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Abstract

Background: Receptor tyrosine kinase (RTK) inhibitors are frequently used to treat cancers and the results have
been mixed, some of these small molecule drugs are highly successful while others show a more modest response.
A high number of studies have been conducted to investigate the signaling mechanisms and corresponding
therapeutic influence of RTK inhibitors in order to explore the therapeutic potential of RTK inhibitors. However,
most of these studies neglected the potential metabolic impact of RTK inhibitors, which could be highly associated
with drug efficacy and adverse effects during treatment.

Methods: In order to fill these knowledge gaps and improve the therapeutic utilization of RTK inhibitors a large-
scale computational simulation/analysis over multiple types of cancers with the treatment responses of RTK
inhibitors was performed. The pharmacological data of all eight RTK inhibitor and gene expression profiles of 479
cell lines from The Cancer Cell Line Encyclopedia were used.

Results: The potential metabolic impact of RTK inhibitors on different types of cancers were analyzed resulting in
cancer-specific (breast, liver, pancreas, central nervous system) metabolic signatures. Many of these are in line with
results from different independent studies, thereby providing indirect verification of the obtained results.

Conclusions: Our study demonstrates the potential of using a computational approach on signature-based-analysis
over multiple cancer types. The results reveal the strength of multiple-cancer analysis over conventional signature-
based analysis on a single cancer type.
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Background
Receptor of tyrosine kinases (RTKs) possess highly con-
served functional structures from the nematode Caenor-
habditis elegans to humans and are key components of
intracellular signaling pathways such as epidermal
growth factor receptor (EGFR), vascular endothelial
growth factor receptor (VEGFR), tyrosinkinase (KIT),
brain-derived growth factor (BDGF), and others [1].

Therefore, RTKs play an essential regulatory role in di-
verse, critical cellular processes including proliferation,
differentiation, cell survival, apoptosis, and metabolism
[2, 3]. Thus, numerous diseases, especially cancer, are
highly associated with genetic changes and/or functional
abnormalities that result in aberrant activation, patho-
logic cellular distribution, or dysregulations of RTK [4–
7]. Recently, Catalogue of Somatic Mutations in Cancer
(COSMIC) provided a substantial volume of mutational
information for diverse members of the RTK receptor
family for several cancer types. This data inferred that a
strong causal link of these receptors to cancer develop-
ment and treatment must exist [8]. Given these facts, a
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number of studies have been conducted to investigate
and/or develop effective RTK inhibitors. The aim was to
improve the therapeutic index and treatment outcome.
For instance, imatinib mesylate, a targeted RTK inhibi-
tor, is used to successfully treat chronic myeloid leukae-
mia as the first line of treatment and treat Gastro-
intestinal stromal tumor (GIST) with high risk stratifica-
tion as the standard of care [9, 10]. Unfortunately, many
patients develop a drug resistant disease and relapse due
to diverse factors including genetic mutation and mo-
lecular mechanisms. Many other RTK inhibitors demon-
strated disappointing results in preclinical experiments
[11–14]. In order to better understand RTK inhibitor ef-
fectiveness and improve their treatment efficacy, studies
were conducted to investigate the intracellular signalling
mechanisms and complications [15–20]. Unfortunately
there are currently few studies that have focused on the
possible impact of RTK inhibitors on the cancer metab-
olism. Even less is known on whether the impact of RTK
inhibitor on metabolism is antagonistic or agonistic dur-
ing or after treatment.
In order to fill these knowledge gaps, we conducted a

study to investigate metabolic impact of eight RTK in-
hibitors on several common types of cancer such as
breast, liver, pancreas, central nervous system (CNS),
and others. The results of this study may improve our
understanding as to how RTK inhibitors can affect me-
tabolism via direct or indirect influence on treatment
outcomes or other complications. This in turn may aid
in overcoming obstacles in the clinical application of
RTK inhibitors, and provide new directions for future
studies with the purpose of new therapeutic develop-
ments. To our knowledge, this study is the first to inves-
tigate the multiple RTK inhibitors’ impact on
metabolism of diverse cancers at the molecular level.

Methods
The aim, design, and setting of this study
The drug sensitivities of eight inhibitors (AEW541, erlo-
tinib, lapatinib, PF-2341066, PHA-665752, sorafenib,
TKI258, ZD6474) in different types of cancer were ana-
lyzed within the Cancer Cell Line Encyclopedia (CCLE).
The aim of this study was to further investigate and
characterize the metabolic impact of these eight drugs
on these cancer types in order to investigate their impact
on cancer metabolism. The CCLE systematically ana-
lyzed the drug responses of 479 cancer cell lines derived
from 30 cancer types. The measured IC50 values of each
of cancer cell lines from CCLE were used to define the
response grades of these eight RTK inhibitors’ treat-
ments. We applied the previously published molecular
metabolic model, MCMP, to simulate the metabolism of
each of these cancer cell lines based on their corre-
sponding GEP from CCLE. The simulation procedure

was carried out with the simulation software, AutoAna-
lyze. Figure 1 visualizes the work flow of this study.

The molecular metabolic model MCPM and data from
CCLE
The published methionine-cycle based metabolic model
(MCPM) was manullay constructed based on on infor-
mation from literatures and the publicly available data-
base, KEGG [21]. The MCPM consists of 3755
components including gene, protein, compound and
others [22]. The MCPM has 4750 reactions that are di-
vided into 30 metabolic pathways. In this manner, each
model component belongs to one or more correspond-
ing pathways in the model. The crosstalk (overlap) of
these pathways is based on literatures and KEGG.
The Cancer Cell Line Encyclopedia (CCLE) published

gene expression profiles (GEPs) coupled with pharmaco-
logical profiles for 479 cancer cell lines using Affymetrix

Fig. 1 The work flow of this study

Li et al. BMC Cancer          (2019) 19:600 Page 2 of 12



U133 plus 2.0 array [23]. The data is associated with ac-
cession number GSE36139 from Gene Expression
Omnibus (GEO) and can be accessed via http://www.
broadinstitute.org/ccle.

Simulation procedure of AutoAnalyze
Each reaction in the MCPM model can be divided into
reactants and products. The connection between both is
the applied kinetic law. The concentrations of reactants
consist of the estimated input data of a reaction, whereas
the output data represents the concentrations of prod-
ucts of this reaction. AutoAnalyze uses a data-flow-
based calculation approach [24] to compute the concen-
tration of products based on the concentrations of reac-
tants and the corresponding kinetic law with following
formula:

Output products; roleð Þ ¼ Π reactants; roleð Þ
� the kinetic law ð1Þ

The gene expression data from CCLE is the input data
for initialization of simulation procedure for AutoAna-
lyze, which means that only the gene components pos-
sess initial values, while the values of other components
in the model are initially set to zero. Based on this

formula (1), the concentration/value of each of compo-
nent in the model can be computed and dynamic behav-
ior of pathways can be generated.

Statistical analysis and metabolic signature generation
We performed spearman correlation between simulated
values of each MCPM component and IC50 values of
CCLE cancer cell lines for each RTK inhibitor treatment.
The results of these correlation analysis were classified
for each of these eight RTK inhibitors. The Benferroni
correction has been applied for these multiple tests. The
MCPM components with spearman correlation > 0.15
has been considered significant. The smallest and com-
mon set of significant components of all these RTK in-
hibitor treatments are defined metabolic signature
during this study.

Results
The simulated values of metabolic components were sta-
tistically evaluated to calculate the spearman correlation
coefficient with IC50 values of cancer cell lines from
CCLE. Table 1 summarizes the significantly affected
metabolic components/pathways changed by RTK in-
hibitor treatment.

Table 1 Summary of the impact of eight RTK inhibitors on cancer cell lines from CCLE. For each cancer cell line the metabolism was
simulated based on the GEP

Drug Target Tumor diagnosis
for clinical treatment
application (PubMed)

Nr. of Significantly
affected Metabolic
Components in
MCPM model

Nr. of affected
metabolic /
signaling pathways

Top 5 affected metabolic pathways (Nr.
of significantly affected components
within the pathway)

AEW541 IGF1R, InsR Testing phase, none
specified (17361225)

125 18 / 2 Purine (19), Glycerolipid (10), Glycolysis
(8), Amino-sugar (8), Sucrose (6)

PF-2341066
(Crizotinib)

c-MET, ALK Non-small cell lung
cancer (23724913)

1220 30 / 2 Purine (250), Pyrimidine (114), Inositol-
phosphate (62), Fatty-acid (48), Valine/
Leucine/Isoleucine (41), Glycolysis (41)

PHA-665752 c-MET Testing phase, none
specified (14612533)

445 24 / 1 Purine (88), Inositol-phosphate (36),
Pyrimidine (22), Glycolysis (20), Valine/
Leucine/Isoleucine (18), Nicotinate (18)

Sorafenib ABL, AURKB/C, BRAF, CDK,
DDR, EPHA, FGFR, FLT, KIT,
MKNK, MAPK, NTRK

Renal cell,
hepatocellular, and
thyroid cancer
(17215530)

1058 30 / 10 Purine (195), Pyrimidine (81), Inositol-
phosphate (64), Valine/Leucine/
Isoleucine (49), Pyruvate (45)

TKI258
(Dovitinib)

FLT3, KIT, FGFR, VEGFR, InsR,
EphA, HER2, IGF1R

Testing phase, none
specified (23658459)

1109 28 / 9 Purine (225), Pyrimidine (111), Fatty-acid
(59), Inositol-phosphate (53), Glycolysis
(47), Pyruvate (47)

Lapatinib EGFR, ERBB2/4, STK10, PIRK2 Breast cancer
(18188694)

504 28 / 7 Purine (82), Pyrimidine (33), Nicotinate
(31), Fatty-acid (25), Glycerolipid (22)

ZD6474
(Vandetanib)

EGFR, ERBB2/4, FGFR, ABL,
EPHA/B

Thyroid cancer
(26678514)

158 27 / 8 Valine/Leucine/Isoleucine (17), Purine
(15), Butanoate (11), Pentose (8),
Pyrimidine (7)

Erlotinib EGFR, ABL1, FLT3/4, RET, KIT,
RET, SLK, PDGFRA/B, others

Non-small cell lung
and pancreatic
cancer (21388312)

245 23 / 15 Purine (50), Fatty-acid (12), Nicotinate
(12), Glycolysis (11), Fructose (11)

The spearman correlation coefficient was calculated between the simulated values of each component/reaction in the MCPM model and IC50 values of the
corresponding cancer cell lines. A spearman correlation coefficient with an absolute value ≥0.15 was considered significant after Benferroni correction
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Based on the simulation results the significantly corre-
lated components/reactions in the model for each of
these RTK inhibitors were further investigated to find
the highly affected metabolic components / pathways.
The aim was to gain further insight into the possible
underlying molecular mechanisms of each component /
pathway (Table 1). The results show that the purine me-
tabolism pathway is a common metabolic pathway af-
fected by the treatment of all eight RTK inhibitors.
Aside from the purine metabolism pathway several other
metabolic pathways such as pyrimidine, fatty acid, gly-
colysis, inositol-phosphate, and valine/leucine/isoleucine
were also frequently influenced by the treatment of these
RTK inhibitors. According to the number of significantly
affected components in the model, the drugs AEW541,
ZD6474 and erlotinib had a relative low impact on me-
tabolism, whereas PF-2341066, sorafenib, and TKI258
had relatively strong influence on metabolism (Table 1;
Additional file 1). However, the number of drug targets
does not correlate with number of significantly affected
metabolic components, which indicates that the number
of affected signaling pathways and the number of af-
fected metabolic pathways are likewise not correlated. In
addition, the resulting levels of influence on metabolism

might not directly link to the grade of adverse effects of
corresponding drugs. The reason for these different me-
tabolism influences might be the drug target and target
binding affinity. For instance, PF-2341066 had the stron-
gest influence on metabolism due to the highest number
of significantly affected metabolic components in the
model (Table 1). The mechanism of action of PF-
2341066 consists of the inhibition of tyrosine-protein
kinase Met (c-Met) and anaplastic lymphoma kinase
(ALK) with a binding affinity of 11 nM and 24 nM re-
spectively [25]. The strong inhibition of c-Met-
dependent and ALK-dependent proliferation, migra-
tion, and invasion of tumor cells can directly sup-
press the metabolic activities of tumor cells. This
leads to a clear change of concentration in diverse
components in metabolic pathways and results in
the strong impact of PF-2341066 on metabolism
(Fig. 2a). Among the tested RTK inhibitors, AEW541
had the weakest impact on metabolism as evident by
the lowest number of significantly affected metabolic
components in the model (Fig. 2b; Table 1). This ob-
servation might provide an indication of an overall
weak drug efficacy, however, a follow-up study will
need to verify this conclusion.

Fig. 2 The histogram for the metabolic impact score of 8 RTK inhibitor. a. The metabolic impact of drug treatment on multiple cancers from
Cancer Cell Line Encyclopedia (CCLE), the impact score is calculated through the division between the number of affected components and the
number of all components in the model MCPM; The metabolic impact of PF-2341066 (b), AEW541 (c) treatment on different metabolic pathways
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The metabolic impact and signature of RTK inhibitor in
breast cancer
In a refined analysis the focus was placed on the effect
of RTK inhibitors on the breast cancer cell lines in
CCLE. The simulated values of metabolic components
were statistically analyzed to calculate the spearman cor-
relation using the respective IC50 values. The results
show that several metabolic pathways such as purine,
pyrimidine metabolism pathway in breast cancer cell
lines remain affected by the receptor kinase inhibitor
(RKI) treatment (Additional file 2). The treatment of
AEW541 on breast cancer cell lines resulted in a high
impact on all amino acid-related metabolism pathways,
which might indicate the potential risk of amino acid
metabolism disorder. This disorder could lead to toxic
by-products of amino acids that can easily aggregate in
blood and urine to cause pathology. However, a follow-
up study should verify this side-effect of AEW541 on
breast cancer patients. The number of highly affected
metabolic components and pathways increased in com-
parison to the overall results from previous section. This
finding might indicate that AEW541 has a higher treat-
ment efficacy in breast cancer compared to the overall
efficacy that was observed for all cancer types. The im-
pact on metabolism of PF-2341066, PHA-665752 and
TKI258 on breast cancer cell lines was similar to that
found for all cancer types. Among these affected meta-
bolic pathways through these three drugs, the inositol-
phosphate pathway is often highly affected. This pathway
plays an important role in producing signaling molecule
IP3, which deeply involves with diverse signaling path-
ways including PI3K, MET, KIT, VEGFR and others.

This result shows how closely metabolism and signaling
are connected with each other. However, the impact on
metabolism from sorafenib on breast cancer was shifted
to sucrose, cysteine/methionine, and fatty acid metabol-
ism. Interestingly, the cysteine/methionine and fatty acid
metabolic pathways play pivotal roles in proliferation,
migration, and invasion of breast cancer cells [26, 27],
while the sucrose pathway provides cancer cells, espe-
cially breast cancer, a rich energy resource [28, 29]. This
result might provide an interesting clue about the meta-
bolic vulnerability of breast cancer cells. The results of
lapatinib, ZD6474, and erlotinib treatment showed that
the number of highly affected metabolic components
has dramatically increased in comparison to the overall
results (Additional file 2). These components are mainly
involved in top affected metabolic pathways such as pur-
ine, pyrimidine, fatty acid, glycolysis, and others.
Subsequently, we clustered the highly affected meta-

bolic components from these RTK inhibitors and gener-
ated a metabolic signature for breast cancer (MSB)
based on the correlation between simulation values of
components and IC50 values in order to provide a pre-
dictive in-silico indication of treatment outcomes of
these inhibitors. This metabolic signature consists of
eight components from nine different metabolic path-
ways (Fig. 3a).

The relationship between metabolic signatures of liver
and pancreatic cancer
Liver and pancreas are two essential organs for many
metabolic processes in the human body. Both also play
an essential role in drug absorption, distribution,

Fig. 3 The metabolic signature of RTK inhibitors on cancer cell lines and the corresponding network visualization of relationships between
signature components and metabolic pathways. a: breast cancer; b: CNS
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metabolism, and excretion (ADME) [30]. Therefore, we
wanted to investigate whether a certain relationship or
common properties exist between the liver and pancre-
atic cancer metabolic signatures and RTK inhibitor treat-
ment. Initially a metabolic signature was generated for
each of both cancer types, based on the correlation be-
tween the simulation values of components and IC50
values on each cancer type. The metabolic signature of
liver cancer (MSL) for these RTK inhibtors consisted of
22 components from nine different metabolic pathways,
the metabolic signature of pancreas cancer (MSP) for
the same RTK inhibitors consists of 16 components
from 27 different metabolic pathways (Table 2). These
results indicate that these RTK inhibitors might have a
stronger metabolic influence in pancreatic cancer than
liver cancer. The common metabolic pathways between
MSL and MSP follow seven metabolic pathways: fatty
acid, glycoglysis, gluconeogenese, citrate cycle, metabol-
ism of diverse sugars including fructose, mannose, su-
crose, galactose, pentose, and purine metabolism
(Table 2). These pathways are mainly involved with cel-
lular energy supply, conversion, and storage, with a dir-
ect link to the physiological functions of both organs.
For instance, 14 of 22 components from MSL belong to
fatty acid metabolism pathway and all of them have
negative correlations with IC50 values of RTK inhibitors.
This suggests that a higher effect of an inhibitor may
lead to a slower fatty acid metabolism, which indicates
that the treatment effect of these RTK inhibitors could
severely interfere with the physiological function of liver.
Interestingly, the MSP contains Nicotinamid-Adenin-
Dinukleotid (NAD) (spearman = − 0.264, p < 0.005) and
proton (spearman = − 0.185, p < 0.005). This result shows
that both metabolites can have negative indicative roles
in RTK inhibitor treatment efficacy on pancreatic cancer
cell lines. Interestingly, Chini et al. (2014) [31] presented
evidence that targeting the NAD metabolism may be a
potential novel therapy target for pancreatic tumors by
restricting mitochondrial function. Cantó et al. (2015)
[32] explained the important role of NAD+ in control-
ling energy homeostasis to balance cellular interactions
between mitochondria and the nucleus, which represents
a key control mechanism in the development of several
diseases including cancer and neurodegenerative disease.
Therefore, we would suggest that MSP could be impli-
cated in functions originating from the mitochondria
and nucleus and play a role in RTK inhibitor treatment
of pancreatic cancer.
The protein N-acetylglutamate synthase (NAGS) (spear-

man = − 0.267, p < 0.005) was identified for the MSL
(Table 2). For a healthy liver function this protein can con-
vert toxic ammonium into less toxic urea and is a key en-
zyme in the urae cycle [33]. Several previous studies
showed that a quantitative change in urea cycle enzyme

expression directly results in urea cycle disorder and there-
fore affects other physiological systems including mito-
chondrial functionality, which can have an influence on the
health of patients [34, 35]. A (deoxy)insoine diphosphatase,
NUDT16 (spearman = − 0.324, p < 0.005) was identified for
the MSL, which shows that this protein has a biomarker-
related role in RTK inhibitor treatment on liver cancer cell
lines. Interestingly, Iyama et al. (2010) [36] reported that
the NUDT16 serves an important hydrolyzation function
in the repair processes of nuclear DNA / RNA. The defi-
ciency NUDT16 can induce accumulation of single strand
breaks in nuclear DNA, which results in cellular growth ar-
rest. Based on these results, we would suggest that the in-
teresting common property between MSP and MSL are its
effect on mitochondrial and nucleous functionality, which
might indicate a potential metabolic impact of RTK inhibi-
tor treatment on liver and pancreatic cancer.

The metabolic impact and signature of RTK inhibitor in
central nervous system (CNS)
In recent publications RTK inhibitors have also shown a
high potential to be effective in the treatment of CNS-
tumor from different stages [37–39]. Thus, we were in-
terested to examine any potentially existing metabolic
signature (MSC) in CNS-cancer cell lines from CCLE.
The simulated values of the metabolic components from
the MCPM and the IC50 values of the CNS-cancer cell
lines were analyzed to determine the spearman correl-
ation coefficient and generate the MSC. The MSC con-
sisted of thirteen components from 22 different
metabolic pathways (Fig. 3b). Among them are GDP
(spearman = − 0.259, p < 0.005), pyruvate (spearman = −
0.246, p < 0.005), and orthophosphate (spearman = −
0.196, p < 0.005). The metabolic components that were
found are highly associated with the unique metabolic
environment of the brain that relies on glucose as its
main energy resource. This finding indicates that RTK
inhibitor treatment might cause a change in glucose up-
take and therefore lead to an inadequate energy supply
within the brain. This conclusion may point to a possible
adverse effect of the RTK inhibitor treatment. Several in-
dependent studies have explained this biomarker-like
function of pyruvate for the brain cancer [40, 41], which
verifies the important role of pyruvate in MSC indirectly.
Further, the gene L-2-hydroxyglutarate dehydrogenase
(L2HGDH) (spearman = − 0.252, p < 0.005) has been
identified in the MSC, showing that the expression level
of this gene may be an indication of treatment outcome
for these eight RTK inhibitors in CNS-cancer cell lines.
A result that is in line with several independent studies
[42–44]. Haliloglu et al. (2008) [42] discovered that a
mutation in the gene L2HGDH could function as a bio-
marker based on the results of neuroimaging data from
pediatric brain tumors. Vilarinho et al. (2010) [43]
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explained that the gene L2HGDH serves an important
function in cerebrospinal fluid and identified clinical
neurophenotypes in different population-cohorts that
were associated with the mutation status of this gene.
Further, some recent studies provided evidence that
pyruvate and L2HGDH might exert influence on the
permeability of brain-blood-barrier (BBB) that remains a
major obstacle for drug treatment [45, 46]. This result
indicates that our proposed MSC might have a certain
degree of relationship with BBB and could become rele-
vant in resolving drug delivery challenges across the
BBB. The gene ectonucleoside triphosphate diphospho-
hydrolase 3 (ENTPD3) (spearman = 0.306, p < 0.005) was
also identified in the MSC. Interestingly, Peyre et al.
(2010) [47] generated a set of biomarkers associated with
tumor progression in ependymoma recurrence in chil-
dren where this gene was also included. This indicates
that, even from a different persepective, the role of the
gene ENTPD3 in the development of a brain tumor.

The metabolic impact of RTK inhibitor in lung cancer cell
lines
Improvement in the clinical outcome of lung cancer
could be heavily dependent on the identification of mo-
lecular events including metabolism that underlies its
tumorigenesis, therefore in this refined analysis the focus
was placed on the metabolic effect of RTK inhibitor on
lung cancer cell lines in CCLE. The simulated values of
metabolic components were statistically analyzed to cal-
culate the spearman correlation with the respective IC50
values from lung cancer cell lines. The result shows that
AEW541 and erlotinib have much higher treatment effi-
cacy in lung cancer compared to the overall efficacy that
was observed for all cancer types (Fig. 4). Although both
drugs do not have a common targetwith AEW541

targeting IGF1R and Insulin-R, whereas erlotinib targets
EGFR, KIT, PDGFR, RET among others. However, the
metabolic effect of both drugs on lung cancer cell lines
do have something in common, for instance, purine-
and pyrimidine pathway are highly affected during both
treatments. This indicates that inhibition of different
signaling pathways could lead to changes of the same
metabolic pathways. As Fig. 4a shows, erlotinib treat-
ment in lung cancer cell lines further affects glycoly-
sis/gluconeogenesis and the amino acid, nucleotide,
and sugar metabolism. This might explain why the
side effect of erlotinib by lung cancer patients can
commonly induce clinical symptoms such as poor ap-
petite, nausea and vomiting, fatigue. Moreover, erloti-
nib treatment also affects the fatty acid metabolism,
which may be associated to diarrhea as a treatment
side effect. However, not all erlotinib treated lung
cancer patients will experience immediate treatment
side effects; potentially our observations will be asso-
ciated to long-term side effects that may become ap-
parent in a follow-up study.
Aside from the purine- and pyrimidine pathway in

breast cancer cell lines, the AEW541 treatment further
affects glycerolipid, citrate and methionine, fatty acid,
propanoate metabolism, which might be linked to the
drug side effects (Fig. 4b). The metabolic effect of this
drug on lung cancer cell lines was especially elevated
compared to the overall efficacy observed for all cancer
types. This might indicate that the drug targets of
AEW541, namely receptors IGF1R and Insulin receptor,
are connected to a vulnerable area within the metabolic
pathways active during the development of both cancer
types. However, a follow-up study needs to investigate
this aspect in detail to determine the key molecular
events in lung and breast cancer.

Fig. 4 The metabolic effect of drug treatment on lung cancer cell lines. a: treatment agent erlotinib; b: treatment agent AEW541
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Computational aspects
In this study, in silico analysis was carried out to simu-
late the metabolic process for each of the 479 cancer cell
lines from CCLE. The simulation was conducted on a
standard laptop with a hardware consisting of 2 cores,
2GB RAM, and 8GB Memory. The entire simulation
procedure took 20min and 54 s. The subsequent spear-
man correlation was repeated a total of 9.301 million
times between simulated values of each model compo-
nent and IC50 values of RTK inhibitor treatment of each
CCLE cancer cell lines. This procedure took approxi-
mately 27 min.

Discussion
In this study we utilized the published GEPs from CCLE
and integrated these into a published molecular meta-
bolic model, MCPM, through the application of the sys-
temsbiological software AutoAnalyze. The simulation
procedure was carried out to generate values of compo-
nents of MCPM based on the inputed GEP. The simu-
lated values were then statistically analyzed to measure
the degree of correlation with the IC50 values of eight
RTK inhibitors on cancer cell lines from CCLE. The re-
sults show that the purine metabolic pathway is the
most affected pathway in the MCPM model by the RTK
inhibitor treatment (Table 1). The purines are a group of
molecules used by all cells in human body and this
metabolic pathway is the major energy carrier and gen-
etic material resources for diverse cellular processes in-
cluding DNA duplication. Thus, disorders of this
pathway are involved in different specific diseases [48,
49]. Given the critical role of this metabolic pathway one
should be cautious and consider possible side effects
that may occur due to the application of RTK inhibitors
and develop treatment strategies to improve the clinical
outcomes accordingly. Several other metabolic pathways
such as pyrimidine, fatty acid, glycolysis, inositol-
phosphate, and valine/leucine/isoleucine were also found
to be highly affected by the RTK inhibitor treatment.
Since these pathways are associated with several physio-
logical functions our findings strongly support the fact
that treatment of RTK inhibitors can have important ad-
verse sides including bone metabolism, linear growth of
children, hypertension and glucose metabolism, gonadal
function, fetal development among others [50, 51].
These findings thereby justify, at molecular level, several
current recommendations that call for prospective thy-
roid function tests and diabetes managements [52].
Overall, the number of affected signaling pathways did
not correlate with the number of affected metabolic
pathways during the RTK inhibitor treatments indicating
that future studies should put more focus on the cross-
talk between metabolic and signaling pathways to fully
understand the mechanism and effect of each drug.

The prevalence of breast cancer in our society remains
high, which is why we focused one part of our analysis
on the effect of RTK inhibitor treatment on breast can-
cer cell lines from CCLE. The data shows that AEW541
may have a more profound metabolic impact on breast
cancer compared to other cancer types. This result is
similar to results in recently published independent
studies that reported evidence that the insulin-like
growth factor 1 receptor (IGF1R) inhibitor, AEW541, re-
duced proliferation and enhanced the G-1 cell cycle ar-
rest of breast cancer cell lines [53–55]. Another finding
from our analysis was the metabolic influence of sorafe-
nib on breast cancer, which is mainly distributed among
three metabolic pathways, namely sucrose, cysteine/me-
thionine, and fatty acid metabolism. The physiological
functionalities of these metabolic pathways offer an ex-
planation on why sorafenib is generally well tolerated in
breast cancer patients [56]. The treatment of lapatinib,
ZD6474, and erlotinib on breast cancer cell lines also
showed an increased impact on several metabolic path-
ways such as purine, pyrimidine, fatty acid, glycolysis,
and others. This indicates possible adverse effects of
these three RTK inhibitors that may occur during their
use in the treatment of breast cancer, and might provide
an interesting direction for future therapeutic develop-
ment studies. Different components of the metabolic sig-
nature (MSB) for the RTK inhibitor treatments on
breast cancer cell lines from CCLE are validated by inde-
pendent studies for various purposes related to breast
cancer. For instance, the protein PPAP2C (spearman = −
0.168, p < 0.005) is part of the MSB and has been shown
to be highly up-regulated in transformed mesenchymal
stem cells in numerous carcinomas including breast can-
cer [57], which validates the role of this component in
the MSB indirectly. The protein hydroxyacyl-CoA de-
hydrogenase (HADH) (spearman = 0.303, p < 0.005) was
also identified in the MSB. Interestingly, Shen et al.
(2017) [58] elucidated the important role of HADH in
promoting gastric cancer via synergistic effect between
fatty acid metabolic pathway and AKT signaling path-
way. Therefore, HADH might have a similar function in
the development of breast cancer. The protein nicotina-
mide nucleotide adenylyltransferase (NMNAT2) (spear-
man = − 0.229, p < 0.005) was identified in the MSB.
Sharif et al. (2016) [59] explained that NMNAT2 is a key
enzyme in a salvage pathway via p73 for the cancer cell
viability, which may verify the important role of
NMNAT2 for the RTK inhibitor treatment on breast
cancer cells. Further, three components (NMNAT2, glu-
cose, ADSS) from MSB are in line with the result of
Lanning et al. (2017) [60] that introduced a metabolic
profiling of triple-negative breast cancer cells in order to
explain the metabolic vulnerabilities within cancer cell
systems. The authors also emphasized the high activity
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of RTK-related signaling and its possible connection to
metabolism thereby verifying our MSB from a different
research perspective. A follow-up study could systemat-
ically verify the utility of this metabolic signature on
breast cancer treatment.
By investigation the characteristics of the metabolic

impact on liver and pancreas in regard to RTK inhibitor
treatment, we found the commonly affected fatty acid-,
glucose-, amino acid-related metabolic pathways. These
findings clearly refer to the basic physiological functions
of both organs and reveal possible serious implications
brought on by RTK inhibitor treatment. Therefore, an
appropriate dosing might be essential and critical for
RTK inhibitor treatment in managing liver and pancre-
atic toxicity. To our knowledge, our study could be the
first one to apply a computational simulation technique
for the investigation of the metabolic properties of two
physiologically related organs (liver & pancreas) with
cancer status. The involvement of mitochondrial and nu-
cleus functions is common to both metabolic signatures
thereby illustrating their therapeutic vulnerabilities dur-
ing carcinogenesis before metastasis. Although several
other studies have published similar findings [36, 32],
follow-up studies will need to focus more directly on
this issue and perform in-vitro or in-vivo experiments to
verify these results.
Due to a large potential for RTK inhibitor treatment

on brain tumors a similar analysis as previously de-
scribed for breast cancer was performed and a corre-
sponding metabolic signature (MSC) was generated as
well. Interestingly, we found out that several compo-
nents from the MSC possess biomarker properties that
are relevant for the development and treatment of brain
tumors, especially pyruvate and L2HGDH. Both are
closely related to the permeability function of the BBB,
which presents a major obstacle for any drug treatment
targeting any area of the brain. This finding might pro-
vide a clear indication for the direction of future studies
with the aim of improving brain tumor treatment effi-
cacy. Components from the MSC are distributed among
more than 20 different metabolic pathways indicating
that RTK inhibitor treatment might have a broad impact
on brain metabolism. This might lead to a high risk of
adverse reaction during the treatment course. However,
follow-up studies should verify this issue through adjust-
ments in the treatment protocol.
For the analysis of this study, we only used the sum-

marized term such as “high impact” on metabolic path-
way or “highly affected” metabolic components, but did
not further assess or distinguish whether a drug treat-
ment leads to an increase or decrease of metabolic com-
ponents. The reason for this lies in the numerous and
complex crosstalk between signaling and metabolism.
From a system level point of view, it is impossible to

judge whether an increase of metabolic components
could lead to an up-regulation or promotion of other
mechanisms or vise verse. Additional and diverse regula-
tion mechanisms within metabolic pathways themselves
further adds to its inherent complexity. Therefore only
the above mentioned summarized term was taken into
consideration. In summary, it is worth mentioning that
the number of each type of cancer cell line within CCLE
plays a role in the statistical analysis, as dothe number
of components defined within each metabolic pathway
in MCPM. However, these factors are a common weak-
ness of statistical analysis.

Conclusion
In summary, our study demonstrated that a computa-
tional approach can be applied to conduct a treatment-
related molecular signature analysis. This approach is
more cost- and time efficient than conventional gene
signature-based analysis. Many components from differ-
ent metabolic signatures computed through our simula-
tion approach are interestingly in line with many
independent studies, providing an indirect validation of
our approach. Moreover, the analysis scale encompassing
multiple-cancer types could yield interesting common
properties that would not be possible to be discovered
by analysis of only single cancer entity. In future studies,
these achieved signatures can be applied in combination
with diverse statistical methods including Lasso, ROCR,
support vector machine and others for the purpose of
pre- and clinical applications.
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