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1. Introduction

A computationally attractive methodology for the numerical simulation of the motion and deformation of elastic and
viscoelastic bodies in external flows is the immersed boundary method (IB), which has been originally developed by Peskin
[31] and further studied in [11,32-34,36]. The IBM uses an Eulerian coordinate system for the flow equations and Lagrangian
coordinates for the boundary of the immersed bodies together with appropriate interaction equations to transform Eulerian
to Lagrangian quantities and vice versa. The interaction equations feature multidimensional Dirac delta functions that have
to be approximated appropriately within a finite difference approach. More recently, a variational formulation of the IBM has
been provided in [8-10] as a basis for a finite element realization referred to as the Finite Element Immersed Boundary Meth-
od (FE-IB). Both for the classical IB and the FE-IB, the most common approach with regard to discretization in time is to use
the Backward Euler (BE) method for the flow equations and the Forward Euler (FE) method for the equation describing the
motion and deformation of the immersed bodies which gives rise to the BE/FE IB and BE/FE FE-IB, respectively. However,
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these schemes typically require a CFL-type condition (cf., e.g., [9,16]). Better stability properties can be achieved by using the
BE method as a time integrator for both equations thus resulting in a fully implicit scheme. Recent applications of the BE/BE
IB can be found in [25-28], whereas the unconditional stability of the BE/BE FE-IB has been shown in [9]. For each time step,
the implementation of the fully implicit scheme requires the solution of a nonlinear system of equations for which a New-
ton-type method would be the method of choice using the result of the previous step as an initial guess. Sudden changes in
the energy of the system, for instance due to large deformations of the immersed bodies, may lead to significant restrictions
of the time step size in order to guarantee convergence of the Newton-type iteration. Such scenarios can be handled ade-
quately by an adaptive choice of the time step size which can be realized by treating the problem as a parameter dependent
one and using a predictor-corrector continuation in time based on the affine covariant convergence theory of Newton-type
methods (cf.,, e.g., [15] and the references therein). It is the purpose of this contribution to provide such an adaptive contin-
uation strategy for the fully implicit FE-IB. The paper is organized as follows:

In Section 2, we begin with a brief overview on the FE-IB which is based on the variational formulation of the problem
(Section 2.1) and then derive the fully implicit scheme giving rise to the solution of a nonlinear system of equations at each
time step (Section 2.2). In particular, we show that the associated nonlinear map admits an invertible Jacobian under some
constraints on the time step size (Theorem 2.5) and discuss scenarios for which we may encounter severe time step restric-
tions. Section 3 is devoted to the adaptive continuation method which is a predictor-corrector continuation method in time.
It uses classical continuation as a predictor and a combination of the ordinary and the simplified Newton method as a cor-
rector featuring an adaptive choice of the continuation steplength based on information of the previous successful contin-
uation step and a monotonicity test for convergence monitoring. In Section 4, we provide two representative examples,
namely the motion and deformation of a red blood cell through a thin capillary (Example 1) and under the influence of a
quadrupolar fluid force (Example 2). We address the shortcomings of the BE/FE FE-IB and illustrate the superior performance
of the adaptive continuation approach based on the fully implicit scheme.

2. Finite element immersed boundary method

We consider the motion and deformation of viscoelastic bodies such as vesicles and red blood cells immersed in an
incompressible external fluid. The classical IB as developed in [31] uses three groups of equations:

o the incompressible Navier-Stokes equations describing the motion of the fluid within an Eulerian coordinate system,

o the material elasticity equations describing the deformation of the immersed bodies in terms of the change of the total
elastic energy within a Lagrangian coordinate system,

o the interaction equations which transform Eulerian into Lagrangian quantities and vice versa.

The FE-IB has been originally studied in [8] and [9]. It relies on the variational formulation of these equations which will
be addressed in Section 2.1. The fully implicit FE-IB which will be dealt with in Section 2.2 is based on finite element approx-
imations of the variational equations in space and implicit time discretizations by the Backward Euler (BE) scheme both for
the semi-discretized Navier-Stokes and interaction equations. Therefore, it will be referred to as the BE/BE FE-IB.

2.1. Variational formulation of the IB

We assume Q = (a,b) x (c,d), a<b, c<d, to be a domain in R? with boundary I' = T, U Tj5c U T out, Where Iy := {a} x (c,d),
TIoye:={b} x(c,d), and TIa:=TpotUTltop I'bot:=(a,b) x {c},Iop:=(a,b) x {d}. We set Q:=Q x(0,T),2i,:=Tin
% (0,T),Z\at := Iiar x (0,T),Zout := Lour x (0,T), where T > 0. We assume that the fluids has density p > 0 and dynamic viscos-
ity #>0. We denote by u=u(xt) and p=p(xt), (x,t)eQ, the velocity and the pressure. We further refer to
g(u) := (Vu +(Vu)")/2 as the linearized strain tensor and to & (u,p) := — pl +2vg(u) as the stress tensor. Assuming a force
density F in Q, periodic boundary conditions in terms of a prescribed stationary velocity g at the inflow boundary X, and
the outflow boundary Xy, zero velocity on Z,, and an initial velocity u® at time t = 0, the incompressible Navier Stokes
equations read

p(%Jr (u~V)u) —nAu+Vp=F in Q, (2.1a)
V.-u=0 in Q, (2.1b)
u=g=(g.07, g>0 on Y, X e {Zn Zou}, (2.1¢)
u=0 on I, (2.1d)
u(-,0)=u® in Q. (2.1e)

For the variational formulation of (2.1a)-(2.1e) we use standard notation from Lebesgue and Sobolev space theory (cf., e.g.,
[18,40]). In particular, for a bounded domain Q c R?, d € N, we denote by LP(Q) and LP(Q) := IP(Q)%1 < p < oo, the Banach
space of to the power p square integrable scalar- and vector-valued functions on Q. In particular, for p = 2 the spaces L*(Q)
and L%(®) are Hilbert spaces, equipped with the inner product (-,-)o. and the associated norm || - ||o.o. L3(€2) stands for the
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subspace of functions with zero integral mean. Further, we denote by H°(Q), s € R,, the Sobolev space of vector-valued func-
tions with the inner product (-,-)s cand the associated norm || - || . The space H () is the subspace with vanishing trace on
I" C I'. We will omit the subindex I”, if I'"" = I". H"%(€2) stands for the dual space of H}(£2) with (-,) referring to the dual
product. The space H*(Q) c H*(Q) is the subspace of all u|o where u € H'(R%) and (u|,, @) = (u, @) for all ¢ € C7(Q) with
¢ referring to the continuation of ¢ by zero outside Q. We denote byH*~"(I""),s > 1, the trace space of vector-valued func-
tions on I'". We further refer to Hf)g”z(l”) as the space of functions whose extensions by zero to I'\I"” belong to H*~/*(I").
Finally, we denote by C¥(Q) and C*(Q), k € N, the Banach spaces of k-times continuously differentiable scalar- and vec-
tor-valued functions on Q.

Moreover, for T> 0 and a Banach space Z(Z) of scalar (vector-valued) functions, we denote by L%((0,T),Z) (L*((0,T),Z)) the
Hilbert space and by C([0,T];Z)(C(|0,T],Z)) the Banach space of functions v: [0,T] — Z(v:[0,T] - Z). The spaces
H*((0,T),2), s € R,, (H’((0,T),Z)) are defined likewise.

We introduce the function spaces
V(0,T) := H'((0,T),H'(2)) nL*((0,T),H'(2)),
W(0.T) .= {weV(OT)w|y =gw[; =0},
QO,T) = L*((0,1),L5(9)),
where X' = i, U oy Assuming F(t) e H'(Q)), g(t) € Hy)’ (2'), t € (0,T), and ul® e L%(Q), the weak formulation of the Na-

vier-Stokes equations (2.1a)-(2.1e) requires the computation of (u,p) € (W(0,T) N L>(Q)) x Q(0,T) such that for all v € H},(Q)
and w € [3() there holds

(p%e-v) +aw.v) - bp.v) = v) (2.2a)

b(w,u) =0, (2.2b)

u(-,0)=u®, (2.20)
Here, a(-,-), b(-,-), and the functional ¢ (-) are given by

a(u,v) = (p(u-V)u,v), o+ Ve, Vv),, (2.3a)

b(p,v) == (p.V-V)oq, €)= (F,v). (2.3b)

We further suppose that Q2 is filled with a suspension of N viscoelastic particles immersed in the carrier fluid such that the
subdomains B c ©,1 <i <N, withBY nBY =,1 <i #j < N, describe the spatial location of the particles at time t [0, T].
The boundaries (’}B@ are supposed to be non-selfintersecting closed curves. For ease of notation, we consider the case N =1
and write B; instead of B!"). The generalization to N > 1 is obvious. We assume that the boundary 8B, of the initial configu-
ration By has length L := |0B,| and denote by q € [0,L] the Lagrangian coordinate labeling a material point on 9B,. We further
refer to X(q,,t) = (X1(¢,t),X2(q,t))" as the position of that point at time t € (0,T]. We denote by

2
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the local energy densities on the immersed elastic boundary 0 B;, where x. > 0 and x;, > 0 denotes the elasticity coefficient
with respect to elongation-compression and bending, respectively. Then,

E(t) = Eo(t) +Ep(t), t € (0,T) (2.5)

L

E(t) = / EX(q.t)dg, E'(t) = / £(X(q. 1)dg,

is the associated total energy consisting of the elastic energy E%(t) and the bending energy E’(t). The local force density f is
given by f(q,t) = —E'(X(q,t)), where E' stands for the the Giteaux derivative of E.
We introduce the function space

Hy..([0,1]) := {Y € H*((0,1))|0"Y(0)/0¢" = 9Y(L)/og", k = 0,1}, (2:6)

and we require

per

X € H'((0,1),L°(0,1))) N L*((0,T), Ky, ([0, L) ). 2.7)
In view of (2.4) and (2.5) and f(-,t) = —E' (X(~t)) we have f(-,t) € Hpe,? ([0,L])*. Then, assuming some initial configuration
X0 ¢ H,%([0,L]), the variational formulation of the interaction equations reads
for all v e H*"*(Q) NHy(Q), > 1/2, such that v|,, € H2,([0,L]), and

per
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2 @0 Y@da ~ [ uXq.0.0-Yda (2.8b)

B OL f
| X@.0)-Yiada - [ X(q)-Y(a)dg (2.80)
0 0
for all Y € Hpe,X([0,L]).

Remark 2.1. We note that in contrast to the FE-IB approach in [8], here and in the sequel we use the variational rather than
the pointwise formulation of the motion of the immersed body (cf. (2.8b) and (2.8c)).

Remark 2.2. If we use (2.4) in (2.8a), for sufficiently smooth v we obtain

<X<-7r>>ax(§; g

[ %%
/ X, D'v(X(-, 1)) FX(-, 1) dq
w5

(F(

0q? 0q?
X D2y (x(_7t))(8xa((-17 t) ’axa(‘-l, t)>dq. 2.9)

2.2. Fully implicit FE-IB

We assume 7,(Q) to be a simplicial triangulation of @ that aligns with the partition of I". For D C Q, we refer to 7,(D) as
the union of triangles that have nonzero intersection with D, i.e.,

T4(D) = | {T € TW(Q)IT N D # 0} (2.10)

For T € T;(RQ), we denote by |T| the area of T and by hy the diameter of T. We set h := max{hy|T € 74(Q)}. Further,
P, (T), k € N, refers to the set of polynomials of degree <k on T. We suppose that 7,,(Q)is quasi-uniform, i.e., there exist
constants 0 < ¢g < Cq that only depend on the local geometry of the triangulation such that

CQh < hT < CQh, T e Th(.Q) (21])

For the spatial discretization of the weak formulation (2.2a), (2.2b) of the incompressible Navier-Stokes equations we use
P2-P1 Taylor-Hood elements [14], i.e., we define

Vi = {vn € C(@Q)|vnly € Po(T), T e Th(Q)},
Vi = (Vi € C(Q)IVi = (Un1, Vh2)". Vhy € Vi),
Qy = {wn € C(@)Iwal; € Pi(T), TeTyH(R)}NLQ),
and set V,,o := VN Co(Q). The finite element spaces Vj, and Q, are spanned by the canonically specified nodal basis func-
tions ", 1 <i<ny, and y’, 1 <i < Ny.
Assuming g, to be the quadratlc spline interpoland of g with respect to 74(Q)|p, I’ = I'in tesp. I'"" = I'gyt, We set

Wi(0,T) = {wpy € C([0,T],C(Q)|Wi(:, )l € Vi, Wi(-, )| = & (), L € [0,T], Wy, =0},

Qh(07 T) = {Wh € C([O~ TL C(ﬁ))|wh(7 t)'T € Qlu te [O* ”}
The discretization of the immersed boundary is done with respect to a partition
Tag = {0=qy<q1 < <@y =L}, 3N,

of the interval [0,L] into subintervals [;:=[g;_1,q;], 1 < i< n3, of length Ag;:= q; — q;_1 with Aq:=max{Agq;|1 <i< ns3}. We
approximate Xfrom (2.7) by periodic cubic splines and thus define

Sh == {Yn € C}((0,1); 2)|Yal, € Ps(1)*,1 < i< m3, Y, (dp) = Yy () k = 0,1,2},

where P5(I;) stands for the set of polynomials of degree < 3 on I;. By X 1 < i < n3, we denote the canonical basis functions
(B-splines) spanning the scalar-valued counterpart of Sj. The dlscrete immersed body occupies subdomains
By C @, t € [0, T], with boundaries 8By that are C? curves described by the periodic cubic spline X(-,t) € Sp.

We further consider a partitioning {0 = :to < t; < --- < tj; := T} of the time interval [0, T] with step sizes Ty := tjs — O < k<M — 1,
and approximate the time derivatives ouy,/ot and 6X;/ot at t;.,;by the backward difference quotient. Denoting by uﬁl") eV, pg‘) € Qy,
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and X(k) € Sy, 0 < k < M, approximations of u(-, ), p(-, ti), and X(-, t;), the fully implicit FE-IB method (BE/BE FE-IB) amounts to the com-
putation of (uh"+1 Y, "*”) 0 < k < M — 1, such that for all v, € VoW, € Q, and all Y, € Sy, there holds

P(U;Ikﬂ) Vh)(m + vy - 7 b(Pth ) = lh(Vh), (2.12a)
b(wh,u;’”‘ ) -0, (2.12b)
/ XMV ¥, (q)dg - T / w, (xk”) Y,dq = / X . ¥,dg, (2.120)
0
where the right-hand side in (2.12a) is given by
L
B = p W Vagg + 5 [ 6 ) vaX{)da, (2.13)
L gk ax k)
k+1 k+1 o h . p! (k+1) h

[t g = e [ D) e dg

azxkﬂ . (1) 82xk+1
_K,,/ oz DX S —dg

azxkﬂ , ) 8X§1k+1) 8Xl(1k+1)
—Kb\/or aqz D Vh<xh ) 6—q,a—q dq

Remark 2.3. We note that v, € Vi, does not satisfy vp|ys € ngr([o L]) (cf. (2.8a)). However, assuming measm(B,¢, ., N &y
Gt Ny
(Q)) = 0, it follows that (2.13) is well defined for v, € Vj, and X kD) ¢ 5.

For the algebraic formulation of the BE/BE FE-IB (2.12a)-(2.12c), we introduce the vectors

T
k k k
a® = (u§>,~-~ u® o ...7%)) L0<k<M,

s 0N P+

pY = (b)) 0<k<M

T
K k ) y(k k
X0 . (Xg>,---,X§13>,X§3)+1,---,X,(V3)> L0<k<M
the mass matrices M, € RV, blockdnag(M Mz) v e {1,3}, the stiffness matrix A € R">N1 A = blockdiag

(AY A?), as well as the matrix B € RNZ“\’I by means of
(M) = p/ ool dx, 1<ij<m, 1<pu<2,
ij 2

L - -
(M), = o [ 2irdde 1 <i<m 1< ps2

A = v/ Vol Vel dx, 1<ij<n, 1<v<2,
P P
B; = , (,;Dh l//h dx, By, = (,Dh lﬂh dx,

1\ \N271<]\n

We note that the matrices My, M3, and A are symmetric and positive definite. In particular, there exist constants y; >0,
us >0, and o > 0 such that for v € R and Y € R"> there holds

VIMY > 4 |vIE YTMSY = i)Y, VAV > ofjv]. (2.14)
The matrix BT satisfies an inf-sup condition, or equivalently
IB'q|* > Qi 0. f>0. R \span{(1.....1)"}. (2.15)
We further define the nonlinear mappings C : R — RM F: R™ — RM, and K : RV — RV*M according to

QDh

(C(“))u T Z ZP QDh (Ph dxu(m Dy U1+

Jk=1m=1
EXED)) / £ (@0 (X )dg,

where 1 <¢<2,1<i<ny, and



4681

L
- .
(K(X(IHU))(6—1)n3+i‘(ﬂ—1)n1+j = /0 @?(X;H))X?dq

(and zero else), where 1 < ¢ <2,1<i<n31<j <ny,and X' = (38 X, 528 X, i)'
For z = (u,p,X)" € RN+ Jet us define the nonlinear function H: RY — RN, N:=N; + N, + N3, by
(A +C(u))u+B'p—F(X)—F,
H(z) = — Bu-b € RN (2.16)
“K(X)u

Note that the first two lines in (2.16) describe the finite element discretized stationary incompressible Navier-Stokes equa-
tions and that the vectors Fy € RM and b € R result from the inhomogeneous boundary data on X, and X, We remind
that the third line in (2.16) stems from the variational form of the equations of motion for the immersed boundary.
Denoting by M = blockdiag(M;,0,Ms) € R¥*N the (singular) mass matrix associated with (uy, 0, X;,), the ODE describing
the dynamics of the immersed boundary-fluid interaction can be written as
Mz(t) = H(z(t)), t € [0,T]
z(0) = zo,

which is equivalent to the formulation as a Volterra equation of the second kind

0 = Mz(t) — Mz — /[H(z(s))ds = G(z(t):1). (2.17)
0

This represents a parameter-dependent nonlinear system of equations with trajectory {z(t)|t € [0, T]}. The numerical solution
by means of Newton’s method is not suitable, since it would require some global information of the Jacobian H'(z(-)) up to the
point z(t) and, in addition, an exact evaluation of the integral in (2.17).

To overcome these difficulties, we approximate (2.17) by the backward Euler (BE) scheme

0 = Mz(ty.1) — Mz, — T H(2(tk 1)), k = 0,

where Ty := ti+1 — b, i.€., for each time step we have to compute the root z(ty.;) of the nonlinear function

G(z;ty + T¢) = Mz — Mz(t,) — 7,H(z). (2.18)
Consequently, the problem we deal with is a time-discretized approximation of a parameter-dependent nonlinear system of
equations, and thus can be solved by the methodology presented in Section 3.

Setting z¥ := (u®, p®, XW) 0< k<M, at each time step the BE/BE FE-IB then amounts to the computation of
2D, 0 < k<M -1, as the solution of the nonlinear system

G(z*V: ) =0, (2.19)
where the nonlinear mapping G(-;t;1) : RN — RN relative to (t;,2(ty)) is given by

(M; + T A)u + 7,C(u) + 7, B"p — T, F(X) — Myu® — 7, Fy
G(z;tk1) = Bu-b , (2.20)
M;X — M;X® — 1, K(X)u

where for scaling reasons we have multiplied the second block row by 1/t,. The Jacobian G'(z; t; ;) € R¥*N reads as follows:

M; + A+ 1,C(u) 7B —1F(X)
G (z;ti) = B 0 0 ‘ (2.21)
~TK(X) 0 M;— 7K (X u

Here, C'(u) € RV and F(X) € RM*™ are the Fréchet derivatives of C and F at u and X, respectively, whereas
Ky (X, u) € RN*M stands for the partial Fréchet derivative of K(X)u with respect to X at (X,u).

Remark 2.4. We note that for the numerical evaluation of the Jacobians, the derivatives have been computed by automatic
differentiation using the code INTLAB from [37].

The solution of the BE/BE FE-IB by a predictor-corrector continuation strategy in time requires the invertibility of the
Jacobian which can be guaranteed under some restriction of the time step size.

Theorem 2.5. For a given z € RN and t™" > 0, assume that the time step size 1, satisfies
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0 < ™" < 7 < TP™(z) == min(iy, 4), (2.22)
2
S I T o G K (d
M= Cy + 20, + (Cz) I dz + 2d2 + <d2> ’
where c,,d,,1 <v <2, depend on z and are given by
a = [Cw)] +§||F’(X)H JrleK(X)IIz/HMﬂI2 - (2.233)
¢ = 3, (AP +1Cw)P), (2223b)
1 ' 1 /
d = 5 (||M1||2|\F (1] + 5 KX + K (X, u>||), (223¢)
dy = 3, |[F(X)|*. (2.23d)
Then, the Jacobian G'(z; t.;) € RV*N is invertible. In particular, there holds
/ - _ K
IG @) <y y=7@) = (224)
1 _. 3, i
1 = o min(i M P (27 By, ),
4 M pr2 s
cx o= (max(SIM I + 20812, (272 (1M + 5 1B 1))

Proof. For w = (v,q,Y)" we choose w = (v,q,Y)" according to v = 2||M; ||V + 1, 7,B"q/2,q = Bv — 27, ||M; ||°q, and Y = Y. It
follows that

o 1 ! :
WG (z; )W = (ZHM1 I*v + 5t rkBTq) (M; + T,A + 7,C' (u))v

1 T 1 r,
+ Tk <2||M1 v+ iulrkBTq> B'q -7, (2\\M1 v+ §ﬂﬂkBTq> F(X)Y
+ (BV — 274||M; |°q) BV — T, Y'K(X)V + Y’ (M3 — 7Ky (X, u))Y. (2.25)

For the first term on the right-hand side in (2.25) we obtain

1 ! , , 1
<2|\M1 I>v + St 'z:kBTq> (M + T4A + 7€ () v = 2[M; [’V (M + T,A + 7,C (u))V + 5t 7(B'q)" (M; + 7,A

+ ¢ (w)v. (2.26)
Using (2.14), the first term on the right-hand side in (2.26) can be estimated from below as follows
2 M PV (M + T A+ 1 (w) v = 2|[My > vIM v +21 |M; [P YT AV —27, | [My |2 C (u) ||| v||°. (2.27)
> v >ov|?

Using Young's inequality, the second term on the right-hand side in (2.26) can be estimated from above according to

1 /
o 7B My + T + T, (u)v < “ﬁ M 1] Y B+ IIAIIHVIIHBTqII +ELC W) vIBa)
LLat B q) + 65 A VI 4+,

LLz 87 +2H‘ IV 1 + 55 Lz 8q)? +6ulfk\lc’( IPIvI®. (2:28)

8 2 24 2 24 2
For the second term on the right-hand side in (2.25) it follows that
1 T
T (2\\M1 PV +5 8 rkBTq> B'q = 27,|M; |v'B'q + £ 2 BTq)” (2.29)

Another application of Young’s inequality reveals that the third term on the right-hand side in (2.26) can be estimated from
above by means of

1 ! V/ v/ / /
Tk (zHMl v+ jﬂlkaTq) F(X)Y = 27/|M: |*V'F (X)Y &Tk(BTCI)TF X)Y < 7 M *IF )N (IV]* + [1Y]*)

1 ,
+ﬁ*TkHBT(III +6ﬂ‘ TIF X Y. (230)
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For the fourth term on the right-hand side in (2.26) we obtain
(Bv — 27 ||M;||°q)" Bv = ||Bv|* —27,||M; ||*q"Bv. (2.31)
>0

Using Young’s inequality again, the fifth term on the right-hand side in (2.26) can be estimated from above as follows

1
TWY KXV < 5 Tl KX (V] + [Y]]*)- (2.32)
Finally, in view of (2.14), for the sixth term on the right-hand side in (2.26) we get the lower bound
(Ms — Ty (X, 1)Y > Y M5Y — Ky (X, ) Y[>. (233)
> Y

Summarizing (2.26)-(2.33), from (2.25) we deduce
_r 3
WIG'(Z; ti)W > M| (= 2017 = &) VI + g o [BaI + (pt5 = 2di — doT) Y1 (2.34)
We choose 7 such that
1 1
WUy — 26T — CoTh = Sh My =241 - 1 > s, (2.35)

which is satisfied, if 7, obeys the upper bound in (2.22). On the other hand, using (2.15) and the lower bound in (2.22), it
follows that

(min)

S B > o (T gl (236)
Taking advantage of (2.35) and (2.36) in (2.34), we finally obtain

WG (Z; ti )W > K |w].
Consequently, in view of

Wil < s | w,
G'(z;ty+1) satisfies the inf-sup condition

infsupW.C B L)W 4 WG (Z L)W

— < >
wA0wso || WI|[[W]| weo wifw] ~ 7

from which we deduce bijectivity by means of the generalized Lax-Milgram lemma (cf,, e.g., [12,13]). O

Remark 2.6. We may expect a time step restriction, if the convective term and/or the deformation of the particle is dom-
inant, i.e., in case ||C'(u)| and/or ||F(X)|| is large. These scenarios are reflected by the time step restriction (2.22).

Usually, the step size restriction (2.22) is relatively mild and not the reason why we use an adaptive continuation strategy.
The adaptivity is due to the convergence requirements of the Newton correction scheme, as explained below.

3. Adaptive Newton continuation

When it comes to the numerical solution of (2.19) by means of the ordinary Newton method
G (29;tr1) AZY = —G(ZY; tyy1), (3.1a)
24D =200 4 Az, (3.1b)

it turns out that its naive application is seldom successful. The reason is that the IB scheme is typically badly conditioned in
the sense that even small perturbations of X from its target position (here: X(t.1)) cause strong counterforces that lead to
rapid oscillations in all unknowns resulting in non-convergence of (3.1a), (3.1b). A remedy for this problem is to use a mod-
ified Newton method with adaptively chosen damping parameters (step lengths) o, € [otmin, 1] for the update
20 =79 + o,Az9. More precisely, we use the algorithm NLEQ-ERR from [15] which employs a combination of damped or-
dinary and simplified Newton steps in order to build certain contraction factors serving as convergence monitoring quanti-
ties (for details, see [15] and below). The actual motivation for this algorithm is that it can be used in the context of
parameter-dependent nonlinear problems.

Our approach is based on the affine invariant convergence theory for Newton-like methods developed in [15] and updates
the time parameter t in an adaptive way using local information about the trajectory {z(t) = (u(t), p(t), X(t))|t € [0,T]}. We
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follow this trajectory in a predictor-corrector manner. For the computation of the prediction step it is essential how to
choose the increment 7, since this is closely related to the problem of staying inside the Kantorovich neighborhood of
the solution at time t; + 74. Predictor-corrector methods can be seen as discrete continuation methods where the continu-
ation step plays the role of a prediction step. Consider a parameter-dependent nonlinear system

Gz;t)=0, tc[0,T], zeR", (3.2)

where G(-;t) : RY — RVand assume that there exists a solution z(t) € R for t € [0,T]. Discrete continuation methods solve
(3.2) with respect to a partitioning to<t; <--- <ty =T, M > 1, of the interval [0,T]. This partitioning is not given in advance,
but computed adaptively during the solution process. In order to solve the subproblems (2.19) successively by a Newton sol-
ver, we need sufficiently good initial guesses z© (t; ;) which have to be provided by a continuation step. It has to be adapted
in such a way that the convergence requirements of the subsequent correction step (2.19) are met. The quality of approx-
imation of the prediction can be controlled by two factors, the steplength 7, and the type of continuation. The simplest pos-
sible choice for a continuation step z(ty) — Z(ty,1) is constant continuation, i.e.,

Z(ty1) = Z(ty), 3.3)

also called classical continuation. It involves no further computations and for simplicity, we will stick to this choice. By Tay-
lor expansion, we get as approximation error

1zt + T) — Z(t + To)|| < HTk- (3.4)

We remark that the constant # = max.p||Z(t)| is a key quantity for an adaptive stepsize selection. It will be used below.

The term affine covariance means that the Newton iterates z” are invariant with respect to affine transformations
G — TG of the image space of G by a regular matrix T, which can be easily seen. Invariance with respect to affine transfor-
mations of the domain space is referred to as affine contravariance. Both are subtopics to the generic term affine invariance.
We encounter affine covariance in Lipschitz conditions like

(G @15 t11)) ™" (G(2i: tinn) = G(Z2s b))l < 0|21 — 22|

through its affine covariant constant. They appear in certain affine covariant Newton convergence theorems (see Theorem
3.1 below). By nature of the affine covariant concept, such theorems can only be about the iterates’ increments Az'*) or errors
zY — z*, not about residuals G(z(“);tkﬂ). This has to be taken into account in the subalgorithms of an algorithmic realization
of a discrete continuation method formulated in affine covariant terms.

In our case, the object of interest is the homotopy path z(t) which lives in the domain of the mapping G. Therefore, the
concept of affine covariance is the adequate framework.

We consider a convergence analysis of the simplified Newton method which is most appropriate to derive steplength cri-
teria for a discrete continuation method. We recall that for a given start iterate z(®) the simplified Newton method is of the
form

G (29;ty1) AZY = —G(2Y; ty11), (3.5a)
20 — 20 1 AZ0 0 =0.1,.... (3.5Db)
It is characterized by the fixed Jacobian G’ (z{%;t+;) which is used for all iterations. We cite the following affine covariant

convergence result (cf. Theorem 2.5) in [15]):

Theorem 3.1. Let D c RN be open and convex, G: D — RN be continuously differentiable, and z® € D such that G'(z(?) is
invertible. Further, for some > 0 let the affine covariant Lipschitz condition

I6'Zz) ' (C'(2) -G 2")| < wllz—2|,z€D, (3.6)
hold true. Assume further

hy = o|AZ9] < % (3.7)
and define 6 := 1—+/1—2ho,p = &"/w. Suppose that the closed ball B,(z?) is contained in D. Then, the simplified Newton

method (3.5b) generates iterates {z\"},. C B,(z©) converging to z* with G(z*) = 0, and there holds the estimate

HZ(/H) _Z(i)H 1
mgi(@#—é/fﬂ» =21, (3.8)

where 5p:= 0 and 5,1 = ho+ 1/252, ¢ = 0.
The contraction factors

_ Az

|z

o, : >0, (3.9)
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serve as monitoring quantities in Newton algorithms: From the convergence rate estimate (3.8) it follows that @, < 1/2
(8pe1 + 0¢), £ = 0. Along with ¢ =0, 6, = hg and the definition of hg from (3.7), we get

00 < S ][5z (3.10)
This estimate is equivalent to
20y
——— < W, 3.11
1AzO] (3.11)

which provides a lower bound for o respectively the local Lipschitz constant & (cf. Theorem 3.2 below). Along with # from
(3.4), this is the second key quantity for an adaptive step size selection strategy. In the following, we have to assume that
7 > ™" for some given t™" > 0 to guarantee boundedness of 7~ (cf. (2.24)). This is in agreement with the algorithmic real-
ization of the predictor-corrector scheme (see Algorithm 3.6 below) where the case 7, < T™" serves as a convergence failure
criterion.

Theorem 3.2. Let G'(z;t) be nonsingular for all (z;t) €D x [0,T], assume that the homotopy path z:[0,T] — D exists, and let
te € [0,T]. Further, suppose that there exists a local Lipschitz constant @ such that for all ze D and for all 0<t™ <1< T—t;
satisfying 2(t, + ) € D, the affine covariant Lipschitz condition

|G @t + Dt + 7)) (Gt +T) — G (&t + Dt + )| < Dllz — 2ty +7)] (3.12)

holds true. Then, the simplified Newton method (3.5b) with starting point z(t, + ) := z(tx) (classical continuation) converges to-
wards the solution z(t, + t) for all stepsizes
.Cmin \/E -1

ST = (3.13)

Proof. For completeness we present the proof from Corollary 5.5 in [15], since we will use an estimate from the proof for the
subsequent discussion. For the application of Theorem 3.1 we need

|| AZO (t + 7)|| g%. (3.14)
To this end, we derive an upper bound (7) for |[Az®|. We set Z := Z(t,1), Z := Z(t}+1) and consider
=0
150 /05 -1 5 /05 -1 5 yeum
IAZ™ (te))l| = (G (2, ti1)) " G(Z, tear)| = (|(G(Z5 tk1)) | G(Zs Eer1) — G(Z5 Ee1)
~ 1 1 ~ ~
= (G'(2, ti1)) /0 G(z+5(2-2);tk1)(2—2) ds||
1
B H/ (€(1) (€245 (2 2).01) £ G2, b)) (2 2)ds
0
1
< IIi—ZH<1 +/ (G (Z:ti1)) ! (G2 +5 (Z2—2); ticr)—G (Z; trr))|| dS)
0
(3.12) o 1
< |z—-1z| <1 +wlz-z| / 11— s\ds).
0
From the definition of 5 (cf. (3.4)) we know ||Z(ty,1) — Z(trs1)|| < 1T, whence
1Azt + 7)) < nr(l +%€onr> =1(7). (3.15)

The crucial step is to use this estimate for requirement (3.14) to arrive at
ont(1+ ! ont ) < 1

which is fulfilled for &nt < v2 — 1. Under this condition, which is equivalent to (3.13), Theorem 3.1 can be applied, and we
conclude. O

Remark 3.3. According to Theorem 3.2, the iterates {z\”)}, stay within the closed ball B, (2O (ty+1)) C Byjo(z(ty)) =: B, if the
step size restriction (3.13) is fulfilled. (This is also true when, in practice, we use a combination of the ordinary and the sim-
plified Newton method.) Hence, all Newton iterates are well defined, if in view of (2.22) we choose
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Remark 3.4. We check the affine covariant Lipschitz condition (3.12) from Theorem 3.2 in case the nonlinear mapping
G(-;tgs1), trs1 =t + 7T, k € Ny, is given by (2.20). Let T > t™" > 0 as in Theorem 3.2. Setting for brevity z := z(t; + 1), we
have

7(C'(u) - C'(w) 0 ~7(F/(X) - F(X))
Gzt +7) — G2t + 1)t +7) = 0 0 0

—7(KX) - K(X)) 0 —r(l(;((x, u) - K, (X, ﬁ))

We denote by L¢ the (local) Lipschitz constant Le (z(ty)) of the Fréchet derivative C/, i.e.,

IC'(w) —C(@)] < Leflu— 1]
and define Ly, Ly, Ly, similarly. Then, with y = y(z(t)) and in view of (2.24), from Theorem 2.5 we obtain (3.12) with a t-inde-
pendent upper bound

Q = 1 (T - t,) max(Le, Ly, Lk, Ly ). (3.16)

In view of (2.24), the quantity y~! depends on the choice of 7™, On the other hand, according to (3.13) and (3.16), t™" deter-
min

mines an upper bound (v2 —1)/( ) for 7. The following result provides a condition under which the interval [¢™™,
T™¥(t,)] is nonempty.

Lemma 3.1. Assume that for

Clatt. ) = Y2 ! , (3.17)
21 max (LC,LF,,LK,LK,X) (T — to)ka (2(tr)

the condition

3 .
C(Z(tk)vtk)z‘_lﬁtul min(g, [Ma]*, pt3) > 1 (3.18)

holds true. Then the interval [t™",t™(t,)] as in (3.13) is nonempty.

Proof. Observing (2.24), we introduce the quantities

-~ . -~ 3
Ki = Cla(ty), to) min(u M, ), Ko = Cla(t),te) 7By
Since & < Q, the interval [t™®, t™2(¢,)] with T (ty) = (\/i - 1)/(()) 7)] is nonempty, if
i ff -1 min(K;, Ky (t™")?) (3.19)
Qn
holds true. In view of (3.18), we have K;K; > 1 and hence, we may choose t™" := ,/K;/K; such that (3.19) is satisfied. O

The result of the last theorem has the drawback that it contains the unknown constants @ and #. In order to exploit the step-
length criterion (3.13) in an algorithmic realization, we use the following strategy:

We compute estimates [ - | of the a priori unknown constants and apply the steplength criterion with @, # replaced with
[@], [17]. By nature of the constants &, 1 we have to work with lower bounds. Taking into account that both quantities appear
in the denominator of (3.13), this strategy will in general overestimate the true maximal steplength t™%(t;). Therefore, we
only predict a maximal stepsize based on some estimates of the local constant @ and the global constant #. It explains why
we also need a correction formula for 7, in case of convergence failure of the Newton corrector.

Remark 3.5. There is some ambiguity of the terms 'prediction’ and ’correction’, since we use each of them in two different
meanings:

(a) in the context of a continuation method, we usually mean the prediction and the correction of the variable z. There-
fore, we use the expressions z-prediction (by classical continuation) and z-correction (by a Newton solver), respec-
tively. For the continuation step in the z-prediction,
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(b) the steplength 7 is predicted and, if necessary, corrected. We will address this as t-prediction and t-correction,
respectively.

3.1. T-Prediction strategy

We can use estimate (3.11) to obtain

200(t) . -
azoy IS

as an estimate for @ and likewise

ll2(t) — z(tw) |l

= <7,
T m<n

which obviously provides a lower bound of # due to (3.4). Inserting these estimates (which have the advantage of being com-
putationally available) into (3.13) instead of @ and 7, results in the t-prediction formula

_ (V2 1A0m))
200(6)[[20(t) — z(te)|

This formula predicts the next steplength 7, adaptively based upon information about local and global constants of the
homotopy gathered within the last Newton correction step. In (3.20) we have used the fact that the first increment of the
simplified and the ordinary Newton method coincide. Since the exact solution z(t;) is not known in general, we use the final
solution of the Newton corrector as its replacement in (3.20) to obtain a computable expression. Due to the fact that this
formula defines 7, recursively, we need to specify some 7, for the first continuation step.

Te = To = [T™(t)] : (3.20)

3.2. t-Correction strategy

From (3.20) it is clear that [t™*(t;)] = ©™*(t), and so the predicted steplength 1, = 7(x0) may be too large and could lead
to a convergence failure of the Newton correction step. In this case, we need to correct it, i.e., T(j+1) — T(kj) and repeat the last
z-prediction step, now with an adaptively reduced stepsize 7y .1. Here, we can deal with the quantity @¢(ty + tj)), since we
have computed it in the last unsuccessful Newton correction at i + 7(x;. It can be exploited to gain refined information about
the crucial quantity @ # from (3.13): Estimate (3.10) in combination with (3.15) gives (using t(xs1 ) := tx + T(k,)):

1. 1.
@dmﬂm<§me(l+jmeJ-

Since @, 1, and 7t are all nonnegative quantities, this is equivalent to

400 (tgay) +1-1
Tikj)

ONTj) = \/4O0(tpiry)) +1-1 =  on >

=:[on]
Plugging this lower bound for @& into the stepsize formula (3.13), we obtain the t-correction formula:

V2 -1 .
V4 O (tpry) +1-1

Here, ®¢ has been replaced with @, where ¢(j) stands for the ¢th Newton iteration (in the jth t-correction cycle, j > 0)
where convergence failure has occurred. This is not backed by rigorous theory but seems unavoidable and reasonable to
get an executable algorithm:

Convergence failure for the simplified Newton method is accompanied by ©,;, > 1 (and nevertheless, if ¢(j) > 1 it is pos-
sible that 1/4 < @¢;) < 1! @¢ < 1/4 implies local convergence of the simplified Newton method, see (3.7) and (3.10)). Simi-
larly, using the algorithm NLEQ-ERR as a Newton corrector, for convergence failure we must have @ ;, > 1. In both cases, for
O = 1 we get an obvious reduction of the steplength, since

V2 -1 L vV2-1
4@[0‘)(t(k+1‘,‘))+1 -1 \\/571

Tkjrny = [T ()] = ki)> J = 0.

~ 0.34.

3.3. Adaptive continuation algorithm

We summarize the discussion about the time increment-adaptive prediction-correction scheme by the following pseudo-
code. The reader may concentrate, in particular, on the t-prediction-correction for a clarification of the preceding discussion.
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Algorithm 3.6. Adaptive predictor-corrector algorithm

% Initialization:
Specify the initial IB state variables (u® p‘®, X(®)=:z(t,) and a starting
value 7(90), bounds t™" and ™, and Oy, < 1.
Set to:=0,k:=0,and j:=0.
% Iteration:
while t<T
%z — predictionstep:
Set Cier1) = b F T(ky)
Perform the classical continuation step 20 (t(, 1)) = z(ty)
%z — correctionstep:
Solve G(z;t(i+1,)) = 0 with initial guess 29 (t 1)) by the Newton
solver NLEQ-ERR: Thereby, contraction factors @, = @ (ty+1,), ¢ = 0,
are computed and z gets updated by means of a damping factor o, according
t0 2D (ter ) = 29 (b)) + o AZO.
if Newton corrector was successful after ¢=/4(j) > 1 iterations
Set trs1 == Ly
Set z(tyy1) = 29(twiny)
Set @ «— max(@g, O min)
Predict the new time increment by

(V2 - 1)[Az

T = 5 .
(10 2700120 (trr) — 2(ter)| 7

Set T(k+1,0) = MIN(T(k+1,0 T")
if Tere1,0) < T, stop: convergence failure end

else
Correct T according to
T v2-1 T
(kj+1) = (k4)
o 40 (Cpry) +1-1

if Tejer) < T™in stop: convergence failure end
Setj—j+1 and go back to z-prediction step

end

Setj:=0

Setk—k+1
end

4. Numerical results
4.1. Motion of an RBC through a thin capillary

As an illustration of the adaptive continuation method we consider the motion and deformation of a red blood cell (RBC)
immersed in an external microfluidic channel flow passing through a thin capillary. The plasma membrane of an RBC con-
sists of a lipid bilayer membrane and an attached spectrin network as cytoskeleton [3]. Therefore, one might expect a rather
complex fluidic behavior, since the underlying cytoskeleton can rearrange according to an external mechanical force [4].
However, it was demonstrated that lipid vesicles without an attached polymer network may serve as a simple model which
already captures the basic physics of the fluid-structure interaction problem. We note that the dynamics of RBC and vesicles
in fluid flow has been studied both experimentally (see [1,2,20,21,29,41]) and theoretically (cf. [6,7,22,24,35,38]). For the
numerical study of the rheology of RBC in microchannels, the IB has been applied in [5,17,30,42], whereas the FE-IB has been
used recently in [16]. It is well known that an RBC can pass through capillaries whose diameters are half or even less than the
typical diameter of an RBC (7.5-8 um), enabling oxygen supply also through highly branched blood vessels. We have con-
sidered a microchannel with a diameter varying between 20 and 4 pm, a density of p = 1.0 - 10° kg/m>, and a viscosity of
7=6.0-1073Pa - s both for the carrier fluid and the fluid enclosed by the membrane of the RBC. We have further assumed
an inflow velocity of g=1.0-10"2m/s. Taking d =20 pm as reference length, this results in a Reynolds number of
Re ~ 3-1072, a typical magnitude for RBCs in microfluidic flows. We note that the maximal velocity inside the narrow part
of the channel is almost five times higher than the inflow velocity which results in a strong deformation of the passing RBC
whose elastic moduli have been chosen according to x,=6.0 - 107° N/m and x;, = 2.0 - 10~ '° Nm (cf. [39]). In its initial state,
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the RBC has a diameter of 7.8 pum and a perimeter of L=19.8 pum. We have used a uniform finite element mesh for
©=[0,50] x [0,20]\(17.5,32.5) x ((0,8) U (12,20)) um? with mesh parameter h=1.0 um and a uniform partition of [0,L],
resulting in Ny + N, + N3 =10358 + 1340 + 114 = 11,812. All computations have been performed under Linux on a work sta-
tion featuring Intel Quad-CPU with 2.83 GHz each and 8 GB RAM.

We illustrate the difficulty associated with the semi-implicit BE/FE FE-IB from [16] by considering an RBC in a microchan-
nel passing a thin capillary. The (constant) time step size was chosen too large, namely, T = 1/250, and oscillations in the IB
state variables occurred leading to a 'torn apart’ membrane. This is shown in Fig. 1. The same problem occurs even for 7 =1/
350 (see below).

In case of the fully implicit BE/BE FE-IB, the adaptively chosen time step sizes prevent from numerical instabilities. The
adaptive step size selection algorithm detects the critical stage during the computation. This can be seen in Fig. 2 where 1
gets clearly reduced (at approximately t = 0.90) and stays small as long as the RBC occupies the capillary. In the same figure,
the evolution of the (scaled) potential energy E..(t) of the membrane is displayed. An increase causes a reduction of 7, and
vice versa: when E(t) reaches its initial standard after leaving the thin capillary, 7 is chosen larger again. The time instants
of the snapshots of the RBC in Fig. 3 correspond to the markers in Fig. 2. It is noteworthy that the average time stepsize of the
BE/BE FE-IB version is roughly 1/169. This means that the semi-implicit version with constant time steps 7 =1/350 (see
above) fails although its time increments are less than half of the average time step size of the fully implicit scheme. More-
over, in none of the 441 BE/BE FE-IB time steps it was necessary to perform a t-correction, which seems to indicate that the
t-prediction mechanism is quite reliable.

The computation was stopped at T=2.61 shortly before the RBC reached the outflow boundary. The computing time for
the fully implicit BE/BE FE-IB with initial 7o 0)=1/40 was 2 h 25 min.

4.2. Motion of an RBC subject to a quadrupolar fluid force

As a second numerical example we consider an RBC in a fluid occupying a square domain © = [—15 pum,15 pm]? with no-
slip boundary conditions on all four boundary segments. We impose a quadrupolar fluid force density which is given as fol-
lows: For each velocity node i, 1 < i < ny/2, with coordinates (x;y;) € 2 we set (X;,y;) := (x;/D,y;/D), D =15 pm and define
the components uy;, Uy .q, /2 0f a divergence-free velocity field uy, € Vj, by

sin(7x;) (2 cos(my;) — 1)

(2 — cos(mxy)) (2 — cos(my;))*
sin(7y;)(2 cos(mx;) — 1)

(2 — cos(mx;))* (2 — cos(my))

Up; = TV

Upiyn, 2 = —TVp
We introduce

flomy == Auy, 0<k<M-1 (4.1)

with the stiffness matrix A from Section 2.2 as an additional force density in (2.13). Moreover, we choose T = 10 as final time
and h = 1/16, resulting in ny + n, = 18050 + 2304 = 20 354 degrees of freedom for the Navier-Stokes equations, and Aq := h/
2 so that N5 = 128. All other parameters are the same as in the first numerical example.

As can be seen in Fig. 4, the quadrupolar force density generates four pairwise counter-rotating vortices, and thus the in-
duced flow is characterized by a velocity field that is rapidly varying in terms of magnitude and direction. The RBC, whose
center x = (—0.5 pm, —1.0 pum)T is initially placed a little offside the origin, gets kneaded and spun around clockwise as time
proceeds (see Fig. 5 (bottom)).

We note that in [19] a quadrupolar force field has been generated by surface acoustic waves, whereas in [23] a similarly
defined quadrupolar force has been used for the separation of chiral objects in microflows.

Fig. 1. Numerical instability of the BE/FE FE-IB for 7 = 1/250. The computation was stopped at t = 0.05 after one membrane node had left the domain (not
shown in the figure) due to high oscillations.
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Fig. 2. Evolution of the adaptively chosen time increments (solid line) and of the (scaled) potential energy of the membrane (dashed line).

Fig. 3. Snapshots of the RBC's membrane at selected time instants. These time instants correspond to the x-marked instants in Fig. 2.

Fig. 4. A quadrupolar force density creates four pairwise counter-rotating vortices and significantly impacts the motion and deformation of an RBC.

We have run the example with two semi-implicit schemes (Backward Euler/Forward Euler (BE/FE), Crank-Nicolson/For-
ward Euler (CN/FE)) and the fully implicit scheme (BE/BE) featuring an adaptive time step selection. In Table 1, we provide a
comparison of the three schemes in terms of computational time and average, minimal, and maximal time step size. The
minimal time step of the fully implicit scheme is approximately 10 times larger than the constant time step sizes of the
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Fig. 5. The evolution of the adaptively chosen time steps and of the membrane’s potential ener:
the picture below.

(top). The marked instants correspond to the snapshots in

Table 1
Comparison of three different schemes for Example 2.
Scheme Duration (min) M Ty ming(Tg) max(Tx)
BE/FE 116.5 6500 1/650 1/650 1/650
CNJ/FE 112.0 6300 1/630 1/630 1/630
BE/BE 94.8 622 1.60-102 1.76 103 1.20-107"
Table 2 R
Dependence of the fully implicit scheme w.r.t. the initial value 7o := 1/N.
N Duration (min) M Tay ming(tg) max(Ty)
10 (No convergence)
20 (No convergence)
30 (No convergence)
40 94.5 616 1.62-1072 1.86-10°3 1.34-10""
60 93.1 609 1.64-1072 1.18-103 1.46-107"
80 94.7 620 1.61-102 1.73-1073 1.31-107"
100 94.8 622 1.60-1072 1.76-10°3 1.20-10"
150 98.3 621 1.61-1072 1.39-103 1.19-10""
200 98.5 627 1.60-102 1.74-1073 1.15-107"
250 96.9 614 1.63-1072 1.95.10°3 1.23-10°"
300 97.9 617 1.63-1072 211-10°3 1.44.107"

semi-implicit schemes. The fully implicit scheme, for which again no t-correction was necessary, is even faster than the
semi-implicit ones. The reason is that for this example two critical situations occur (an initial squeezing of the RBC and a
subsequent almost-collision with the left wall), where relatively small time step sizes must be chosen. This alternates with
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’calm’ situations where the adaptive scheme picks large time steps. In contrast, the semi-implicit schemes have to work with
the same small time step throughout the whole computation.

On the other hand, a certain disadvantage of the fully implicit scheme is the need for significantly more memory, since the
computation of certain sub-blocks of the Newton matrix containing second order derivatives by automatic differentiation
(AD) is memory intensive.

The performance of the adaptive stepsize selection algorithm is relatively independent of the initial choice of the contin-
uation parameter 7). Table 2 displays the performance for different initial guesses and underlines the robustness of the
algorithm with respect to changes in the initial data. If 7o) is chosen too large, the first Newton correction step at
t =0+ 7(0,0) does not converge and the algorithm has to be stopped: this was the case for 7(o0) > 1/30. We note that the time
step sizes for both semi-implicit schemes given in Table 1 were found purely heuristically (increasing N = 1/t € N by 10-
units as long as the scheme turns out to be stable). In general, the knowledge of a 'proper’ step size is not available in
advance.

5. Conclusion

The Immersed Boundary method (IB) is a powerful technique for the mathematical modeling and numerical simulation of
fluid-structure interactions, but it is also known for its inherent stiffness. To cope with this problem, we have presented a
fully implicit, fully variational version of the IB and a technique how to solve the resulting nonlinear systems of equations
efficiently. It has been shown that the fully implicit scheme can be interpreted as a BE-approximation of a parameter-depen-
dent nonlinear system of equations for which adaptive continuation strategies exist. More precisely, we have used a predic-
tor-corrector strategy based on the affine-covariant Newton convergence theory developed in [15]. The idea is to use local
information about the trajectory of state variables for the construction of the upcoming time increment. This is done in such
a way that the convergence requirements of the Newton correction step, conducted at the next time instant, are likely to be
met. We have shown that the associated Jacobians are invertible, if the time increment is chosen small enough, and thus the
Newton iterations are well defined. The combination of an adaptively chosen time increment and a correction step leads to a
numerically stable time-stepping scheme. This has been demonstrated by a challenging test problem where a red blood cell
passes through a thin capillary and, in doing so, undergoes a rapid change in its potential energy which usually (i.e., in the
semi-implicit case) leads to numerical instabilities.
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