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1. Introduction

A computationally attractive methodology for the numerical simulation of the motion and deformation of elastic and
viscoelastic bodies in external flows is the immersed boundary method (IB), which has been originally developed by Peskin
[31] and further studied in [11,32–34,36]. The IBM uses an Eulerian coordinate system for the flow equations and Lagrangian
coordinates for the boundary of the immersed bodies together with appropriate interaction equations to transform Eulerian
to Lagrangian quantities and vice versa. The interaction equations feature multidimensional Dirac delta functions that have
to be approximated appropriately within a finite difference approach. More recently, a variational formulation of the IBM has
been provided in [8–10] as a basis for a finite element realization referred to as the Finite Element Immersed Boundary Meth-
od (FE-IB). Both for the classical IB and the FE-IB, the most common approach with regard to discretization in time is to use
the Backward Euler (BE) method for the flow equations and the Forward Euler (FE) method for the equation describing the
motion and deformation of the immersed bodies which gives rise to the BE/FE IB and BE/FE FE-IB, respectively. However,
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these schemes typically require a CFL-type condition (cf., e.g., [9,16]). Better stability properties can be achieved by using the
BE method as a time integrator for both equations thus resulting in a fully implicit scheme. Recent applications of the BE/BE
IB can be found in [25–28], whereas the unconditional stability of the BE/BE FE-IB has been shown in [9]. For each time step,
the implementation of the fully implicit scheme requires the solution of a nonlinear system of equations for which a New-
ton-type method would be the method of choice using the result of the previous step as an initial guess. Sudden changes in
the energy of the system, for instance due to large deformations of the immersed bodies, may lead to significant restrictions
of the time step size in order to guarantee convergence of the Newton-type iteration. Such scenarios can be handled ade-
quately by an adaptive choice of the time step size which can be realized by treating the problem as a parameter dependent
one and using a predictor–corrector continuation in time based on the affine covariant convergence theory of Newton-type
methods (cf., e.g., [15] and the references therein). It is the purpose of this contribution to provide such an adaptive contin-
uation strategy for the fully implicit FE-IB. The paper is organized as follows:

In Section 2, we begin with a brief overview on the FE-IB which is based on the variational formulation of the problem
(Section 2.1) and then derive the fully implicit scheme giving rise to the solution of a nonlinear system of equations at each
time step (Section 2.2). In particular, we show that the associated nonlinear map admits an invertible Jacobian under some
constraints on the time step size (Theorem 2.5) and discuss scenarios for which we may encounter severe time step restric-
tions. Section 3 is devoted to the adaptive continuation method which is a predictor–corrector continuation method in time.
It uses classical continuation as a predictor and a combination of the ordinary and the simplified Newton method as a cor-
rector featuring an adaptive choice of the continuation steplength based on information of the previous successful contin-
uation step and a monotonicity test for convergence monitoring. In Section 4, we provide two representative examples,
namely the motion and deformation of a red blood cell through a thin capillary (Example 1) and under the influence of a
quadrupolar fluid force (Example 2). We address the shortcomings of the BE/FE FE-IB and illustrate the superior performance
of the adaptive continuation approach based on the fully implicit scheme.
2. Finite element immersed boundary method

We consider the motion and deformation of viscoelastic bodies such as vesicles and red blood cells immersed in an
incompressible external fluid. The classical IB as developed in [31] uses three groups of equations:

� the incompressible Navier–Stokes equations describing the motion of the fluid within an Eulerian coordinate system,
� the material elasticity equations describing the deformation of the immersed bodies in terms of the change of the total

elastic energy within a Lagrangian coordinate system,
� the interaction equations which transform Eulerian into Lagrangian quantities and vice versa.

The FE-IB has been originally studied in [8] and [9]. It relies on the variational formulation of these equations which will
be addressed in Section 2.1. The fully implicit FE-IB which will be dealt with in Section 2.2 is based on finite element approx-
imations of the variational equations in space and implicit time discretizations by the Backward Euler (BE) scheme both for
the semi-discretized Navier–Stokes and interaction equations. Therefore, it will be referred to as the BE/BE FE-IB.

2.1. Variational formulation of the IB

We assume X = (a,b) � (c,d), a < b, c < d, to be a domain in R2 with boundary C ¼ Cin [ Clat [ Cout; where Cin :¼ {a} � (c,d),
Cout :¼ {b} � (c,d), and Clat :¼ Cbot [Ctop, Cbot :¼ (a,b) � {c},Ctop :¼ (a,b) � {d}. We set Q :¼X � (0,T),Rin :¼ Cin

� (0,T),Rlat :¼ Clat � (0,T),Rout :¼ Cout � (0,T), where T > 0. We assume that the fluids has density q > 0 and dynamic viscos-
ity g > 0. We denote by u = u(x, t) and p = p(x, t), (x, t) 2 Q, the velocity and the pressure. We further refer to
e(u) :¼ (ru + (ru)T)/2 as the linearized strain tensor and to r (u,p) :¼ � pI + 2me(u) as the stress tensor. Assuming a force
density F in Q, periodic boundary conditions in terms of a prescribed stationary velocity g at the inflow boundary Rin and
the outflow boundary Rout, zero velocity on Rlat, and an initial velocity u(0) at time t = 0, the incompressible Navier Stokes
equations read
q
@u
@t
þ ðu �rÞu

� �
� gDuþrp ¼ F in Q ; ð2:1aÞ

r � u ¼ 0 in Q ; ð2:1bÞ
u ¼ g ¼ ðg;0ÞT ; g P 0 on R0; R0 2 fRin;Routg; ð2:1cÞ
u ¼ 0 on Rlat; ð2:1dÞ
uð�;0Þ ¼ uð0Þ in X: ð2:1eÞ
For the variational formulation of (2.1a)–(2.1e) we use standard notation from Lebesgue and Sobolev space theory (cf., e.g.,
[18,40]). In particular, for a bounded domain X � Rd; d 2 N; we denote by Lp(X) and Lp(X) :¼ Lp(X)d,1 6 p 61, the Banach
space of to the power p square integrable scalar- and vector-valued functions on X. In particular, for p = 2 the spaces L2(X)
and L2(X) are Hilbert spaces, equipped with the inner product (�,�)0,X and the associated norm k � k0,X. L2

0ðXÞ stands for the
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subspace of functions with zero integral mean. Further, we denote by HsðXÞ; s 2 Rþ; the Sobolev space of vector-valued func-
tions with the inner product (�,�)s,Xand the associated norm k � ks,X. The space Hs

0;C0 ðXÞ is the subspace with vanishing trace on
C0 # C. We will omit the subindex C0, if C0 = C. H�s(X) stands for the dual space of Hs

0ðXÞ with h�,�i referring to the dual
product. The space HsðXÞ � HsðXÞ is the subspace of all ujX where u 2 HsðRdÞ and hujX;ui ¼ hu; ~ui for all u 2 C10 ðXÞ with
~u referring to the continuation of u by zero outside X. We denote byHs�1/2(C0),s P 1, the trace space of vector-valued func-
tions on C0. We further refer to Hs�1=2

00 ðC0Þ as the space of functions whose extensions by zero to CnC0 belong to Hs�1/2(C).
Finally, we denote by Ck(X) and CkðXÞ; k 2 N0 the Banach spaces of k-times continuously differentiable scalar- and vec-
tor-valued functions on X.

Moreover, for T > 0 and a Banach space Z(Z) of scalar (vector-valued) functions, we denote by L2((0,T),Z) (L2((0,T),Z)) the
Hilbert space and by C([0,T];Z)(C([0,T],Z)) the Banach space of functions v: [0,T] ? Z(v:[0,T] ? Z). The spaces
Hsðð0; TÞ; ZÞ; s 2 Rþ; ðHsðð0; TÞ;ZÞÞ are defined likewise.

We introduce the function spaces
Vð0; TÞ :¼ H1ðð0; TÞ;H�1ðXÞÞ \ L2ðð0; TÞ;H1ðXÞÞ;
Wð0; TÞ :¼ fw 2 Vð0; TÞjwjR0 ¼ g;wjRlat

¼ 0g;
Qð0; TÞ :¼ L2ðð0; TÞ; L2

0ðXÞÞ;
where R0 = Rin [Rout. Assuming FðtÞ 2 H�1ðXÞÞ; gðtÞ 2 H1=2
00 ðR

0Þ; t 2 ð0; TÞ, and u(0) 2 L2(X), the weak formulation of the Na-
vier–Stokes equations (2.1a)–(2.1e) requires the computation of (u,p) 2 (W(0,T) \ L1(Q)) � Q(0,T) such that for all v 2 H1

0ðXÞ
and w 2 L2

0ðXÞ there holds
q
@u
@t
;v

� �
þ aðu;vÞ � bðp;vÞ ¼ ‘ðvÞ; ð2:2aÞ

bðw;uÞ ¼ 0; ð2:2bÞ
uð�;0Þ ¼ uð0Þ: ð2:2cÞ
Here, a(�, �), b(�, �), and the functional ‘ (�) are given by
aðu;vÞ :¼ ðqðu �rÞu;vÞ0;X þ ðgru;rvÞ0;X ð2:3aÞ
bðp;vÞ :¼ ðp;r � vÞ0;X; ‘ðvÞ :¼ hF;vi: ð2:3bÞ
We further suppose that X is filled with a suspension of N viscoelastic particles immersed in the carrier fluid such that the
subdomains BðiÞt � X;1 6 i 6 N; with BðiÞt \ BðjÞt ¼ ;;1 6 i – j 6 N; describe the spatial location of the particles at time t 2 [0,T].
The boundaries @BðiÞt are supposed to be non-selfintersecting closed curves. For ease of notation, we consider the case N = 1
and write Bt instead of Bð1Þt . The generalization to N > 1 is obvious. We assume that the boundary @B0 of the initial configu-
ration B0 has length L :¼ j@B0j and denote by q 2 [0,L] the Lagrangian coordinate labeling a material point on @B0. We further
refer to X(q, ,t) = (X1(q, t),X2(q, t))T as the position of that point at time t 2 (0,T]. We denote by
EeðXðq; tÞÞ ¼ je

2
@X
@q
ðq; tÞ

���� ����2; EbðXðq; tÞÞ ¼ jb

2
@2X
@q2 ðq; tÞ
�����

�����
2

; ð2:4Þ
the local energy densities on the immersed elastic boundary @ Bt, where je > 0 and jb > 0 denotes the elasticity coefficient
with respect to elongation-compression and bending, respectively. Then,
EðtÞ :¼ EeðtÞ þ EbðtÞ; t 2 ð0; TÞ; ð2:5Þ

EeðtÞ :¼
Z L

0
EeðXðq; tÞÞdq; EbðtÞ :¼

Z L

0
EbðXðq; tÞÞdq;
is the associated total energy consisting of the elastic energy Ee(t) and the bending energy Eb(t). The local force density f is
given by f(q, t) = �E0(X(q, t)), where E0 stands for the the Gâteaux derivative of E.

We introduce the function space
H2
perð½0; L�Þ :¼ fY 2 H2ðð0; LÞÞj@kYð0Þ=@qk ¼ @kYðLÞ=@qk; k ¼ 0;1g; ð2:6Þ
and we require
X 2 H1ðð0; TÞ; L2ð½0; L�ÞÞ \ L2 ð0; TÞ;H2
perð½0; L�Þ

� �
: ð2:7Þ
In view of (2.4) and (2.5) and f(�, t) = �E0 (X(�,t)) we have f(�, t) 2 Hper
2 ([0,L])⁄. Then, assuming some initial configuration

X(0) 2 Hper
2([0,L]), the variational formulation of the interaction equations reads
hFðtÞ;vi ¼ hfð�; tÞ;vðXð�; tÞÞi; ð2:8aÞ
for all v 2 H2þlðXÞ \H1
0ðXÞ; l P 1=2; such that vj@Bt

2 H2
perð½0; L�Þ, and
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Z L

0

@X
@t
ðq; tÞ � YðqÞdq ¼

Z L

0
uðXðq; tÞ; tÞ � YðqÞdq; ð2:8bÞZ L

0
Xðq;0Þ � YðqÞdq ¼

Z L

0
Xð0ÞðqÞ � YðqÞdq ð2:8cÞ
for all Y 2 Hper
2([0,L]).

Remark 2.1. We note that in contrast to the FE-IB approach in [8], here and in the sequel we use the variational rather than
the pointwise formulation of the motion of the immersed body (cf. (2.8b) and (2.8c)).
Remark 2.2. If we use (2.4) in (2.8a), for sufficiently smooth v we obtain
hFðtÞ;vi ¼ � je

Z L

0

@Xð�; tÞ
@q

� D1vðXð�; tÞÞ @Xð�; tÞ
@q

dq

� jb

Z L

0

@2Xð�; tÞ
@q2 � D1vðXð�; tÞÞ @

2Xð�; tÞ
@q2 dq

� jb

Z L

0

@2Xð�; tÞ
@q2 � D2vðXð�; tÞÞ @Xð�; tÞ

@q
;
@Xð�; tÞ
@q

� �
dq: ð2:9Þ
2.2. Fully implicit FE-IB

We assume T hðXÞ to be a simplicial triangulation of X that aligns with the partition of C. For D # X, we refer to T hðDÞ as
the union of triangles that have nonzero intersection with D, i.e.,
T hðDÞ ¼
[
fT 2 T hðXÞjT \ D – ;g: ð2:10Þ
For T 2 T hðXÞ, we denote by jTj the area of T and by hT the diameter of T. We set h :¼ maxfhT jT 2 T hðXÞg. Further,
PkðTÞ; k 2 N; refers to the set of polynomials of degree 6 k on T. We suppose that T hðXÞis quasi-uniform, i.e., there exist
constants 0 < cQ 6 CQ that only depend on the local geometry of the triangulation such that
cQ h 6 hT 6 CQ h; T 2 T hðXÞ: ð2:11Þ
For the spatial discretization of the weak formulation (2.2a), (2.2b) of the incompressible Navier–Stokes equations we use
P2-P1 Taylor–Hood elements [14], i.e., we define
Vh :¼ fvh 2 CðXÞjvhjT 2 P2ðTÞ; T 2 T hðXÞg;
Vh :¼ fvh 2 CðXÞjvh ¼ ðvh;1;vh;2ÞT ; vh;m 2 Vhg;
Q h :¼ fwh 2 CðXÞjwhjT 2 P1ðTÞ; T 2 T hðXÞg \ L2

0ðXÞ;
and set Vh;0 :¼ Vh \ C0ðXÞ. The finite element spaces Vh and Qh are spanned by the canonically specified nodal basis func-
tions uðiÞh ;1 6 i 6 n1; and wðiÞh ;1 6 i 6 N2.

Assuming gh to be the quadratic spline interpoland of g with respect to T hðXÞjC0 ; C0 = Cin resp. C0 = Cout, we set
Whð0; TÞ :¼ fwh 2 Cð½0; T�;CðXÞÞjwhð�; tÞjT 2 Vh;whð�; tÞjC0 ¼ ghð�Þ; t 2 ½0; T�;whjRlat
¼ 0g;

Q hð0; TÞ :¼ fwh 2 Cð½0; T�; CðXÞÞjwhð�; tÞjT 2 Q h; t 2 ½0; T�g:
The discretization of the immersed boundary is done with respect to a partition
T Dq :¼ f0 ¼: q0 < q1 < � � � < qn3
:¼ Lg; n3 2 N;
of the interval [0,L] into subintervals Ii :¼ [qi�1,qi],1 6 i 6 n3, of length Dqi :¼ qi � qi�1 with Dq :¼max{Dqij1 6 i 6 n3}. We
approximate Xfrom (2.7) by periodic cubic splines and thus define
Sh :¼ fYh 2 C2ð½0; L�; XÞjYhjIi
2 P3ðIiÞ2;1 6 i 6 m3;Y

ðkÞ
h ðq0Þ ¼ YðkÞh ðqMÞ; k ¼ 0;1;2g;
where P3(Ii) stands for the set of polynomials of degree 6 3 on Ii. By vðiÞh ; 1 6 i 6 n3; we denote the canonical basis functions
(B-splines) spanning the scalar-valued counterpart of Sh. The discrete immersed body occupies subdomains
Bh,t �X, t 2 [0,T], with boundaries @Bh,tthat are C2 curves described by the periodic cubic spline Xh(�, t) 2 Sh.

We further consider a partitioning {0 = :t0 < t1 < � � � < tM :¼ T} of the time interval [0,T] with step sizes sk :¼ tk+1� tk,06 k6M� 1,
and approximate the time derivatives @uh/@t and @Xh/@t at tk+1by the backward difference quotient. Denoting by uðkÞh 2 Vh; p

ðkÞ
h 2 Qh;
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and XðkÞh 2 Sh;0 6 k 6 M; approximations of u(�,tk), p(�,tk), and X(�,tk), the fully implicit FE-IB method (BE/BE FE-IB) amounts to the com-

putation of uðkþ1Þ
h ; pðkþ1Þ

h ;Xðkþ1Þ
h

� �
; 0 6 k 6 M � 1; such that for all vh 2 Vh,0,wh 2 Qh, and all Yh 2 Sh there holds
q uðkþ1Þ
h ;vh

� �
0;X
þ skaðuðkþ1Þ

h ;vhÞ � sk b pðkþ1Þ
h ;vh

� �
¼ ‘hðvhÞ; ð2:12aÞ

b wh;u
ðkþ1Þ
h

� �
¼ 0; ð2:12bÞZ L

0
Xðkþ1Þ

h � YhðqÞdq� sk

Z L

0
uh Xðkþ1Þ

h

� �
� Yhdq ¼

Z L

0
XðkÞh � Yhdq; ð2:12cÞ
where the right-hand side in (2.12a) is given by
‘hðvhÞ :¼ q ðuðkÞh ;vhÞ0;X þ sk

Z L

0
fðkþ1Þ

h ðqÞ � vhðXðkþ1Þ
h Þdq; ð2:13ÞZ L

0
fðkþ1Þ

h ðqÞ � vhðXðkþ1Þ
h Þdq :¼ �je

Z L

0

@Xðkþ1Þ
h

@q
� D1vhðXðkþ1Þ

h Þ @Xðkþ1Þ
h

@q
dq;

� jb

Z L

0

@2Xðkþ1Þ
h

@q2 � D1vhðXðkþ1Þ
h Þ @

2Xðkþ1Þ
h

@q2 dq;

� jb

Z L

0

@2Xðkþ1Þ
h

@q2 � D2vh Xðkþ1Þ
h

� � @Xðkþ1Þ
h

@q
;
@Xðkþ1Þ

h

@q

!
dq:
Remark 2.3. We note that vh 2 Vh,0 does not satisfy vhj@Bh;tkþ1
2 H2

perð½0; L�Þ (cf. (2.8a)). However, assuming measmðBh;tkþ1
\ Eh

ðXÞÞ ¼ ;, it follows that (2.13) is well defined for vh 2 Vh,0 and Xðkþ1Þ
h 2 Sh.

For the algebraic formulation of the BE/BE FE-IB (2.12a)–(2.12c), we introduce the vectors
uðkÞ :¼ uðkÞ1 ; � � � ;uðkÞn1
; uðkÞn1þ1; � � � ;u

ðkÞ
N1

� �T
; 0 6 k 6 M;

pðkÞ :¼ pðkÞ1 ; � � � ;pðkÞN2

� �T
; 0 6 k 6 M;

XðkÞ :¼ XðkÞ1 ; � � � ;XðkÞn3
;XðkÞn3þ1; � � � ;X

ðkÞ
N3

� �T
; 0 6 k 6 M;
the mass matrices Mm 2 RNm�Nm ; Mm ¼ blockdiag Mð1Þ
m ;Mð2Þ

m

� �
; m 2 f1;3g, the stiffness matrix A 2 RN1�N1 ; A ¼ blockdiag

ðAð1Þ;Að2ÞÞ, as well as the matrix B 2 RN2�N1 by means of
MðlÞ
1

� �
ij

:¼ q
Z

X
uðiÞh uðjÞh dx; 1 6 i; j 6 n1; 1 6 l 6 2;

MðlÞ
3

� �
ij

:¼ q
Z L

0
vðiÞh vðjÞh dq; 1 6 i; j 6 n3; 1 6 l 6 2;

AðmÞij :¼ m
Z

X
ruðiÞh �ruðjÞh dx; 1 6 i; j 6 n1; 1 6 m 6 2;

Bij :¼
Z

X

@uðjÞh

@x1
wðiÞh dx; Bi;n1þj :¼

Z
X

@uðjÞh

@x2
wðiÞh dx;

1 6 i 6 N2; 1 6 j 6 n1:
We note that the matrices M1, M3, and A are symmetric and positive definite. In particular, there exist constants l1 > 0,
l3 > 0, and a > 0 such that for v 2 RN1 and Y 2 RN3 there holds
vT M1v P l1kvk
2
; YT M3Y P l3kYk

2
; vT Av P akvk2

: ð2:14Þ
The matrix BT satisfies an inf-sup condition, or equivalently
kBT qk2 P bkqk2
RN2 nR1 ; b > 0; q 2 RN2 n spanfð1; . . . ;1ÞTg: ð2:15Þ
We further define the nonlinear mappings C : RN1 ! RN1 ; F : RN3 ! RN1 , and K : RN3 ! RN3�N1 according to
ðCðuÞÞð‘�1Þn1þi :¼
Pn1

j;k¼1

P2
m¼1

q
Z

X
uðiÞh uðjÞh

@uðkÞh

@xm
dxuðm�1Þn1þjuð‘�1Þn1þk;

ðFðXðkþ1ÞÞÞð‘�1Þn1þi :¼
Z L

0
fðkþ1Þ

h;‘ ðqÞu
ðiÞ
h ðX

ðkþ1Þ
h Þdq;
where 1 6 ‘ 6 2,1 6 i 6 n1, and
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ðKðXðkþ1ÞÞÞð‘�1Þn3þi;ð‘�1Þn1þj :¼
Z L

0
uðjÞh Xðkþ1Þ

h

� �
vðiÞh dq:
(and zero else), where 1 6 ‘ 6 2,1 6 i 6 n3,1 6 j 6 n1, and Xðkþ1Þ
h :¼ ð

Pn3
i¼1XivðiÞh ;

Pn3
i¼1Xn3þivðiÞh Þ

T .

For z ¼ ðu;p;XÞT 2 RN1þN2þN3 let us define the nonlinear function H : RN ! RN , N :¼ N1 + N2 + N3, by
HðzÞ :¼ �
ðAþ CðuÞÞuþ BT p� FðXÞ � F0

Bu� b
�KðXÞu

0B@
1CA 2 RN: ð2:16Þ
Note that the first two lines in (2.16) describe the finite element discretized stationary incompressible Navier–Stokes equa-
tions and that the vectors F0 2 RN1 and b 2 RN2 result from the inhomogeneous boundary data on Rin and Rout. We remind
that the third line in (2.16) stems from the variational form of the equations of motion for the immersed boundary.

Denoting by M ¼ blockdiagðM1;0;M3Þ 2 RN�N the (singular) mass matrix associated with (uh, 0, Xh), the ODE describing
the dynamics of the immersed boundary–fluid interaction can be written as
M _zðtÞ ¼ HðzðtÞÞ; t 2 ½0; T�
zð0Þ ¼ z0;
which is equivalent to the formulation as a Volterra equation of the second kind
0 ¼ MzðtÞ �Mz0 �
Z t

0
HðzðsÞÞds ¼: eGðzðtÞ; tÞ: ð2:17Þ
This represents a parameter-dependent nonlinear system of equations with trajectory {z(t)jt 2 [0,T]}. The numerical solution
by means of Newton’s method is not suitable, since it would require some global information of the Jacobian H0(z(�)) up to the
point z(t) and, in addition, an exact evaluation of the integral in (2.17).

To overcome these difficulties, we approximate (2.17) by the backward Euler (BE) scheme
0 ¼ Mzðtkþ1Þ �Mzk � skHðzðtkþ1ÞÞ; k P 0;
where sk :¼ tk+1 � tk, i.e., for each time step we have to compute the root z(tk+1) of the nonlinear function
Gðz; tk þ skÞ :¼ Mz�MzðtkÞ � skHðzÞ: ð2:18Þ
Consequently, the problem we deal with is a time-discretized approximation of a parameter-dependent nonlinear system of
equations, and thus can be solved by the methodology presented in Section 3.

Setting z(k) :¼ (u(k), p(k), X(k))T, 0 6 k 6M, at each time step the BE/BE FE-IB then amounts to the computation of
z(k+1), 0 6 k 6M � 1, as the solution of the nonlinear system
Gðzðkþ1Þ; tkþ1Þ ¼ 0; ð2:19Þ
where the nonlinear mapping Gð�; tkþ1Þ : RN ! RN relative to (sk,z(tk)) is given by
Gðz; tkþ1Þ :¼
ðM1 þ skAÞuþ skCðuÞ þ skBT p� skFðXÞ �M1uðkÞ � skF0

Bu� b
M3X�M3XðkÞ � skKðXÞu

0B@
1CA; ð2:20Þ
where for scaling reasons we have multiplied the second block row by 1/sk. The Jacobian G0ðz; tkþ1Þ 2 RN�N reads as follows:
G0ðz; tkþ1Þ :¼
M1 þ skAþ skC0ðuÞ skBT �skF0ðXÞ

B 0 0
�skKðXÞ 0 M3 � skK0XðX;uÞ

0B@
1CA: ð2:21Þ
Here, C0ðuÞ 2 RN1�N1 and F0ðXÞ 2 RN1�N3 are the Fréchet derivatives of C and F at u and X, respectively, whereas
K0XðX;uÞ 2 RN3�N3 stands for the partial Fréchet derivative of K(X)u with respect to X at (X,u).

Remark 2.4. We note that for the numerical evaluation of the Jacobians, the derivatives have been computed by automatic
differentiation using the code INTLAB from [37].

The solution of the BE/BE FE-IB by a predictor–corrector continuation strategy in time requires the invertibility of the
Jacobian which can be guaranteed under some restriction of the time step size.

Theorem 2.5. For a given z 2 RN and smin > 0, assume that the time step size sk satisfies
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0 < smin
6 sk 6 smax

k ðzÞ :¼ minðk1; k2Þ; ð2:22Þ

k1 :¼ � c1

c2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l1

2c2
þ c1

c2

� �2
s

; k2 :¼ � d1

d2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l3

2d2
þ d1

d2

� �2
s

;

where cm,dm,1 6 m 6 2, depend on z and are given by
c1 :¼ kC0ðuÞk þ 1
2
kF0ðXÞk þ 1

4
kKðXÞk2=kM1k2 � a; ð2:23aÞ

c2 :¼ 3l1 kAk
2 þ kC0ðuÞk2

� �
; ð2:23bÞ

d1 :¼ 1
2
kM1k2kF0ðXÞk þ 1

2
kKðXÞk þ kK0XðX;uÞk

� �
; ð2:23cÞ

d2 :¼ 3l1kF
0ðXÞk2

: ð2:23dÞ
Then, the Jacobian G0ðz; tkþ1Þ 2 RN�N is invertible. In particular, there holds
kðG0ðz; tkþ1ÞÞ�1k 6 c�1; c ¼ cðzÞ :¼ j1

j2
; ð2:24Þ

j1 :¼ 1
2

minðl1kM1k2
;
3
4
ðsminÞ2bl1;l3Þ;

j2 :¼ maxð8kM1k4 þ 2kBk2
; ðsmax

k Þ2 8kM1k4 þ l2
1

2
kBTk2

� �
;1Þ

� �1=2

:

Proof. For w = (v,q,Y)T we choose �w ¼ ð�v; �q;YÞT according to �v ¼ 2kM1k2v þ l1skBT q=2; �q ¼ Bv� 2skkM1k2q; and Y ¼ Y. It
follows that
�wT G0ðz; tkþ1Þw ¼ 2kM1k2v þ 1
2
l1skBT q

� �T

M1 þ skAþ skC0ðuÞ

 �

v

þ sk 2kM1k2v þ 1
2
l1skBT q

� �T

BT q� sk 2kM1k2v þ 1
2
l1skBT q

� �T

F0ðXÞY

þ ðBv� 2skkM1k2qÞT Bv� skYT KðXÞv þ YT M3 � skK0XðX;uÞ

 �

Y: ð2:25Þ
For the first term on the right-hand side in (2.25) we obtain
2kM1k2v þ 1
2
l1skBT q

� �T

M1 þ skAþ skC0ðuÞ

 �

v ¼ 2kM1k2vTðM1 þ skAþ skC0ðuÞÞv þ 1
2
l1skðBT qÞTðM1 þ skA

þ skC0ðuÞÞv: ð2:26Þ
Using (2.14), the first term on the right-hand side in (2.26) can be estimated from below as follows
2kM1k2vTðM1 þ sk Aþ skC0ðuÞÞ v P 2kM1k2 vT M1v|fflfflfflffl{zfflfflfflffl}
Pl1kvk

2

þ2skkM1k2 vT Av|fflffl{zfflffl}
Pakvk2

�2skkM1k2kC0ðuÞkkvk2
: ð2:27Þ
Using Young’s inequality, the second term on the right-hand side in (2.26) can be estimated from above according to
1
2
l1skðBT qÞTðM1þskAþskC0ðuÞÞv6

ffiffiffiffiffiffil1
p ffiffiffi

2
p kM1kkvk

ffiffiffiffiffiffil1
p ffiffiffi

2
p skkBT qkþs2

k
l1

2
kAkkvkkBT qkþs2

k
l1

2
kC0ðuÞkkvkkBT qk

6
1
8
l1

2
s2

kkB
T qk2þ2

l1

2
kM1k2kvk2þ 1

24
l1

2
s2

kkB
T qk2þ6

l1

2
s2

kkAk
2kvk2þ 1

24
l1

2
s2

kkB
T qk2þ6

l1

2
s2

kkC
0ðuÞk2kvk2

: ð2:28Þ
For the second term on the right-hand side in (2.25) it follows that
sk 2kM1k2v þ 1
2
l1skBT q

� �T

BT q ¼ 2skkM1k2vT BT qþ l1

2
s2

kkB
T qk2

: ð2:29Þ
Another application of Young’s inequality reveals that the third term on the right-hand side in (2.26) can be estimated from
above by means of
sk 2kM1k2v þ 1
2
l1skBT q

� �T

F0ðXÞY ¼ 2skkM1k2vT F0ðXÞY þ l1

2
s2

kðB
T qÞT F0ðXÞY 6 skkM1k2kF0ðXÞkðkvk2 þ kYk2Þ

þ 1
24

l1

2
s2

kkB
T qk2 þ 6

l1

2
s2

kkF
0ðXÞk2kYk2

: ð2:30Þ
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For the fourth term on the right-hand side in (2.26) we obtain
ðBv� 2skkM1k2qÞT Bv ¼ kBvk2|fflfflffl{zfflfflffl}
P0

�2skkM1k2qT Bv: ð2:31Þ
Using Young’s inequality again, the fifth term on the right-hand side in (2.26) can be estimated from above as follows
skYT KðXÞv 6 1
2
skkKðXÞkðkvk2 þ kYk2Þ: ð2:32Þ
Finally, in view of (2.14), for the sixth term on the right-hand side in (2.26) we get the lower bound
M3 � skK0XðX;uÞ

 �

Y P YT M3Y|fflfflfflffl{zfflfflfflffl}
Pl3kYk

2

�skkK0XðX;uÞkkYk
2
: ð2:33Þ
Summarizing (2.26)–(2.33), from (2.25) we deduce
�wT G0ðz; tkþ1Þw P kM1k2 l1 � 2c1sk � c2s2
k


 �
kvk2 þ 3

8
s2

kl1kB
T qk2 þ l3 � 2d1sk � d2s2

k


 �
kYk2

: ð2:34Þ
We choose sk such that
l1 � 2c1sk � c2s2
k P

1
2
l1; l3 � 2d1sk � d2s2

k P
1
2
l3; ð2:35Þ
which is satisfied, if sk obeys the upper bound in (2.22). On the other hand, using (2.15) and the lower bound in (2.22), it
follows that
3
8
s2

kl1kB
T qk2 P

3
8
ðsðminÞ

k Þ2bl1kqk
2
RN2 nR1 : ð2:36Þ
Taking advantage of (2.35) and (2.36) in (2.34), we finally obtain
�wT G0ðz; tkþ1Þw P j1kwk2
:

Consequently, in view of
k �wk 6 j2kwk;
G0(z;tk+1) satisfies the inf-sup condition
inf
w–0

sup
ŵ–0

ŵT G0ðz; tkþ1Þw
kwkkŵk P inf

w–0

�wT G0ðz; tkþ1Þw
kwkk �wk P c;
from which we deduce bijectivity by means of the generalized Lax–Milgram lemma (cf., e.g., [12,13]). h
Remark 2.6. We may expect a time step restriction, if the convective term and/or the deformation of the particle is dom-
inant, i.e., in case kC0(u)k and/or kF0(X)k is large. These scenarios are reflected by the time step restriction (2.22).

Usually, the step size restriction (2.22) is relatively mild and not the reason why we use an adaptive continuation strategy.
The adaptivity is due to the convergence requirements of the Newton correction scheme, as explained below.
3. Adaptive Newton continuation

When it comes to the numerical solution of (2.19) by means of the ordinary Newton method
G0ðzð‘Þ; tkþ1Þ Dzð‘Þ ¼ �Gðzð‘Þ; tkþ1Þ; ð3:1aÞ
zð‘þ1Þ ¼ zð‘Þ þ Dzð‘Þ; ð3:1bÞ
it turns out that its naive application is seldom successful. The reason is that the IB scheme is typically badly conditioned in
the sense that even small perturbations of X from its target position (here: X(tk+1)) cause strong counterforces that lead to
rapid oscillations in all unknowns resulting in non-convergence of (3.1a), (3.1b). A remedy for this problem is to use a mod-
ified Newton method with adaptively chosen damping parameters (step lengths) a‘ 2 [amin,1] for the update
z(‘+1) = z(‘) + a‘Dz(‘). More precisely, we use the algorithm NLEQ-ERR from [15] which employs a combination of damped or-
dinary and simplified Newton steps in order to build certain contraction factors serving as convergence monitoring quanti-
ties (for details, see [15] and below). The actual motivation for this algorithm is that it can be used in the context of
parameter-dependent nonlinear problems.

Our approach is based on the affine invariant convergence theory for Newton-like methods developed in [15] and updates
the time parameter t in an adaptive way using local information about the trajectory {z(t) = (u(t), p(t), X(t))jt 2 [0,T]}. We
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follow this trajectory in a predictor–corrector manner. For the computation of the prediction step it is essential how to
choose the increment sk, since this is closely related to the problem of staying inside the Kantorovich neighborhood of
the solution at time tk + sk. Predictor–corrector methods can be seen as discrete continuation methods where the continu-
ation step plays the role of a prediction step. Consider a parameter-dependent nonlinear system
Gðz; tÞ ¼ 0; t 2 ½0; T�; z 2 RN; ð3:2Þ
where Gð�; tÞ : RN ! RNand assume that there exists a solution zðtÞ 2 RN for t 2 [0,T]. Discrete continuation methods solve
(3.2) with respect to a partitioning t0 < t1 < � � � < tM = T, M > 1, of the interval [0,T]. This partitioning is not given in advance,
but computed adaptively during the solution process. In order to solve the subproblems (2.19) successively by a Newton sol-
ver, we need sufficiently good initial guesses ẑð0Þðtkþ1Þwhich have to be provided by a continuation step. It has to be adapted
in such a way that the convergence requirements of the subsequent correction step (2.19) are met. The quality of approx-
imation of the prediction can be controlled by two factors, the steplength sk and the type of continuation. The simplest pos-
sible choice for a continuation step zðtkÞ ! ẑðtkþ1Þ is constant continuation, i.e.,
ẑðtkþ1Þ :¼ zðtkÞ; ð3:3Þ
also called classical continuation. It involves no further computations and for simplicity, we will stick to this choice. By Tay-
lor expansion, we get as approximation error
kẑðtk þ skÞ � zðtk þ skÞk 6 gsk: ð3:4Þ
We remark that the constant g ¼maxt2½0;T�k _zðtÞk is a key quantity for an adaptive stepsize selection. It will be used below.
The term affine covariance means that the Newton iterates z(‘) are invariant with respect to affine transformations

G ? TG of the image space of G by a regular matrix T, which can be easily seen. Invariance with respect to affine transfor-
mations of the domain space is referred to as affine contravariance. Both are subtopics to the generic term affine invariance.
We encounter affine covariance in Lipschitz conditions like
kðG0ðz1; tkþ1ÞÞ�1 ðGðz1; tkþ1Þ � Gðz2; tkþ1ÞÞk 6 xkz1 � z2k
through its affine covariant constant. They appear in certain affine covariant Newton convergence theorems (see Theorem
3.1 below). By nature of the affine covariant concept, such theorems can only be about the iterates’ increments Dz(‘) or errors
z(‘) � z⁄, not about residuals G(z(‘);tk+1). This has to be taken into account in the subalgorithms of an algorithmic realization
of a discrete continuation method formulated in affine covariant terms.

In our case, the object of interest is the homotopy path z(t) which lives in the domain of the mapping G. Therefore, the
concept of affine covariance is the adequate framework.

We consider a convergence analysis of the simplified Newton method which is most appropriate to derive steplength cri-
teria for a discrete continuation method. We recall that for a given start iterate z(0) the simplified Newton method is of the
form
G0ðzð0Þ; tkþ1Þ Dzð‘Þ ¼ �Gðzð‘Þ; tkþ1Þ; ð3:5aÞ
zð‘þ1Þ ¼ zð‘Þ þ Dzð‘Þ; ‘ ¼ 0;1; . . . : ð3:5bÞ
It is characterized by the fixed Jacobian G0 (z(0);tk+1) which is used for all iterations. We cite the following affine covariant
convergence result (cf. Theorem 2.5) in [15]):

Theorem 3.1. Let D � RN be open and convex, G : D! RN be continuously differentiable, and z(0) 2 D such that G0(z(0)) is
invertible. Further, for some x > 0 let the affine covariant Lipschitz condition
kðG0ðzð0ÞÞÞ�1ðG0ðzÞ � G0ðzð0ÞÞÞk 6 xkz� zð0Þk; z 2 D; ð3:6Þ
hold true. Assume further
h0 :¼ xkDzð0Þk 6 1
2

ð3:7Þ
and define d� :¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2h0

p
;q :¼ d�=x. Suppose that the closed ball Bqðzð0ÞÞ is contained in D. Then, the simplified Newton

method (3.5b) generates iterates fzð‘Þg‘2N � Bqðzð0ÞÞ converging to z⁄ with G(z⁄) = 0, and there holds the estimate
kzð‘þ1Þ � zð‘Þk
kzð‘Þ � zð‘�1Þk 6

1
2

d‘ þ d‘�1ð Þ; ‘ P 1; ð3:8Þ
where d0 :¼ 0 and d‘þ1 :¼ h0 þ 1=2d2
‘ , ‘ P 0.

The contraction factors
H‘ :¼ kDzð‘þ1Þk
kDzð‘Þk

; ‘ P 0; ð3:9Þ
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serve as monitoring quantities in Newton algorithms: From the convergence rate estimate (3.8) it follows that H‘ 6 1/2
(d‘+1 + d‘), ‘P 0. Along with d0 = 0, d1 = h0 and the definition of h0 from (3.7), we get
H0 6
1
2
xkDzð0Þk: ð3:10Þ
This estimate is equivalent to
2H0

kDzð0Þk
6 x; ð3:11Þ
which provides a lower bound for x respectively the local Lipschitz constant x̂ (cf. Theorem 3.2 below). Along with g from
(3.4), this is the second key quantity for an adaptive step size selection strategy. In the following, we have to assume that
s P smin for some given smin > 0 to guarantee boundedness of c�1 (cf. (2.24)). This is in agreement with the algorithmic real-
ization of the predictor–corrector scheme (see Algorithm 3.6 below) where the case sk < smin serves as a convergence failure
criterion.

Theorem 3.2. Let G0(z;t) be nonsingular for all (z;t) 2 D � [0,T], assume that the homotopy path z:[0,T] ? D exists, and let
tk 2 [0,T]. Further, suppose that there exists a local Lipschitz constant bx such that for all z 2 D and for all 0 < smin

6 s 6 T � tk

satisfying ẑðtk þ sÞ 2 D, the affine covariant Lipschitz condition
kðG0ðẑðtk þ sÞ; tk þ sÞÞ�1ðG0ðz; tk þ sÞ � G0ðẑðtk þ sÞ; tk þ sÞÞk 6 x̂kz� ẑðtk þ sÞk ð3:12Þ
holds true. Then, the simplified Newton method (3.5b) with starting point ẑðtk þ sÞ :¼ zðtkÞ (classical continuation) converges to-
wards the solution z(tk + s) for all stepsizes
smin
6 s 6 smaxðtkÞ :¼

ffiffiffi
2
p
� 1

x̂g
: ð3:13Þ
Proof. For completeness we present the proof from Corollary 5.5 in [15], since we will use an estimate from the proof for the
subsequent discussion. For the application of Theorem 3.1 we need
x̂kDzð0Þðtk þ sÞk 6 1
2
: ð3:14Þ
To this end, we derive an upper bound r(s) for kDzð0Þk. We set ẑ :¼ ẑðtkþ1Þ, z :¼ z(tk+1) and consider
kDzð0Þðtkþ1Þk ¼ kðG0ðẑ; tkþ1ÞÞ�1 Gðẑ; tkþ1Þk ¼ ðG0ðẑ; tkþ1ÞÞ�1 Gðẑ; tkþ1Þ � Gðz; tkþ1Þ
zfflfflfflfflfflffl}|fflfflfflfflfflffl{¼0

0@ 1A


¼ kðG0ðẑ; tkþ1ÞÞ�1
Z 1

0
G0ðzþ sðẑ� zÞ; tkþ1Þðẑ� zÞ dsk

¼
Z 1

0
ðG0ðẑ; tkþ1ÞÞ�1ðG0ðzþ s ðẑ� zÞ; tkþ1Þ 	 G0ðẑ; tkþ1ÞÞ ðẑ� zÞds

 
6 kẑ� zk 1þ

Z 1

0
kðG0ðẑ; tkþ1ÞÞ�1 ðG0ðzþ s ðẑ� zÞ; tkþ1Þ

�
�G0ðẑ; tkþ1ÞÞk ds

�
6

ð3:12Þ
kẑ� zk 1þ x̂kẑ� zk

Z 1

0
j1� sjds

� �
:

From the definition of g (cf. (3.4)) we know kẑðtkþ1Þ � zðtkþ1Þk 6 gs, whence
kDzð0Þðtk þ sÞk 6 gs 1þ 1
2
bxgs

� �
¼: rðsÞ: ð3:15Þ
The crucial step is to use this estimate for requirement (3.14) to arrive at
x̂gs 1þ 1
2
x̂gs

� �
6

1
2
;

which is fulfilled for x̂gs 6
ffiffiffi
2
p
� 1. Under this condition, which is equivalent to (3.13), Theorem 3.1 can be applied, and we

conclude. h
Remark 3.3. According to Theorem 3.2, the iterates {z(‘)}‘ stay within the closed ball Bqðẑð0Þðtkþ1ÞÞ � B1=x̂ðzðtkÞÞ ¼: B, if the
step size restriction (3.13) is fulfilled. (This is also true when, in practice, we use a combination of the ordinary and the sim-
plified Newton method.) Hence, all Newton iterates are well defined, if in view of (2.22) we choose
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smin
6 sk 6 min

ffiffiffi
2
p
� 1bx g

;min
z2B
ðsmaxðzÞÞ

!
:

Remark 3.4. We check the affine covariant Lipschitz condition (3.12) from Theorem 3.2 in case the nonlinear mapping
Gð�; tkþ1Þ; tkþ1 ¼ tk þ s; k 2 N0; is given by (2.20). Let s P smin > 0 as in Theorem 3.2. Setting for brevity ẑ :¼ ẑðtk þ sÞ, we
have
G0ðz; tk þ sÞ � G0ðẑðtk þ sÞ; tk þ sÞ ¼
sðC0ðuÞ � C0ðûÞÞ 0 �sðF0ðXÞ � F0ðX̂ÞÞ

0 0 0
�sðKðXÞ � KðX̂ÞÞ 0 �s K0XðX;uÞ � K0XðX̂; ûÞ

� �
0BB@

1CCA:

We denote by LC0 the (local) Lipschitz constant LC0 ðzðtkÞÞ of the Fréchet derivative C0, i.e.,
kC0ðuÞ � C0ðûÞk 6 LC0ku� ûk
and define LF0 ; LK; LK0X
similarly. Then, with c = c(z(tk)) and in view of (2.24), from Theorem 2.5 we obtain (3.12) with a s-inde-

pendent upper bound
bX :¼ c�1 ðT � tkÞ maxðLC0 ; LF0 ; LK; LK0X
Þ: ð3:16Þ
In view of (2.24), the quantity c�1 depends on the choice of smin. On the other hand, according to (3.13) and (3.16), smin deter-
mines an upper bound ð

ffiffiffi
2
p
� 1Þ=ðbX gÞ for s. The following result provides a condition under which the interval [smin,

smax(tk)] is nonempty.
Lemma 3.1. Assume that for
bCðzðtkÞ; tkÞ :¼
ffiffiffi
2
p
� 1

2g
1

max LC0 ; LF0 ; LK; LK0X

� �
ðT � tkÞj2ðzðtkÞÞ

; ð3:17Þ
the condition
bCðzðtkÞ; tkÞ2
3
4

bl1 minðl1kM1k2
;l3ÞP 1 ð3:18Þ
holds true. Then the interval [smin,smax(tk)] as in (3.13) is nonempty.
Proof. Observing (2.24), we introduce the quantities
K1 :¼ bCðzðtkÞ; tkÞ minðl1kM1k2
;l3Þ; K2 :¼ bCðzðtkÞ; tkÞ

3
4

bl1:
Since bx 6 bX, the interval [smin, smax(tk)] with smaxðtkÞ ¼
ffiffiffi
2
p
� 1

� �
=ðx̂ gÞ� is nonempty, if
smin
6

ffiffiffi
2
p
� 1bX g
¼minðK1;K2ðsminÞ2Þ ð3:19Þ
holds true. In view of (3.18), we have K1K2 P 1 and hence, we may choose smin :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K1=K2

p
such that (3.19) is satisfied. h

The result of the last theorem has the drawback that it contains the unknown constants x̂ and g. In order to exploit the step-
length criterion (3.13) in an algorithmic realization, we use the following strategy:

We compute estimates [ � ] of the a priori unknown constants and apply the steplength criterion with x̂, g replaced with
½x̂�, [g]. By nature of the constants x̂, g we have to work with lower bounds. Taking into account that both quantities appear
in the denominator of (3.13), this strategy will in general overestimate the true maximal steplength smax(tk). Therefore, we
only predict a maximal stepsize based on some estimates of the local constant x̂ and the global constant g. It explains why
we also need a correction formula for sk in case of convergence failure of the Newton corrector.

Remark 3.5. There is some ambiguity of the terms ’prediction’ and ’correction’, since we use each of them in two different
meanings:

(a) in the context of a continuation method, we usually mean the prediction and the correction of the variable z. There-
fore, we use the expressions z-prediction (by classical continuation) and z-correction (by a Newton solver), respec-
tively. For the continuation step in the z-prediction,
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(b) the steplength s is predicted and, if necessary, corrected. We will address this as s-prediction and s-correction,
respectively.

3.1. s-Prediction strategy

We can use estimate (3.11) to obtain
2H0ðtkÞ
kDzð0ÞðtkÞk

¼: ½ bx� 6 x̂
as an estimate for x̂ and likewise
kẑðtkÞ � zðtkÞk
sk�1

¼: ½g� 6 g;
which obviously provides a lower bound of g due to (3.4). Inserting these estimates (which have the advantage of being com-
putationally available) into (3.13) instead of x̂ and g, results in the s-prediction formula
sk :¼ sk;0 :¼ ½smaxðtkÞ� :¼ ð
ffiffiffi
2
p
� 1ÞkDzð0ÞðtkÞk

2H0ðtkÞkzð0ÞðtkÞ � zðtkÞk
sk�1: ð3:20Þ
This formula predicts the next steplength sk adaptively based upon information about local and global constants of the
homotopy gathered within the last Newton correction step. In (3.20) we have used the fact that the first increment of the
simplified and the ordinary Newton method coincide. Since the exact solution z(tk) is not known in general, we use the final
solution of the Newton corrector as its replacement in (3.20) to obtain a computable expression. Due to the fact that this
formula defines sk recursively, we need to specify some s0 for the first continuation step.

3.2. s-Correction strategy

From (3.20) it is clear that [smax(tk)] P smax(tk), and so the predicted steplength sk = s(k,0) may be too large and could lead
to a convergence failure of the Newton correction step. In this case, we need to correct it, i.e., s(k,j+1) s(k,j) and repeat the last
z-prediction step, now with an adaptively reduced stepsize sk,j+1. Here, we can deal with the quantity H0(tk + s(k,j)), since we
have computed it in the last unsuccessful Newton correction at tk + s(k,j). It can be exploited to gain refined information about
the crucial quantity x̂ g from (3.13): Estimate (3.10) in combination with (3.15) gives (using t(k+1,j) :¼ tk + s(k,j)):
H0ðtðkþ1;jÞÞ 6
1
2
x̂gsðk;jÞ 1þ 1

2
x̂gsðk;jÞ

� �
:

Since x̂, g, and s(k,j) are all nonnegative quantities, this is equivalent to
x̂gsðk;jÞ P
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4H0ðtðkþ1;jÞÞ þ 1

q
� 1 () x̂g P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4H0ðtðkþ1;jÞÞ þ 1

p
� 1

sðk;jÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼:½x̂g�

:

Plugging this lower bound for x̂g into the stepsize formula (3.13), we obtain the s-correction formula:
sðk;jþ1Þ :¼ ½smaxðtkÞ� :¼
ffiffiffi
2
p
� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4 H‘ðjÞðtðkþ1;jÞÞ þ 1
p

� 1
sðk;jÞ; j P 0:
Here, H0 has been replaced with H‘(j), where ‘(j) stands for the ‘th Newton iteration (in the jth s-correction cycle, j P 0)
where convergence failure has occurred. This is not backed by rigorous theory but seems unavoidable and reasonable to
get an executable algorithm:

Convergence failure for the simplified Newton method is accompanied by H‘(j) P 1 (and nevertheless, if ‘(j) P 1 it is pos-
sible that 1/4 < H0(j) < 1! H0 6 1/4 implies local convergence of the simplified Newton method, see (3.7) and (3.10)). Simi-
larly, using the algorithm NLEQ-ERR as a Newton corrector, for convergence failure we must have H‘(j) P 1. In both cases, for
H‘(j) P 1 we get an obvious reduction of the steplength, since
ffiffiffi

2
p
� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4H‘ðjÞðtðkþ1;jÞÞ þ 1
p

� 1
6

ffiffiffi
2
p
� 1ffiffiffi

5
p
� 1

 0:34:
3.3. Adaptive continuation algorithm

We summarize the discussion about the time increment-adaptive prediction–correction scheme by the following pseudo-
code. The reader may concentrate, in particular, on the s-prediction–correction for a clarification of the preceding discussion.
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Algorithm 3.6. Adaptive predictor–corrector algorithm

% Initialization:
Specify the initial IB state variables (u(0),p(0), X(0)) = :z(t0) and a starting
value s(0,0), bounds smin and smax, and Hmin� 1.
Set t0 :¼ 0,k :¼ 0, and j :¼ 0.
% Iteration:
while tk < T

%z � predictionstep:
Set t(k+1,j) :¼ tk + s(k,j)

Perform the classical continuation step ẑð0Þðtðkþ1;jÞÞ :¼ zðtkÞ
%z � correctionstep:
Solve G(z;t(k+1,j)) = 0 with initial guess ẑð0Þðtðkþ1;jÞÞ by the Newton
solver NLEQ-ERR: Thereby, contraction factors H‘ = H‘(t(k+1,j)), ‘P 0,
are computed and z gets updated by means of a damping factor a‘ according
to ẑð‘þ1Þðtðkþ1;jÞÞ ¼ ẑð‘Þðtðkþ1;jÞÞ þ a‘ Dzð‘Þ.
if Newton corrector was successful after ‘ = ‘(j) P 1 iterations

Set tk+1 :¼ t(k+1,j)

Set zðtkþ1Þ :¼ ẑð‘Þðtðkþ1;jÞÞ
Set H0 max(H0,Hmin)
Predict the new time increment byffiffiffip

ð0Þ

sðkþ1;0Þ :¼ ð 2� 1ÞkDz k

2 H0kẑð0Þðtkþ1Þ � zðtkþ1Þk
sðk;jÞ
Set s(k+1,0) :¼min(s(k+1,0), smax)
if s(k+1,0) < smin, stop: convergence failure end

else

Correct s according to ffiffiffip

sðk;jþ1Þ :¼ 2� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4 HiðjÞðtðkþ1;jÞÞ þ 1
p

� 1
sðk;jÞ
if s(k,j+1) < smin, stop: convergence failure end

Set j j + 1 and go back to z-prediction step
end

Set j :¼ 0
Set k k + 1

end
4. Numerical results

4.1. Motion of an RBC through a thin capillary

As an illustration of the adaptive continuation method we consider the motion and deformation of a red blood cell (RBC)
immersed in an external microfluidic channel flow passing through a thin capillary. The plasma membrane of an RBC con-
sists of a lipid bilayer membrane and an attached spectrin network as cytoskeleton [3]. Therefore, one might expect a rather
complex fluidic behavior, since the underlying cytoskeleton can rearrange according to an external mechanical force [4].
However, it was demonstrated that lipid vesicles without an attached polymer network may serve as a simple model which
already captures the basic physics of the fluid–structure interaction problem. We note that the dynamics of RBC and vesicles
in fluid flow has been studied both experimentally (see [1,2,20,21,29,41]) and theoretically (cf. [6,7,22,24,35,38]). For the
numerical study of the rheology of RBC in microchannels, the IB has been applied in [5,17,30,42], whereas the FE-IB has been
used recently in [16]. It is well known that an RBC can pass through capillaries whose diameters are half or even less than the
typical diameter of an RBC (7.5–8 lm), enabling oxygen supply also through highly branched blood vessels. We have con-
sidered a microchannel with a diameter varying between 20 and 4 lm, a density of q = 1.0 � 103 kg/m3, and a viscosity of
g = 6.0 � 10�3 Pa � s both for the carrier fluid and the fluid enclosed by the membrane of the RBC. We have further assumed
an inflow velocity of g = 1.0 � 10�2 m/s. Taking d = 20 lm as reference length, this results in a Reynolds number of
Re 
 3 � 10�2, a typical magnitude for RBCs in microfluidic flows. We note that the maximal velocity inside the narrow part
of the channel is almost five times higher than the inflow velocity which results in a strong deformation of the passing RBC
whose elastic moduli have been chosen according to je = 6.0 � 10�6 N/m and jb = 2.0 � 10�19 Nm (cf. [39]). In its initial state,
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the RBC has a diameter of 7.8 lm and a perimeter of L = 19.8 lm. We have used a uniform finite element mesh for
X = [0,50] � [0,20]n(17.5,32.5) � ((0,8) [ (12,20)) lm2 with mesh parameter h = 1.0 lm and a uniform partition of [0,L],
resulting in N1 + N2 + N3 = 10358 + 1340 + 114 = 11,812. All computations have been performed under Linux on a work sta-
tion featuring Intel Quad–CPU with 2.83 GHz each and 8 GB RAM.

We illustrate the difficulty associated with the semi-implicit BE/FE FE-IB from [16] by considering an RBC in a microchan-
nel passing a thin capillary. The (constant) time step size was chosen too large, namely, s = 1/250, and oscillations in the IB
state variables occurred leading to a ’torn apart’ membrane. This is shown in Fig. 1. The same problem occurs even for s = 1/
350 (see below).

In case of the fully implicit BE/BE FE-IB, the adaptively chosen time step sizes prevent from numerical instabilities. The
adaptive step size selection algorithm detects the critical stage during the computation. This can be seen in Fig. 2 where sk

gets clearly reduced (at approximately t = 0.90) and stays small as long as the RBC occupies the capillary. In the same figure,
the evolution of the (scaled) potential energy Etot(t) of the membrane is displayed. An increase causes a reduction of sk and
vice versa: when Etot(t) reaches its initial standard after leaving the thin capillary, s is chosen larger again. The time instants
of the snapshots of the RBC in Fig. 3 correspond to the markers in Fig. 2. It is noteworthy that the average time stepsize of the
BE/BE FE-IB version is roughly 1/169. This means that the semi-implicit version with constant time steps s = 1/350 (see
above) fails although its time increments are less than half of the average time step size of the fully implicit scheme. More-
over, in none of the 441 BE/BE FE-IB time steps it was necessary to perform a s-correction, which seems to indicate that the
s-prediction mechanism is quite reliable.

The computation was stopped at T = 2.61 shortly before the RBC reached the outflow boundary. The computing time for
the fully implicit BE/BE FE-IB with initial s(0,0) = 1/40 was 2 h 25 min.
4.2. Motion of an RBC subject to a quadrupolar fluid force

As a second numerical example we consider an RBC in a fluid occupying a square domain X = [�15 lm,15 lm]2 with no-
slip boundary conditions on all four boundary segments. We impose a quadrupolar fluid force density which is given as fol-
lows: For each velocity node i, 1 6 i 6 n1/2, with coordinates (xi,yi) 2X we set ð~xi; ~yiÞ :¼ ðxi=D; yi=DÞ; D ¼ 15 lm and define
the components uh;i;uh;iþn1=2 of a divergence-free velocity field uh 2 Vh by
Fig. 1.
shown
uh;i :¼ pv0
sinðp~xiÞ ð2 cosðp~yiÞ � 1Þ

ð2� cosðp~xiÞÞ ð2� cosðp~yiÞÞ2

uh;iþn1=2 :¼ �pv0
sinðp~yiÞð2 cosðp~xiÞ � 1Þ

ð2� cosðp~xiÞÞ2 ð2� cosðp~yiÞÞ
:

We introduce
f ðkþ1Þ
h;quad :¼ Auh; 0 6 k 6 M � 1 ð4:1Þ
with the stiffness matrix A from Section 2.2 as an additional force density in (2.13). Moreover, we choose T = 10 as final time
and h = 1/16, resulting in n1 + n2 = 18050 + 2304 = 20 354 degrees of freedom for the Navier–Stokes equations, and Dq :¼ h/
2 so that N3 = 128. All other parameters are the same as in the first numerical example.

As can be seen in Fig. 4, the quadrupolar force density generates four pairwise counter-rotating vortices, and thus the in-
duced flow is characterized by a velocity field that is rapidly varying in terms of magnitude and direction. The RBC, whose
center x = (�0.5 lm, �1.0 lm)T is initially placed a little offside the origin, gets kneaded and spun around clockwise as time
proceeds (see Fig. 5 (bottom)).

We note that in [19] a quadrupolar force field has been generated by surface acoustic waves, whereas in [23] a similarly
defined quadrupolar force has been used for the separation of chiral objects in microflows.
Numerical instability of the BE/FE FE-IB for s = 1/250. The computation was stopped at t = 0.05 after one membrane node had left the domain (not
in the figure) due to high oscillations.
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Fig. 2. Evolution of the adaptively chosen time increments (solid line) and of the (scaled) potential energy of the membrane (dashed line).

Fig. 3. Snapshots of the RBC’s membrane at selected time instants. These time instants correspond to the ⁄-marked instants in Fig. 2.

Fig. 4. A quadrupolar force density creates four pairwise counter-rotating vortices and significantly impacts the motion and deformation of an RBC.
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We have run the example with two semi-implicit schemes (Backward Euler/Forward Euler (BE/FE), Crank-Nicolson/For-
ward Euler (CN/FE)) and the fully implicit scheme (BE/BE) featuring an adaptive time step selection. In Table 1, we provide a
comparison of the three schemes in terms of computational time and average, minimal, and maximal time step size. The
minimal time step of the fully implicit scheme is approximately 10 times larger than the constant time step sizes of the
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Fig. 5. The evolution of the adaptively chosen time steps and of the membrane’s potential energy (top). The marked instants correspond to the snapshots in
the picture below.

Table 1
Comparison of three different schemes for Example 2.

Scheme Duration (min) M s£ mink(sk) maxk(sk)

BE/FE 116.5 6500 1/650 1/650 1/650
CN/FE 112.0 6300 1/630 1/630 1/630
BE/BE 94.8 622 1.60 � 10�2 1.76 � 10�3 1.20 � 10�1

Table 2
Dependence of the fully implicit scheme w.r.t. the initial value sð0;0Þ :¼ 1=bN .

bN Duration (min) M sav mink(sk) maxk(sk)

10 (No convergence)
20 (No convergence)
30 (No convergence)
40 94.5 616 1.62 � 10�2 1.86 � 10�3 1.34 � 10�1

60 93.1 609 1.64 � 10�2 1.18 � 10�3 1.46 � 10�1

80 94.7 620 1.61 � 10�2 1.73 � 10�3 1.31 � 10�1

100 94.8 622 1.60 � 10�2 1.76 � 10�3 1.20 � 10�1

150 98.3 621 1.61 � 10�2 1.39 � 10�3 1.19 � 10�1

200 98.5 627 1.60 � 10�2 1.74 � 10�3 1.15 � 10�1

250 96.9 614 1.63 � 10�2 1.95 � 10�3 1.23 � 10�1

300 97.9 617 1.63 � 10�2 2.11 � 10�3 1.44 � 10�1
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semi-implicit schemes. The fully implicit scheme, for which again no s-correction was necessary, is even faster than the
semi-implicit ones. The reason is that for this example two critical situations occur (an initial squeezing of the RBC and a
subsequent almost-collision with the left wall), where relatively small time step sizes must be chosen. This alternates with
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’calm’ situations where the adaptive scheme picks large time steps. In contrast, the semi-implicit schemes have to work with
the same small time step throughout the whole computation.

On the other hand, a certain disadvantage of the fully implicit scheme is the need for significantly more memory, since the
computation of certain sub-blocks of the Newton matrix containing second order derivatives by automatic differentiation
(AD) is memory intensive.

The performance of the adaptive stepsize selection algorithm is relatively independent of the initial choice of the contin-
uation parameter s(0,0). Table 2 displays the performance for different initial guesses and underlines the robustness of the
algorithm with respect to changes in the initial data. If s(0,0) is chosen too large, the first Newton correction step at
t = 0 + s(0,0) does not converge and the algorithm has to be stopped: this was the case for s(0,0) P 1/30. We note that the time
step sizes for both semi-implicit schemes given in Table 1 were found purely heuristically (increasing bN :¼ 1=s 2 N by 10-
units as long as the scheme turns out to be stable). In general, the knowledge of a ’proper’ step size is not available in
advance.

5. Conclusion

The Immersed Boundary method (IB) is a powerful technique for the mathematical modeling and numerical simulation of
fluid–structure interactions, but it is also known for its inherent stiffness. To cope with this problem, we have presented a
fully implicit, fully variational version of the IB and a technique how to solve the resulting nonlinear systems of equations
efficiently. It has been shown that the fully implicit scheme can be interpreted as a BE-approximation of a parameter-depen-
dent nonlinear system of equations for which adaptive continuation strategies exist. More precisely, we have used a predic-
tor–corrector strategy based on the affine-covariant Newton convergence theory developed in [15]. The idea is to use local
information about the trajectory of state variables for the construction of the upcoming time increment. This is done in such
a way that the convergence requirements of the Newton correction step, conducted at the next time instant, are likely to be
met. We have shown that the associated Jacobians are invertible, if the time increment is chosen small enough, and thus the
Newton iterations are well defined. The combination of an adaptively chosen time increment and a correction step leads to a
numerically stable time-stepping scheme. This has been demonstrated by a challenging test problem where a red blood cell
passes through a thin capillary and, in doing so, undergoes a rapid change in its potential energy which usually (i.e., in the
semi-implicit case) leads to numerical instabilities.
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