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1. Introduction

(1.1) Hypersurfaces M” with constant mean curvature in a Riemannian mani-
fold M™*?! display many similarities with minimal hypersurfaces of M"*!. They
are both solutions to the variational problem of minimizing the area function
for certain variations. In the first case, however, the admissible variations are
only those that leave a certain volume function fixed (for precise definitions,
see Sect. 2). This isoperimetric character of the variational problem associated
to hypersurfaces of constant mean curvature introduces additional complications
in the treatment of stability of such hypersurfaces.

In [BdC] a definition of stability for hypersurfaces of constant mean curva-
ture in the euclidean space R"*! was given, and it was proved that the round
spheres are the only compact hypersurfaces with constant mean curvature in
R™**1 that are stable. This is interesting in view of the fact that there exist
compact nonspherical hypersurfaces with constant mean curvature in R**! (cf.
Hsiang et al. [HTY] for n>2, Wente [W] and Abresch [A], for n=2).

In the present paper we extend these investigations to hypersurfaces of Rie-
mannian manifolds and prove the following result.

Let M"*!(c) be a simply-connecied complete Riemannian manifold with
constant sectional curvature ¢ and let x: M"— M"*t(c) be an immersion of
a differentiable manifold M" (superscripts will, in general, denote dimensions).
Recall that a (geodesic) sphere of a Riemannian manifold M is the set of points
of M at a fixed distance (the radius of the geodesic sphere) from a given point
peM.

(1.2) Theorem. Assume thatr M" is compact without boundary and that x: M"
— M™*(c) has constant mean curvature. Then x is stable (see definition in Sect. 2)
if and only if x(M™ < M"*'(c) is a geodesic sphere.

The case where M”, n=2, is complete and noncompact has been treated
in the recent thesis at IMPA of AM. da Silveira [S]. It turns out that when
X: M? — M?3(c) has constant mean curvature H, M? is complete and noncompact,
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and x is stable: a)if ¢=0, then x(M)<R? is a plane; b)if c=—1 and H=1,
then x(M)cH?(—1) is a horosphere; ¢)if c=—1 and 0< H <1, then there are
many such examples.

Except for the case where H=0 very little is known about stability of com-
plete and noncompact hypersurfaces of M"*!(c) with constant mean curvature,
when n>2.

For a general Riemannian manifold, the situation seems too complicated.
An interesting special example is given by the symmetric spaces of rank one.
It is known that the group of isometries of such spaces acts transitively on
their geodesic spheres which have, therefore, constant mean curvature. However,
not all spheres are stable, and not all stable hypersurfaces are spheres. It turns
out that certain tubes around projective subspaces are also stable. Let M
=P 'K be the projective space over the field K, with metric of diameter
n/2 and curvature between 1 and 4, where Ke {R, €, H}. For g<r let U,(P*" ' KK)
denote the tubular neighborhood of radius p around the totally geodesic sub-
space P~ 'K of P"7'IK, and put T,(¢g)=0U,(P?~'K). Note that T,(g) is con-
gruent to T, _,(p) if p=r—gq, and that T,(1) is the geodesic sphere of radius
p. Set d=dimg K and, for reasons of orientability, assume that r is even if
K=R.

(1.3) 'Theorem. For 2<q=<r—2, T,(qg) is stable in P~ 'K if and only if

pd—1 5

<tan“p=
gd+1—

pd+1
=gd—1

For q=1 (g=r—1), the lower (upper) bound is not present: A sphere of radius
p is stable if and only if tan?p <((r — Dd +1)/(d —1).

We will prove the theorem in the context of group-invariant stability (see
Sect. 4).

On the other hand for the complex hyperbolic space H"C, the noncompact
dual of P*C, we will prove:

(1.4) Theorem. Every geodesic sphere in H*Q is stable.

The stability problem is closely related to eigenvalue estimates of the Lapla-
cian of a submanifold. This will be further developed in an forthcoming paper
of E. Heintze [H].

The paper is organized as follows. In Sect. 2 we fix our notation and extend
the basic definitions of [BdC] to the case where the ambient space is a Rieman-
nian manifold. Most of the proofs in [BdC] apply to this new situation and
we are very sketchy as far as proofs are concerned. For future reference, however,
we have stated all facts in full. In Sect. 3 we prove Theorem (1.2). After giving
the equivariant setup in Sect. 4, we prove Theorem (1.3) in Sect. 5 and Theo-
rem (1.4) in Sect. 6. In an appendix, we compare the areas of the various stable
hypersurfaces of P*~ 'K which we obtained in Theorem (1.3).
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2. Preliminaries

2.1. Let M"*! be an oriented Riemannian manifold and let x: M" - M"*! be
an immersion of a compact, connected, orientable differentiable manifold with
boundary dM (possibly=¢) into M"*!, We choose the orientation of M to
be compatible with the orientation of M. More explicitly, let e, ..., e,, €,
be an orthonormal moving frame in a neighborhood U< M of x(p), pe M, that
is adapted (e, e;,...,e, are tangent to x(M)) and positive (ie,
dM{eq, ..., e,+1)>0, where dM is the volume form of M). Since M is orientable,
e, =N is a globally defined unit normal vector field and we choose it to
be the orientation of M.

A wvariation of x is a differentiable map X: (—¢, &) x M —» M such that X,:
M- M, te(—e, ), defined by X,(p)=X(, p), peM, is an immersion, X,=x,
and X,|0M =x|0M, for all t. We define the area function A: (—¢, ) >R by

A@W)= | dM,,

where dM, is the volume element of M in the metric induced by X, and the
volume function V: (—e¢, &) >R by

V= | X*dM.

[0.]] XM

0X - !
Let W(p):W . be the variation vector field of X and set f=<{W, N).
=

(2.1) Lemma

dA
) o O=- § nHf dM,

d
(i) d—lt/(O)= [ fam

where H is the mean curvature of the immersion x.

Proof. (i) is well known. To prove (ii), fix a point pe M and choose a positive
adapted orthonormal frame e, ..., ¢,, e,. =N around x(p). Then

X*(dM)=alt,p)dt ndM,
where

_ /0 _(8X
a(t, p)=X*(dM)(5?, ey, ...,e,,):dM(EF, dX,(es), ..., dX,(e,))

0X

0X
= Vol(—a7, dX,(e;), ..., dX,(e,,)) =<W"N'>’
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and N, is a unit normal vector of the immersion X,. It follows that

av d
G O=2( | a@pdirndM)—o= | a(0,p)dM

[0.e] x M M
oX
M M

as we wished. q.e.d.

A variation is normal if W is parallel to N, and volume-preserving if
V({t)=V(0), for all ¢.

(2.2) Lemma. Given a smooth function f: M — R with f |0M =0 and | fdM =0,
M

there exists a volume-preserving normal variation whose variation vector is fN.

Proof. Let ¢: (—¢, &) x M — R be a differentiable function and define a variation
X:(—ee)xM—M by

X(t:p):expx(p)(p(t’p)N, te(—gag)s pEM

X is a normal variation with (0X/0t),=(0¢/0t)o N. We want to show that ¢
can be so chosen that X satisfies the conditions of the lemma.

For that, we compute the volume function V(t) of X. Notice that X =ec,
where Y=(—¢, &) x M >R xM is the map y(t, p)=(e p),p) and e(u, p)
=exXPy( U N, ueR. By setting E(u, p)=det(de,, ), we obtain

V= | X*dM= | y*e*dM

[0,11xM [0,¢]1x M
og ! Jo
[0,1xM M N0

Now let f: M —IR be as in the statement of the lemma. and let ¢ be the
solution of the initial value problem:

20 _ 10
3t " Elo(®,p)

From the above expression for V(t), and the fact that | fdM =0, it follows
M

that V(t)=0 for such a variation. Since E(@(0), p)=1, this is a normal, volume-
preserving variation whose variation vector is fN. q.e.d.

¢(0,p)=0.

For a given variation X of an immersion x: M"— M"*! we set

Ho=A"' [ HAM, A=A(0),

M
and define J: (—¢, ) >R by J(t)=A()+nH, V(¢).

(2.3) Proposition. Let x: M"— M"*' be an immersion. The following statements
are equivalent :
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{0 X has constant mean curvature Hy.
(i) For all volume-preserving variations, A'(0)=0.
(i) For all (arbitrary) variations, J' (0)=0.

The proof is essentially the same as in Proposition (2.7) of [BdC].

(2.4) Remark. Notice that we do not have to assume H,=+0 (this corrects a
mistake in [BdC]). Thus minimal hypersurfaces are also included among the
critical points of area for volume-preserving variations.

To compute the second variation of J, we observe that

dJ
E:ﬂ{ (—nH,+nH,) f,dM.

1.4 .
Here H, is the mean curvature of X,, and f,=<ﬁ, M>, where N, is the unit
ot
normal vector of X,. Thus

7= (ai) © fam,

a\ae

and the computation is the same as the computation of the second variation
for the area function. It turns out that

(2.5) Proposition. Let x: M" — M""* be an immersion with constant mean curva-
ture H and let X be a variation of x. Then J’(0) depends only on [ and is
given by

J'O)(f)= | (- fAf—(R+|B|*) f*)dM.

Here A is the Laplacian in the induced metric, |B| is the norm of the second
fundamental form of x, and R=nRicc(N), where Ricc(N) is the (normalized)
Ricci curvature of M in the direction N.

(2.6) Definition. Let x: M" — M**! have constant mean curvature. The immer-
sion x is stable if A”(0})=0 for all volume-preserving variations of x. If M is
noncompact, we say that x is stable if for every submanifold with boundary
M = M, the restriction x| M is stable.

Just as in [BdC], one can prove, using (2.2) and (2.5), the following criterion
for stability. Let & be the set of differentiable functions f: M - R with f|dD=0
and | fdM=0.

M

(2.7) Proposition. x: M" — M"* ! is stable if and only if J"(0)(f)=0 for all fe F.

Similarly to the case of minimal surfaces, we have a notion of Jacobi field
for hypersurfaces with constant mean curvature. With a view towards a Morse
index theorem for such a situation, we choose the following definition.
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Define a bilinear form I: & — R by

I(f,9)= | g(—4f—(R+B|*) f)dM.

(2.8) Definition. A normal vector field V=fN, fe#, to an immersion x: M"
- M"*1 with constant mean curvature is a Jacobi field if feKer I, i.c., if I(f, g)
=0, for all ge F.

(2.9) Proposition. Let fe % . Then fN is a Jacobi field if and only if
(2.10) Af+(R+ | B||?) f =const.

Proof. Clearly if (2.10) holds, feKer I, since ge#. To show the converse, let
F, be the mean value of F=Af+(R+|B|?f in M. Since feKer I,

| g(F—Fy)dM=0, forall ge#.
M

We want to show that F=F, and the argument now is entirely similar to
that of Proposition (2.7) in [BdC]. gq.e.d.

(2.11) Remark. By using the above Jacobi fields a Morse index theorem can
be proved for hypersurfaces x: M" — M"*! with constant mean curvature. The
statement is entirely analogues to the case of minimal surfaces (c¢f. Lawson [L],
pp. 51-53). This was incorrectly stated in [BdC] where only those Jacobi fields
were considered that satisfied (2.10) with zero in the right hand side.

A particular kind of Jacobi fields is obtained from Killing vector fields on
M:

(2.12) Proposition. Let W be a Killing vector field on M. Then [={W,N)
satisfies _
Af+(R+[B[?*) f=0.

Proof. This is a straightforward computation and we shall omit it.
If M" is without boundary, a hypersurface immersion x: M — M is called
bounding if x extends to an immersion of some (n+ 1)-manifold with boundary

M into M. In this case we have j fdM =0 by the divergence theorem (note
M

that div W=0).

If, in addition, M is a hypersurface with constant mean curvature such that
R+ ||B||*=/=const., then A is an eigenvalue of the Laplacian of M, provided
that there is a Killing field on M which is not everywhere tangent to M. In
this case we have a nice criterion for stability:

(2.13) Proposition. Let x: M — M be a bounding hypersurface with constant mean
curvature such that R+ ||B||>=A=const. M is stable if and only if A=24,, the
first eigenvalue of the Laplacian on M.

Proof. Since A is an eigenvalue of A, we have either A=4, or A>4;. In the
first case, for any fe %,
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1(£f)= f( fAf=af?)dM z(4, —’»)ffsz 0,

hence M is stable. In the latter case, choose f to be a first eigenfunction of
the Laplacian. Then f €% and

I(£f)=(y—4) | f2dM <0

and therefore M is not stable.

3. Proof of Theorem (1.2)

(3.1) Let M"*'(c) be as in the statement of Theorem (1.2).

When ¢=0, M"*1(c) is the euclidean space R"* ! and the theorem has already
been proved in [BAC]. When ¢ =0, we will need the following model of M"* !(c).

Let I"*? be the euclidean space R""? with canonical basis a,
=(0,...,0,1,0,...,0), 4=0, 1,..., n+ 1, and inner product {, > given by:

{agy,a9)= (aa,aﬂ>=5aﬂ, o,f=1,...,n+1, {ay,ag)=0.

c
|cl
Let 8" *(¢)= I * 2 be a connected component of

{yeLl"*?;{y, yy=1/c}.

It is well known that $"*!(c) with the induced metric is isometric to M"*1(c),
c¢=+0, and this is the model we are going to use in the proof of Theorem (1.2).

Now let x: M"— S""1(c)cL"*? be an immersion with mean curvature H.
Let N be a unit normal vector field along x that defines the orientation of
M and fix a vector ve L'* 2. Define functions g: M — R and f* M - R by

(3.2) g(p)=<x(p),v>, [f(p)=<{N(p)v), peM.

(3.3) Lemma. Let A denote the Laplacian of M in the metric induced by x. Then
(a) Ag=—nHf —cng.

If, in addition, H =const.,
(b) 4f=~|B|*f—cnHg.

Proof. The proof is a simple computation and we will omit it.

(3.4) Lemma. The geodesic spheres S"= M""1(c) are stable.

Proof. It is well known that geodesic spheres are umbilic hypersurfaces of
M"*1(c). Thus ||B||*=nH?. Furthermore Ricc(N)=c, so

A:=R+||B|*=n(c+ H?).
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On the other hand, since S” has constant curvature ¢+ H?, the first eigenvalue
A, of the Laplacian on the sphere S" is given by A, =n(c+ H*)=A. The result
now follows from (2.13).

(3.5) Remark. If ¢>0, the equator S"(c)=S"**(c) is a minimal hypersurface
of $"*!{c) and, as such, is not stable. However as a hypersurface of constant
mean curvature, i.c., considering only those variations that leave fixed the vol-
ume, S"(c) is stable.

(3.6)  Proof of Theorem (1.2). We will use the fact that | B}|*=nH?, and equality
holds at a point pe M if and only if p is umbilic. Since the only compact umbilic
hypersurfaces of M"*!(c) are the geodesic spheres, the proof will be complete
once we show that stability of x: M” — M"*!(c) implies that || B||*=nH?>.

To do that, we first observe that the function u= Hf + ¢g satisfies, by Lemma
(3.2) (a), the condition

1
fudM= | Hf+cg=—— [ 4g=0,
o n

M M

since M is compact without boundary. A straightforward computation shows
that

J"O)w)=— | @Adu+(|B|*+nc)u?)dM

M

=— [ (IBI* —nH?*)(c? g* +cHfg)dM.

M

For notational convenience, let us write J”'(0)(u)=1I(u); notice that u depends
on the fixed vector ve '+, It is somewhat surprising that only the variations
given by u suffice for the proof. In fact, we will prove that I'(u)=0 implies
that ||B||2=nH?, thereby concluding the proof.

We will treat separately the cases ¢>0 and c¢<0. There will be no loss
of generality if we assume ¢=1 in the first case and c= —1 in the second case.

First Case. c=1. Choose v as an element of a canonical orthonormal basis
Ay, Ayy...r @y Of I'*2 (in this case, '*2=R""2 with the standard metric),
and let f, and g, be the functions in (3.2) that correspond to v=ay,
A=0,1,...,n+1.Setu,=Hf,+cg,. Since x is stable,

Iuy)=— | (IBII>*~nH>(g3+Hf, g4)dM 0.
M
Thus
02 I(u)=— § (IBI?—nH)(Q g5~ HY). f184)dM.
M
Since x(M) is contained in a unit sphere of R"*2, we obtain

zgiZZOC, aA.> <X, aA>:<x> X> = 15
ZngA=Z<N> aA><x’ aA>:<N9x>:0-
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It follows that

0<— [ (IB|*—nH?*dM,
M

and since | B||2=nH?, we obtain that |B|?*=nH>.

Second Case. c= — 1. Here we first notice that
$Ag*=gAg+|Vgl*=—nHfg+ng*+|VgP,
YAf2=fAf+|VfIP=—|BI*f*+nHegf+|Vf|?,

A(fg)=—|Bl>gf +nHg*—nHf>+ngf+2<Vf,V g)>.
A straightforward computation shows that
FH? A —HA(f)+3Af*=(H |V g|—|Vf)>—(IB|*>—nH*)(f*—Hfg).
By integrating the above expression over M, we obtain

§ (Bl —nH?)(Hfg—f*)dM =~ [ (H|Vg|—|Vf})*dM.

It follows that

Iw= [ (IB|*—nH*)(Hfg—g*)dM

= [ (IBI?—nH*)(f?—g*dM— | (H|V g|—|Vf])?dM.

So far, we have made no choice of the vector veI”*2. Now choose v so
that {v, v) = —1. To compute Vg, choose a moving frame {e,} around a point
x(p), pe M, such that e;=x, ¢,. ;=N and e, ..., e, are orthonormal and tangent
to x(M). Thus

v=—0,x)x+{0, NN+ {v,e>e;, i=1,...,n

and

Vg=><v,e)e;.
It follows that
—1={v,v)=—<v, xD?+<{v, N)?+) (v, ¢)?
SN
Therefore f* —g?= —(1 +{F g|*), hence,
0=I{u)= —}g {(UBI>~nH)(1+|Vg>)+H|Vg|—|Vf)}dM.

The above implies that [|B||>=nH?. This concludes the proof of Case 2 and
of the theorem.
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4. G-stability

(4.1) Let M""! be an oriented Riemannian manifold and let G a compact
group of orientation-preserving isometries on M. An (immersed) orientable G-
invariant hypersurface M” in M"*! is called G-stable if M has constant mean
curvature and I(f, )20 for all feF¢:={feZ; f(2(p))=f(p)—geG, pe M} (sce
Sect. 2 for notation). There is an obvious G-invariant version of Proposition 2.13:
If M is a G-invariant bounding immersed hypersurface of constant mean curva-
ture with R+ ||B|2=A=const. and if there is a G-invariant Killing field on
M, not everywhere tangent to M, then M is G-stable if and only if 1 is the
first G-invariant eigenvalue of the Laplacian on M, ie. the first nonzero eigen-
value which belongs to a G-invariant eigenfunction.

(4.2) If G acts freely, the orbit space My:=M/G is a manifold and the metric
on M induces a Riemannian metric on M, such that the projection n: M — M,
is a Riemannian submersion. If M is a G-invariant (immersed) orientable hyper-
surface in M, then M projects down to a hypersurface M, = M/G (also immersed)
in M,. Assume that M, is orientable and let N, be a unit normal vector field
on M,. Then the horizontal lift N of N, is a unit normal vector field on M.
Denote the corresponding second fundamental tensors by B:=DN and B,
:=DN,. By O’Neill’s formulas [O’N] we have for all tangent vectors u, ve T, M
which are horizontal (i.e. orthogonal to the orbit G p)

(*) <B(u)7 D>=<BO(7Z* Ll), TE*U>.

(4.3) Proposition. Let G act freely on M with totally geodesic orbits and let
M be an orientable G-invariant hypersurface in M such that M/G is orientable.
Then M is G-stable if and only if My=M/G is stable in M,=M/G.

Proof. Since all orbits are totally geodesic, they have all the same volume, say
c. (A smooth family of minimal submanifolds has constant volume since the
volume function has zero derivative everywhere.) Let x: M — M be the given
G-equivariant immersion and x,: M, — M, the induced immersion. Any G-equi-
variant variation X: (—¢ e)x M —> M of x induces a variation Xo: (—s,e)
xMy— M, of x,, and Fubini’s theorem for Riemannian submersions yields
for the area and volume functions defined in Sect. 2

A@M)=cAo®), V@=cV().
Moreover, from () we derive
trace B=trace By,

since the orbits are totally geodesic and do not contribute to trace B. It follows
that J(t)=cJy(t) and thus J”(0)=cJ§ (0). This completes the proof.

Remark. We can also show directly that the index forms of M and M, are
equal up to the factor ¢. In fact, if f, is a smooth function on M, and f=f,-m,
then Af=Af,on since the fibres are minimal; in particular, the first eigenvalue
of M, is the first G-invariant eigenvalue of M. Moreover, the O’'Neill formulas
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[O’N] show that R+ |B||2=(R,+ ||Bol?*)on. The easiest way to see this is as
follows: Extend the normal field N of M locally to a vector field near M with
Dy N =0. Then the tensor field B:=DN satisfies the Riccati equation

DyB+B2+R(-, NN =0.

Taking the trace, we obtain || B||?> + R= — N(trace B), and a similar formula holds
for B,. As earlier, we have trace B=(trace By)on, hence N (trace B)
= Ny (trace Bg)o .

5. Proof of Theorem (1.3)

(5.1) The projective spaces P"~ 'K, Ke{R, C, H} can be treated by the meth-
ods of Sect. 4, since they are all quotients of euclidean spheres by groups acting
isometrically with totally geodesic orbits. Let S denote the cuclidean N-sphere
of radius R. Let d=dimy K and put n=rd—2. The group ¢! <IK* acts freely
on S"*1cR"*2=K" by left scalar multiplication and P"~ 'K is the orbit space.
We have thus a Riemannian submersion

7 1Tl Pk,

the Hopf fibration. Let U,(-) denote the tubular neighborhood of radius p.
Then

n~ (T (@)=n""1(0U,(P*" ' K)=0U,(n~ ' (P1" ' K))=0U,(5T)
where m=gqd—1. Putting p=r—q and k=pd—1=n—m, we get
oU,(ST) =8I x SEc(R™ ' x R H)n S+,
where we use the abbreviations
c=cosp, S=sinp.

Let us put G=87"1, M=S7"x S, M=S7""! and M,=T,(gq), My=P"~'IK. Then
we have M,= M/G, and by Proposition 4.3, stability of M, in M, is equivalent
to G-stability of M in M.

(5.2) We may apply the G-invariant version of Proposition 2.12 (see (4.1)): M
is a homogeneous bounding hypersurface and there are 1-parameter-groups
of isometries of M which commute with G and do not leave M invariant. Thus
we have to check whether A:=R-|Bj|? is the first G-invariant eigenvalue of
M. The 2™ fundamental tensor B of M has constant eigenvalues —s/c of multi-
plicity m and ¢/s of multiplicity k, and the Ricci curvature of M=57"11is R=n
=m+k, so i=m(1+5%/c®)+k(1+c?/s?)=m/c? + k/s%.

(5.3) Recall that the eigenvalues of the Laplacian of S} are 1,=0, i, =N/R?,
Az=2(N+1)/R?, ..., 2,=I(N+1—1)/R?, ... and the eigenfunctions correspond-
ing to 4, are the restrictions to S¥ of the homogeneous harmonic polynomials
of degree [ in R¥*! [BGM].
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If M, M, are compact Riemannian manifolds with eigenfunctions f;, g; cor-
responding to eigenvalues 4; on M, u; on M,, then the functions f;®g; on
M, x M, form a basis of eigenfunctions of the Riemannian product M =M,
X M,, and the corresponding eigenvalues are A;+ ;.

Put M, =S" M,=S% The eigenfunctions corresponding to 1, +y, (resp.
Ao+ uy) are linear functions on R™** (IR**1) which are never G-invariant since
—ideG. The eigenvalue A, +u,; =m/c* +k/s* = A has an invariant eigenfunction:
Let wy, ..., wg, Woiq, ..., Wi K=K denote the coordinate functions on K.
Then f:=Re(W,;w, ) is a G-invariant eigenfunction corresponding to 1 (where
w — w denotes the conjugation in KK). The eigenvalues A, + o =2(m+ 1)/c? (resp.
Ao+u;=2(k+1)/s?) have the invariant eigenfunctions Re(w,w,) (resp.
Re(W, 41 w,.2)) provided that g=2 (resp. p=2). If g=1 then m=d—1 and G
=89! acts transitively on S, hence S™ has no G-invariant functions other
than constants. So, in this case, all eigenvalues 4,4+ uy, [=1 are noninvariant,
and a similar argument holds for 2,+y, if p=1. Thus we get as a result that
A is the smallest G-invariant eigenvalue if and only if

(@) AL2(m+1)/c?, ie. s*/c? = k/(m+2)
and
(b) A<2(k+1)/s% ie. s2/c?2 <(k+2)/m

provided that 2 < g<r—2, and in the case g=1 (g=r — 1) Inequality (a) (Inequali-
ty (b)) is not necessary. This proves Theorem (1.3).

6. Stability of Spheres in H" €: Proof of Theorem (1.4)

(6.1) On €**'=~IR2"*2 consider the indefinite scalar product

{x, )’>:Re(_xo,\70+ Z xifi)-

i=1

The submanifold
P={xeC"*"; (x,x>=—1}

inberits a Lorentzian metric from C"*?! (of type (—1, 1, ..., 1)). The group G
=S8} < C* acts on P isometrically by scalar multiplication, and the quotient
manifold P/G=H"C is Riemannian, namely the complex hyperbolic space with
curvature between —4 and — 1, by O’Neill’s formulas [O’N], since the projection
n: P— H"€ is a (pseudo-) Riemannian submersion.

Let B,(0) be the ball of radius p around 0:=[1,0, ...,0]e P/G=H"C. Then

n” (B, (0)=U,(S7),

where S} denotes the unit circle in €.eqcC"*! and U,(S]) again means the

tubular neighborhood of radius p around S} (note that S} is timelike while
its normal vectors are spacelike). Furthermore,

U, (S =8, x S, T x ",
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where S,=S!, §;,=S82"*1, with c=cosh p, s=sinh p, and the metric is the Lo-
rentzian product metric —ds3+ds? where ds3, ds? are the standard metrics
on Sy and S;. So, M:=0B,(0) is the quotient space (S, x S,)/G with its induced
metric. This space is diffeomorphic to S, and its metric equals to that of S,
for vectors perpendicular to the Hopf fibres, while the Hopf fibres themselves
are blown up by the factor c=cosh p.

(6.2) If 1 M —»Ris an eigenfunction of the Laplacian of M =0B,(0), then fon:
SoxS; =R is a G-invariant eigenfunction of the Laplacian A(S;)—4(S,)=:
A,— A4, of the Lorentzian manifold T=(S,x S;, —ds3-+ds?), since = is a Rie-
mannian submersion with totally geodesic fibres. As in the definite case, if f, g
are eigenfunctions of S, S, corresponding to eigenvalues p, v then f®g is an
eigenfunction of S, x S, but this time corresponding to the eigenvalue A=v—p,
and these functions form a basis of eigenfunctions on S, x S, .

(6.3) The eigenfunctions of 4;=A4(S; contain an orthonormal basis of the
I*-functions on S, for j=0, 1. These are the homogeneous harmonic polyno-
mials on E;, restricted to §;, where E,=IR? and E,=IR?" Thus each function
hel?{Syx S;) can be represented as a possibly infinite sum of the form

) h=Y f®s:

(convergent with respect to the L?>-norm) where f; and g; are eigenfunctions
with respect to 4, and 4,.

For hel?(S,% S,) and yeG put h?(x)=h(yx). This defines a group action
on I?(S, % S,) which preserves the subspace H5® HY for all nonnegative integers
p, g, where H% denotes the space of harmonic polynomials of degree k on E;,
restricted to S ;. Thus HE®HY is also preserved by the projection mg which
maps (S, x §;) onto the G-invariant functions, namely

= 'f hdy
G

where dy is the invariant measure on G with volume 1. Therefore, a G-invariant
[*-function h on S, xS, can be represented in the form (*) where f; and g;
now are G-invariant homogeneous harmonic polynomials, and we may assume
that the components f;®g; are linearly independent.

(6.4) Now let h be a G-invariant eigenfunction of A=A, —4,, corresponding
to a given eigenvalue 1. Since (by (6.2)) the components in (%) are also A-cigen-
functions, corresponding to some eigenvalue 1;=u;—v;, we get 1;=1 for all
i. Thus fi®g,; (say) is also a G-invariant elgenfunctlon corresponding to 4,
and f; and g, are homogeneous harmonic polynomials.

(6.5) Any harmonic real polynomial of degree p on € is the real part of ¢-z*
for some ce@. Hence we get from (6.4) that any G-invariant eigenvalue 1 of
A, — A, has a G-invariant eigenfunction

h{x)=Re(xg-g(»))
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where y=(x,, ..., x,) and g is a complex valued homogeneous harmonic polyno-
mial of degree q. We may write g as

g =2 auy* 7’
o, f

where o, feIN" with {«|+|B|=¢, a,;eC and y*:=x7'...x;". Then for any yeG
=51,

h(yx)=Re(} a,py" T iel1#1 x8 y* )
o, f

and so the G-invariance of k implies that a,;0 only if p+]a|—|8|=0.
Hence

p=IBl—lal =[Pl +]al=q.
Therefore (see (5.3))

. )‘:vq_:upgvp_upévl_:ula
simce

vp— iy =(p> +(2n—2)p)/s* —p*/c?
=(p*+c*2n—-2)p)/c*s®
grows monotonically with p. Thus we have shown

(6.6) Proposition. The first eigenvalue of the Laplacian of a geodesic sphere
of radius p in H*C is

41 =(1+2(n—1)cosh? p)/cosh? p sinh? p.

(6.7) Finally, to complete the proof of Theorem (1.4), we have to compute
the value of A:=R+ ||B||* for the geodesic sphere M =0B,(0) in M=H"C, for
some oeM. Fix a unit vector veT,M. There exists an orthonormal basis
UV=Ug, Uy, ..., U3,y Of T,M such that the curvatures of the planes o;
=Span(vy, vy, j=1,...,2n—1 are

K(o,)=—4, K(ogp=—1 for k=2,....,2n—1.

Let J,(j=1, ..., 2n—1) be the Jacobi field along the geodesic y(f)=exp, tv with
J;(0)=0, J;(0)=v;. Then

J; (1) =1%sinh(2¢) v, (1),
J (t)=sinh(t) v, (t) for k=2,...,2n—1,

where v;(t) is the parallel ficld along y with v;(0)=1v;. Hence the 24 fundamental
tensor B of M =0B,(0) has eigenvalues

d(log sinh p)/0p=c/s
of multiplicity 2(rn—1) and
d(log sinh 2 p)/3p =(c?+s%)/cs



137

of multiplicity 1, where we again put ¢=cosh p, s=sinh p. Moreover, the Ricci
curvature of M is

R=—4-2(n—1),
thus
A=R+|B|*=2(n—1)(c*/s> — 1) +(c2+5*)?/c*s*>—4

=2(n—1)/s*+1/c*s>=4,,

by Proposition (6.5). The result now follows from (2.12).

Appendix: The Isoperimetric Problem

The question of stability of constant mean curvature hypersurfaces M in M
is closely related to the isoperimetric problem in M: Find the hypersurfaces
of least area bounding a domain of given volume. It follows from the first
and second variation formula for the area of hypersurfaces that such a hypersur-
face is stable if it is smooth. For simply connected spaces of constant curvature,
the solutions of the isoperimetric problem are precisely the spheres [Sc].

For M=P 'R, all spheres are stable, but those which bound a ball B
with vol B=c vol M for some ¢>1/2 cannot be solutions of the isoperimetric
problem: If B’ is a ball with vol B'=(1--c) vol M, then area 0B’ <area 0B, and
OB’ bounds the domain M — B’ with vol(M — B')=vol B.

A similar fact is true for M=P" 'K with K=C or K=IH: Let p, be the
radius of the sphere with largest area and p, the largest radius such that 0B,
is stable. It is known that tan? p, =k/m and by Theorem (1.3) tan? p, = (k +2)/m,
where m=d—1, k=d(r—1)—1, hence p, < p,. Moreover, if p, denotes the radius
of a ball of half the total volume, a computation yields that p,<p,. Now
a similar argument as in the case K=R shows that 0B, for pe(p,, p,) cannot
be a solution of the isoperimetric problem though it is a stable hypersurface.

So one may ask whether all spheres which bound a ball of at most half
the total volume can be solutions of the isoperimetric problem. But not even
this is true in general. Take for example in P°R the hypersurface dU, ,(P'R),
the projection of the Clifford torus in S3. It has area n? and bounds a domain
of half the total volume. On the other hand, the sphere bounding the ball B,
with the same volume has larger area. In fact, we have p,>p:=0.36 = and
area 0B,>n’. An analogous fact is true in P?*C. One might conjecture that
these hypersurfaces are non-spherical solutions of the isoperimetric problem.

References

[A] Abresch, U.: Constant mean curvature torj in terms of elliptic functions, Preprint MPI-SFB
85-50, Bonn, 1985

[BAC] Barbosa, J.L., doCarmo, M.: Stability of hypersurfaces with constant mean curvature. Math.
Z. 185, 339-353 (1984)

[BGM] Berger, M., Gauduchon, P., Mazet, E.: Le spectre d’une variété Riemanniene, Lect. Notes
Math. 194. Berlin-Heidelberg-New York: Springer 1971



138

[H]
[HTY]

{L]

[O'N]
(8]

[5¢}

w1

Heintze, E.: Extrinsic upper bounds for 4. Preprint Univ. Augsburg No. 93, 1986

Hsiang, W.Y., Teng, Z.H., Yu, W.: New examples of constant mean curvature immersions
of (2k —1)-spheres into Euclidean 2 k-space. Ann. Math. 117, 609-625 (1983)

Lawson, H.B., Jr.: Lectures on minimal submanifolds, vol. I. Math. Lecture Series, 9. Boston:
Publish or Perish 1980

O’Neill, B.: The fundamental equations of a submersion. Mich. Math. J. 23, 459-469 (1966)
Silveira, AM. da: Stable complete surfaces with constant mean curvature. Math. Ann.
277, 629-638 (1987)

Schmidt, E.: Beweis der isoperimetrischen Eigenschaft der Kugel im hyperbolischen und
sphérischen Raum jeder Dimensionszahl. Math. Z. 49, (1943/44)

Wente, H.: Counter-example to the Hopf conjecture. Pac. J. Math. 121, 193-244 (1986)



