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0. Introduction

Let S be a 2-dimensional differentiable manifold (“surface”) and M an arbitrary
differentiable manifold of dimension n>2. Let f: S— M be a differentiable map. A
point p e S is a critical point if df, has rank <2. A critical point p is called a branch
point of f of order k [6] if there are coordinate charts z=x+ iy around p in S (with
values in €) and u=(u, ,...,u,) around f(p) in M such that

u () +iwp()=2"1+0(z**?) ,
u(f)=0(z**)
for =3,... n. This type of critical points occurs in connection with minimal
Surfaces and related problems. E. g., the solution of Plateau’s problem for the closed
curve y: ST R*= €2, y(r) = (%, t®) is a C'-mapping f: D—C? defined on the unit
disk D with £|0D =y which minimizes the Dirichlet integral | (| £i[2 + [ £,|?) dxdy,
D

and it follows from Wirtinger’s inequality that f(z) = (2%, z%) is the only solution [9].
ere, =0 is a branch point of order 1. However, it has been shown by Osserman
“Q] (see also [6]) that solutions of Plateau’s problem in R?® do not admit branch
Points. In this paper, we want to study branch points of conformal mappings of
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surfaces which satisfy a certain type of PDE. These contain minimal surfaces and
surfaces of prescribed mean curvature in 3-manifolds. We will relate the order and
the number of branch points to geometric quantities like curvature and draw
topological conclusions in case that S is a closed surface. In particular, we can
exclude the existence of branch points in certain cases if S has genus 1. This
can be considered as a theorem of Osserman type. However, the arguments are
very different from those in Osserman’s case but resemble those of Hopf [8] and
Chern [1,2].

This work was originally intended as a continuation of [4] and [5]. In particular,
we extend results of these papers to the case where branch points may occur.

1. Smooth Critical Points and Conformal Maps

Let S be a surface, M an n-manifold and f: S— M a smooth mapping as above, To
simplify notation, we assume that the target manifold M is a submanifold of some
euclidean space IR", but this assumption is not essential in this chapter. For every
non-critical point g € S, there is a tangent plane df,(7,S) of the image f(S) at f(p).
On the other hand, if p is a critical point, a tangent plane at f(p) does not exist in
general. However, if p is a branch point in the sense of the definition above, the plane
spanned by 0/0u, and d/0u, at f(p) plays a similar role. More precisely, consider the
Gauss map

GiSo—*Gz,N s G(Q)=dfq(TqM) .

where Sy denotes the set of non-critical (“regular’) points in S and G, y the
Grassmannian of 2-planes in R". If p is a branch point of f, then G can be
continuously extended to p. (Note that fis regular around p.) We would like to know
when this extended Gauss map is smooth (i.e. C®).

More generally, a critical point p is called smooth if there exists a neighborhood
Uofpin S and asmoothmap G : U-G,, y with G(g) = T;,, M = R for all g Usuch
that G agrees with the Gauss map on Un S, . If all critical points of fare smooth, the
Gauss map extends to a smooth mapping G:S—G, y, thus defining a 2-plane
bundle Tf over S with fibres T, f: =G(p), p € S. This is a subbundle of the pull back
bundle f*TM, and df is considered as a vector bundle homomorphism df: TS— T/
over S. If fis an immersion (i.e. S,=S) then df is an isomorphism.

If M is considered as a Riemannian manifold (with metric induced from the
ambient space R") then T inherits a metric {,> and a connection D from f*TM.
Let Nfbe the orthogonal complement of Tfin f*TM. Then a second fundamental
form a: TS ® TS— Nf is defined as follows:

(v, w)=(D.fL(W)" ,

wherev, we T,S and Wisa vector field on S with W, = w. Here, f, W is considered 2
a section of Tf. The 2-form « is symmetric and extends the usual 2™ fundamental
form on f|S,. ’
We want to assume from now on that our surface § is orientable and prov1ded
with a fixed complex structure as a Riemann surface. A smooth nonconstal}t
mapping f: S—M <R is called conformal if for any holomorphic chart z=x+%
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on S we have

<fx7fy>=0 s <fx9fx>=<fy’fy> s

or equivalently, f; is isotropic, i.e.

{Sarf>=0 . )

Here as usual, f; and f, are the partial derivatives and f, =% (f; —if;), while ()
denotes the scalar product on R¥ and its complex bilinear extension to C¥. The
function

wi=|fl=51=4 <10 f
is called the conformal factor with respect to the chart z.
Theorem 1. Let S be a Riemann surface and f:S—M < R" a conformal map. Then

each smooth critical point pe S is a branch point of some order k21 and for any
holomorphic chart z around p with z(p)=0 we have

p@=lzl*po(z)
where ug is smooth with 1,(0) 0.

Proof. Replacing S with an open subset if necessary, we may assume that the Gauss
map extends to a smooth mapping G : S—G, y. So the bundle Tf<f*TM < M x R¥
is defined and inherits a metric <, and a connection D from f*TM. Let {e,,e,}
be a local orthonormal basis of Tf, defined on some open subset S’ of S and
z=x+iy:S'>C a holomorphic chart. Then f, is an isotropic section of
Tf® € [by conformality, (1)], and therefore,

Sr=ale; —iey)+ Ble; +iey)

for complex valued functions a, f with o - §=0. Dually, let 0; be the 1-forms on S’
defined by

0;(v)=<df,(v), ¢;(p)>
for peS’, ve 7,8, je{1,2}, and put

¢=01+i92=<df;el+iez> N
then

o=2adz+2pdz .
Moreover, put 6;, ={De;,e,> = —0,,, then we have df;=0;, A 0, for j+k, and so
dp=—ifi "¢ . ¢

%‘et Z,= 8’ be the zero set of a. Outside Z, we have =0 and so ¢ =adz, hence
fom (2)

(do+2iaf ) Adz=0 .
This means that the dz-part of da+2in0,, vanishes, i.e. on Z, we have

da/07=b"a €))
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where b - dZ is the dz-part of —2i-6,,. Also, (3) holds trivially on the interior of Z,
and so it holds everywhere on S’. A particular solution of (3) is o, = €* where u solves
0u/0Z=»5, and thus the general solution is

o=0lg * 0y )

for some holomorphic function ay, [4].

In particular, the zeros of a are isolated unless a=0. So either « or § vanish
identically on all of 8, and by choice of the frame {el ,€3}, we may assume f=0.
Thus,

Je=aley —ie) . ©)

Now suppose that z =0 is a (smooth) critical point of £, i.¢. a zero of a. Thus by
(4), we have a smooth decomposition

a=2z" 0 @)

with a,(0)+0. Now take coordinates (uy, ..., u4,) on M around f(0) such that the
coordinate vector fields U;=0/0u; satisfy U;(f(0))=¢;(0) for je{1,2}. Then we
have

e;=U;(N+0() ,

fr=2" () - (U, —iU2) (f) + O(2])
=c-2¢ (U —iU) (N)+ 0z ,
where ¢ =0, (0). Consequently,
ou (f)foz= c-Z*+0(zF*Y) ,
ouy(f))0z= —ic-Z*+0(z)**") ,
ou (f)foz=0(zI*") ,
for a=3,...,n. Putting ¢'=2¢/(k+1) and
wi=u (f)—Re(c'Z**Y) , wy=u(f)—Im(c'Z**) ,

we have Ow;/0z=0(z[**!). Since w:=(w;,w,,us,...,u,) is real, we hav
dw=2 Re(w, dz)=0(z[**"), hence w=0O(|z|**2). Thus

w (f) +i-wp(f)=c'2* 1+ 0(z*?) |
() =0(z[**?)

for a=3,...,n, which shows that z=0 is a branch point of order k. For the
conformal factor u, we get from (5) and (4'):

p=t| L] =1 o]

and pio:= o] is smooth and positive near z=0. This completes the proof of
Theorem 1.

A conformal map f: S— M all of whose critical points are smooth will be calleda
conformal smoothly branched immersion. Theorem 1 asserts that all critical points
such a map are branch points.

thus
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2. A Certain PDE

We do not know in general whether a smooth conformal mapping f: S—IR" can
have non-smooth critical points at all. However, in minimal surface and related
problems, f satisfies a PDE which excludes non-smooth critical points:

Theorem 2. Let U be an open domain in € and f: U-R" a smooth conformal map.
Assume that g:=f, satisfies

0g/0z=A4-g , (*

where A(2) is a complex N x N-matrix depending smoothly on zeU. Then f is a
conformal smoothly branched immersion.

Proof. Let U, be the set of regular points of fand G : Uy— G,y its Gauss map. We
may express G in terms of g as follows: Let CQ = {ueC"|(u, u) =0} be the set of
isotropic vectors and Q its projection to CPY 1. The quadric Q is diffeomorphic
to the Grassmannian G, y of oriented 2-planes in R", via the map f# sending a
homogeneous vector [u] to the oriented plane spanned by Re (1) and Im (u), and
hence we have G = B([g]) where [g] denotes the projection of g|U, to CP¥ 1. So G
has a smooth extension to U if and only if [g] has. The latter is true if near each zero
7p0f g, we have a smooth decomposition g = - g, where a is a complex valued scalar
function and go(z,) 0.

We may assume z, = 0. Since g satisfies (*), we know from a theorem of Chern [1]
which uses the inhomogeneous Cauchy formula that the Taylor expansion of g
around 0 does not vanish entirely. Suppose that m=1 is the order of the lowest
nonvanishing Taylor polynomial. We claim that « =z divides g and g, =g/z™ is
smooth with g, (0) == 0. This is shown by the following two lemmas which complete
the proof of Theorem 2:

Lemma 2.1. Let g be a solution of (x) with a zero of order m at z,=0. Let g,, r =m be
the Taylor polynomial of order r around zo=0. Then z™ divides g, for every r2m.

Proof. We show by induction over k that 8/3%*g(0)=0for 0<j<m—1, k21 where
0:=0/0z, 0:=0/0z. In fact, 870g =7(A - g) vanishes at 0 for j<m —1 since 4 - g has
order 2m at 0. Moreover,

0id*g=010""1(4"9)

vanishes at 0 by induction hypothesis since every term of the right hand side
contains a factor 9*9%g with a<j, f<k—1.

Lemma 2.2 ¢ g: U= C" be a smooth map and assume that z™ divides each Taylor

polynomial of g around 2o =0. Then z™ divides g, i.e. there is a smooth decomposition
g=z"-g,.

Proof. Let gr denote the Taylor polynomial of order r. Then g —g, is of order
2(r+1) at 0, and

hy:=070%(z""(g —4r)
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is a sum of multiples of z7™~¢-9/~!F%(g —g,) with 0<i<j, thus
[aa@|| S C - lgfr 2 -mHith

So the function & with 2(0)=0, h(z)=(g(z) —g,(2))/z" for z=%0 is (r —m)-times
differentiable. Since g,/z™ is smooth for arbitrary r>m, the function g/z™ has
smooth extension to z=0.

3. Local Applications

We will apply Theorem 2 as follows: Let M <R" be a submanifold with induced
Riemannian metric {,)>=ds*>. A conformal mapping f:S—»McR" is called
harmonic if the component of Af tangent to M vanishes, where A denotes the
Laplacian of some metric on S which is compatible to the complex structure. Thusa
conformal harmonic map is a minimal surface outside its critical points. For any
holomorphic coordinate z = x + iy with conformal factor y for the metric chosen, we
have p? - Af=f,, +f,,=4f.r. Thus harmonicity implies

R Af =2 U =alf ) +alfy, f)=4a(f.. 1)

where o« : TM ® TM— L M denotes the 2" fundamental form of M < R¥, extended
complex linearly to complex tangent vectors. Thus, a conformal harmonic mapping
is given by the equation

zf=a(,f_;’f;) . ©®)

Similarly, let M <IRY be a 3-dimensional submanifold and f: S-McR" 2
conformal map such that f*TM is oriented. So Ty, M, peS, is an oriented
3-dimensional vector space with euclidean inner product which defines a unique
vector product x on T, M. On the subset S, of regular points, the component of
Af tangent to M is twice the mean curvature vector of f] i.e.

12 AfY =2 Hf x f,=4iHf, xf, ,
where H is the mean curvature of £|S,. Thus on S,

e=iHf, X fo+a(f,f2) - 4

More generally, if H: S— R is any smooth function, a conformal map f solving ]
everywhere on S is called a generalized surface of mean curvature H. )

Obviously, (6) and (7) have the shape of (*) in Theorem 2 for a suitable matrix
valued function 4. Since we may embed each Riemannian manifold isometrically
into some R" (in fact we only need a local embedding theorem), we get from
Theorem 2:

Theorem 3. Let S be a Riemann surface, M a Riemannian manifold and - S -Ma
conformal map. If either f is harmonic or diim M =3 and f is a generalized surface of
mean curvature H for some smooth function H on S, then f is a conformal smoothly
branched immersion.

This is a generalization of the results of Chap. 2 in [6].
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As an important example, consider a complete 3-manifold (M, ds?) of constant
sectional cirvature ¢ and a generalized surface f: S— M of constant mean curvature
H=0. Let N be the oriented unit section of the normal bundle Nf. Then H - N is the
mean curvature vector on the regular set S;. Let

fi:S-M | fi(p)=expy(INy)

for teIR be the parallel surface. Let (sin,, cos.) be the solution of the initial value
problem

sin,=cos, , cos,=—c-sin, , sin(0)=0, cos (0)=1
and let ¢ be the first positive solution of
cos,(t)/sin,(t)=H .
Then f; is also a conformal map and f*(ds?) =a’f*(ds*) with
a=%lk, —k,| - sin ()

on Sy, where k; and k, are the principal curvatures of the immersion f|S,.
Moreover, f, has constant mean curvature —H and thus is also a conformal
smoothly branched immersion. The umbilic points of f are the zeros of a and

correspond to the branch points of f;, and vice versa, since the roles of fand f, can be
interchanged.

Remark. In case ¢ =0, H=0, the previous discussion does not apply directly since
c0so(1)/sing(#) =1/t has no zero. However, it applies in the limit as 1> o0 if we
renormalize and put g, =f,/t for ¢ > 0. Then g, converges to the Gauss map as £ — c0.

Thus we recover the conformality of the Gauss map for conformal harmonic maps
in R3,

4. Gauss-Bonnet Theorem

From now on, let $ be a compact Riemann surface and f: §— M < R” a conformal
smoothly branched immersion. Then the induced 2-form f*(ds*) on the regular set
So is a Riemannian metric compatible to the complex structure.

Let E— S be an oriented real 2-plane bundle with metric {, », metric connection
Dand curvature tensor Rg. If {51,5,} is an oriented local orthonormal basis of E, the
Curvature 2-form Qp={Rg(,)s;,s, ) is independent of the choice of the basis and
hence globally defined. By the generalized Gauss-Bonnet Theorem we have

[ Qe=2m"1z . ®
h

where y; denotes the Euler number of E. On So, let dv denote the volume element of
the metric f*(ds?). Then Q=K - dvwhere K= Qg(e, , e,) for an arbitrary oriented
local orthonormal basis {e1,e;} of (T'So,f*(ds”). E.g. we may choose e, =f,/y,

;2 =f,/ for some holomorphic chart z=x +iy with conformal factor u. The local
ormula

Kg={Re(fo, )51, 8011
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shows that Ky =Ky - |z]?* for some smooth function K, o defined in a neighbor-
hood of z=0, if z=0 is a branch point of order k.

If E=Tf, then Kgz=:K is the Gaussian curvature of the metric f*(ds®) on §,,.
Choose any Riemannian metric dsj on S which is compatible to the complex
structure. Then

fHdst)=m’ds§

for some smooth nonnegative function m?, and on S, the curvatures K of f*(ds?)
and K, of ds? satisfy the well known relation

m?*-K=Ky—Aqlogm , )

where 4, denotes the Laplacian of ds3. Near a branch point z=0 of order k, we
have m = pt/po where i, is the conformal factor with respect to ds3. Thus by Theo-
rem 1, m=my - |z* for some smooth positive function my near z=0.

More generally, a function u : S— [0, o0] is called of absolute value type if for all
peS and any holomorphic chart z around p there is an integer k =ord,(«) and a
smooth positive function %, on a neighborhood of p such that

u=z—z(p)l*-uo .
If k > 0 (k <0) then p is called a zero (pole) of order |k|. Poles and zeros are isolated.
Let n(u) (p(u)) be the number of zeros (poles), counted with multiplicities, and put

Nw:=Y ord,(w)=n@)—p) .
peS
The following lemma is an easy consequence of the divergence theorem [4,5]:

Lemma 4. If u is an absolute value type function and dst a compatible metric on the
Riemann surface S with Laplacian A, and volume element dv,, then

| 4o logudvy=—2n-N(u) .
N

We may apply this lemma to the absolute value type function m which has no poles,
hence N(m) = n(m) equals the number of branch points, counted with multiplicities.
Hence, multiplying (9) by dv, and integrating, from Lemma 4 and the usual Gauss-
Bonnet Theorem for (S, ds3) we get a Gauss-Bonnet formula which essentially was
already proved by Heinz and Hildebrandt [7]:

Theorem 4. Let f: S— M RY be a conformal smoothly branched immersion. Then
(127) | Kdv=yry=x(S)+b ,
N

where x(S) is the Euler number of S and b the number of branch points of S, counted
with multiplicities.

5. Estimating the Number of Branch Points

We are now able to generalize the results of [4,5] to the case of branChe_d
immersions. In all these cases, the geometry is governed by a holomorphic
differential ® on the Riemann surface S, i.¢. a holomorphic symmetric r-form whi
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is locally @ =h(z)dz" for a holomorphic chart z and a holomorphic function A. Let
N(®) be the number of zeros of @, counted with multiplicities. The following fact
can be considered as an easy special case of the Riemann-Roch theorem:

Lemma 5. Let & be a holomorphic symmetric r-form on a closed Riemann surface S.
Then either @=0 or N(®)= —r x(S).

Proof. Choose any compatible metric ds3 on S. Let z be a holomorphic chart and g,
the corresponding conformal factor. Let @ =h(z)dz". Then |®|:=|h(2)| - ug ™ does
not depend on the choice of z. Therefore, |®|is a globally defined absolute value type
function without poles, unless @ =0. Moreover, on the domain of z we have

4o log|@|=4glogpo "=r"K, ,

where K, is the Gaussian curvature of ds3. Thus, by Lemma 4 and the Gauss-Bonnet
theorem,

—N(®)=-N(2))=(1/2m) i 4o log |®|dv,

=(1/2m) "'i Kodvo=r-y(S)

which completes the proof.

Now let S be a closed Riemann surface, (M, ds*) a Riemannian manifold and
f: 8- M a conformal smoothly branched immersion such that f* TM is an oriented
bundle. Let S, be the set of regular points and b the number of branch points,
counted with multiplicities given by their orders. We consider three different cases:

(a) M is 3-dimensional with constant sectional curvature ¢ and f'is of constant
mean curvature H,

(b) M is 4-dimensional with constant sectional curvature ¢ and fis harmonic,

(¢) M is a (real) 4-dimensional Kédhler manifold of constant holomorphic
sectional curvature 4¢ and f is harmonic.

InAall cases, a holomorphic differential @ (of degree 2 resp. 4 resp. 3) was constructed
using local oriented orthonormal frames of the tangent bundle TS and the normal
bundle NS if f was an immersion [4,5]. The construction carries over to branched
surfaces if we replace T'S with Tf and NS with Nf. Since branch points are isolated,
the orientation of T'S determines an orientation of 7fvia df and consequently also of
Nf. Let {e1,e,} be a local oriented orthonormal basis of Tf, defined on some open
subset U of S. As before, put 0 ;={df(),e;> and ¢ =0, +i0,. Then ¢ isa (1,0)-form
whose zeros are precisely the branch points and

dp=—i0, N,
Wwhere 6, = (De, e,) (see proof of Theorem 1).

Cf?se a(cf. [5]). There exists a unique unit section N of Nf such that (e,, e,, N)is an
oriented orthonormal basis of (f*TM)|U. Put

Yy=(De,,N>—i{De,, Ny—H§ .
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On UnS, we have Y=k - ¢ for some smooth complex valued function k with
kP=c+H*-K .

In particular, ¥ is a (1,0)-form on U, and the zeros of y on Un S, are precisely the
umbilic points. Moreover, since the mean curvature H is constant, we get

d‘//=i012 /\‘// .

Now & : = ¢ - is independent of the choice of frame and holomorphic: If ¢ = - dz
and =0 - dz, then the exterior differential equations imply

du+i-p-0)Adz=0=(do—i-6-0,3)rndz ,

thus d{u - 6) A dz=0 which shows that u - o is holomorphic. Therefore we get from
Lemma 5:

Theorem 5.1a. Let M be a 3-spaceform of constant sectional curvature and > S—Ma
conformal map of constant mean curvature. Then either f is totally umbilic or

~2x(S)zu+b ,

where u is the number of umbilic points on Sy, counted with multiplicities.

Case b (cf. [5, 11]). Here, Nfis a 2-plane bundle. Let Ky be its curvature as defined
in Chap. 4; Ky, may have poles at the branch points of f. Let (e3, e,) be an oriented
orthonormal basis of (Nf)|[U. We extend the metric of M bilinearly to the
complexified bundle f*TM ® C and put

Y ={D(ey—ie)), esties) .

Since f|Sp 1s a conformal minimal immersion, we have y, =k - ¢ for complex
valued functions k. with

kil =c — K+ Kyy
on SenU. In particular, ¥, are (1,0)-forms on U whose zeros on SonU ar¢

precisely the so called circular or pseudo-umbilical points where the ellipse of
curvature is a circle. Moreover,

dpy=i- (O —(£6 ) Az

where 0;,=(Des,e,>. As in Case a we conclude that the quartic form
@:=y, y_¢?is independent of the chosen frames and holomorphic. Thus w¢
get from Lemma 5:

Theorem 5.1b. Let M be a 4-space form of constant sectional curvature andf: S ~Ma
conformal harmonic map. Then either f is totally circular or

-4 x(S)2c+2b

where c is the number of circular points on S, (with multiplicities).
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Case c (cf. [4]). Beneath the splitting f*TM = Tf @ Nf we get a second orthogonal
decompositionf*TM =L, @ L_ asfollows: Let (,) be the hermitean inner product
on TM given by

(o, w)y={v,wd>+i-{v,Jw) ,
where J is the almost complex structure on M. Then
s+ 1=5(e; — (£ Jey))

are sections of (f*TM)|U with (s4+,s_)=0 and [s.[2+|s-[?>=1, and C"s, is
independent of the chosen frame, if we define the multiplication with complex
scalars by

(x+if) v=a-v+8-Jv

for any ve TM. Thus s, span orthogonal complex line bundles L, . Let E, and
E; be unit sections of L, and L_ on U. Then (E;; E,) is a unitary basis of
(f*TM)|U. Let

w;=(df, Ey)
for ie{1,2}. Then w, =u. - ¢, w, =u_ - ¢ for complex valued functions u, with
2usf=1£{Jes,e5) .

Note that C: ={Je,, e,) is independent of the chosen frame: If Q(v, w): = (Ju, w) is
the Kéhler form on M and dv the volume form of the metric f*(ds*) on S, then we
have f*Q=C-db.
Moreover, put
wWy;= (DE,', E])

for i, je{1,2}. From the fact that f|S, is a conformal minimal immersion we get
®z2=w- ¢ for some complex valued function w with

wP=20—K+Ky; .
Moreover, from the Cartan structure equations we get
dw; = —w;; AWy ,
do,= w3 A, ,
dwy; = (w1 —wn} AWy, -

From this we conclude as above that @ : = w; O, * w3 is independent of the chosen
frames and defines a holomorphic cubic form on S. The zeros of ¢ are called
ISotropic points (cf. [3]). Hence we get from Lemma 5:

The(.ll'em S.1c. Let M be a 4-dimensional Kéhler manifold with constant holomorphic
Sectional curvature and f: S— M harmonic. Then either f is totally isotropic or
~3y(S)2j+2b ,

Where j is the number of isotropic points on S, (with multiplicities).
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In each of the three cases, we get

Corollary. If S has genus 0, then ®=0. If S has genus 1, then f has no branch points
and @ has no zeros unless ®=0.

In [4,5] we got more refined results by looking closer to the local factors of @. All
of these results carry over to the branched case. We want to discuss two of them.

Theorem 5.2. Let M be 4-dimensional with constant sectional curvature ¢ and S q
closed Riemann surface. Let f: S— M be a conformal harmonic map such that f*TM is
orientable, and let )y be the Euler number of Nf for some orientation. Then either f s
totally circular or

=2 x(S)Zb+|xnyl -

Proof. The functions |k « | = (c — K & Ky,)'/* introduced above are of absolute value
type and satisfy

Alog |k | =2K—(+Ky;)

(cf. [5, Theorem 2] and [11, Theorem 1]), unless ¢ =0. Integrating this with respect
to dv, we get from (8) and Lemma 4 (observe that 4log |k +|dv= Aqlog |k . |dvy):

2xry=—N(k])txns

(compare (5) in [5]). The functions |k .| and |k _| may have poles of order not bigger
than the branching order at that point. Hence, N(lk+|)=n(jk.|) —b. Now from
Theorem 4 we have yr,=x(S)+b, so we get the result.

Next, let (M, J, ds?) be a compact (real) 4-dimensional Kéhler manifold with
constant holomorphic sectional curvature 4. As above, let Q denote the Kahler
2-form on M. Then 3(o/n)f2 determines an integral cohomology class, the first
Chern class ¢,;(M). Thus for any smooth map f: S— M, the number

d=(o/m) if*(ﬂ)

is one-third integer, called the degree of f. If M=CP?, then c,(M) is 3-times the
generator of H*(M;Z) and the degree is an integer. Our next result sharpens 4
theorem of Eells and Wood [3]:

Theorem 5.3. Let M be a compact 4-dimensional Kdihler manifold of constant
holomorphic sectional curvature, S a compact Riemann surface and f: S-Ma
conformal harmonic map of degree d. Then either f is totally isotropic or

—3x(S)213d|+2b .
Proof. If fis not totally isotropic, then the functions
by =k - wl=(11C)(Ky; —K+20)'?
[see Case (c) above] are of absolute value type and satisfy

3xry=—N(bs)+3d
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(see (4.5) and (4.6) in [4]). The first factor of b is bounded while the second one
may have poles of order not bigger than the branching order at that point. Thus
N(b:)Zn(bi)—b. Now the result follows from Theorem 4.
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