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O. Introduction

Let S be a 2-dimensional  differentiable mani fo ld  ( "sur face")  and M an a rb i t ra ry
differentiable mani fo ld  of  d imens ion  n > 2. Let  f :  S ~  M be a differentiable map .  A
point p e S is a criticalpoint ifdfp has r ank  < 2. A critical point  p is called a branch
point o f f  of  order k [6] if  there are coord ina te  charts  z = x + iy a round  p in S (with
values in ~ )  and u = (ut ... .  , u.) a round  f ( p )  in M such tha t

ul ( f )  + iu2 ( f )  = z k + 1 + O (Izl ~ + 5) ,

u~(f)-- O(Izl k+2)
for ~ = 3 . . . .  , n. This  type o f  critical points  occurs in connect ion  with min imal
surfaces and related problems.  E. g., the solut ion of  P la teau ' s  p rob l em for  the closed
curve ~ : S 1 ~ , 4  = Cz, V(z) = (z 2, z a) is a C l - m a p p i n g f :  D ~ C  2 defined on the unit
disk D with f l aD = ~, which minimizes  the Dirichlet integral j" L[f, ll2)axay,

D
and it follows f rom Wir t inger ' s  inequali ty t h a t f ( z )  = (z a,  z 3) is the only solut ion [9].
Here, z = 0 is a b ranch  poin t  o f  order  1. However ,  it has been shown by  Osse rman
[10] (see also [6]) t ha t  solut ions o f  P la teau ' s  p rob lem in R3 do not  admi t  b r anch
points. In this paper ,  we wan t  to s tudy branch  points  o f  conformal mapp ings  of
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surfaces which satisfy a certain type of PDE. These contain minimal surfaces and
surfaces of  prescribed mean curvature in 3-manifolds. We will relate the order and
the number of branch points to geometric quantities like curvature and draw
topological conclusions in case that S is a closed surface. In particular, we can
exclude the existence of branch points in certain cases if S has genus 1. This
can be considered as a theorem of Osserman type. However, the arguments are
very different from those in Osserman's case but resemble those of Hopf [8] and
Chern [1,2].

This work was originally intended as a continuation of [4] and [5]. In particular,
we extend results of  these papers to the case where branch points may occur.

1. Smooth Critical Points and Conformal Maps

Let S be a surface, M an n-manifold and f :  S--*M a smooth mapping as above. To
simplify notation, we assume that the target manifold M is a submanifold of some
euclidean space IR N, but this assumption is not essential in this chapter. For every
non-critical point q e S, there is a tangent plane dfq(TqS) of the imagef(S)  atf(p).
On the other hand, i fp is a critical point, a tangent plane a t f ( p )  does not exist in
general. However, ifp is a branch point in the sense of  the definition above, the plane
spanned by O/aul and 3/Ou2 a t f (p )  plays a similar role. More precisely, consider the
Gauss map

G : So--~G2,N , G(q)=df~(T~M) ,

where So denotes the set of  non-critical ("regular") points in S and G2,N the
Grassmannian of  2-planes in Rn. If  p is a branch point of  f,  then G can be
continuously extended top. (Note thatf is  regular aroundp.) We would like to know
when this extended Gauss map is smooth (i.e. C~176

More generally, a critical point p is called smooth if there exists a neighborhood
U ofp in S and a smooth map G : U ~  G2, N with G (q) c Ty(~) M c ~N for all q e U such
that G agrees with the Gauss map on Uca So. If all critical points of f a r e  smooth, the
Gauss map extends to a smooth mapping G:S~G2,N,  thus defining a 2-plane
bundle Tfover S with fibres Tpf: = G(p), p ~ S. This is a subbundle of the pull back
b u n d l e f * T M ,  and dfis  considered as a vector bundle homomorphism df: TS-,Tf
over S. If  f is an immersion (i.e. So = S) then df  is an isomorphism.

If M is considered as a Riemannian manifold (with metric induced from the
ambient space p N) then Tfinherits a metric <, > and a connection D from f*  TM.
Let Nfbe the orthogonal complement of T f i n f *  TM. Then a second fundamental
form ~ : T S  | TS- - .Nf i s  defined as follows:

or(v, w) = (Dv f , (W) )  N ,

where v, w ~ TpS and Wis a vector field on S with Wp = w. Here , f ,  Wis considered as
a section of  Tf  The 2-form ~ is symmetric and extends the usual 2 "a fundamental
form on f lSo .

We want to assume from now on that our surface S is orientable and provided
with a fixed complex structure as a Riemann surface. A smooth nonconstant
mapping f :  S ~ M c  ~N is called conformal if for any holomorphic chart z =x+iy
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on S we have

<fx,fr> = 0  , <fx,f~>=(fr, fr> ,

or equivalently, f= is isotropic, i.e.

( fz , fz> = 0  . (1)

Here as usual, fx and fy are the partial derivatives and f , = ~ ( f ~ - i f r  ), while <,>
denotes the scalar product  on p,N and its complex bilinear extension to C N. The
function

g : =  Ilfxll = IIf, II ( f , , y ~  >,/2
is called the conformalfactor wKh respect to the chart z.

Theorem 1. Let S be a Riemann surface and f :  S ~  M c IR N a conformal map. Then
each smooth critical point p ~ S is a branch point of  some order k>  1 and for any
holomorphic chart z around p with z ( p ) = 0  we have

~ ( z )  = Iz lkgo(Z)  ,

where go is smooth with ~ ( 0 ) #  O.

Proof. Replacing S with an open subset if necessary, we may assume that the Gauss
map extends to a smooth mapping G : S~G2,N. So the bundle T f ~ f *  T M ~  M x ~N
is defined and inherits a metric <, > and a connection D from f *  TM. Let {el, e2}
be a local orthonormal basis of  Tf, defined on some open subset S '  of  S and
z=x+iy:S '~ l l~  a holomorphic chart. Then fz is an isotropic section of
Tf| fig [by conformality, (1)], and therefore,

fz = a (el - ie2) + fl (el A- iez)

for complex valued functions a, fl with a .  fl = 0. Dually, let 0j be the 1-forms on S '
defined by

0j(v) = (dfp(v), e/(p)>

for p~S' ,  veTpS,  j ~ { l , 2 } ,  and put

dp = 01 + i02 = <df, el + iez> ,
then

dp = 2adz + 2 fldf .

Moreover, put 012 = <Del,ez> = -021, then we have dOi=O~k ̂  Ok forj4=k, and so

dqb= -i012 A C~ . (2)

Let Z~cS '  be the zero set of  ~t. Outside Z~ we have fl=O and so qb=otdz, hence
from (2)

(dot+2ictOx2) ^ d z = O  .

This means that the d~-part of da+2iaO~2 vanishes, i.e. on Z,  we have

0~/0~? = b.  ~ (3)
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where b.  d f i s  the d~-part of  - 2 i ' 0 1 2 .  Also, (3) holds trivially on the interior of Z~
and so it holds everywhere on S'. A particular solution of(3) is ~o = e" where u solves
au /a f=  b, and thus the general solution is

= ~o" ~1 (4)

for some holomorphic function ~q, [4].
In particular, the zeros of  Qt are isolated unless 0~-0. So either ct or fl vanish

identically on all of  S' ,  and by choice of the frame {el, e2}, we may assume fl---0.
Thus,

fz-----~t(el --ie2) . (5)

Now suppose that z = 0 is a (smooth) critical point off ,  i.e. a zero of ct. Thus by
(4), we have a smooth decomposition

ct = z k . ~ (4')

with ~(0)=~ 0. Now take coordinates (Ul . . . . .  u,) on M around f (0 )  such that the
coordinate vector fields Ui=~/~uj  satisfy Uj(f(0)) =ej(0) for j e  {1, 2}. Then we
have

ej = Uj(f)  + O ( I z l ) ,
thus

f~ = zk " ~0 (Z) " ( ( U1 - i U2) ( f )  + O (Izl))

= c .  z ~. (U1 - i U 2 )  ( f )  + 0 (Izl ~+ 1) ,

where c = ~o (0). Consequently,

a u l ( f ) / a z =  c . z ~  + O ( I z l k + l )  ,

Ou~ ( f ) / O z  = - i c  . z ~ + O(Iz l  k+ 1) ,

Ou~(f)/Oz= O(Iz lk+ l )  ,

for ~ = 3  . . . . .  n. Putting c ' = 2 c / ( k +  1) and

wl = u l ( f ) - R e ( c ' z  TM) , w 2 = u 2 ( f ) - I m ( c ' z  k+l) ,

we have ~Wff~z=O([zlk+I). Since w:=(Wl ,W2,U3 . . . . .  u,) is real, we have
dw = 2 Re (w~. dz) = O ([zl k + 1), hence w = O (Izl k § 2). Thus

ul ( f )  + i 'u2 ( f ) = c ' z k +  l + O (lzl k + 2) ,

u~(y3 = O(Izl k § ~)

for ~=  3 . . . . .  n, which shows that z=O is a branch point of order k. For the
conformal factor/~, we get from (5) and (4'):

IlY.tl ' II  oll,
and p~ : =  ll~o[I is smooth and positive near z=O. This completes the proof of
Theorem 1.

A conformal map f :  S ~ M  all of  whose critical points are smooth will be called a
con f o rma l  smoothly branched immersion. Theorem 1 asserts that all critical points of
such a map are branch points.
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2. A Certain P D E

We do not know in general whether a smooth conformal mapping f :  S ~ F ,  N can
have non-smooth critical points at all. However, in minimal surface and related
problems, f satisfies a PDE which excludes non-smooth critical points:

Theorem 2. Let U be an open domain in IE and f :  U ~ (  N a smooth conformal map.
Assume that g : =fz satisfies

~ g / ~ = A . g  , ( , )

where A (z) is a complex N • N-matrix depending smoothly on z ~ U. Then f is a
conformal smoothly branched immersion.

Proof. Let U0 be the set of regular points o f f  and G : Uo-~G2,N its Gauss map. We
may express G in terms of g as follows: Let CQ = {u ~ ~nl(u,  u) = 0} be the set of
isotropic vectors and Q its projection to IEP n-1. The quadric Q is diffeomorphic
to the Grassmannian G2+,N of oriented 2-planes in ~(N, via the map fi sending a
homogeneous vector [u] to the oriented plane spanned by Re (u) and Im (u), and
hence we have G = fl([g]) where [g] denotes the projection of g lUo to ~pN-1 .  SO G
has a smooth extension to Uif  and only if [g] has. The latter is true if near each zero
zo of g, we have a smooth decomposition g = ~. go where a is a complex valued scalar
function and go (zo) :I: 0.

We may assume Zo = 0. Since g satisfies (*), we know from a theorem of Chern [1]
which uses the inhomogeneous Cauchy formula that the Taylor expansion of g
around 0 does not vanish entirely. Suppose that m ~ 1 is the order of the lowest
nonvanishing Taylor polynomial. We claim that a = z "  divides g and go =g/z  m is
smooth with go (0) :t: 0. This is shown by the following two lemmas which complete
the proof of Theorem 2:

Lemma 2.1. Let g be a solution of(*) with a zero o f  order m at Zo = O. Let g,, r > m be
the Taylor polynomial o f  order r around Zo =0. Then z m divides g, for  every r >m.

Proof. We show by induction over k that diJkg (0)= 0 for 0_<~-< m --1, k > 1 where
d: = ~/dz, (3-: = (~/~f. In fact, t~ J/)-g = t~ j(A" g) vanishes at 0 for j  < m - 1 since A" g has
order >m at 0. Moreover,

O J J k g = a J ~ ' - l ( A . g )

vanishes at 0 by induction hypothesis since every term of  the right hand side
contains a factor d~Jag with ~_<~, f l < k - 1 .

Lemma 2.2 Let g : U~ff2 N be a smooth map and assume that z m divides each Taylor
polynomial o f  g around Zo = O. Then z" divides g, i.e. there is a smooth decomposition
g=z~.go.

Proof. Let g, denote the Taylor polynomial of order r. Then g - g ,  is of  order
(r + 1) at 0, and

hjk : = t~P ( : -  m(g -0 , ) )
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is a sum of  multiples of z -m-i" 0 i - igk(g--g , )  with 0<i-<~, thus

II hj,(z)II __< c .  izr +l-( -+~+k,

So the function h with h(O)=O, h(z )=(g ( z ) -a , ( z ) ) / z  m for z#O is (r-m)-times
differentiable. Since 9,/z m is smooth for arbitrary r>m, the function 9/z m has
smooth extension to z = O.

3. Loca l  Appl i ca t ions

We will apply Theorem 2 as follows: Let M c  IR N be a submanifold with induced
Riemannian metric < ,>=ds  2. A conformal mapping f : S ~ M c R  N is called
harmonic if the component of A f  tangent to M vanishes, where A denotes the
Laplacian of  some metric on S which is compatible to the complex structure. Thus a
conformal harmonic map is a minimal surface outside its critical points. For any
holomorphic coordinate z = x + iy with conformal factor # for the metric chosen, we
have t~2.Af=f~x + f ,  = 4f~-. Thus harmonicity implies

g2. A f =  ii 2 (Af)  l = a (fx, f~) + ~(f, ,  fr) = 4 a ( f ,  ,f ,)  ,

where a : T M  | TM- . . l _M denotes the 2 ~a fundamental form of M ~ R N, extended
complex linearly to complex tangent vectors. Thus, a conformal harmonic mapping
is given by the equation

f~e.=a(f~ ,f~) . (6)

Similarly, let M~I~,  N be a 3-dimensional submanifold and f : S - - * M c ~ N a
conformal map such that f * T M  is oriented. So T:(p)M, p ~ S ,  is an oriented
3-dimensional vector space with euclidean inner product which defines a unique
vector product x on T:(p)M. On the subset So of regular points, the component of
A f  tangent to M is twice the mean curvature vector o f f ,  i.e.

#2 (Af)r = 2 Hf~ • fy = 4 iHf~ • f~ ,

where H is the mean curvature offlSo.  Thus on So

Ae= iH~- x f :  + ~(3~,f~) . (7)

More generally, i f H : S ~ R  is any smooth function, a conformal mapfsolving (7)
everywhere on S is called a generalized surface o f  mean curvature H.

Obviously, (6) and (7) have the shape of  (*) in Theorem 2 for a suitable matrix
valued function A. Since we may embed each Riemannian manifold isometrically
into some A N (in fact we only need a local embedding theorem), we get from
Theorem 2:

Theorem 3. Let S be a Riemann surface, M a Riemannian manifold and f :  S--. M a
conformal map. I f  either f is harmonic or dim M =  3 and f is a generalized surface of
mean curvature H for  some smooth function H on S, then f is a conformal smoothly
branched immersion.

This is a generalization of  the results of  Chap. 2 in [6].
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As an important example, consider a complete 3-manifold (M, ds 2) of constant
sectional cirvature c and a generalized surface f :  S ~  M of constant mean curvature
H= 0. Let N be the oriented unit section of the normal bundle Nf. Then H- N is the
mean curvature vector on the regular set So. Let

f t  : S--* M , f t (p)=expf (p) ( tNp)

for t ~ IR be the parallel surface. Let (sine, cost) be the solution of  the initial value
problem

sin~ = cos~ , cos~ = - c" sin~ , s ine(O) = 0 , c o % ( 0 )  = 1

and let t be the first positive solution of

COSc(t)/sine(t) = H  .

Then f~ is also a conformal map and ft*(ds 2) =a2f*(ds  2) with

a =  89 [kl -k2[" sin~(t)

on So, where kl and k2 are the principal curvatures of the immersion f lSo .
Moreover, f ,  has constant mean curvature - H  and thus is also a conformal
smoothly branched immersion. The umbilic points of f are the zeros of a and
correspond to the branch points o f f ,  and vice versa, since the r61es offandf~ can be
interchanged.

Remark. In case c--0, H =  0, the previous discussion does not apply directly since
COSo(t)/sino(t)=l/t has no zero. However, it applies in the limit as t--.oo if we
renormalize and put gt =ft / t  for t > 0. Then gt converges to the Gauss map as t ~  ~ .
Thus we recover the conformality of the Gauss map for conformal harmonic maps
in R 3.

4. G a u s s - B o n n e t  T h e o r e m

From now on, let S be a compact Riemann surface and f :  S - - , M c R  N a conformal
smoothly branched immersion. Then the induced 2-formf*(ds 2) on the regular set
So is a Riemannian metric compatible to the complex structure.

Let E-- ,S  be an oriented real 2-plane bundle with metric ( , ) ,  metric connection
D and curvature tensor RE. If {sl, s2 } is an oriented local orthonormal basis of  E, the
curvature 2-form t2r= (RE(,)s2, s l )  is independent of the choice of the basis and
hence globally defined. By the generalized Gauss-Bonnet Theorem we have

OE = 2 ~ -  zE , (8 )
8

where Z~ denotes the Euler number of E. On So, let dv denote the volume element of
the metricf.(ds2). Then f2z = KE" dv where Kr = fig(el, e2) for an arbitrary oriented
local orthonormal basis {el, e2} of (TSo,f*(ds2)).  E.g. we may choose el =f~/#,
e~ =ff l# for some holomorphic chart z = x + iy with conformal factor #. The local
formula

K~, = ( RE( fx , fy )s , ,  s2) /g  2
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shows that Ke =Kr.o "lzl-2k for some smooth function KE.o defined in a neighbor-
hood of  z = 0, if z = 0 is a branch point of  order k.

If  E =  Tf, then KE= :K is the Gaussian curvature of the metric f*(ds  2) on So.
Choose any Riemannian metric ds~o on S which is compatible to the complex
structure. Then

f*(ds a) = m2 ds~o

for some smooth nonnegative function m 2, and on So, the curvatures K off*(ds 2)
and Ko of d~o satisfy the well known relation

m 2" K = Ko - Ao log m , (9)

where A o denotes the Laplacian of  d~.  Near a branch point z = 0 of order k, we
have m =#//ao where ~ is the conformal factor with respect to d~ .  Thus by Theo-
rem 1, m = mo" Lzt k for some smooth positive function mo near z = 0.

More generally, a function u : S-o [0, o0] is called of absolute value type if for all
p e S and any holomorphic chart z around p there is an integer k = ordp(u) and a
smooth positive function Uo on a neighborhood of p such that

u = [z-z(p)[  k "Uo .

I f k  > 0 (k < 0) thenp is called a zero (pole) of order Ikl. Poles and zeros are isolated.
Let n(u) (p (u)) be the number of zeros (poles), counted with multiplicities, and put

N ( u ) : =  ~ o rdp (u )=n (u ) -p (u )  .
peS

The following lemma is an easy consequence of the divergence theorem [4,5]:

Lemma 4. I f  u is an absolute value type function and d~ a compatible metric on the
Riemann surface S with Laplacian Ao and volume element dvo, then

j" do log udvo = - 2 x  "N(u) .
S

We may apply this lemma to the absolute value type function m which has no poles,
hence N(m) = n(m) equals the number of branch points, counted with multiplicities.
Hence, multiplying (9) by dvo and integrating, from Lemma 4 and the usual Gauss-
Bonnet Theorem for (S, ds~o) we get a Gauss-Bonnet formula which essentially was
already proved by Heinz and Hildebrandt [7]:

Theorem 4. Let f :  S ~ M c F,, tr be a conformal smoothly branched immersion. Then

(1/2n) S Kdv=xry=z(S)  +b ,
S

where x(S) is the Euler number of S and b the number of branch points of S, counted
with multiplicities.

5. Estimating the Number of Branch Points

We are now able to generalize the results of [4,5] to the case of branched
immersions. In all these cases, the geometry is governed by a holomorphic
differential q~ on the Riemann surface S, i.e. a holomorphic symmetric r-form which
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is locally # =h(z)dz  r for a holomorphic chart z and a holomorphic function h. Let
N(~) be the number of zeros of #, counted with multiplicities. The following fact
can be considered as an easy special case of the Riemann-Roch theorem:

Lemma 5. Let �9 be a holomorphic symmetric r-form on a closed Riemann surface S.
Then either ~ = 0  or N ( ~ ) =  - r . z ( S  ).

Proof. Choose any compatible metric d~ on S. Let z be a holomorphic chart and
the corresponding conformal factor. Let #=h(z )dz ' .  Then I r  Ih(z)l ./~o r does
not depend on the choice ofz. Therefore, I~1 is a globally defined absolute value type
function without poles, unless # = 0. Moreover, on the domain of z we have

Ao logl~l=Ao l o g / ~ ' = r  "Ko ,

where Ko is the Gaussian curvature ofds~. Thus, by Lemma 4 and the Gauss-Bonnet
theorem,

- N ( r  = -N(I r  =(1/2n) S Ao log Ir
S

= (l/2r 0 "r" S Kodvo = r" z(S)
S

which completes the proof.
Now let S be a closed Riemann surface, (M, ds 2) a Riemannian manifold and

f :  S ~ M  a conformal smoothly branched immersion such that f *  TMis  an oriented
bundle. Let So be the set of regular points and b the number of branch points,
counted with multiplicities given by their orders. We consider three different cases:

(a) M is 3-dimensional with constant sectional curvature c a n d f i s  of constant
mean curvature H,

(b) M is 4-dimensional with constant sectional curvature c a n d f i s  harmonic,
(c) M is a (real) 4-dimensional Kiihler manifold of constant holomorphic

sectional curvature 4~ and f i s  harmonic.

In all cases, a holomorphic differential q~ (of degree 2 resp. 4 resp. 3) was constructed
using local oriented orthonormal frames of  the tangent bundle TS and the normal
bundle NS if f was an immersion [4, 5]. The construction carries over to branched
surfaces if we replace TS with Tfand NS with Nf. Since branch points are isolated,
the orientation of TS  determines an orientation of Tfvia dfand consequently also of
Nf. Let {ea, e2) be a local oriented orthonormal basis of Tf, defined on some open
subset U of S. As before, put 0j = ( d f ( ) ,  e~) and ~b = 01 + i02. Then q~ is a (1,0)-form
whose zeros are precisely the branch points and

de~= -i012 ^ ~a ,

Where 01~ = (De1, e2) (see proof of  Theorem 1).

Case a (cf. [5]). There exists a unique unit section N o f N f s u c h  that (el, e2, N) is an
oriented orthonormal basis of ( f*TM)[U.  Put

~k = (De1, N )  - i  (De2, N )  - H "  q~ .
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On U n S o  we have 0 = k .  q~ for some smooth complex valued function k with

]kl2=c + H 2 - K  .

In particular, 0 is a (1,0)-form on U, and the zeros of 0 on U n  So are precisely the
umbilic points. Moreover, since the mean curvature H is constant, we get

dO = i012 ^ O �9

Now �9 : = ~b- 0 is independent of the choice of frame and holomorphic: If ~ --/~. dz
and 0 = tr. dz, then the exterior differential equations imply

(dl~ + i " l~ "012) ̂  dz =O = (da - i " tr "012) Adz ,

thus d(#" tr) ^ dz = 0 which shows that #- tr is holomorphic. Therefore we get from
Lemma 5:

Theorem 5.1a. Let M be a 3-spaceform o f  constant sectional curvature and f :  S-~ M a
conformal map of  constant mean curvature: Then either f is totally umbilic or

- 2 z ( S ) > u + b  ,

where u is the number o f  umbilic points on So, counted with multiplicities.

Case b (cf. [5, 11 ]). Here, Nf i s  a 2-plane bundle. Let KNS be its curvature as defined
in Chap. 4; KNI may have poles at the branch points off.  Let (ca, e4) be an oriented
orthonormal basis of  (Nf)IU. We extend the metric of M bilinearly to the
complexified bundle f *  T M  | C and put

0 + = ( D  (el - ie2), e3 q- ie4) �9

Since flSo is a conformal minimal immersion, we have 0 + - - k •  .~b for complex
valued functions k+ with

[k• 2 =c-g++_gNs

on S o n U .  In particular, 0• are (1,0)-forms on U whose zeros on S o n U  are
precisely the so called circular or pseudo-umbilical points where the ellipse of
curvature is a circle. Moreover,

d0• = i .  (012 --('dV 034.)) A ~/• ,

where 034--(De3,e4).  As in Case a we conclude that the quartic form
: = 0+ " 0 -  "tk 2 is independent of  the chosen frames and holomorphic. Thus we

get from Lemma 5:

Theorem 5.lb.  Let M be a 4-space form of  constant sectional curvature and f :  S -~ M a
conformal harmonic map. Then either f is totally circular or

- 4 z ( S ) > c + 2 b  ,

where c is the number o f  circular points on So (with multiplicities).
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Case c (cf. [4]). Beneath the splitting f *  T M  = T f G  N f w e  get a second orthogonal
decomposition f *  T M  = L + ~ L_  as follows: Let (,) be the hermitean inner product
on T M  given by

(v, w) = (v,  w)  + i" (v, J w )  ,

where J is the almost complex structure on M. Then

s• : =  89 -(+_ Je2))

are sections of  ( f * T M ) I U  with ( s + , s _ ) = 0  and IIs+[12+lls_[l  =a,  and C-s •  is
independent of the chosen frame, if we define the multiplication with complex
scalars by

(at + i~) " v = a  " v + [~ " Jv

for any v e  T M .  Thus s• span orthogonal complex line bundles L•  Let E1 and
Ez be unit sections of  L+ and L_ on U. Then (El;E2) is a unitary basis of
( f*TM)IU.  Let

o9i = ( d f  , Ei)

for i t  {1,2}. Then o91 =u+ "~b, o92 =u_  "~b for complex valued functions u• with

2 lu• 2 = 1 + ( . [e l ,  e2 )  .

Note that C: = ( J e l ,  e2) is independent of  the chosen frame: If  f2(v, w)" = (,Iv, w )  is
the Kiihler form on M and dv the volume form of  the met r i c f* (ds  2) on S, then we
have f ' f 2  = C .  dr.

Moreover, put
ogi~ = (DEi,  E s)

for i , j r  {1,2}. From the fact tha t f lSo  is a conformal minimal immersion we get
%z=w'~b for some complex valued function w with

Iwl 2 = 2 a - K + K s  I .

Moreover, from the Cartan structure equations we get

dogl = - o 9 1 1 A o 9 1  ,

d ~  = o9~2 ^ og-S ,

do912 = (ogn -o922) ^ o912 �9

From this we conclude as above that @: = o91 "o9---2 "o912 is independent of the chosen
frames and defines a holomorphic cubic form on S. The zeros of  ff~ are called
isotropic points (cf. [3]). Hence we get from Lemma 5:

Theorem 5.1e. Let M be a 4-dimensional Kdhler manifold with constant holomorphic
sectional curvature and f :  S--* M harmonic. Then either f is totally isotropic or

- 3 z ( S ) > j + 2 b  ,

where j is the number o f  isotropic points on So (with multiplicities).
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In each of  the three cases, we get

Corollary. I f  S has genus O, then ~ = O. I f  S has genus 1, then f has no branch points
and �9 has no zeros unless �9 =-O.

In [4, 5] we got more refined results by looking closer to the local factors ofr All
of these results carry over to the branched case. We want to discuss two of them.

Theorem 5.2. Let M be 4-dimensional with constant sectional curvature c and S a
closed Riemann surface. Let f :  S ~ M be a conformal harmonic map such that f*  TM is
orientable, and let ZN: be the Euler number of N f  for some orientation. Then either f is
totally circular or

- 2  x(S) > b + IXN:I �9

Proof. The functions i k •  = (c -K+~,r introduced above are of absolute value
type and satisfy

A log Ik• = 2 K - ( + K N f )

(cf. [5, Theorem 2] and [11, Theorem 1 ]), unless q~ - 0. Integrating this with respect
to dv, we get from (8) and Lemma 4 (observe that A log Ik• = Ao log Ik•

2 XTS = -- N(Ik • I) +-- xNs

(compare (5) in [5 ]). The functions Ik + I and Ik- I may have poles of order not bigger
than the branching order at that point. Hence, N(Ik•177 Now from
Theorem 4 we have ;~T:=~((S)+b, so we get the result.

Next, let (M, J, ds 2) be a compact (real) 4-dimensional K/ihler manifold with
constant holomorphic sectional curvature 4a. As above, let t2 denote the K/ihler
2-form on M. Then 3(tr/n)O determines an integral cohomology class, the first
Chern class cx(M). Thus for any smooth map f :  S ~ M ,  the number

d =  (a/~O 5f*(O)
S

is one-third integer, called the degree off .  If M =  ~ p 2  then cl(M) is 3-times the
generator of H2(M; Z) and the degree is an integer. Our next result sharpens a
theorem of Eells and Wood [3]:

Theorem 5.3. Let M be a compact 4-dimensional K~ihler manifold of constant
holomorphic sectional curvature, S a compact Riemann surface and f : s ~ M  a
conformal harmonic map of degree d. Then either f is totally isotropic or

- 3  z(S) >_ 13dl + 2 b .

Proof. If f is not totally isotropic, then the functions

b• : = lu2• �9 w[ = (1 +_. C) (KNf - K +  2a) m

[see Case (c) above] are of  absolute value type and satisfy

3Xrr -N(b•
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(see (4.5) and  (4.6) in [4]). The first fac tor  o f  b• is b o u n d e d  while the second one
may have poles  o f  o rde r  no t  bigger  than  the b ranch ing  o rde r  at  tha t  point .  Thus
N(b• >n(b• N o w  the result  fol lows f rom Theo rem 4.
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