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Abstract The sorting of biological cells using biological micro-electro-mechanical
systems (BioMEMS) is of utmost importance in various biomedical applications.
Here, we consider a new type of devices featuring surface acoustic wave (SAW)
actuated cell sorting in microfluidic separation channels. The SAWs are generated
by an interdigital transducer (IDT) and manipulate the fluid flow such that cells
of different type leave the channel through designated outflow boundaries. The
operation of the device can be formulated as an optimal control problem where
the objective functional is of tracking type, the state equations describe the fluid-
structure interaction between the carrier fluid and the cells, and the control is the
electric power applied to the IDT.
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1 Introduction

We consider the optimal control of surface acoustic wave (SAW) actuated high
throughput sorting of biological cells in microfluidic channels which has significant
applications in basic cell biology, cancer research, clinical diagnostics, drug design
in pharmacology, tissue engineering in reproductive medicine, and transplantation
immunology [3, 4, 9, 13, 14].

According to [5], the experimental setup consists of a separation channel with
three inlets and two outlets. The cells are injected through the middle inlet on the
left and can be focused by the inflows through the other two inlets. SAWs are
generated by an Interdigital Transducer (IDT) close to the lateral wall. The IDT
features fingers substantially parallel to one another. A static electric field is applied
to generate a strain which varies across the aperture of the IDT. The electric field
is either perpendicular or parallel to the fingers and created by applying an AC
voltage between two correspondingly positioned conductors. If the IDT is active,
the SAWs enter the fluid filled channel and lead to a distortion of the fluid flow. Let
us assume that we have cells of type A and B such that cells of type A should leave
the channel through the lower outlet, whereas cells of type B are supposed to leave
the channel through the upper outlet. Cells of different type can be distinguished by
fluorescence. Without SAW actuation, the inflow velocities are tuned in such a way
that a cell of type A leaves through the lower outlet. However, if a cell of type B is
detected, the IDT is switched on and the flow is manipulated such that the cell leaves
through the upper outlet (cf. Fig. 1). In an optimal control setting, the objective is

Fig. 1 Surface acoustic wave actuated cell sorting (SAWACS) in a microfluidic channel: without
SAW actuation (top) and with SAW actuation (bottom) (Taken from [7])
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to achieve the sorting as described above, the state equations are given by the fluid-
structure interaction between the carrier fluid and the cells, and the control is the
time-dependent power applied to the IDT.

For the mathematical modeling and numerical simulation of the fluid-structure
interaction between the carrier fluid and the cells we will use the finite element
immersed boundary (FE-IB) method [1, 2, 6] which is the finite element version
of the classical immersed boundary (IB) method originally developed by Peskin
(cf., e.g., [11, 12]). The FE-IB method relies on the variational formulation of a
coupled system of partial differential equations consisting of the incompressible
Navier-Stokes equations and the equations of motion of the boundaries of the
immersed cells. As far as the spatial discretization is concerned, we use Taylor-
Hood P2/P1 elements for the Navier-Stokes equations and periodic cubic splines
for the equations of motion of the immersed boundaries. The discretization in time
is taken care of by the backward Euler scheme for the semi-discretized Navier-
Stokes equations and the forward Euler scheme for the semi-discretized equations
of motion. This results in a semi-implicit scheme (Backward Euler/Forward Euler
FE-IB method) which has to satisfy a CFL-type condition for stability reasons. We
consider a control constrained optimal control problem for the fully discretized FE-
IB method featuring an objective functional of tracking type where we prescribe
desired positions of the immersed cells. Based on the necessary optimality condi-
tions, the optimal control problem is solved by a projected gradient method with
Armijo line search. Numerical results illustrate the performance of the suggested
optimal control approach.

2 The Finite Element Immersed Boundary Method

The IB method comprises three groups of equations:

• The Navier-Stokes equations describing the motion of the incompressible viscous
carrier fluid,

• The material elasticity equations responsible for the total elastic energy and the
resulting forces exerted by the immersed cells,

• The interaction equations translating Eulerian into Lagrangian quantities and vice
versa.

We denote by � � R
2 the Eulerian domain representing the separation channel

wit boundary � D �D [ �N; �D \ �N D ;; and by v.x; t/; p.x; t/ the velocity
and the pressure of the carrier fluid in .x; t/ 2 � � Œ0; T �; T > 0. We further
refer to ƒ D Œ0; L� � R as the Lagrangian domain such that the vector valued
function X.	; t/; 	 2 ƒ; represents the closed, non self-intersecting boundary of an
immersed cell at time t 2 Œ0; T �, T > 0.

The classical formulation of the IB equations then reads as follows: Find a triple
.v; p;X/ such that the incompressible Navier-Stokes equations
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�

�
@v
@t

C .v � r/v
�

� 2 �r � D.v/C rp D fE in � � .0; T � (2.1a)

r � v D 0 in � � .0; T � (2.1b)

v D vD on �D � .0; T � (2.1c)

.�p I C 2 �D.v// � D 0 on �N � .0; T � (2.1d)

v. � ; 0/ D v0 in � (2.1e)

are satisfied. Here, � and � are the density and viscosity of the carrier fluid, D.v/
stands for the rate of deformation tensor D.v/ D .rv C .rv/T /=2, fE is a source
term that will be specified in (2.3a) below, vD is a prescribed velocity, � denotes the
exterior unit normal vector on the Neumann boundary�N, and v0 refers to the initial
velocity. The Navier-Stokes equations are coupled with the equations of motion of
the immersed boundary

@X
@t
.	; t/ D v.X.	; t/; t/ D

Z
�

v.x; t/ � ı.X.	; t/� x/ dx; (2.2a)

X.	; 0/ D X0.	/; (2.2b)

where ı stands for the Dirac delta function and X0 is the initial configuration of
the immersed boundary. The source term fE in (2.1a) is a global force density
according to

fE.x; t/ D
Z
ƒ

FL.	; t/ � ı.X.	; t/ � x/ d	; (2.3a)

FL.	; t/ D � E 0.X. � ; t//.	/; (2.3b)

whereE 0 is the variational derivative of the elastic energy of the immersed boundary
as given by

E.t/ WD E.X. � ; t// WD
Z
ƒ

Ee
�@X.	; t/

@	

�
d	C

Z
ƒ

Eb
�@2X.	; t/

@	2

�
d	: (2.4a)

Here, Ee and Eb stand for the local energy densities

Ee
�@X.	; t/

@	

�
D �e

2

�ˇ̌
ˇ@X
@	
.	; t/

ˇ̌
ˇ2 � 1

�
;

Eb
�@2X.	; t/

@	2

�
D �b

2

ˇ̌
ˇ@2X
@	2

.	; t/
ˇ̌
ˇ2;

with �e > 0 and �b > 0 denoting the elasticity coefficients for elongation-
compression and bending.
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The FE-IB method relies on the variational formulation of the coupled system.
We introduce the function spaces

V.0; T / WD H1..0; T /;H�1.�// \ L2..0; T /;H1.�//;

W.0; T / WD fv 2 V.0; T / j vj�D�.0;T / D vDg;
Q.0; T / WD L2..0; T /; L2.�//;

and

X.0; T / WD H1..0; T /;L2.ƒ//\ L2..0; T /;H3
per.ƒ//;

H3
per.ƒ/ WD fY 2 H3.ƒ/ j @kY.0/=@	k D @kY.L/=@	k ; k D 0; 1; 2g:

The FE-IB method amounts to the computation of a triple

.v; p;X/ 2 W.0; T / �Q.0; T / � X.0; T /

such that for almost all t 2 Œ0; T � and all test functions .w; q;Y/ 2 H1
�D;0

.�/ �
L2.�/ � H3

per.ƒ/ it holds

D@v
@t
;w
E
H�1;H1

�D ;0

C a.v;w/� b.w; p/ D `.w/; (2.5a)

b.v; q/ D 0 (2.5b)

v. � ; 0/ D v0; (2.5c)
�@X
@t
;Y
�
0;ƒ

�
Z
ƒ

v.X.	; t/; t/ � Y.	/ d	 D 0; (2.5d)

X. � ; 0/ D X0; (2.5e)

where h � ; � iH�1;H1
0

stands for the dual pairing between H1
0.�/ and H�1�D;0

.�/ and
a. � ; � /; b. � ; � /, as well as the functional `. � / are given by

a.v;w/ WD .�.v � r/v;w/0;� C .�rv;rw/0;� (2.6a)

b.p; v/ WD .p;r � v/0;� ; `.w/ WD hfE ;wiH�1;H1
0
: (2.6b)

For the numerical solution of (2.5) we use Taylor-Hood P2/P1 elements for the
spatial discretization of (2.5a)–(2.5c) with respect to a quasi-uniform simplicial
triangulation Th.�/ of � that aligns with the partition of � and periodic cubic
splines for the spatial discretization of (2.5d), (2.5e) with respect to an equidistant
partition

T�	.ƒ/ WD f0 D 	0 < 	1 < � � � < 	R D Lg
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ofƒ into subintervalsƒr WD Œ	r�1; 	r �, 1 � r � R, of length�	 D L=R. We note
that the discrete immersed cell occupies subdomains B�	;t � � with boundaries
@B�	;t that are C2 curves described by the periodic cubic spline.

We introduce the finite element spaces

Vh WD fv 2 C0.�/
ˇ̌

vjT 2 P2.T / ; T 2 Th.�/g
V�D;h WD fvh 2 Vh

ˇ̌
vhj�D D vh;Dg

V0;h WD fvh 2 Vh

ˇ̌
vhj�D D 0g

Qh WD fq 2 L2.�/ ˇ̌ qjT 2 P1.T / ; T 2 Th.�/g;

where vh;D is a piecewise polynomial approximation of vD, and

S�	 WD fX�	 2 C2.ƒ/
ˇ̌

X�	jƒr 2 P3.ƒr / ; 1 � r � R;

dkX�	=d	k.	0/ D dkX�	=d	k.	R/ ; k D 0; 1; 2g:

The semi-discretization of (2.5) in space requires the computation of a triple

.vh; ph;X�	/ 2 C1..0; T /;V�D;h/ � L2..0; T /;Qh/ � C1..0; T /;S�	/

such that for all t 2 Œ0; T � and all test functions wh 2 V0;h; qh 2 Qh; and Y�	 2 S�	
it holds

�@vh
@t
;wh

�
0;�

C a.vh;wh/� b.wh; ph/ D `.wh/; (2.7a)

b.vh; qh/ D 0 (2.7b)

vh. � ; 0/ D …hv0; (2.7c)
�@X�	

@t
;Y�	

�
0;ƒ

�
Z
ƒ

vh.X�	.	; t/; t/ � Y�	.	/ d	 D 0; (2.7d)

X�	. � ; 0/ D …�	X0; (2.7e)

where…h and …�	 are the L2-projections onto Vh and S�	, respectively.
For the algebraic formulation of (2.7) we equip V0;h,Qh, and S�	 with canonical

bases f
i gN1iD1, f i gN2iD1, and fBigN3iD1. Accordingly, we write

vh D
N1X
iD1

vi 
i ; ph D
N2X
iD1

pi  i ; X�	 D
N3X
iD1

Xi Bi :

Here, the Bi are the B-splines with respect to the partition T�	.ƒ/ andX1; : : : ; XN3
are the de Boor points. As an important assumption we state that the Lagrangian
force density FL gets discretized by means of fBi g as well in order to gain
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a useful transpose property (see (2.8a) below). Furthermore, we denote by ML

and ME the Lagrangian and the Eulerian mass matrix, respectively, by C.v/ the
advection matrix, by A the stiffness matrix, by B the matrix associated with
the divergence operator, and by K.X/ 2 R

N1�N3 the matrix with componentsR
ƒ

i .X�	.	// � Bj .	/ d	. We assume that all (Eulerian) matrices and right-hand

sides are manipulated appropriately in order to enforce the Dirichlet conditions
from (2.1c). Then the algebraic formulation of (2.7) reads: Find .v; p;X/ W Œ0; T � !
R
N1 � R

N2 � R
N3 , such that for almost all t 2 Œ0; T �

ME

dv

dt
.t/C C.v.t// v.t/C A v.t/C B>p.t/ D K.X.t//>FL.X.t// (2.8a)

B v.t/ D 0 ; (2.8b)

N1X
iD1

vi .0/
i D …hv0; (2.8c)

ML

dX

dt
.t/ D K.X.t// v.t/; (2.8d)

N3X
iD1

Xi .0/Bi D …�	X0: (2.8e)

3 The Semi-implicit Backward Euler/Forward Euler FE-IB
Method

For the discretization in time we first consider the Backward Euler/Forward Euler
FE-IB method from [6] in the sense that we discretize the Navier-Stokes equations
by the backward Euler method in time and the equation of motion of the immersed
boundary by the forward Euler scheme. In particular, we consider an equidistant
partition

T�t WD f0 DW t0 < t1 < � � � < tM WD T g; M 2 N;

of the time interval Œ0; T � into subintervals of length�t WD T=M and set

v.m/h WD vh. � ; tm/; p
.m/

h WD ph. � ; tm/; X.m/

�	 WD X�	. � ; tm/:

We refer to

DC�tv
.m/

h WD .v.mC1/h � v.m/h /=�t; D��tv
.m/

h WD .v.m/h � v.m�1/h /=�t
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as the forward and backward difference operator. We further define the total discrete
energy by means of

E�	.tm/ WD Ee
�	.tm/C Eb

�	.tm/;

where the discrete elastic energyEe
�	.tm/ and the discrete bending energyEb

�	.tm/

are given by

Ee
�	.tm/ D �e

2

Z
ƒ

�ˇ̌
ˇ@X.m/

�	

@	
.	/
ˇ̌
ˇ2 � 1

�
d	

Eb
�	.tm/ D �b

2

RX
rD1

Z
ƒr

ˇ̌
ˇ@
2X.m/

�	

@	2
.	/
ˇ̌
ˇ2 d	 :

Observing that @3X.m/

�	 .	/=@	
3 is constant onƒr , the discrete force density takes the

form

.F.m/L;�	;wh.X
.m/

�	 //0;ƒ D ��e

Z
ƒ

@X.m/

�	 .	/

@	
� rwh.X

.m/

�	 .	//
@X.m/

�	

@	
d	

C �b

RX
rD1

@3X.m/

�	

@	3

ˇ̌
ˇ
ƒr

�
Z
ƒr

rwh.X
.m/

�	 .	//
@X.m/

�	

@	
d	 : (3.1)

The Backward Euler/Forward Euler FE-IB reads as follows:
Given v.0/h D …hv0 and X0;�	 D X.0/

�	 D …�	X0, for m D 0; : : : ;M � 1 we
perform the following two steps (cf. [6]):

Algorithm 3.1.

(i) Compute .v.mC1/h ; p
.mC1/
h / 2 Vh;�D �Qh such that for all wh 2 Vh;0

.�DC�tv
.m/

h ;wh/0;� C a.v.mC1/h ;wh/� b.p
.mC1/
h ;wh/ D `

.m/

h .wh/; (3.2a)

b.wh; v
.mC1/
h / D 0; (3.2b)

where `.m/h .wh/ WD .FL;�	;wh.X
.m/

�	 //0;ƒ is given by (3.1).

(ii) Compute X.mC1/
�	 2 S�	 according to

DC�tX
.m/

�	 D v.mC1/h .X.m/

�	 /: (3.3)

Referring to @B .m/

�	 as the boundary of the immersed cell at time tm which consists

of C 2-segments @B .m;r/

�	 connecting material points X.m/

�	 .	r�1/ and X.m/

�;	.	r /; 1 �
r � R, one can deduce the estimate
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krv.mC1/h k2
0;@B

.m/
�	

� Ccell h
�1krv.mC1/h k20;� (3.4)

with a positive constantCcell depending on the triangulation Th.�/ (see (3.8) in [7]).
A stability analysis reveals that the Backward Euler/Forward Euler FE-IB requires
the CFL-type condition (cf. Theorem 3.1 in [7])

�t

h
� �

8Ccell .�eƒ1 C �eƒ2/
; (3.5)

whereƒ1 and ƒ2 are given by

ƒ1 WD max
0�m�M max

	2ƒ

ˇ̌
ˇ̌
ˇ
@X.m/

�	

@	

ˇ̌
ˇ̌
ˇ ; ƒ2 WD max

0�m�M max
1�r�R

ˇ̌
ˇ̌
ˇ
@3X.m/

�	

@	3
jƒr
ˇ̌
ˇ̌
ˇ :

The CFL-condition (3.5) for the semi-implicit scheme means a restriction of the
time-step size �t in particular depending on the amount of deformation of the
immersed membrane as reflected by the quantities ƒ1 and ƒ2. For problems
characterized by large values of ƒ1 and ƒ2, the time increments need to be chosen
very small, leading to a high computational effort. As a remedy, a fully implicit
time-stepping scheme can be used based on the application of the backward Euler
scheme in time for both the Navier-Stokes equations and the equation of motion
of the immersed boundary. This Backward Euler/Backward Euler FE-IB method is
unconditionally stable at the expense that at each time-step a nonlinear algebraic
system has to be solved. We refer to [10] for details including a predictor-corrector
continuation strategy featuring an adaptive choice of the time-step size.

4 Optimal Control of the Surface Acoustic Wave Actuated
Cell Sorting

In this section, following the strategy ‘discretize first, then optimize’, we will
formulate the optimal control problem for the surface acoustic wave actuated
cell sorting. The objective is to steer the immersed cells to desired positions by
controlling the electric power applied to the IDT. The semi-implicit Backward
Euler/Forward Euler FE-IB method from Sect. 3 serves as the state constraints.
For z WD .v; p;X/, consider the following optimal control problem

8̂
<
:̂

min
z2Z;u2U J.z; u/

s.t. S.z/ D b.u/

u 2 Uad

(4.1)
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The objective functional J is given by

J.z; u/ WD J.XŒ1�; XŒ2�/ WD
2X
iD1

1

2

���X.M.i//

Œi �;�	 � Xdes
Œi �;�	

���2
0;ƒ

; (4.2)

where 1 � i � 2 are the cell indices of two different biological cells and the
functions Xdes

Œi �;�	 2 S�	.ƒ/ mark desired final positions close to the respective
outflow boundaries. The time instants tM.i/ are chosen such that the x1-components
of barycenters of the immersed cells XŒi �;�	.ƒ; t/ and Xdes

Œi �;�	.ƒ/ coincide. The state
operator S reads

S.z/ WD

0
BBBBB@

v0 � v.0/

.ME C�t A/ v.m/ C�tB>p.m/ ��t fE.X .m�1//�ME v.m�1/
B v.m/

X0 �X .0/

MLX
.m/ �MLX

.m�1/ ��t K.X .m�1// v.m/

1
CCCCCA

and

b.u/ D .0;�t g.u.m�1//; 0; 0; 0/>; 1 � m � M:

The volume force term g.u.m// 2 R
N1 comprises components

g.u.m//i WD
Z
�

fvol.u
.m// �
i dx ; 1 � i � N1 ;

where the volume force density fvol generated by the IDT is given by

fvol.u
.m//.x/ WD

(
.0; ˇ u.m/ e.�.x2�y0/=d/ k.x1; x0;D//> ; x 2 !
0 ; x 2 � n !

k.x; x0;D/ D sin2.2
.x � x0/=D/

.2
.x � x0/=D/2
:

Here, ! � � denotes the subdomain where the SAW is effective, ˇ stands for
a transmission coefficient, d for the decay length, .x0; y0/> refers to the center
position of the segment at the lower lateral boundary where the SAWs enter the
domain, and D=2 is the half width of this segment (marked green in Fig. 2 below).
The function k is known as a Kirchhoff function and describes the refraction pattern
of the SAW intensity.

We define the set of admissible controls by

Uad WD fu 2 U WD R
M ˇ̌

umin � u.m/ � umax ; 1 � m � Mg ; (4.3)
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D/2

Fig. 2 Paths of two different cells under the influence of the computed optimal control. The
desired positions are depicted in magenta

where the control u.m/ is the power applied to the IDT at time tm and umin, umax 2
R

M are given bounds. As numerical optimization scheme we use the well-known
projected gradient with Armijo line search (see, e.g., [8]). To this end, we introduce
the reduced objective functional

Jred.u/ WD J.z.u/; u/ ;

where z.u/ D .v.u/; p.u/; X.u// is the solution to S.z/ D b.u/. Then problem (4.1)
can be reformulated as the state-reduced optimal control problem

(
min

u2RM
Jred.u/

s.t. u 2 Uad

(4.4)

being equivalent to (4.1). Problem (4.4) can be solved by the following scheme
where…Uad denotes the projection operator onto the admissible set:

Algorithm 4.1.

(o) Let u0 and a tolerance " > 0 be given.
for k = 0,1,2, ...

(i) Compute the descent direction dk D �rJred.uk/ via adjoint approach.
(ii) If k…Uad.uk C dk/ � ukk < ", stop: u� WD uk.

(iii) Compute a step length ˛k by Armijo line search.
(iv) Update ukC1 D uk C ˛k dk, project it onto Uad and go back to (i).

The computationally most challenging part is the evaluation of rJred.uk/ which is
taken care of by the adjoint approach:
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For the optimization problem (4.1) we consider the Lagrangian

L.z; u; 	/ D J.z; u/ C 	>.S.z/� b.u// ; L W Z � U � Y ! R :

The associated state equations and adjoint state equations are

0 D r	L D S.z.u//� b.u/ (4.5a)

0 D rzL D rzJ.z.u/; u/C S 0.z.u//>	.u/ : (4.5b)

Lemma 4.2. Assume that S.z/ D b.u/ has a unique solution z.u/, 8u 2 U , and
that 	.u/ 2 Y is the unique solution to (4.5b). Moreover assume that the mappings
.z; u/ 7! J.z; u/, z 7! S.z/, u 7! z.u/, and u 7! b.u/ are Fréchet-differentiable.
Then there holds

rJred.u/ D ruL.z.u/; u; 	.u// : (4.6)

Proof. By the chain rule we get rJred.u/ D rz.u/rzJ.z; u/C ruJ.z; u/, whence

rJred.u/� ruJ.z.u/; u/ D �rz.u/ S 0.z/>	.u/ D �rb.u/ 	.u/:

ut
In more detail, one has to perform the following steps to compute the reduced
gradient rJred.uk/ (for notational simplicity, only one cell is considered):

Algorithm 4.3.

(i) Compute the state .vk ; pk ; Xk/ WD .v.uk/; p.uk/; X.uk//:
v.0/k WD v0, X

.0/

k WD X0 and for 1 � m � M

.ME C�t A/ v.m/k C�t B>p.m/k D �t
�
fE.X

.m�1/
k /C g.u.m�1/k /

�

CME v.m�1/k

B v.m/k D 0

MLX
.m/

k D MLX
.m�1/
k C�t K.X

.m�1/
k / v.m/k :

(ii) Compute the adjoint state .wk ; qk ; Yk/ WD .w.uk/; q.uk/; Y.uk// backward in
time: w.M/

k WD 0, Y .M/

k WD Xdes � X .M/ and for M � 1 	 m 	 1

MLY
.m/

k D MLY
.mC1/
k C�t

�
f 0E.X

.m/

k />w.mC1/k

C .K 0.X .m/

k /v.mC1/k />Y .mC1/k



:
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.ME C�t A/w.m/k C�t B>q.m/k D �t K.X
.m�1/
k />Y .m/k CME w.mC1/k

B w.m/k D 0

(iii) Set rJred.uk/ WD @J.zk ; uk/=@u C�t
PM�1

mD1 .w
.m/

k />r>g.u.m�1/k /.

The derivatives showing up in the adjoint system represent the nontrivial terms
of the adjoint operator S 0.z.u//> from (4.5b). Let us now state the optimality
conditions associated with (4.1).

Theorem 4.4 (Necessary optimality conditions). Assume the set Uad is given
by (4.3) and the assumptions from Lemma 4.2 are fulfilled. Then there exists an
optimal solution .z�; u�/ to (4.1) with associated Lagrange multiplier 	� such that:
.z�; u�/ solves (4.5a), 	� solves (4.5b) and

�rJred.u
�/
�
i

8<
:

� 0 ; u�i D umax
i

D 0 ; umin
i < u�i < umax

i

	 0 ; u�i D umin
i

: (4.7)

Proof. In case of box constraints, the optimality condition for (4.4), namely
.rJred.u�/; u � u�/ 	 0, 8u 2 Uad, can be characterized by (4.7). ut

Condition (4.7) can be written in short form as…Uad.u
�� rJred.u�// D u�. This

justifies the termination criterion from Algorithm 4.1, step (ii).

5 Numerical Results

As a numerical example, we consider the sorting scenario ‘up – down’, meaning that
the first cell (i D 1) is supposed to take the upper outflow channel and the second
cell (i D 2) the lower one.

The separation channel � is shown in Fig. 2 featuring three inflow boundaries
at the left and two outflow boundaries at the right. The main part has a length of
300�m and a width of 180�m. The maximal inflow velocities v.left/

in ; v.top/
in ; and

v.bottom/
in have been chosen according to

v.left/
in D 10 mm=s; v.top/

in D 12:5 mm=s; v.bottom/
in D 10 mm=s;

guaranteeing that without SAW actuation a cell leaves the channel through the lower
outflow boundary. As the density � and the dynamic viscosity � we have chosen

� D 1;000 kg=m3; � D 7:0 mPa � s



518              

Fig. 3 Evolution of the controls uk arising in the optimization algorithm

Table 1 Decrease of the reduced objective functional Jred.uk/ as a function of the iteration step k
of the optimization algorithm

Iteration k 0 1 5 10 15

Jred.uk/ 8.18eC01 2.53eC00 1.42eC00 1.09eC00 9.40e�01

both for the carrier fluid and the fluid enclosed by the membrane of the two cells. We
note that in practice this can be achieved using density and viscosity matching by
adding suitable chemicals to the carrier fluid. We have considered initially spherical
cells of diameter 16�m and moduli

�e D 5:0 � 10�5 N/m; �b D 1:0 � 10�16 Nm:

The sorting task is complicated by setting the initial distance between the cells to
25�m only. For the spatial discretization of the Navier-Stokes equations we have
used a finite element mesh with mesh size h D 7:5 �m, whereas for the spatial
discretization of the equations of motion of the immersed boundaries we have used
a partition of ƒ with �	 D 3:6 �m. The time-step size �t in the semi-implicit
Backward Euler/Forward Euler FE-IB method has been chosen according to �t D
1=100ms making sure that the CFL-condition (3.5) is satisfied.

Figure 2 shows the computed paths of the cells in the separation channel along
with their designated positions at final time, whereas Fig. 3 displays the computed
controls of the projected gradient method.

Finally, Table 1 reflects the decrease of the reduced objective functional Jred.uk/
as a function of the iteration step k of the optimization algorithm.
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Conclusions
We have presented an optimal control approach to the sorting of different
biological cells by surface acoustic wave (SAW) manipulated fluid flow in
a microfluidic separation channel. The mathematical modeling and numerical
simulation of the fluid-structure interaction has been taken care of by the finite
element immersed boundary (FE-IB) method. The feasibility of the approach
has been documented by numerical results.
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