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1. Introduction

(1.1) Hypersurfaces M" with constant mean curvature in a Riemannian mani-
fold M"+ a display many similarities with minimal hypersurfaces of ~ r"+ 1. They
are both solutions to the variational problem of minimizing the area function
for certain variations. In the first case, however, the admissible variations are
only those that leave a certain volume function fixed (for precise definitions,
see Sect. 2). This isoperimetric character of the variational problem associated
to hypersurfaces of constant mean curvature introduces additional complications
in the treatment of stability of such hypersurfaces.

In [BdC] a definition of stability for hypersurfaces of constant mean curva-
ture in the euclidean space R "+ 1 was given, and it was proved that the round
spheres are the only compact hypersurfaces with constant mean curvature in
R,+ 1 that are stable. This is interesting in view of the fact that there exist
compact nonspherical hypersurfaces with constant mean curvature in R "+ 1 (cf.
Hsiang et al. [-HTY] for n > 2, Wente [W] and Abresch I-A], for n = 2).

In the present paper we extend these investigations to hypersurfaces of Rie-
mannian manifolds and prove the following result.

Let )~"+ 1 ( c )  be a simply-connected complete Riemannian manifold with
constant sectional curvature c and let x: M" ~ M " §  be an immersion of
a differentiable manifold M" (superscripts will, in general, denote dimensions).
Recall that a (geodesic) sphere of a Riemannian manifold M is the set of points
of M at a fixed distance (the radius of the geodesic sphere) from a given point
p~)~.

(1.2) Theorem. Assume that M ~ is compact without boundary and that x: M"
~ ,  + a (c) has constant mean curvature. Then x is stable (see definition in Sect. 2)

i f  and only i f  x ( M " ) c  ~ + 1 (c) is a geodesic sphere.

The case where M", n = 2, is complete and noncompact  has been treated
in the recent thesis at I M P A  of A.M. da Silveira [-S]. It turns out that when
x: M z  ~ 4 3(c) has constant  mean curvature H, M z is complete and noncompact,
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and x is stable: a ) / f  c=0 ,  then x ( M ) c R  3 is a plane; b) i f  c = - i  and H >  I,
then x ( M ) c H 3 (  - 1) is a horosphere; c) / f  c = -  1 and 0_-<H< 1, then there are
many such examples.

Except for the case where H ~ 0 very little is known about stability of com-
plete and noncompact  hypersurfaces of A "§ 1(c) with constant mean curvature,
when n > 2.

For  a general Riemannian manifold, the situation seems too complicated.
An interesting special example is given by the symmetric spaces of rank one.
It is known that the group of isometries of such spaces acts transitively on
their geodesic spheres which have, therefore, constant mean curvature. However,
not all spheres are stable, and not all stable hypersurfaces are spheres. It turns
out that certain tubes around projective subspaces are also stable. Let ~r
=pr-1M( be the projective space over the field IK, with metric of diameter
7c/2 and curvature between 1 and 4, where lKe {IR, 112, lI-I}. For  q < r let Up(P q-  1 ~(.)
denote the tubular neighborhood of radius p around the totally geodesic sub-
space Pq-IlK of p ~ - l K ,  and put To(q)=SUo(Pq-lK). Note that To(q) is con-
gruent to T~/2_o(p) if p=r--q ,  and that To(1 ) is the geodesic sphere of radius
p. Set d=dim•lK and, for reasons of orientability, assume that r is even if
IK=IR.

(1.3) Theorem. For 2<_q<=r-2, Tp(q) is stable in P~-ilK if and only if

p d - 1  p d + l
qd+ 1 - - < t a n 2 p < q d - l "

For q=  1 ( q = r - 1 ) ,  the lower (upper) bound is not present: A sphere of radius
p is stable if and only if tan2p <((r - 1)d+ 1) / (d-  1).

We will prove the theorem in the context of group-invariant stability (see
Sect. 4).

On the other hand for the complex hyperbolic space H"C, the noncompact
dual of P~C, we will prove:

(1.4) Theorem. Every geodesic sphere in H"IE is stable.

The stability problem is closely related to eigenvalue estimates of the Lapla-
clan of a submanifold. This will be further developed in an forthcoming paper
of E. Heintze [H].

The paper is organized as follows. In Sect. 2 we fix our notation and extend
the basic definitions of [BdC] to the case where the ambient space is a Rieman-
nian manifold. Most of the proofs in [BdC] apply to this new situation and
we are very sketchy as far as proofs are concerned. For  future reference, however,
we have stated all facts in full. In Sect. 3 we prove Theorem (1.2). After giving
the equivariant setup in Sect. 4, we prove Theorem (1.3) in Sect. 5 and Theo-
rem (1.4) in Sect. 6. In an appendix, we compare the areas of the various stable
hypersurfaces of Pr -  11K which we obtained in Theorem (1.3).
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2. Preliminaries

2.1. Let ~n+  1 be an oriented Riemannian manifold and let x : M ' ~ ) f l  "+ 1 be
an immersion of a compact, connected, orientable differentiable manifold with
boundary 0M (possibly=~b) into M"+I. We choose the orientation of M to
be compatible with the orientation of )Q. More explicitly, let e 1 . . . . .  e,, e,+ 1
be an orthonormal  moving frame in a neighborhood U c)~r of x(p), p eM,  that
is adapted (i.e., e~ . . . .  , e ,  are tangent to x(M)) and positive (i.e.,
d ~  r (e~ . . . . .  e, + 1)> 0, where d)~ is the volume form of M). Since M is orientable,
e,+l = N  is a globally defined unit normal vector field and we choose it to
be the orientation of M.

A variation of x is a differentiable map X: ( - e ,  e ) x M ~ M  such that Xt:
M--*M, t s ( - -e ,  e), defined by Xt(p)=X(t ,p) ,  p~M,  is an immersion, X o = x ,
and X, [OM = x It?M, for all t. We define the area function A: (--~, e)--+ IR by

A(t) = aM,,
M

where dM, is the volume element of M in the metric induced by Xt, and the
volume function V: ( - e ,  e) ---, IR by

v(t)= I x*a  I.
[O, t ]  x M

where

X* (dM) = a(t, p) d t/x dM,

e x
a ( t , p ) = X * ( d M ) ( ~ , e  1 . . . . .  e , )=  \ ~ t ,dX , (e l )  . . . .

= vol(~--fftXt, dX,(el) . . . . .  d X , ( e , ) ) = ( ~ t , N  ),

, dXt(e.))

~ x
Let W(p) = ~ be the variation vector field of X and set f = < W, N) .

u t  t = 0

(2.1) Lemma
dA

(i) d t  (0)  = - I n H f  dM,
M

dV
(ii) dt (0)= ~ f dM

M

where H is the mean curvature of the immersion x.

Proof. (i) is well known. To prove (ii), fix a point p ~ M  and choose a positive
adapted orthonormal  frame el,  ..., e,, e , + l =  N around x(p). Then
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and Art is a unit  no rma l  vector  of  the immers ion  X~. It  follows tha t

dV d
~ - ( 0 ) = d t  ( ~ a(t ,p)dtAdM)t=o= ~ a(O,p)dM

[O,t] x M M

as we wished, q.e.d.

A var ia t ion  is normal if W is parallel  to N, and  volume-preserving if
V(t) = V(0), for all t.

(2.2) L e m m a .  Given a smooth function f: M - ~ R  with fl~?M=O and ~ f dM=O,
M

there exists a volume-preserving normal variation whose variation vector is fN .

Proof Let (p: ( -  e, e) x M ~ IR be a differentiable funct ion and define a var ia t ion
X: ( - e ,  e) x M ~ M  by

X(t,p)=expx(p)cp(t,p)N, te(--~,e), p~M.

X is a n o r m a l  var ia t ion  with (~?X/Ot)o=(~?cp/c?t)oN. We want  to show tha t  ~o
can be so chosen tha t  X satisfies the condi t ions  of the lemma.

F o r  that,  we compu te  the vo lume funct ion V(t) of X. Not ice  that  X = co0,
where t p = ( - - e , e ) x m ~ l R x M  is the m a p  O(t,p)=(cp(t,p),p) and e(u,p)
= expx(p ) uN, uMR. By setting E(u, p) = det (de(p.,)), we ob ta in

V( t )=  I X* d M =  ~ O* e* d~l
[0,t] x M [0,t l  x M

= (i[0,t l  x M U t  M

N o w  let f :  M ~ I R  be as in the s ta tement  of  the lemma,  and  let ~0 be the
solut ion of the initial value p rob lem:

0 ~o f ( p )
Ot -E((p(t) ,p) '  (p(0, p) = 0.

F r o m  the above  expression for V(t), and the fact tha t  S f d M = O ,  it follows
M

that  V(t)=-O for such a variat ion.  Since E(~o(0), p ) =  1, this is a normal ,  vo lume-
preserving var ia t ion  whose var ia t ion  vector  is fN .  q.e.d.

F o r  a given var ia t ion  X of an immers ion  x: M" ~ M" + 1 we set

H o = A  -1 ~ HdM,  A = A ( 0 ) ,
M

and define J :  ( -  ~, ~) ~ ~ by J (t) = A (t) + n Ho V(t).
(2.3) Proposition. Let x: M" ~ M"+ 1 be an immersion. The following statements
are equivalent:
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(i) X has constant mean curvature Ho.
(ii) For all volume-preserving variations, A' (0)= O.

(iii) For all (arbitrary) variations, J' (0)= O.

The proof  is essentially the same as in Proposit ion (2.7) of [BdCl.

(2.4) Remark. Notice that we do not have to assume H0:#0 (this corrects a
mistake in [BdC]). Thus minimal hypersurfaces are also included among  the
critical points of area for volume-preserving variations.

To compute  the second variation of J, we observe that

dJ
d~= ~ ( - -nH,+nHo) f~dM.

M

Here H~ is the mean curvature of X ,  and f~-- ~ t - '  N~ ,
normal  vector of Xt. Thus

where Nt is the unit

and the computat ion is the same as the computat ion of the second variation
for the area function. It turns out that

(2.5) Proposition. Let x: M" ~ ]ffP + 1 be an immersion with constant mean curva-
ture H and let X be a variation of x. Then J"(O) depends only on f and is
given by

J " ( 0 ) ( f ) =  ~ ( - f A f - ( R +  HB[[2)f2)dM.
M

Here A is the Laplacian in the induced metric, [[B[I is the norm of the second
fundamental form of x, and R = n R i c c ( N ) ,  where Ricc(N) is the (normalized)
Ricci curvature of M in the direction N.

(2.6) Definition. Let x: M"--* ~rn + ~ have constant mean curvature. The immer-
sion x is stable if A" (0 )>0  for all volume-preserving variations of x. If M is
noncompact ,  we say that x is stable if for every submanifold with boundary
/~  ~ M, the restriction x [ M  is stable.

Just as in [BdC], one can prove, using (2.2) and (2.5), the following criterion
for stability. Let ~- be the set of differentiable functions f :  M ~ N with f [ ?O = 0
and ~ f d M =  O.

M

(2.7) Proposition. x: Mn-~ ~I n + 1 is stable if and only if J" (0 ) ( f )~  0 for all f ~  Y .

Similarly to the case of minimal surfaces, we have a notion of Jacobi field
for hypersurfaces with constant mean curvature. With a view towards a Morse
index theorem for such a situation, we choose the following definition.
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Define a bilinear form I: Y --* R by

I ( f , g ) =  ~ g ( - A f - - ( / ~ +  [IBll2)f)dM.
M

(2.8) Definition. A normal vector field V = f N ,  f e ~ ,  to an immersion x: M"
~ , +  1 with constant mean curvature is a Jacobi field i f f e K e r  I, i.e., if I ( f  g)

=0,  for all g e ~ .

(2.9) Proposition. Let f e ~ .  Then f N  is a Jacobi field if and only if

(2.10) A f + ( R +  IlBll2)f= const.

Proof. Clearly if (2.10) holds, f E K e r  I, since g ~ .  To show the converse, let
F 0 be the mean value of F = A f  + (R + II Nil 2)f in M. Since f E  Ker I,

g(F--Fo)dM=O, for all g ~ .
M

We want to show that F - F o  and the argument now is entirely similar to
that of Proposition (2.7) in [BdC]. q.e.d.

(2.11) Remark. By using the above Jacobi fields a Morse index theorem can
be proved for hypersurfaces x: M"--+ M" § 1 with constant mean curvature. The
statement is entirely analogues to the case of minimal surfaces (cf. Lawson [L],
pp. 51-53). This was incorrectly stated in [BdC] where only those Jacobi fields
were considered that satisfied (2.10) with zero in the right hand side.

A particular kind of Jacobi fields is obtained from Killing vector fields on
J~f~

(2.12) Proposition. Let W be a Killing vector field on M. Then f,=(W,, N )
satisfies

A f  +(R + IIBI[2) f =O.

Proof. This is a straightforward computation and we shall omit it.
If M" is without boundary, a hypersurface immersion x: M--+ ~r is called

bounding if x extends to an immersion of some (n + 1)-manifold with boundary
M into ~r. In this case we have S f d M = O  by the divergence theorem (note

M
that div W=0).

If, in addition, M is a hypersurface with constant mean curvature such that
/~+ IlBllZ=2=const., then 2 is an eigenvalue of the Laplacian of M, provided
that there is a Killing field on M which is not everywhere tangent to M. In
this case we have a nice criterion for stability:

(2.13) Proposition. Let x: M --+ 2fi be a bounding hypersurface with constant mean
curvature such that R+ IIBll 2 = 2 = c o n s t .  M is stable if and only if 2=21 ,  the
first eigenvalue of the Laplacian on M.

Proof Since 2 is an eigenvalue of A, we have either 2=21 or 2>21 .  In the
first case, for any f ~ , ~ ,
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l ( f f ) =  ~ ( - fA f -2 f2)dM>=()Cl-2)  ~ f2dM=O,
M M

hence M is stable. In the latter case, choose  f to be a first eigenfunction of
the Laplacian.  Then  f ~ and

I ( f , f ) = ( 2 ~ - 2 )  ~ fZdM<O
M

and therefore M is no t  stable.

3. P roo f  of  Theorem (1.2)

(3.1) Let Mn+l(c)  be as in the s ta tement  of  Theorem (1.2).

W h e n  c = 0, M" + 1 (c) is the euclidean space R" + 1 and the theorem has already
been proved  in [BdC] .  W h e n  c ~ 0, we will need the following model  of /Q" + 1 (c).

Let L n+2 be the euclidean space R n+2 with canonical  basis aA
= (0, . . . ,  0, 1, 0 . . . . .  0), A = 0, 1 .... , n + 1, and  inner p roduc t  ( , )  given by:

C
(ao ,  ao)  = [ ~  (a~,a#)=6~, ~,fl----1 . . . .  , n + l ,  (ao ,  a~) =0 .

Let S" + 1 (c) c L n + 2 be a connected c o m p o n e n t  of

{yeL" + 2; (y,  y )  = 1/c}.

It is well k n o w n  that  S"+~(c) with the induced metric is isometric to ~t"+~(c),
c 4= 0, and this is the model  we are going to use in the p roof  of  Theorem (1.2).

N o w  let x:  M ~  S n+ a ( c ) c L  "+ 2 be an immers ion with mean curvature  H.
Let N be a unit normal  vector  field a long x that  defines the or ientat ion of
M and fix a vector  veL "+2. Define functions g: M -~ IR and f :  M ~ I R  by

(3.2) g(p) = (x(p), v), f(p) = (N(p), v), peM.

(3.3) Lemma.  Let A denote the Laplacian of M in the metric induced by x. Then
(a) Ag=- -nHf - - cng .

I f  in addition, H = const.,

(b) A f =  -][B[[2f--cnHg.
Proof The p roo f  is a simple compu ta t i on  and we will omit  it.

(3.4) Lemma.  The geodesic spheres S n ~ iffl" + 1 (C) are stable.

Proof It is well k n o w n  that  geodesic spheres are umbilic hypersur faces  of
~tn + ~ (c). Thus  rJ B [[ 2 = n H 2. Fu r the rmore  Ricc (N) = c, so

2 : = / ~ +  I]Bll 2 =n(c + H2).
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On the other hand, since S" has constant curvature c + H  a, the first eigenvalue
2t of the Laplacian on the sphere S" is given by 21 =n(c+H2)=2. The result
now follows from (2.13).

(3.5) Remark. If c > 0 ,  the equator  S"(c)~S"+l(c) is a minimal hypersurface
of S"+*(c) and, as such, is not stable. However  as a hypersurface of constant
mean curvature, i.e., considering only those variations that leave fixed the vol-
ume, S"(c) is stable.

(3.6) Proof of Theorem (1.2). We will use the fact that ]]Bll 2>  n H 2, and equality
holds at a point p e M  if and only if p is umbilic. Since the only compact  umbilic
hypersurfaces of M" + 1(c) are the geodesic spheres, the proof  will be complete
once we show that  stability of x: M"--,  3d" + 1 (c) implies that H B I] 2=  n H 2.

To do that, we first observe that the function u = H f +  cg satisfies, by Lemma
(3.2) (a), the condition

1
f u d M =  ~ H f + c g = - n 5  A g = 0 ,

M M

since M is compact  without boundary.  A straightforward computat ion shows
that

J " ( 0 ) ( u ) = -  5 (uAu+(l[Bll2+nc)u2) dM
M

= _  ~ ([lBnZ--nH2)(cZg2 +cHfg)dm.
M

For  notational  convenience, let us write J"(O)(u)=I(u); notice that u depends
on the fixed vector vsL  "+2. It is somewhat  surprising that only the variations
given by u suffice for the proof. In fact, we will prove that I(u)>O implies
that ]JBll 2=  nil2, thereby concluding the proof.

We will treat separately the cases c > 0  and c < 0 .  There will be no loss
of generality if we assume c = 1 in the first case and c = - 1 in the second case.

First Case. c =  1. Choose v as an element of a canonical or thonormal  basis
ao, a l , . . . ,a ,+l  of L "+2 (in this case, L n + z = R  n+2  with the standard metric),
and let fA and g~ be the functions in (3.2) that correspond to V=aa,
A = 0, 1, ..., n + 1. Set UA = Hfa + C gA" Since x is stable,

I(UA)= - ~ ([IB]I2--nHZ)(g2 + HfAgA)dM>=O.
M

Thus
0 > ~ I ( u A ) = -  ~ ([]BH2--nH2)(~g~--H~fAgA)dM.

M

Since x (M) is contained in a unit sphere of R" + 2, we obtain

<x, = <x, x> = 1,

LfA ga = ~ <N, aa> <x, a a )  = <N, x> = 0.
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I t  fol lows tha t

0 ~ -  ~ (HBII2-nH2)dM,
M

and  since IIBII2~nH 2, we o b t a i n  tha t  IIBH 2 = n i l  2.

Second Case. c = - 1. Here  we first not ice  tha t

1 A g2 = g A g  + [ Vg 12 = --  nHfg  + ng 2 + 1 V g  12,

1A f 2  = f A f  +[Vf[ 2 = _ [IBll2f 2 + n H g f  +lVf[  2,

A ( f g ) =  - - U B l l 2 g f + n H g 2 - n g f 2 + n g f + 2 ( V f  Vg).

A s t r a igh t fo rward  c o m p u t a t i o n  shows tha t

a H2 AgZ--HA( fg)+  89 A fa=(HI  V g l - I  Vfl)2--(llBI]2--nHa)(f2--Hfg).

By in tegra t ing  the above  express ion  over  M, we ob t a in

(][BII2--nH2)(Hfg--U2)dM = -- ~ (HI Vg]- - [  Vf[)2 dM.
M M

It  fol lows tha t

I (u) = ~ (H BH 2 _ n H 2) (Hfg--  g2) dM
M

= ~ ([[Bl[2--nH2)(f2--ga)dM - ~ (H[Vg[--[ Vf[)2dM.
M M

So far, we have m a d e  no choice of  the vec tor  Vc=.L n+2. N o w  choose  v so
tha t  (v, v ) =  - 1 .  To c o m p u t e  Vg, choose  a m o v i n g  f rame {eA} a r o u n d  a po in t
x (p), p e M,  such tha t  e 0 = x, en + 1 = N and  e l ,  --., e, are  o r t h o n o r m a l  and  t angen t
to x (M). Thus

and

v = - ( v , x ) x + ( v , N ) N + ~ ( v ,  ei)ei, i = l , . . . , n
i

V g = ~ @ ,  el)el.

It  fol lows tha t

- -  1 = (v, v) = -- (v, x )  2 + (v, N )  e + ~ (v, el)  2
i

= - - g 2 + f 2 + ]  Vgl2 .

T h e r e f o r e  f 2  _ g2 = _ (1 + I V g ]2), hence,

o_-<I0,)= - j {(llSll2--nH2)(1 + I Vgl2)+(Hr V g l -  IV f l )  2} aM.
M

The  a b o v e  impl ies  tha t  IIBI]2=nH 2. This conc ludes  the p r o o f  of  Case 2 and
of the theorem.
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4. G-stability

(4.1) Let d "+1 be an oriented Riemannian manifold and let G a compact
group of orientation-preserving isometries on M. An (immersed) orientable G-
invariant hypersurface M" in d "§ is called G-stable if M has constant mean
curvature and I (f, f )  > 0 for all f ~  ~G..= { f e  o ~ ; f (g (p)) = f (p)-- g ~ G, p e M} (see
Sect. 2 for notation). There is an obvious G-invariant version of Proposit ion 2.13:
If M is a G-invariant bounding immersed hypersurface of constant mean curva-
ture with /~+ ]]B[[2--R=const. and if there is a G-invariant Killing field on
d ,  not everywhere tangent to M, then M is G-stable if and only if 2 is the
first G-invariant eigenvalue of the Laplacian on M, i.e. the first nonzero eigen-
value which belongs to a G-invariant eigenfunction.

(4.2) If G acts freely, the orbit space M o . ' = d / G  is a manifold and the metric
on d induces a Riemannian metric on d o such that the projection re: M - +  d o
is a Riemannian submersion. If M is a G-invariant (immersed) orientable hyper-
surface in )~r, then M projects down to a hypersurface M o = M/G (also immersed)
in d o. Assume that Mo is orientable and let No be a unit normal  vector field
on Mo. Then the horizontal lift N of No is a unit normal  vector field on M.
Denote the corresponding second fundamental  tensors by B:=DN and B o
,=DNo. By O'Neill 's formulas [O 'N]  we have for all tangent vectors u, v~TpM
which are horizontal (i.e. or thogonal  to the orbit Gp)

(*) ( B(u), v) = ( Bo(~, u), re, v).

(4.3) Proposition. Let G act freely on d with totally geodesic orbits and let
M be an orientable G-invariant hypersurface in d such that M/G is orientable.
Then M is G-stable if and only if M o = M/G is stable in d o = d / G .

Proof. Since all orbits are totally geodesic, they have all the same volume, say
c. (A smooth family of minimal submanifolds has constant volume since the
volume function has zero derivative everywhere.) Let x: M ~ / ~  be the given
G-equivariant immersion and x o: M0 --, Mo the induced immersion. Any G-equi-
variant variation X:  ( - ~ , e ) x M ~ d  of x induces a variation Xo: ( - ~ , ~ )
x M o ~ d o  of Xo, and Fubini 's theorem for Riemannian submersions yields

for the area and volume functions defined in Sect. 2

A(t)=cAo(t),  Y(t)=cVo(t).

Moreover,  from (*) we derive

trace B = trace Bo,

since the orbits are totally geodesic and do not contribute to trace B. It follows
that J(t)= CJo(t) and thus J " (0 )=  cJ~'(O). This completes the proof.

Remark. We can also show directly that the index forms of M and M0 are
equal up to the factor c. In fact, i f fo  is a smooth function on M o and f=foorC,
then A f =  Afo on since the fibres are minimal;  in particular, the first eigenvalue
of Mo is the first G-invariant eigenvalue of M. Moreover,  the O'Neill formulas
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[O 'N]  show that /~+ IIBII2=(~o+ I[Boll2)on. The easiest way to see this is as
follows: Extend the normal  field N of M locally to a vector field near M with
DuN = 0. Then the tensor field B :=DN satisfies the Riccati equation

DNB+ B2 + R(',N)N=O.

Taking the trace, we obtain I] B I] 2 + /~  = _ N (trace B), and a similar formula holds
for Bo. As earlier, we have trace B=(traceBo)on, hence N( t raceB)
= No (trace Bo) o n.

5. Proof of Theorem (1.3)

(5.1) The projective spaces u - a l K ,  IKe{IR, (12, IH} can be treated by the meth-
ods of Sect. 4, since they are all quotients of euclidean spheres by groups acting
isometrically with totally geodesic orbits. Let SR N denote the euclidean N-sphere
of radius R. Let d = d i m ~ l K  and put n=rd-2.  The group Sd1-1 o N *  acts freely
on S~+lcN~" + 2= IK ~ by left scalar multiplication and U - 1 H (  is the orbit space.
We have thus a Riemannian submersion

the Hopf  fibration.
Then

n: S] + I ~ P r - I N ,

Let Up(') denote the tubular neighborhood of radius p.

n - a  (Tp (q)) = ~ -1 (a U o (Pq-1 ]K) = ~ Up (n-1 (pq-1 IK)) = ~ Up (S~')

where m = q d - 1. Putting p = r -  q and k = p d - 1 = n - m, we get

where we use the abbreviations

c = cos p, s = sin p.

Let us put G=S~ -1, M=S2xS~, ]~=S~  +1 and M o =  Tp(q), M 0 = P r - I D ( .  Then
we have Mo=M/G, and by Proposit ion 4.3, stability of M0 in ~r  0 is equivalent
to G-stability of M in M.

(5.2) We may apply the G-invariant version of Proposit ion 2.12 (see (4.1)): M
is a homogeneous bounding hypersurface and there are 1-parameter-groups
of isometries of ~Q which commute  with G and do not leave M invariant. Thus
we have to check whether 2. '=/~+ I[BII 2 is the first G-invariant eigenvalue of
M. The 2 na fundamental  tensor B of M has constant eigenvalues - s/c of multi-
plicity m and c/s of multiplicity k, and the Ricci curvature of M =  S'~ +a i s / ~ =  n
=re+k, so 2 = m ( 1  +s2/c2)+k(1 q-c2/s2)--=m/c2-Fk/s 2.
(5.3) Recall that the eigenvalues of the Laplacian of S~ are 20=0,  21 =N/R e,
22 = 2 ( N +  1)/R 2, ... ,  21 = l(N+ l-- 1)/R 2, ... and the eigenfunctions correspond-
ing to 2: are the restrictions to S~ of the homogeneous harmonic polynomials
of degree I in IR n+ 1 [BGM].
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If M1, M2 are compact  Riemannian manifolds with eigenfunctions f~, gj cor-
responding to eigenvalues 2i on M1, #~ on M2, then the functions f~| on
M 1 x M2 form a basis of eigenfunctions of the Riemannian product  M:=M1
x M2, and the corresponding eigenvalues are 2i + #j.

Put MI=S~,  M 2 = S  k. The eigenfunctions corresponding to 2 t + # o  (resp.
2o +#1) are linear functions on IR m+ 1 (iRk+ 1) which are never G-invariant since
- id e G. The eigenvalue 21 +/~1 = m/c2 + k~ s2 = 2 has an invariant eigenfunction:
Let Wl, ..., Wq, wq+l, ..., w~: ~ C ~ (  denote the coordinate functions on IKL
Then f..=Re(v~ 1 wq+ 1) is a G-invariant eigenfunction corresponding to 2 (where
w --, v~ denotes the conjugation in IK). The eigenvalues 22 +/~0 = 2(m + 1)/c 2 (resp.
2o+#2=2(k+l ) / s  2) have the invariant eigenfunctions Re(#lw2)  (resp.
Re(#~+ 1 wq+ 2)) provided that q > 2 (resp. p > 2). If q = 1 then m = d -  1 and G
=S~-1 acts transitively on $7, hence S~' has no G-invariant functions other
than constants. So, in this case, all eigenvalues 2~ + #o, l>  1 are noninvariant,
and a similar argument holds for 2o +#~ if p = 1. Thus we get as a result that
2 is the smallest G-invariant eigenvalue if and only if

(a) 2 < 2 ( m +  1)/C 2, i.e. sa/c2>k/(m+2)
and

(b) 2=<2(k+ 1)/S 2, i.e. sZ/cZ<=(k+2)/m
provided that 2 < q < r -  2, and in the case q = 1 (q = r -  1) Inequality (a) (Inequali-
ty (b)) is not  necessary. This proves Theorem (1.3).

6. Stability of Spheres in/-P ~:  Proof of Theorem (1.4)

(6.1) On ~n § 1 ~ IR 2 n + 2 consider the indefinite scalar product

(x,  y} = R e ( - x  o )50+ i__~ 1 x,, i) .

The submanifold

P =  {x~tEn+ l ; ( x , x } =  --1}

inherits a Lorentzian metric from (12 "+1 (of type ( - 1 ,  1 . . . .  ,1)). The group G
= S I  c I12" acts on P isometrically by scalar multiplication, and the quotient
manifold P/G- -H"C is Riemannian, namely the complex hyperbolic space with
curvature between - 4  and - 1, by O'Neill 's formulas [-O'N], since the projection
7c: P-- ,  H " ~  is a (pseudo-) Riemannian submersion.

Let Bo(O ) be the ball of radius p around o.'=[1, 0, ..., 0] eP/G = HnC. Then

7c- I ( B p(o)) = Up(S1),

where SI denotes the unit circle in C . e o C l E  "+1 and Up(S~) again means the
tubular neighborhood of radius p around SI (note that S~ is timelike while
its normal  vectors are spacelike). Furthermore,

~v~(sl)= s0 • s l  ~ ;  • r176
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where S 0 -  t = ,~ ,2n+l  - S c ,  $1 -s , with c = c o s h p ,  s = s i n h p ,  and the metric is the Lo-
rentzian product  metric - d s g + d s  2 where dsg, ds 2 are the standard metrics
on S o and $1. So, M:=~Bp(O) is the quotient space (So x S1)/G with its induced
metric. This space is diffeomorphic to S~ and its metric equals to that of $1
for vectors perpendicular to the H o p f  fibres, while the Hopf  fibres themselves
are blown up by the factor c = cosh p.

(6.2) If f :  M - ~  IR is an eigenfunction of the Laplacian of M = 0Bp(0), then fo~z:
So x S ~ N  is a G-invariant eigenfunction of the Laplacian A(Sa)--A(So)=:
Aa--A 0 of the Lorentzian manifold T = ( S o  x Sa, --ds2+ds2), since 7~ is a Rie-
mannian submersion with totally geodesic fibres. As in the definite case, if f ,  g
are eigenfunctions of So, S~ corresponding to eigenvalues /~, v then f |  is an
eigenfunction of So x S~, but this time corresponding to the eigenvalue 2 = v - # ,
and these functions form a basis of eigenfunctions on So x S~.

(6.3) The eigenfunctions of Aj=A(Sj) contain an or thonormal  basis of the
L2-functions on S j, for j = 0 ,  1. These are the homogeneous harmonic polyno-
mials on E i, restricted to S i, where E o = l l  2 and E1 = IR  2". Thus each function
hEL2(So x $1) can be represented as a possibly infinite sum of the form

(*) h=~,f~ |
i

(convergent with respect to the LZ-norm) where f~ and gi are eigenfunctions
with respect to Ao and A 1-

For  heL2(So x $1) and 7~G put h~(x)=h(Tx). This defines a group action
p qon L 2 (So x SO which preserves the subspace Ho| for all nonnegative integers

p, q, where H~ denotes the space of harmonic polynomials of degree k on E j,
p qrestricted to Sj. Thus Ho| ~ is also preserved by the projection rc G which

maps L 2 (So x Sx) onto the G-invariant functions, namely

~za(h)= ~ h~d7
G

where d7 is the invariant measure on G with volume 1. Therefore, a G-invariant
U-funct ion h on S o • $1 can be represented in the form (*) where fi  and gi
now are G-invariant homogeneous harmonic  polynomials, and we may assume
that the components  f~| are linearly independent.

(6.4) Now let h be a G-invariant eigenfunction of A = A 1 --Ao, corresponding
to a given eigenvalue 2. Since (by (6.2)) the components  in (,) are also A-eigen-
functions, corresponding to some eigenvalue 2~=/~-v~,  we get 2~=2 for all
i. Thus f l |  (say) is also a G-invariant eigenfunction corresponding to 2,
and f l  and gl are homogeneous harmonic polynomials.

(6.5) Any harmonic  real polynomial  of degree p on 02 is the real part  of c.z p
for some c~02. Hence we get from (6.4) that any G-invariant eigenvalue 2 of
A 1 -  A o has a G-invariant eigenfunction

h (x) = Re (x~- g (y))
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where y = (Xx, . . . ,  x,) and  g is a complex  valued homogeneous  ha rmon ic  po lyno-
mial  of  degree q. We m a y  write g as

g(y) = ~ asp y~ Y

where c~,/~eN" with Ic~[+l/~l=q, a , ~ ;  and  y~:=x]~...x~, ". Then  for any  7 e G
= s ~ ,

h(T x ) =  R e ( ~  a~p 7 v+ l~l - I~l xg y~ y ~)
~;,]3

and so the G-invar iance of  h implies that  a ~  + 0 only if p + l el - l/31 = 0.
Hence

p = [ / 3 l - I ~ l  < l / / [ + [ ~ l = q .

~ = vq-- #v>= Vp-- #p>-->-vt -- #l  ,
since

vv _ #p = (p2 + (2 n - 2) p)/s 2 - p2/c2

= (pZ + c 2 (2 n -- 2) p)/c 2 S :z

grows monoton ica l ly  with p. Thus  we have shown

(6.6) Proposition. The f i r s t  eigenvalue o f  the Laplacian o f  a geodesic sphere
of  radius p in HnlE is

)~a =(1  + 2 ( n -  1)cosh2p)/cosh2p sinh2 p.

(6.7) Finally, to comple te  the p r o o f  of  T h e o r e m  (1.4), we have to compu te
the value of 2 : = / ~ +  IIBII 2 for the geodesic sphere M = ~ B o ( o  ) in M = H " I E ,  for
some o s M .  Fix a unit  vector  v~ToM.  There  exists an o r t h o n o r m a l  basis
V=Vo, Vl . . . . .  v z , - x  of ToM such tha t  the curva tures  of  the planes aj
-- Span (vo, v j), j = 1 . . . . .  2 n -  1 are

K(cr0 = --4,  K ( a ~ ) =  -- 1 for k = 2  . . . . .  2 n - 1 .

Let  J~ ( j =  1, . . . ,  2 n -  1) be the Jacobi  field a long the geodesic 7 ( t )=expo  tv  with
Ji(0) = 0, J~(0)= vj. Then

J1 (t) =  89 sinh (2 t) vl (t),

Jk( t )=sinh( t )vk( t )  for k = 2 ,  . . . , 2 n - - I ,

where vj(t) is the parallel  field along 7 with v j (0)=  v~. Hence  the 2 nd fundamen ta l
tensor  B of M = OBp (0) has eigenvalues

~(log sinh p)/3 p = c/s

of mult ipl ici ty 2(n- -  1) and

(log sinh 2 p)/c~ p = (c z + s2)/c s

Therefore  (see (5.3))
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of multiplicity 1, where we again put c = c o s h  p, s = s i n h p .  Moreover,  the Ricci
curvature of )~ is

/~= - 4 - 2 ( n -  1),
thus

2 =/~  + [1B II 2 = 2 (n - 1)(C2/S 2 - -  [) -[-  (C 2 "q t -  s Z ) 2 / C  2 S 2 - -  4

= 2 (n-- 1)/s 2 + 1/c 2 s 2 = 21,

by Proposit ion (6.5). The result now follows from (2.12).

Appendix: The Isoperimetrie Problem

The question of stability of constant mean curvature hypersurfaces M in A4
is closely related to the isoperimetric problem in 33: Find the hypersurfaces
of least area bounding a domain of given volume. It follows from the 15rst
and second variation formula for the area of hypersurfaces that such a hypersur-
face is stable if it is smooth. For  simply connected spaces of constant curvature,
the solutions of the isoperimetric problem are precisely the spheres [Sc].

For  3 3 = p r - l l R  ' all spheres are stable, but those which bound a ball B
with vol B = c vol 33 for some c > 1/2 cannot be solutions of the isoperimetric
problem: If  B' is a ball with vo lB '= (1 - - c )vo133 ,  then area 3 B ' < a r e a  0B, and
~3B' bounds the domain 3 3 -  B' with vol (33- -B ' )=  vol B.

A similar fact is true for 3 3 = U - 1 ] K  with I K = ~  or N=~- I :  Let Pl be the
radius of the sphere with largest area and P2 the largest radius such that 3Bp2
is stable. It is known that tan2 pl  = k/m and by Theorem (1.3) tan 2 P2 = (k + 2)/m,
where m = d -  1, k = d ( r -  1 ) -  1, hence p 1 < Pa- Moreover,  if P0 denotes the radius
of a ball of half the total volume, a computat ion yields that po<p~ .  Now
a similar argument  as in the case K = R  shows that 0Bp for pE(po,  p~) cannot
be a solution of the isoperimetric problem though it is a stable hypersurface.

So one may  ask whether all spheres which bound a ball of at most  half
the total volume can be solutions of the isoperimetric problem. But not even
this is true in general. Take for example in P3IR the hypersurface OU~/4(P1P~),
the projection of the Clifford torus in S 3. It  has area rc 2 and bounds a domain
of half the total volume. On the other hand, the sphere bounding the ball Bpo
with the same volume has larger area. In fact, we have po>p. .=0.36 rc and
area OBp>Tz 2. An analogous fact is true in p 3 ~ .  One might conjecture that
these hypersurfaces are non-spherical solutions of the isoperimetric problem.
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