1) ∈ Vg1
×  W  of  (4a)–(4c)satisfying  the

stability estimate

||(v1,  p1)||Vg×W ≤  CT1 ||g1||L2((0,T );H1/2
00 (�D))

,  (6)

where CT1 >  0 is  a  constant  depending  on  T1.

Proof. The  existence  can  be  shown  by  the  Galerkin  method,  whereas  the  uniqueness  and  the  stability  estimate  (6) can
be derived  using  the  ellipticity  of  the  bilinear  form  a(·,  ·)  and  the  fact  that  the  bilinear  form  b(·,  ·)  satisfies  an  inf-sup
condition. �

Collecting  all  terms  of  order  O(ε2),  neglecting  the  time  derivative  with  respect  to  the  pressure,  and  performing  the
time-averaging

〈w〉 :=  T−1
1

∫ t0+T1

t0

w dt,

we  arrive  at  the  compressible  Stokes  system

ρ0
∂v2

∂t
−  ∇  · σ2 =

〈
−ρ1

∂v1

∂t
−  ρ0[∇v1]v1

〉
in  �  ×  (0,  T  ],  (7a)

ρ0∇  ·  v2 =  〈−∇  · (ρ1v1)〉  in  �  ×  (0,  T  ], (7b)

v2 = g2 on  �D ×  (0,  T  ],  (7c)
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σ2n  =  0  on  �N ×  (0,  T  ], (7d)

v2(·,  0)  =  0,  p2(·,  0)  =  0  in  �,  (7e)

where g2 :=  −〈[∇v1]u〉  in  (7c)  and

σ2 =  ((σ2)ij)2
i,j=1, (σ2)ij :=  −p2δij +  2ηεij(v2)  +  δij(ξ  −  2η/3)∇  ·  v2.

The density  ρ2 can  be  obtained  via  the  constitutive  equation

p2 =  c2
0ρ2 in  �  ×  (0,  T  ].  (8)

The compressible  Stokes  system  (7a)–(7c)  is  used  as  a model  for  the  acoustic  streaming.
The weak  formulation  of  (7a)–(7c)  requires  the  computation  of  (v2,  p2)  ∈  Vg2

×  W ,  where

Vg2
:=  {v  ∈  H1((0,  T ),  H−1(�))  ∩  L2((0,  T  ),  H1(�))|v|�D =  g2},

W :=  H1((0,  T2);  L2(�)),

such that〈
ρ0

∂v2

∂t
, w
〉

+ a(v2,  w)  +  b(p2,  w)  =  (f,  w)0,� w  ∈  H1
0,�D

(�),  (9a)

b(q, v2)  =  (f,  q)0,�, q  ∈  L2(�),  (9b)

v2(·,  0)  =  0,  p2(·,  0)  =  0.  (9c)

Here, the  bilinear  forms  a(·,  ·),  b(·,  ·)  are  as  in  (5a),  (5b),  and  the  right-hand  sides  f,  f  are  given  by

f :=  −
〈

ρ1
∂v1

∂t
+  ρ0 [∇v1]v1

〉
, f = −〈ρ−1

0 ∇  · (ρ1 v1)〉.

Theorem 2.  If  f  ∈  L2(�),  f  ∈  L2(�),  and  g2 ∈ H1/2
00 (�D),  the  weak  formulation  (9a),  (9b)  of  the  compressible  Stokes

system admits  a unique  solution  (v2,  p2)  ∈  Vg2
×  W .  Moreover,  there  exists  a  constant  CT >  0 depending  on  T  such

that

||(v2,  p2)||Vg2 ×W ≤  CT2 (||f||0,� +  ||f  ||0,� +  ||g2||H1/2
00 (�D)

). (10)

Proof. The  proof  follows  along  the  same  lines  as  that  of  Theorem  1.  �

3. Reduced  order  modeling  based  shape  optimization

The performance  of  SAW  driven  microfluidic  biochips  can  be  significantly  improved  by  an  optimal  design  of  the
walls of  the  microchannels  and  the  reservoirs  as  well  as by  the  optimal  placement  of  the  IDT  in  order  to  obtain  a
maximum pumping  rate.  Another  design  issue  is  the  shape  optimization  of  pressure  driven  capillary  barriers  between
the microchannels  and  the  reservoirs  such  that  a  very  precise  and  bubble-free  filling  of  the  reservoirs  can  be  guaranteed.
For the  efficient  solution  of  these  optimal  design  problems,  in  previous  work  [5–7]  we  have  developed  an  adaptive
multilevel interior-point  method  of  barrier  type  featuring  a  predictor–corrector  continuation  method  with  an  adaptive
choice of  the  barrier  parameter  along  the  barrier  path.  The  predictor  relies  on  a  nested-iteration  type  tangent  continuation,
and the  corrector  is  a  Newton-multigrid  method  for  the  KKT  system.  Despite  the  fact  that  this  approach  leads  to  a
considerable reduction  in  the  computational  work  compared  to  more  standard  optimization  strategies  [7],  the  amount
of computational  time  is  still  significant,  and  there  is  a  need  for  further  reductions.  Such  reductions  can  be  achieved
by replacing  the  original  compressible  Stokes  system  (7a)–(7e)  in  the  optimization  problem  by  a reduced  order  model.
Many approaches  for  the  computation  of  reduced  order  models  exist,  such  as  Proper  Orthogonal  Decomposition  (POD),
Balanced Truncation  Model  Reduction  (BTMR),  Krylov  subspace  methods,  or  reduced  basis  methods.  See,  e.g.,  [11].
A crucial  requirement  is  that  the  error  between  the  solution  of  the  original  optimization  problem  and  the  optimization
problem governed  by  the  reduced  order  equations  can  be  controlled  and  made  small.  To  achieve  this,  one  needs  to
use a model  reduction  approach  which  provides  a  bound  for  the  error  between  the  so-called  input-to-output  maps  of
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the  original  full  order  model  and  the  reduced  order  model.  We  use  BTMR  because  it  provides  an  error  estimate  and
therefore our  approach  provides  a-priori  estimates  for  the  error  in  the  solutions  and  lets  the  user  control  the  size  of
the error  estimate.  Alternatively,  one  could  consider  other  approaches,  such  as interpolation  based  methods  [9,19].  We
comment more  on  this  issue  in  Remark  4  below.

We use  BTMR  combined  with  domain  decomposition  (DD).  BTMR  is  used  because  of  the  existence  of  error
bounds. However,  these  error  bounds  only  exist  for  linear  time  invariant  problems.  In  our  case,  the  design  parameters
determine the  domain  �.  Therefore  the  system  is  not  linear  time  invariant.  Fortunately,  only  a  small  portion  of  the
domain, corresponding  to  the  capillary  barriers  between  the  microchannels  and  the  reservoirs  are  modified.  Therefore
we use  DD  to  decompose  the  problem  into  a  part  which  is  governed  by  a linear  time  invariant  system  and  a  small  part
corresponding to  the  subdomain  in  which  the  domain  can  be  changed.  BTMR  is then  applied  to  the  large  subproblem
governed by  the  linear  time  invariant  system.  For  the  standard  time-dependent  Stokes  system,  such  a combined  domain
decomposition and  balanced  truncation  model  reduction  (DDBTMR)  approach  has  been  developed  and  analyzed  in
[4] (see  also  [3]  for  DDBTMR  applied  to  convection–diffusion  problems).  Here,  we  will  consider  DDBTMR  for  the
compressible Stokes  system  (7a)–(7e).

3.1.  Semi-discretization  of  the  compressible  Stokes  system

Let �(θ)  ⊂  R
2 be  a  bounded  domain  that  depends  on  design  variables  θ =  (θ1,  · ·  · ,  θd)T ∈  �,  where  θi,  1  ≤  i ≤  d,

are the  Bézier  control  points  of  a  Bézier  curve  representation  of  the  boundary  and

� :=  {θi ∈  R|θ(i)
min ≤  θi ≤  θ(i)

max, 1  ≤  i  ≤  d}.
We assume  that  the  boundary  ∂�(θ)  consists  of  an  inflow  boundary  �in(θ),  an  outflow  boundary  �out(θ),  and  a  lateral
boundary �lat(θ)  which  are  mutually  disjoint  such  that

∂�(θ)  = �̄in(θ)  ∪ �̄out(θ)  ∪ �̄lat(θ).

We set

Q(θ)  :=  �(θ)  ×  (0,  T  ),  �(θ)  :=  ∂�(θ)  ×  (0,  T  ),

�in(θ)  :=  �in(θ)  ×  (0,  T  ),  �lat(θ)  :=  �lat(θ)  ×  (0,  T  )  T >  0,

and consider  shape  optimization  problems  of  the  form

min
θ ∈ �

J(θ)  :=
T∫
0

∫
�(θ)

�(v(θ),  p(θ),  x,  t)dxdt,  (11)

subject to  (7a)–(7e),  where  the  integrand  � in  the  objective  functional  is  chosen  according  to  the  individual  design
problem.

For the  spatial  discretization  of  the  time-dependent  Stokes  system  we  may  use  one  of  the  standard  methods  such
as P2-P1  Taylor  Hood  elements  or  discontinuous  pressure  elements  [12,13,17]. We  will  discuss  this  in  more  detail  in
Subsection 3.3.  We  assume  that  the  simplicial  triangulation  Th of  the  spatial  domain  �(θ)  is  geometrically  conforming
and aligns  with  �in(θ),  �lat(θ)  and  �out(θ).  This  leads  to  the  semi-discrete  optimization  problem

min
θ ∈ �

J(θ)  :=
T∫
0

�(v,  p,  t, θ)dt,  (12a)

where v,  p  solve

E(θ)
d

dt

(
v(t)

p(t)

)
+ S(θ)

(
v(t)

p(t)

)
=
⎛⎝ g(θ)

1 (t)

g(θ)
2 (t)

⎞⎠ t  ∈  (0,  T ],  (12b)
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M(θ)v(0)  =  v(0),  (12c)

−B(θ)M(θ)−1v(0) +  g(θ)
2 (0)  =  0.  (12d)

Here, the  integrand  �(·)  in  (12a)  results  from  the  spatial  discretization  of  the  integral  � in  the  objective  functional  (11).
The block  matrix  E(θ)  and  the  discrete  Stokes  operator  S(θ)  in  (12b)  are  given  by

E(θ) :=
(

M(θ) 0

0 0

)
, S(θ)  :=

⎛⎝A(θ)  BT (θ)

B(θ)  0

⎞⎠ , (13)

where M(θ)  ∈  R
n×n,  A(θ)  ∈  R

n×n and  B(θ)  ∈  R
m×n denote  the  lumped  mass  matrix,  the  stiffness  matrix,  and  the  matrix

representation of  the  discrete  divergence  operator.  The  vector  g(θ)
2 (t)  ∈  R

m in  (12b)  stems  from  the  semi-discretization
of the  compressibility  condition  and  the  boundary  condition  at  the  inflow  boundary.  The  vector  v(0) refers  to  the  initial
velocity satisfying  (12d).  We  note  that  the  data  of  the  semi-discrete  problem  depend  on  the  design  variable  θ  due  to
the dependence  of  the  spatial  domain  on  θ.

The existence  and  uniqueness  of  a  solution  (v,  p) ∈ L2((0,  T  );  R
n)  ×  L2((0,  T  );  R

m/(KerBT ))  of  the  semi-
discretized equations  (12b),  (12c)  as  well  as  its  continuous  dependence  on  the  data  of  the  problem  is  a  consequence  of
the following  result  [4]  which  also  plays  a  prominent  role  with  regard to  the  application  of  BTMR  and  the  derivation
of upper  estimates  for  the  modeling  error.

Theorem  3.  Let  A,  M  ∈  R
n×n,  B  ∈ R

m×n,  m  <  n,  be  matrices  with  the  following  properties:

(i) M  is  symmetric  positive  definite.
(ii) A  is  positive  definite  (not  necessarily  symmetric) on  KerB,  i.e.,  there  exists  a  constant  α  >  0  such  that

vT Av  ≥  α||v||2, v  ∈  KerB.  (14)

(iii) B  has  full  row  rank  m.

Consider  the  initial  value  problem

E
d

dt

(
v(t)

p(t)

)
+ S

(
v(t)

p(t)

)
=
(

g1(t)

g2(t)

)
, t ∈ (0,  T  ],  (15a)

Mv(0) =  v(0), (15b)

where E,  S  are  as  in  (13)  and  g1 ∈  C([0,  T  ];  R
n),  g2,  dg2/dt  ∈  C([0,  T  ];  R

m)  and  v(0) ∈  R
n satisfies  −BM−1v(0) +

g2(0)  =  0.  Under  the  assumptions (i),  (ii)  and  (iii),  the  initial  value  problem  (15)  has  a  unique  solution
(v, p)  ∈  C([0,  T  ];  R

n)  ×  C([0,  T  ];  R
m/(KerBT )),  and  there  exist  constants  C1 ≥  0,  C2 ≥  0, depending  on  A,  B,  M

such that

|v||L2 ≤  C1||v(0)||  +  C2
(||g1||L2 +  ||g2||L2

)
,

||p||L2 ≤  C1||v(0)||  +  C2

(
||g1||L2 +  ||g2||L2 +  || d

dt
g2||L2

)
.

Proof. We  refer  to  the  proof  of  Theorem  2.1  in  [4].  �

3.2. Balanced  truncation  model  reduction

Balanced  truncation  model  reduction  (BTMR)  is  a model  reduction  technique  that  replaces  a large-scale  dynamical
system by  a system  of  substantially  lower  dimension  while  keeping  almost  the  same  response  characteristics  (cf.,  e.g.
[8,11] and  the  references  therein).  Originally  developed  for  systems  of  ordinary  differential  equations,  it  has  recently
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been  extended  to  descriptor  systems  [23,27,29,32]. In  particular,  BTMR  for  semidiscretized  Stokes  and  linearized
Navier–Stokes systems  has  been  studied  in  [4,23,29,32]. We  consider

M
d

dt
v(t)  =  −Av(t)  −  BT p(t)  +  Ku(t),  t  ∈  (0,  T  ), (16a)

0 = −Bv(t)  +  Lu(t),  t  ∈ (0,  T  ),  (16b)

z(t) =  Cv(t)  +  Fp(t)  +  Du(t),  t  ∈  (0,  T  ),  (16c)

Mv(0) =  v(0), (16d)

BM−1v(0) = Lu(0),  (16e)

and

−M
d

dt
λ(t)  =  −AT λ(t)  −  BT κ(t)  +  CT w(t),  t  ∈  (0,  T  ), (17a)

0 = −Bλ(t)  +  FT w(t),  t ∈  (0,  T  ), (17b)

q(t) =  KT λ(t)  +  LT κ(t)  +  DT w(t),  t ∈  (0,  T  ),  (17c)

Mλ(T )  =  λ(T ), (17d)

BM−1λ(T ) =  FT w(T  ),  (17e)

where the  matrices  M  ∈ R
n×n,  A  ∈  R

n×n and  B  ∈  R
m×n are  assumed  to  satisfy  the  assumptions  of  Theorem  3. Moreover,

K ∈Rn×r, L  ∈  R
m×r,  C ∈ R

s×n,  F  ∈  R
s×m, and  D  ∈  R

s×r. The  system  (17)  is  the  adjoint  system  corresponding  to  (16).
We will  see  later  that  systems  of  the  type  (17)  and  (16)  arise  within  the  optimality  system  corresponding  to  (12).

BTMR can  be  applied  to  (17)  and  (16)  by  eliminating  the  variables  p and  κ  via  projection.  We  choose  v(t) =
vH(t)  +  vP(t),  where

vP(t)  =  M−1BT (BM−1BT )
−1

Lu(t)  (18)

is a  particular  solution  of  (16b)  and  vH(t)  satisfies  0  =  BvH(t).  If  we  insert  v(t)  =  vH(t)  +  vP(t),  (18)  into  (16a–c),  we
obtain

M
dvH

dt
(t) =  −AvH(t)  −  BT p(t)  + B̃u(t)  −  BT (BM−1BT )

−1
L

du
dt

(t),  (19a)

0 = BvH(t),  (19b)

z(t) =  CvH(t)  +  Fp(t)  +  (D  +  CM−1BT (BM−1BT )
−1

L)u(t),  (19c)

where B̃ =  K  −  AM−1BT (BM−1BT )
−1

L.  Eq.  (19a  and  b)  imply  that

p(t) =  (BM−1BT )
−1
(

−BM−1AvH(t)  +  BM−1B̃u(t)  −  L
d

dt
u(t)

)
, (20)

and ΠT vH(t)  =  vH(t),  where  Π  =  I  −  BT (BM−1BT )
−1

BM−1 is an  oblique  projector  that  satisfies  Π2 =  Π,  ΠM  =
MΠT ,  null(Π)  =  range(BT )  and  range(Π)  =  null(BM−1). Inserting  (20)  into  (19a  and  c),  it  follows  that

ΠMΠT d

dt
vH(t)  =  −ΠAΠT vH(t)  +  ΠB̃u(t),  (21a)

z(t) = C̃ΠT vH(t)  + D̃u(t)  −  F(BM−1BT )
−1

L
d

dt
u(t),  (21b)

where C̃ =  C  −  F(BM−1BT )
−1

BM−1A  and D̃ =  D  +  CM−1BT (BM−1BT )
−1

L  +  F(BM−1BT )
−1

BM−1B̃.  Setting
v(0) =  Πv(0) +  (I  −  Π)v(0) and  using  (16e),  we  obtain  the  initial  condition

ΠMvH(0)  =  ΠMΠT vH(0)  =  Πv(0)(=:  v(0)
H ).  (21c)
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In  the  same  way,  we  transform  (17).  Setting  λ =  λH(t)  +  λP(t),  where  λP(t)  =  M−1BT (BM−1BT )
−1

FT w(t)  and
where λH solves

−ΠMΠT d

dt
λH(t)  =  −ΠAT ΠT λH(t)  +  ΠC̃

T
w(t),  (22a)

q(t) = B̃T
ΠT λH(t)  + D̃T w(t)  +  LT (BM−1BT )

−1
FT dw

dt
(t),  (22b)

MλH(T  )  =  Πλ(T ). (22c)

The derivation  of  (22)  from  (17)  is  analogous  to  the  derivation  of  (21)  from  (16)  and  therefore  we  have  omitted  the
details. We  note  that  the  transformed  system  (22)  is  the  adjoint  system  of  (21).

BTMR generates  projection  matrices  V, W  ∈ R
n×k with  k �  n  such  that

V = ΠT V, W  =  ΠT W,  and  WT MV  =  I.

The reduced  order  model  for  (21)  is  obtained  by  replacing  vH(t)  in  (21)  by  Vv̂(t)  and  multiplying  the  resulting
equation by  WT .  This  gives

d

dt
v̂(t)  =  −WT AVv̂(t)  +  WT B̃u(t),  (23a)

ẑ(t) = C̃Vv̂(t) + D̃u(t)  −  F(BM−1BT )
−1

L
d

dt
u(t),  (23b)

v̂(t) =  WT Πv(0). (23c)

Similarly, the  reduced  order  model  for  (22)  is  obtained  by  replacing  λH(t)  in  (22)  by  Wλ̂(t)  and  multiplying  the
resulting equation  by  VT . This  gives

− d

dt
λ̂(t)  =  −VT AT Wλ̂(t)  +  VT C̃

T
w(t),  (24a)

ĝ(t) = B̃T Wλ̂(t)  + D̃T w(t)  +  LT (BM−1BT )
−1

FT d

dt
w(t), (24b)

λ̂(t) =  VT Πλ(T ).  (24c)

If vH(0)  =  λH(T  )  =  0,  then  for  any  given  inputs  u, w  we  have

||z − ẑ||L2 ≤  2||u||L2 (σk+1 +  . .  . +  σn),  (25a)

||q − ĝ||L2 ≤  2||w||L2 (σk+1 +  . .  . +  σn),  (25b)

where σ1 ≥  . .  . ≥ σk >  σk+1 +  .  . .  +  σn ≥  0  are  the  so-called  Hankel  singular  values  that  are  computed  when  gener-
ating the  projection  matrices  V,  W.

Remark  4.

(i) To  compute  the  projection  matrices  V,  W  one  must  compute  approximations  to  the  so-called  controllability  and
observability Gramians,  which  are  solutions  of  associated  matrix  Lyapunov  equations.  For  Stokes  systems  this  is
described in  [23,32].  We  use  the  multishift  ADI  algorithm  described  in  [23],  which  is  itself  an  extension  of  the
algorithm in  [20]  to  descriptor  systems.  The  computational  cost  depends  on  the  size  m  +  n  of  the  Stokes  matrix  in
13, as  well  as  the  number  s  of  observations  and  the  number  r of  inputs.  Computation  of  approximate  controllability
and observability  Gramians  in  low  rank  factored  form  is  the  most  expensive  part.  As  we  will  discuss  in  Section  4,
in our  application  the  number  of  finite  element  nodes  on  the  interface  between  subdomains  �1 and  �2(θ)  lead  to
auxiliary controls  and  outputs  and  better  ways  to  compute  the  projection  matrices  V, W  for  problems  with  larger
number numbers  of  controls  and  observations  would  reduce  the  cost  of  the  reduced  order  model  computation.
In our  application,  the  one-time  cost  of  reduced  order  model  computation  is  amortized  over  several  optimization
iterations and  overall  leads  to  significant  computational  savings.
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The  BT  reduced  order  model  preserves  stability.  While  the  Stokes  matrix  S  in  the  full  order  state  equations  is
symmetric, the  matrix  VT AW  in  the  reduced  order  state  equations  (23a)  is  no  longer  symmetric.  However,  this
has negligable effect  on  the  performance  of  the  reduced  order  model.

(ii) The  error  bound  (25)  depends  on  the  sum  of  the  truncated  singular  values  σk+1 +  .  .  . +  σn.  For  large  scale
problems only  approximations  of  the  first  n1 �  n  singular  values  σ1,  .  . .  ,  σn1 are  computed.  We  determine  the
truncation index  k  as  the  smallest  integer  such  that  σk+1 <  tol σ1, see  Section  4.  Therefore,  we  cannot  compute
σk+1 +  . . . +  σn,  but  can  only  monitor  the  upper  bound  σk+1 +  .  .  .  +  σn1 +  (n  −  n1)σn1 or  the  more  pessimistic
upper bound  (n  −  k)σk+1.  If  the  Hankel  singular  values  decay  rapidly,  as  they  do  in  our  application,  these  upper
bounds seem  sufficient.

Decay  rates  of  Hankel  singular  values  have  been  studied  in  [10].  The  only  critical  parameter  for  our  system
is the  viscosity.  For  decreasing  viscosity  (increasing  Reynolds  number),  the  poles  approach  the  imaginary  axis.
However, for  the  microfluidic  flows  under  consideration,  the  Reynolds  number  is  close  to  one  so  that  stability
does not  become  an  issue.

(iii) The bound  (25)  holds  when  vH(0)  =  λH(T  ) =  0.  Inhomogeneous  initial  conditions  can  be  handled  as  discussed
in [22].

(iv) We will  use  the  bounds  (25)  to  derive  estimates  between  the  solution  of  the  original,  full  order  optimization
problem and  the  reduced  order  optimization  problem.  Any  other  model  reduction  methods  for  which  such  a  bound
is available  could  in  principle  be  used  as  well.  In  particular,  reduced  order  model  based  on  interpolation  and  Krylov
subspaces, which  are  nicely  surveyed  in  [9],  are  of  interest.  These  aim  at  minimizing  the  so-called  H2 error  of
the system,  which  is  slightly  different  than  (25).  The  extension  of  the  analysis  in  [4]  to  optimal  H2 reduced
order models,  the  efficient  computation  of  these  reduced  order  model  for  Stokes  type  systems,  and  numerical
comparisons with  BTMR  are  possible  future  research  tasks.

3.3. Domain  decomposition

We  consider  a decomposition  of  �(θ)  into  subdomains  �1, �2(θ)  such  that

�̄(θ) = �̄1 ∪ �̄2(θ),  �1 ∩  �2(θ)  =  ∅, �  := �̄1 ∩ �̄2(θ),  (26)

where �  stands  for  the  interface  between  the  subdomains.  In  our  application,  �2(θ)  corresponds  to  the  small  region
between the  microchannels  and  the  reservoirs.  This  is  the  only  subdomain  that  depends  on  the  design  variables  θ.  The
subdmain �1 is  independent  of  θ.  We  assume  that  the  objective  functional  can  be  split  accordingly

J(θ) :=  J1(v,  p)  +  J2(v(θ),  p(θ),  θ).  (27)

Here, J1(v,  p)  is  given  in  terms  of  observation  operators  C  : L2((0,  T  );  V)  →  L2((0,  T  );  (L2(�1)q)),
F : L2((0,  T );  L2

0(�))  →  L2((0,  T  );  (L2(�1))
q
) and  a  feedthrough  operator  D  : L2((0,  T  );  L2(�))  →

L2((0,  T  );  (L2(�1))
q
),  q  ∈  N.  For  a  given  function  d  ∈  L2((0,  T  );  (L2(�1))

q
),  we  define

J1(v,  p)  :=
T∫
0

∫
�1

|Cv  +  Fp  +  Du  −  d|2dxdt.  (28)

The discretization  needs  to  be  such  that  the  coupled  problem  is  solvable,  i.e.,  the  local  subproblems  corresponding
to the  subdomains  �1 and  �2(θ)  as  well  as  those  corresponding  to  the  interface  are  solvable.  The  global  problem
(12b)–(12d) has  a unique  solution  (v,  p)  ∈  L2((0,  T  );  R

n) ×  L2((0,  T );  R
m/(KerBT )).  Some  of  the  local  problems

associated with  the  subdomain  �1 or  �2(θ)  correspond  to  Stokes  subdomain  problems  with  Dirichlet  boundary  con-
ditions only.  Consequently,  for  these  subproblems  the  pressure  is  only  unique  up  to  a  constant.  To  ensure  that  the
subdomain solution  is  the  restriction  of  the  solution  of  (12b)–(12d)  to  the  subdomain,  we  split  the  subdomain  pressures
into a constant  and  a  subdomain  pressure  with  zero  spatial  average.  The  latter  is  determined  uniquely  as  the  solution  of
the subdomain  problem,  whereas  the  constant  is  determined  through  the  coupled  problems.  This  split  is  not  necessary
for subdomains  with  an  outflow  condition,  where  the  local  pressure  is unique.  However,  to  simplify  the  presentation,
we assume  that  the  split  is  made  for  both  subdomains.

In our  semidiscrete  problem  we  have  velocities  v1(t)  ∈  R
n1 , v2(t)  ∈  R

n2 , v�(t)  ∈ R
n� associated  with  �1,  �2(θ),

and �(θ),  respectively.  We  set  v(t)  =  (v1(t),  v2(t),  v�(t))T .  The  pressures  associated  with  �1,  �2(θ)  are  p1(t)  ∈  R
m1 ,
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p2(t)  ∈  R
m2 . Additionally,  we  have  constants  p0,1(t),  p0,2(t)  ∈  R.  We  set  p0(t)  =  (p0,1(t),  p0,2(t))T and  p(t)  =

(p1(t),  p2(t),  p0(t))T . Finally,  we  define  the  state  variables

x(t) :=  (v1,  p1,  v2,  p2,  v�,  p0)T ,  t  ∈  [0,  T  ].

With  this  discretization  and  partitioning  of  variables,  the  matrices  A(θ)  and  B(θ)  can  be  partitioned  as  follows

A(θ) =

⎛⎜⎝A11 0  A1�

0 A22(θ)  A2�(θ)

AT
1� AT

2�(θ)  A��(θ)

⎞⎟⎠ , B(θ)  =

⎛⎜⎝B11 0  B1�

0 B22(θ) B2�(θ)

0 0  B0(θ)

⎞⎟⎠ .

Likewise, the  matrices  K(θ),  L(θ)  and  the  lumped  mass  matrix  M(θ)  admit  the  decompositions

K(θ) =  (K1,  K2(θ),  K�(θ))T ,  L(θ)  =  (L1,  L2(θ),  L0(θ))T ,

M(θ) =  blockdiag(M1,  M2(θ),  M�(θ)).

We set

E(θ)  =

⎛⎜⎝E1 0  0

0 E2(θ)  0

0 0 E�(θ)

⎞⎟⎠ S(θ)  =

⎛⎜⎝ S1 0 S1�

0 S2(θ) S2�(θ)

ST
1� ST

2,�(θ) S�(θ)

⎞⎟⎠ ,

where the  submatrices  are  partitioned  accordingly,  and

N(θ)  =  (K1|L1|K2(θ)|L2(θ)|K�(θ)|L0(θ))T .

We further  denote  by  C1 ∈  R
q×n1 ,  F1 ∈  R

q×m1 ,  D1 ∈  R
q×r, d(t)  ∈  R

q,  t ∈ (0,  T  ),  the  matrices  and  the  vector  and  by
�(v2,  v�,  p2,  p0,  t,  θ)  the  functional  resulting  from  the  semi-discretization  of  the  inner  integrals  in  J2.  We  set

J(θ) :=  J1(v1,  p1,  p0)  +  J2(v2(θ),  v�(θ),  p2(θ),  p0(θ),  θ),  (29)

where J1 and  J2 are  given  by

J1(v1,  p1, p0)  = 1

2

T∫
0

|C1v1(t)  +  F1p1(t)  +  F0p0(t)  +  D1u(t)  −  d(t)|2dt,

J2(v2,  v�,  p2,  p0,  θ)  =
T∫
0

�(v2, v�, p2,  p0,  t,  θ)dt.

The semi-discretized,  domain  decomposed  shape  optimization  problem  can  be  formulated  according  to

min
θ ∈ �

J(θ)  (30a)

where x  =  (v1,  p1,  v2(θ),  p2(θ),  v�(θ),  p0(θ))T solves

P(θ)x(t) :=  E(θ)
d

dt
x(t)  +  S(θ)x(t)  =  N(θ)u(t)  t ∈  (0,  T  ],  (30b)

M(θ)v(0) =  v(0)(θ).  (30c)

Introducing Lagrange  multipliers  λ(t)  ∈  R
n,  κ(t)  ∈  R

m,  t  ∈  [0,  T  ],  that  are  partitioned  accordingly,  and  setting

μ(t) =  (λ1(t),  κ1(t),  λ2(t),  κ2(t),  λ�(t),  κ0(t))T ,

the Lagrangian  associated  with  (30a)–(30c)  is  given  by

L(x, μ,  θ)  :=  J(v,  p, θ)  +
T∫
0

μ(t)T (P(θ)x(t)  −  N(θ)u(t))dt,  (31)
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and  the  optimality  conditions  read

∇xL(x,  μ,  θ)  =  0,  ∇μL(x,  μ,  θ)  =  0,

∇θL(x,  μ,  θ)T (θ̃ −  θ)  ≥  0  ∀θ̃ ∈ �.
(32)

Due to  the  special  structure  of  A(θ),  etc.,  introduced  by  the  domain  decomposition,  the  optimality  conditions  (32)
can be  split  into  a  coupled  system  of  optimality  conditions  associated  with  the  subdomains  �1, �2(θ),  and  the  interface
�(θ). The  optimality  subsystem  associated  with  the  fixed  subdomain  �1 is exactly  of  the  form  (16),  (17),  were  parts
of the  inputs  Ku,  CT w  and  parts  of  the  outputs  z,  q  correspond  to  the  interface  conditions  between  �1 and  �(θ).  The
idea is  to  apply  BTMR  described  in  Section  3.2  to  this  optimality  subsystem  and  to  keep  the  full  order  model  for
the subproblems  associated  with  �2(θ)  and  �(θ).  This  leads  to  a reduced  order  optimality  system  that  has  exactly  the
same structure  as  (32),  but  is  of  much  smaller  size.  In  particular,  the  reduced  order  optimality  system  is the  optimality
system of  an  optimization  problem  of  the  form  (30),  but  where  the  large  submatrices  A11,  etc.,  and  variables  v1,  which
correspond to  the  fixed  subdomain  are  replaced  by  small  matrices Â11, etc.,  and  variables v̂1.

Denoting by  θ∗ and θ̂∗ the  optimal  designs  obtained  for  the  full  and  the  reduced  order  model,  respectively,  under  the
assumptions that  J  is  strictly  convex,  J1 does  not  depend  explicitly  on  the  pressure  p,  and  some  further  assumptions
on the  integrand  �,  it  can  be  shown  that

||θ∗ − θ̂∗||  ≤  C (σk+1 +  · ·  ·  +  σn) ,  (33)

where σ1 ≥  . .  .  ≥  σk >  σk+1 +  .  . .  +  σn ≥  0 are  the  Hankel  singular  values  provided  by  BTMR  for  the  �1 optimality
subsystem. We  refer  to  [4]  for  details.

4. Numerical  results

In  actual  numerical  simulations  of  acoustic  streaming,  we  consider  (2a)–(2e)  in  dimensionless  form  according  to

VT

L

dv1

dt
− VT 2

L3 (ν̃1�v1 + ν̃2∇(∇  ·  v1))  +  ∇p1 =  0  in  �  ×  (0,  T1],  (34a)

L3

c2
0VT 3

dp1

dt
+  ∇  · v1 =  0  in  �  ×  (0,  T1], (34b)

VT

L
v1 = du

dt
on  �D ×  (0,  T1],  σ1n  =  0 on  �N ×  (0,  T1],  (34c)

v1(·,  0)  =  0  ,  p1(·,  0)  =  0in  �,  (34d)

where the  parameters  and  their  meanings  are  shown  in  Table  1.  Similarly,  the  dimensionless  form  of  (7a)–(7e)  is  as
follows:

VT

L

dv2

dt
− VT 2

L3 (ν̃1�v2 + ν̃2∇(∇  · v2))  +  ∇p2 = 〈fv〉 in �  ×  R+, (35a)

Table 1
Numerical and physical parameters for the numerical simulation of acoustic streaming.

Parameter Value and units Description

V 1.0 × 10−1 m/s Dimensionless velocity scale
L 1.0 × 10−7 m Dimensionless length scale
T 1.0 × 10−8 s Dimensionless time scale
f 1.0 × 108 Hz Frequency of the SAW device
c0 1.484 × 103 m/s Small signal sound speed in water
ρ 1.0 × 103 kg/m3 Density of liquid
u0 1.0 × 10−9 m Maximal SAW displacement
Cd 8.06 × 103 1/m Damping parameter of the LSAW
ν̃1 1.002 × 10−6 m2/s Kinematic viscosity of water
ν̃2 1.002 × 10−6 m2/s Kinematic bulk viscosity of water
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Fig. 2. Left: pressure at t = 1.25 μs.  Right: velocity field v2 in m/s.

∇.v2 = 〈fp

〉
in �  ×  R+,  (35b)

v2 = 〈(∇v1)u〉 on  �D ×  R+, σ2n  =  0  on  �N ×  R+,  (35c)

v2(·,  0)  =  0,  p2(·,  0)  =  0  in  �,  (35d)

where

fv :=  −V 2T 2

L2 (∇.v1)v1 +  (∇v1)v1,  fp :=  − L2

T 2c2
0

∇ · (p1v1).

We note  that 〈fv〉 represents  the  time  averaged  sound  velocity  in  the  fluid  which  is  commonly  referred  to  as  the  effective
force.

4.1. Fluid  filled  cavity

In  this  subsection  we  model  parts  of  a microfluidic  biochip  with  a  square  domain  which  acts  as  a fluid  filled  cavity.
The main  purpose  of  this  subsection  is  to  validate  our  implementation  using  the  numerical  Example  6.1.1  from  [25]
as a benchmark.  We  consider  a  fluid-filled  square  cavity  �  =  [0,  1  mm]2 with  SAW  displacements  u  =  (u1,  u2)T

prescribed  at  the  bottom  by

u1(t,  x1)  =  0.6ε  exp(−Ĉdx1)  sin(2π(−k̂x1 +  ft)),

u2(t,  x2)  =  −ε  exp(−Ĉdx1)  cos(2π(−k̂x1 +  ft)).

with parameters  ε  =  u0/L, Ĉd =  CdL, k̂ =  L/λ, f̂ =  fT  , where  λ  =  24μm  is  the  SAW  wavelength  (cf.  Table  1).
The velocity  v1 is  set  to  zero  on  the  other  three  boundaries.  The  SAW  propagates from  left  to  right  with  exponential
attenuation. The  fluid  is  assumed  to  be  initially  at  rest,  i.e.,  v1 =  0,  p1 =  0.  We  use  P2-P1  Taylor-Hood  finite  elements
for discretization  in  space  and  the  Crank–Nicolson  scheme  for  discretization  in  time.

We iterate  until  a  periodicity  condition  for  the  pressure  is  fulfilled  at  some  time  tend : we  first  compute  pressures
for k  time  steps.  Then,  we  choose  an  offset  number  of  time  steps  m  = 2π

ωτ1
where  ω  =  2πf  and  τ1 =  0.1  denote  the

angular frequency  and  the  time  step  size.  We  vary  n  from  m  to  k  and  stop  as  soon  the  periodicity  condition∥∥∥∥∥ 1

m

n∑
i=n−m

p
(i)
1 −  p

(i−m)
1

∥∥∥∥∥
L2

/||p(n)
1 ||L2 ≤  ε.

is satisfied.  Otherwise,  we  go  back  and  increase  k.  We  assume  that  the  iteration  stops  for  some  n  =  N  which  implies
tend = τ1N.

Fig. 2  displays  the  computed  pressure  at  t  =  1.25μs  (left)  and  the  associated  velocity  field  v2 (right).  Both  coincide
well with  experimental  measurements  reported  in  [25].
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Fig. 3. Left: the largest Hankel singular values and the threshold 10−12σ1 for the fine grid problem. Right: the degrees of freedom Nv, Np for the
velocity and the pressure in the full order model and the degrees of freedom Nv̂ for velocity in the reduced order model for four different grids.

4.2.  BTMR  of  a  microfluidic  biochip

A simplified  biochip  geometry  as  used  for  measurements  in  [14]  consists  of  a  rectangular  channel  occupying  the
domain �  :=  (0,  10)  ×  (0,  1)  ∪  (0,  10)  ∪  (9,  10)  ∪  (0,  1)  ×  (0,  10)  ∪  (9,  10)  ×  (0,  10)  (in  mm2).  The  IDT  is  placed  at
x1 =  0  aligned  with  the  top  wall  of  the biochip.  Since  the  width  of  the  IDT  is  6  mm,  we  set  �in =  {0}  ×  (9.4,  10).  The
function u  describing  the  SAW  excitation  on  �in is  chosen  according  to

u1(t,  x1)  =  0.6ε  sin(2π(−k̂x1 +  ft)),

u2(t,  x1)  =  −ε  cos(2π(−k̂x1 +  ft)),

where  the  constants  are  the  same  as  in  Subsection  4.1.  We  further  choose  �out =  {10}  ×  (0,  1)mm2 which  ensures  the
uniqueness of  the  pressure  for  the  acoustic  streaming  subproblem.  On  �lat =  ∂�  \ (�in ∪  �out), the  velocity  is  set  to
be zero.  The  geometry  and  the  IDT  specifications  are  exactly  the  same  as  in  the  experimental  measurements  performed
in [14].

As a  first  task,  we  solve  the  acoustic  subproblem  (34).  We  iterate  from  t  =  0 to  tend =  1.0μs  with  time  step  τ1 =  0.1.
The computed  pressure  at  tend is  in  excellent  agreement  with  the  measurements  in  [14].  The  solution  (v1,  p1)  is  used
to generate  the  right-hand  side  and  the  boundary  data  for  the  acoustic  streaming  subsystem  (35)  which  is  solved  from
t = 0 to tf =  0.1  ms.

The second  task  is  to  apply  BTMR  to  the  subsystem  (35)  observing  the  vorticity  output  in  some  part  of  the  domain.
More specifically  consider  that  the  output  is  the  mean  of  the  integral  of  the  curl  of  the  velocity

z(t) =
∫

�obs

∇ × v2dx,  �obs =  (1.5,  2.5)  ×  (9,  10)mm2 (36)

in some  part  �obs of  the  domain.  The  semidiscretization  of  this  problem  described  in  Section  3.1  leads  to  a  system
(16), where  the  inputs  u  in  (16a)  correspond  to  the  inputs  u in  (35c)  and  the  outputs  z in  (16c)  correspond  to  (36).
This is  a  simulation  problem  and  BTMR  as  described  in  [23]  can  be  applied  directly.  No  domain  decomposition  or
optimization is  involved  yet.  The  purpose  of  this  numerical  example  is  to  explore  the  potential  of  BTMR  for  the  shape
optimization problem.

We  apply  BTMR  to  semidiscretizations  of  (35)  on  several  grids,  where  1 refers  to  the  coarsest  grid  and  4  refers  to
the finest  grid.  Fig.  3  shows  the  largest  Hankel  singular  values  for  problem  on  the  finest  grid.  We  note  that  the  computed
velocity obtained  from  the  full  order  model  on  the  finest  mesh  is  of  the  order  10−4 m/s  which  is  the  same  as  obtained
in the  experimental  results  in  [14].  For  BTMR,  we  truncate  the  Hankel  singular  values  by  selecting  the  smallest  index
k for  which  σk+1 <  10−12σ1.  The  threshold  10−12σ1 is  indicated  by  the  solid  line  in  Fig.  3  (left).  The  truncation  level
10−12σ1 is  small  compared  to  what  one  usually  sees  in  the  literature  for  BTMR.  This  truncation  level  is  motivated  by
the shape  optimization  problem  discussed  in  the  next  subsection  and  by  the  scaling  of  the  problem.  In  this  section  a
coarser level  could  have  been  used,  but  we  chose  10−12σ1 to  be  comparable  with  the  results  in  the  next  subsection.

The table  on  the  right  in  Fig.  3 shows  the  numbers  Nv and  Np of  velocity  and  pressure  degrees  of  freedom  (dof)  for
the full  order  models  generated  with  the  four  different  grids.  The  same  table  also  shows  the  velocity  degrees  of  freedom
Nv̂ in  the  reduced  order  model  (23).  In  particular,  we  see  that  BTMR  is very  effective  and  dramatically  reduced  the
size of  the  system.
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Fig. 4. Time response for the full (circles) and for the reduced order model (solid line).

To  illustrate  the  BTMR  error  bound  (25a)  we  show  the  time  domain  response  of  the  output  z for  the  full  order  model
and ẑ for  the  reduced  order  model  in  Fig.  4.  As  predicted  by  the  theory,  the  reduced  order  model  approximates  the  full
order model  very  accurately.

4.3.  DDBTMR  applied  to  shape  optimization  of  capillary  barriers

We consider  fluid  flow  described  by  subsystem  (35)  in  a  network  of  microchannels  and  reservoirs  on  top  of  a
microfluidic biochip  with  capillary  barriers  between  the  channels  and  the  reservoirs  that  are  designed  to  guarantee  a
precise filling  of  the  reservoirs  with  the  DNA  or  protein  probes.  The  objective  is  twofold:  firstly,  we  want  to  design  the
capillary barriers  in  such  a way  that  a  desired  velocity  profile  vd is  attained,  and  secondly,  we  want  to  minimize  the
vorticity ∇  ×  v  in  some  specific  part  of  the  network.

The computational  domain  �  ⊂  R
2 is  displayed  in  Fig.  5.  It  is decomposed  into  subdomains  �1 =  �  \ �2, and

�2 =  (1.5,  2.5)  ×  (9,  10)mm2.  The  boundary  ∂�  is  split  into  �in =  {0}  ×  (9.4,  10),  �out =  {10}  ×  (0,  1)mm2, and
�lat = ∂� \ (�in ∪  �out).  We  assume  that  an  IDT  of  width  6mm  is  placed  at  �in and  that  the  input  velocity  profile
(u1, u2)  is  the  same  as  in  Subsection  4.2.  The  forces  (fv,  fp)  in  �  × (0,  T  )  are  computed  by  solving  the  acoustic
subproblem (34)  for  0  =  t0 ≤  t ≤  tend =  1μs  with  step  size  τ1 =  0.1  and  is  equal  to  the  right  hand  side  in  (35a-b).  We
further choose  a  constant  velocity  profile  vin(x1,  x2)  on  �in × (0,  T  )  as  given  by  (35c),  outflow  boundary  conditions
on �out ×  (0,  T  ),  and  no-slip  conditions  on  �lat ×  (0,  T  ). The  objective  is  to  design  the  shape  of  the  top  �2,T and
the bottom  �2,B of  ∂�2 in  such  a  way  that  a prescribed  velocity  profile  vd is achieved  in  �2 ×  (0,  T  )  and  that  the
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Fig. 5. The reference domain �ref (left, in (m)) and the optimal domain (right, in (m)).
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vorticity  is  minimized  in  �obs (two  bulb  shaped  structures  associated  with  the  lower  reservoir  in  Fig.  5).  The  subdomain
�2 is  parameterized  by  representing  the  top  and  bottom  boundary  by  Bézier  curves  with  dT and  dB control  points,
respectively. This  leads  to  a parametrization  �2(θ)  of  �2 with  parameters  θ  ∈RdT +dB . We  use  dT =  dB =  6.

The shape  optimization  problem  amounts  to  the  minimization  of

J(θ) =
tend∫

0

∫
�obs

|∇  ×  v(x,  t)|2dxdt  +
tend∫

0

∫
�2(θ)

|v(x,  t)  −  vd(x,  t)|2dxdt,  (37)

subject to  subsystem  (35)  and  design  parameter  constraints

θmin ≤ θ ≤ θmax,

where  tend =  0.1  ms.  The  bounds  θmin,  θmax on  the  design  parameters  are  chosen  such  that  the  design  constraints  are
never active  in  this  example.  The  optimal  domain  �(θ∗) is  shown  in  Fig.  5.

We consider  a  geometrically  conforming  simplicial  triangulation  Th(�)  of  �  that  aligns  with  the  decomposition
into the  subdomains �1 and  �2 as  well  as  the  respective  boundaries.  The  semidiscretization  in  space  is performed
as described  in  Subsections  3.1  and  3.3.  Let  N

(1)
v , N

(2)
v , N�

v be  the  number  of  velocity  degrees  of  freedom  in  the

subdomains �̄1 \ �, �̄2 \  �  and  in  �,  respectively,  and  set  Nv =  N
(1)
v +  N

(2)
v +  N�

v . Similarly,  let  N(1)
p ,  N(2)

p be  the

number of  pressure  degrees  of  freedom  in  the  subdomains �̄1, �̄2 and  let  Np =  N(1)
p +  N(2)

p be  the  total  number  of
pressure degrees  of  freedom.

We solve  the  semi-discretized  optimization  problems  are  solved  using  a projected  BFGS  method  with  Armijo  line
search [24].  The  optimization  algorithm  is  terminated  when  the  norm  of  the  projected  gradient  is  less  than  ε  =  2  ×  10−8.
We use  automatic  differentiation  [18,30]  to  compute  the  derivatives  with  respect  to  the  design  variables  θ.

As before,  the  BTMR  of  the  optimality  subsystem  is  computed  using  the  approach  described  in  [23].  For  BTMR,  we
truncate the  Hankel  singular  values  by  selecting  the  smallest  index  k for  which  σk+1 <  10−12σ1.  We  apply  DDBTMR
to semidiscretizations  generated  using  four  grids.  Fig.  6  shows  the  largest  Hankel  singular  values  computed  for  the
fine grid  problem.  The  threshold  10−12σ1 is  indicated  by  the  solid  line  in  Fig.  6  (left).  The  table  in  Fig.  6  shows  the
sizes N

(1)
v ,  Nv of  the  full  order  models  on  the  four  grids  as  well  as the  sizes  N

(1)
v̂ ,  Nv̂ of  the  reduced  order  models  in

subdomain �1 and  in  �.  Note  that  we  apply  BTMR  only  on  subdomain  �1. For  the  fine  grid,  BTMR  reduced  the  size  of
the �1 subproblem  from  N

(1)
v =  48324  to  N

(1)
v̂ =  766.  The  velocity  degrees  of  freedom  in  �2 ∪  �  are  not  reduced.  On

the fine  grid  these  are  N
(2)
v +  N�

v =  914.  Therefore,  the  reduced  order  problem  has  Nv̂ =  914  +  766  =  1680  degrees
of freedom.

We  notice  that  the  reduction  by  BTMR  is  not  as  large  as  the  one  reported  for  the  simulation  problem  in  the
previous subsection.  There  are  two  reasons  for  this.  One  reason  is  that  in  the  simulation  problem  reported  in  the
previous subsection  we  had  only  one  observation.  Now  the  observations  are  determined  by  the  semidiscretization  of
∇ × v(x,  t),  x ∈  �obs.  See  (37).  Thus  the  number  m  of  observations  is determined  by  the  degrees  of  freedom  in  �obs.
The second  reason  is  that  the  subsystem  corresponding  to  �1 involves  auxiliary  inputs  and  outputs  that  are  determined
by the  interface  conditions  between  subdomains  1  and  2. Thus,  the  number  of  inputs  and  outputs  for  the  subsystem
corresponding to  �1 is  larger  than  they  were  in  the  example  problem  discussed  in  the  previous  subsection.  Therefore,
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Fig. 6. Left: the largest Hankel singular values computed for the fine grid problem and the threshold 10−12σ1. Right: the number of m of observations,
the numbers N
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v , Nv of velocity degrees of freedom in subdomain �1 and in �, respectively, for the full order model, and the number N

(1)
v̂ , Nv̂ of

velocity degrees of freedom in subdomain �1 and in �, respectively, for the reduced order model.
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Table 2
Optimal shape parameters θ∗ and θ̂∗ computed by minimizing the full and the reduced order model.

θ∗ (9.8833, 9.7467, 9.7572, 9.8671, 9.1336, 9.2015, 9.1971, 9.1310)×10−3

θ̂∗ (9.8694, 9.7374, 9.7525, 9.8628, 9.1498, 9.2044, 9.1895, 9.1204)×10−3

the  reduction  achieved  by  BTMR  on  the  �1 subsystem  is less.  Of  course,  since  the  �2(θ)  subsystem  is  not  reduced,
this problem  size  will  also  determine  the  size  of  the  coupled  reduced  order  problem,  indicated  by  Nv̂.

The constant  C  in  the  estimate  (33)  for  the  error  between  the  optimal  design  parameters  computed  by  the  full
and the  reduced  order  problems,  respectively,  depends  on  quantities  like  α in  Theorem  3(ii),  derivatives  of  A(θ) with
respect to  θ,  etc.,  which  in  turn  depend  on  the  application  data  given  in  Table  1.  Numerical  experiments  indicate  that
for the  current  scaling  of  the  problem,  the  constant  C  in  the  estimate  (33)  is large.  Therefore,  we  require  a rather  small
truncation level  of  σk+1 <  10−12σ1 for  the  Hankel  singular  values.

The optimal  shape  parameters  θ∗ and θ̂∗ computed  by  minimizing  the  full  and  the  reduced  order  model,  respectively,
are shown  in  Table  2.  For  the  finest  grid,  the  error  between  the  full  and  the  reduced  order  model  solutions  is  ||θ∗ − θ̂∗||  =
3.9165 · 10−5.

5.  Conclusion

We  have  applied  model  reduction  to  the  simulation  and  shape  optimization  of  a  microfluidic  biochip.  After  application
of a homogenization  approach  for  a proper  separation  of  the  time  scales,  the  fluid  in  the  biochip  is  modeled  by  the
compressible Stokes  equations.  The  shape  variation  of  parts  of  the  biochip  introduces  a  nonlinearity  into  the  problem,
which is  spatially  localized.  To  obtain  a reduced  order  model  of  the  problem  with  the  property  that  the  error  between
the solution  of  the  original  shape  optimization  problem  and  the  shape  optimization  problem  governed  by  the  reduced
order equations  can  be  controlled  and  made  small,  we  integrate  domain  decomposition  and  balanced  truncation  model
reduction. Domain  decomposition  is  used  to  separate  the  nonlinear  subsystem  from  the  linear  one,  and  to  state  the
interface conditions  between  the  two.  Balanced  truncation  model  reduction  is  used  to  reduce  the  linear  subsystem.
We use  BTMR  because  it  provides  an  error  estimate  for  the  linear  subproblem.  We  extend  this  error  estimate  to
obtain the  desired  error  estimate  for  the  solution  of  the  shape  optimization  problem  obtained  with  the  reduced  order
model.

Numerical experiments  show  the  validity  of  our  approach.  In  particular,  the  one-time  cost  of  reduced  order  model
computation is  amortized  over  several  optimization  iterations  and  model  reduction  overall  leads  to  significant  compu-
tational savings,  while  delivering  a  solution  to  the  shape  optimization  problem  with  guaranteed  error  bounds.

There are  several  directions  for  future  research.  The  computational  cost  of  our  model  reduction  approach  depends
on the  number  s of  observations  and  the  number  r of  inputs.  In  our  application  the  number  of  finite  element  nodes  on
the interface  between  subdomains  �1 and  �2(θ)  lead  to  auxiliary  controls  and  outputs.  Faster  approaches  to  compute
the projection  matrices  for  problems  with  larger  number  numbers  of  controls  and  observations  would  reduce  the  cost
of the  reduced  order  model  computation.

In principle  other  model  reduction  methods  than  balanced  truncation  can  be  used.  Reduced  order  models  based  on
interpolation and  Krylov  subspaces  are  interesting  candidates.  These  aim  at  minimizing  the  so-called  H2 error  of the
system, which  is  slightly  different  than  the  error  bound  given  by  balanced  truncation  (see  [9,19]).  The  extension  of the
analysis in  [4]  to  optimal  H2 reduced  order  models,  the  efficient  computation  of  these  reduced  order  model  for Stokes
type systems,  and  numerical  comparisons  with  BTMR  are  possible  future  research  tasks.

References

[1] H. Antil, A. Gantner, R.H.W. Hoppe, D. Köster, K.G. Siebert, A. Wixforth, Modeling and simulation of piezoelectrically agitated acoustic
streaming on microfluidic biochips, in: Domain Decomposition Methods in Science and Engineering XVII, U. Langer, et al. (Eds.), Lecture
Notes in Computational Science and Engineering, vol. 60, Springer, Berlin–Heidelberg–New York, 2008, pp. 305–312.

[2] H. Antil, R. Glowinski, R.H.W. Hoppe, C. Linsenmann, T.W. Pan, A. Wixforth, Modeling, simulation, and optimization of surface acoustic
wave driven microfluidic biochips, J. Comput. Math. 28 (2010) 149–169.

[3] H. Antil, M. Heinkenschloss, R.H.W. Hoppe, D.C. Sorensen, Domain decomposition and model reduction for the numerical solution of PDE
constrained optimization problems with localized optimization variables, Comput. Vis. Sci. (2010).



                                                                              2003

[4] H. Antil, M.  Heinkenschloss, R.H.W. Hoppe, Domain decomposition and balanced truncation model reduction for shape optimization of the
Stokes system. Optim. Methods Software, doi:10.1080/10556781003767904,  (2010).

[5] H. Antil, R.H.W. Hoppe, C. Linsenmann, Path-following primal-dual interior-point methods for shape optimization of stationary flow problems,
J. Numer. Math. 11 (2007) 81–100.

[6] H. Antil, R.H.W. Hoppe, C. Linsenmann, Adaptive path following primal dual interior point methods for shape optimization of linear and
nonlinear Stokes flow problems, in: Lecture Notes in Computer Science, vol. 4818, Springer, Berlin–Heidelberg–New York, 2008, pp. 259–266.

[7] H. Antil, R.H.W. Hoppe, C. Linsenmann, Optimal design of stationary flow problems by path-following interior-point methods, Control Cybern.
37 (2008) 771–796.

[8] A.C. Antoulas, Approximation of Large-scale Systems, SIAM, Philadelphia, 2005.
[9] A.C. Antoulas, C.A. Beattie, S. Gugercin, Interpolatory model reduction of large-scale dynamical systems, in: J. Mohammadpour, K. Grigoriadis

(Eds.), Efficient Modeling and Control of Large-scale Systems, Springer, Berlin–Heidelberg–New York, 2010, pp. 3–58.
[10] A.C. Antoulas, D.C. Sorensen, Y. Zhou, On the decay rate of Hankel singular values and related issues, Syst. Control Lett. 46 (2002) 323–342.
[11] P. Benner, V. Mehrmann, D.C. Sorensen (Eds.), Dimension Reduction of Large-scale Systems. Lecture Notes in Computational Science and

Engineering, vol. 45, Springer, Berlin–Heidelberg–New York, 2005.
[12] D. Braess, Finite Elements. Theory, Fast Solvers and Applications in Elasticity Theory, 3rd ed., Cambridge University Press, Cambridge, 2007.
[13] F. Brezzi, M.  Fortin, Mixed and Hybrid Finite Element Methods, Springer, Berlin–Heidelberg–New York, 1991.
[14] M.A. Fallah, SAW Induced Acoustic Streaming in Microchannels of Different Geometry, Master’s thesis, Institute of Physics, University of

Augsburg, 2008.
[15] T. Franke, A. Wixforth, Microfluidics for miniaturized laboratories on a chip, ChemPhysChem 9 (2008) 2140–2156.
[16] A. Gantner, R.H.W. Hoppe, D. Köster, K.G. Siebert, A. Wixforth, Numerical simulation of piezoelectrically agitated surface acoustic waves

on microfluidic biochips, Comput. Vis. Sci. 10 (2007) 145–161.
[17] V. Girault, P.-A. Raviart, Finite Element Methods for Navier–Stokes Equations. Theory and Algorithms, Springer, Berlin–Heidelberg–New

York, 1986.
[18] A. Griewank, A. Walther, Evaluating Derivatives. Principles and Techniques of Algorithmic Differentiation, 2nd ed., SIAM, Philadelphia,

2008.
[19] S. Gugercin, A.C. Antoulas, C. Beattie, H2 model reduction for large-scale linear dynamical systems, SIAM J. Matrix Anal. Appl. 30 (2008)

609–638.
[20] S. Gugercin, D.C. Sorensen, A.C. Antoulas, A modified low-rank Smith method for large-scale Lyapunov equations, Numer. Algorithms 32

(2003) 27–55.
[21] Z. Guttenberg, H. Muller, H. Habermuller, A. Geisbauer, J. Pipper, J. Felbel, M.  Kielpinski, J. Scriba, A. Wixforth, Planar chip device for PCR

and hybridization with surface acoustic wave pump, Lab Chip 5 (2005) 308–317.
[22] M. Heinkenschloss, T. Reis, A.C. Antoulas, Balanced Truncation Model Reduction for Systems with Inhomogeneous Initial Conditions,

Technical Report TR09–29, Department of Computational and Applied Mathematics, Rice University, 2009.
[23] M.  Heinkenschloss, D.C. Sorensen, K. Sun, Balanced truncation model reduction for a class of descriptor systems with application to the Oseen

equations, SIAM J. Sci. Comput. 30 (2008) 1038–1063.
[24] C.T. Kelley, Iterative Methods for Optimization, SIAM, Philadelphia, 1999.
[25] D. Köster, Numerical simulation of acoustic streaming on SAW-driven biochips, SIAM J. Comp. Sci. 29 (2007) 2352–2380.
[26] J.L. Lions, E. Magenes, Non-homogeneous Boundary Value Problems and Applications, vol. I, II, Springer, Berlin–Heidelberg–New York,

1972.
[27] V. Mehrmann, T. Stykel, Balanced truncation model reduction for large-scale systems in descriptor form, in: Dimension Reduction of Large-

scale Systems, P. Benner, V. Mehrmann, D.C. Sorensen (Eds.), Lecture Notes in Computational Science, Engineering, vol. 45, Springer,
Berlin–Heidelberg–New York, 2005, pp. 83–115.

[28] J. Pollard, B. Castrodale, Outlook for DNA Microarrays: Emerging Applications and Insights on Optimizing Microarray Studies, Report,
Cambridge Health Institute, Cambridge, 2003.

[29] C.W. Rowley, Model reduction for fluids, using balanced proper orthogonal decomposition, Int. J. Bifurcat. Chaos 15 (2005) 997–1013.
[30] S.M. Rump, INTLAB - INTerval LABoratory, in: Tibor Csendes (Ed.), Developments in Reliable Computing, Kluwer Academic Publishers,

Dordrecht, 1999, pp. 77–104, http://www.ti3.tu-harburg.de/rump/.
[31] H.M. Shapiro, Practical Flow Cytometry, Wiley-Liss, New York, 2003.
[32] T. Stykel, Balanced truncation model reduction for semidiscretized Stokes equation, Linear Algebra Appl. 415 (2006) 262–289.
[33] A. Wixforth, Acoustically driven programmable microfluidics for biological and chemical applications, JALA 11 (2006) 399–405.
[34] A. Wixforth, J. Scriba, G. Gauer, Flatland fluidics, mst news 5 (2002) 42–43.
[35] L.Y. Yeo, J.R. Friend, Ultrafast microfluidics using surface acoustic waves, Biomicrofluidics 3 (2009) 012002–012023.

http://dx.doi.org/10.1080/10556781003767904
http://www.ti3.tu-harburg.de/rump/

	Reduced order modeling based shape optimization of surface acoustic wave driven microfluidic biochips
	1 Introduction
	2 Modeling and simulation of piezoelectrically actuated acoustic streaming in microfluidic biochips
	3 Reduced order modeling based shape optimization
	3.1 Semi-discretization of the compressible Stokes system
	3.2 Balanced truncation model reduction
	3.3 Domain decomposition

	4 Numerical results
	4.1 Fluid filled cavity
	4.2 BTMR of a microfluidic biochip
	4.3 DDBTMR applied to shape optimization of capillary barriers

	5 Conclusion
	References


