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COMPARISON THEOREMS AND HYPERSURFACES 

J.-H. Eschenburg 

We compare the second fundamental forms of a family of parallel 
hypersurfaces in different Riemannian manifolds. This leads to new 
proofs for the distance and volume comparison theorems in Rie- 
mannian geometry. In particular, we get a new result on the volume 
of the set of points with distance ~ r from a totally geodesic 
submanifold, for any r. The analytic prerequisite is the investi- 
gation of the Riccati type ODE which is satisfied by the second 
fundamental form of a parallel hypersurface family. 
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ESCHENBURG 

0. Introduction 

Comparison theorems in Riemannian geometry usually are derived 

by means of the index form and the minimizing property of the 

Jacobi fields (cf. [],3,9,12]). In the present paper, we want to 

show a different approach: Sectional curvature controls the 

principal curvatures in a family of parallel hypersurfaces. The 

bigger the sectional curvatures, the smaller are these principal 

curvatures. E.g. the distance spheres in a space of positive 

curvature get concave for big radii, while they stay convex if the 

sectional curvature is nonpositive. This is expressed by a 

comparison theorem for solutions of the Riccati equation (ch.2) 

which among others implies the Rauch comparison theorems (ch.3). 

Similarly, the Ricci curvature controls to some extend the mean 

curvature of parallel hypersurfaces. So the Ricci curvature 

comparison theorems can be derived in the same fashion, in 

particular the Bishop-Gromov inequality for the volume of balls 

(ch.4). One advantage of our approach is that equality discussions 

become very easy since we estimate logarithmic derivatives. So we 

get an even simpler version of Shiohama's proof of Cheng's 

rigidity theorem [2,21]. In ch. 5 and 6 we discuss comparison 

theorems for tubes around submanifolds of higher codimension in 

our framework and prove the corresponding Bishop-Gromov type 

inequality, extending results of Heintze and Karcher [15]. 

The idea of using the matrix valued Riccati equation for 

comparison arguments was common in Sturmian theory for ODE's since 

long time (cf. [19,20]). In Riemannian geometry, it has been 
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applied by L.W.Green [8] and later by several other authors [4,5, 

14,17,10,11]. It was used in General Relativity by Hawking and 

Ellis [13]. Especially M. Gromov [ii] has emphasized that the 

evolution of the principal curvatures of a parallel hypersurface 

family is the source of the comparison theorems. However, a 

systematic treatment of the Riemannian comparison theory via 

Riccati equation was still missing. The ODE theorems of ch.2 also 

apply to spacelike hypersurfaces in a Lorentzian manifold. 

For hints and discussion we thank Brigitte Beekmann, Hermann 

Karcher, Viktor Schroeder and Martin Strake. 

I. Parallel hyDersurface families 

I.i Let (M, < , >) be a complete Riemannian manifold and 

let D be its Levi-Civita connection. For an open subset M' c M 

let f : M' -> R be a C2-function whose gradient V = Vf has 

unit length. Then for any x 6 TM' we have 

0 = x(<V,V>) = 2 <DxV,V> = 2 <DvV,X> , 

thus 

(I) DvV = 0 

So the gradient lines are unit speed geodesics. The function f 

can be considered as a Riemannian submersion onto an open subset 

of R or else, at least locally, it is the distance function of 

each of its level sets S t = {f = t} , up to a constant and a 

sign. In particular, close level hypersurfaces have constant 

distance from each other Therefore {S t ; t c f(M')} is called a 
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parallel hvPersurface family. 

1.2 Let B = DV be the Hessean tensor field of f By 

(I), V is in the kernel of B , so we will often restrict 

ourselves to BIV I . Since V is a unit normal field for each 

level hypersurface, BIV I can be viewed as the 2 nd fundamental 

tensor or Weingarten map of the level hypersurfaces. 

For any vector field J on M' with [J,V] = 0 we have 

(2) DVJ = B.J , 

and moreover, by (i) and (2), 

(DvB)J = DvDjV - B(DvJ) = R(V,J)V - B(B.J) , 

where R denotes the Riemannian curvature tensor. Thus putting 

R V = R( ,V)V , we get the so called Riccati equation 

(3) DvB + B 2 + R V = 0 

Thus differentiation of (2) yields 

(4) DvDvJ + RVJ = 0 

This shows that J is a Jacobi field along any integral curve of 

V which is clear also from (i) and [J,V] = 0 Hence the 

Jacobi equation (4) is broken up into the two first order 

equations (2) and (3). Though (3) is no longer linear, it is very 

useful for the comparison theory since B is a self adjoint 

tensor field. 

9....3 Fix an integral curve 5 : I -> M' of V . Using 

parallel transport along ~ , we may identify the normal bundle of 
s with I x E where E is some fixed normal space (~'(t0)) 

Then B(t):= Bib(t) and R(t) := RVI (t) are considered as self 
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adjoint endomorphisms of E satisfying 

B 2 (3) B' + + R = 0 

1.4 Examples: (a) Let S : M be an oriented hypersurface 

with unit normal vector field N along S This gives a 

trivialisation of the normal bundle # : NS -> S • R Let M' be 

a neighborhood of S where e := explNS has a smooth inverse 
-1 -1 e Put f = pr 2 o ~ o e Then f is called siqned distance 

-I of S on M' . The level set S t = f (t) is a hypersurface with 

constant distance Itl from S . 

(b) Let p E M with cut locus C(p) Let U c T M be a 
P 

neighborhood of the origin where the exponential map e = eXpp is 

a diffeomorphism. Let M' = e(U) \ {p} and put f(q) = lle-l(q)ll 

In particular, we may choose e(U) = M \ C(p) where C(p) is the 

cut locus of p . Then f = d( ,p) and the level sets are the 

distance spheres centered at p In this case, the vector field 

X = f.V extends smoothly to p with (DX) = Id Thus, if 
P 

is a unit speed geodesic with ~(0) = p and B(t) e S(E) with 

E = (~'(0)) 1 as in 1.3, then t.B(t) -> Id as t -> 0 . 

(c) More generally, the point p may be replaced with a 

submanifold L of codimension a 2 . Then the level hypersurfaces 

are the tubes around L . 

(d) Let M be a simply connected manifold without focal 

points and f : M -> R the Busemann function of a ray in M 

(of. [5,14]). The level hypersurfaces are the horospheres 

corresponding to the ray. 
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2.  The Riccati equatio~ 

2.1 Let E 

euclidean inner product < , > The space 

endomorphisms inherits the inner product 

<A,B> = trace A.B 

for A,B  9 S(E) . We get a partial ordering < 

putting A < B ( A ~ B ) if <Ax,x> < <Bx,x> 

for every x  9 E \ {0} 

Now let 

a smooth curve. 

S(E) : 

(3) B' + B 2 + R = 0 

Due to the non-linearity of (3), a solution 

I , more precisely 9 some eigenvalue of B(t) 

t -> t I , t < t I , for some 

is negative semi-definite. 

If B is non-singular, 

be a real n-dimensional vector space with 

S(E) of self adjoint 

( ~ ) on S(E) by 

( <Ax,x> ~ <Bx,x> ) 

I c R be an open real interval and R : I -> S(E) 

We consider the corresponding Riccati equation on 

B may have poles on 

may tend to -~ as 

t I E I , but not to +~ , since -B 2 

one may pass to the inverse C = B -I 

to treat poles as in example 1.4(b). Since 

is equivalent to the ODE 

C' = Id + C.R.C . 

C' = -B-I.B'.B -I (3) 

Together with a solution 

J : I -> E of the equation 

(2) J' = B.J 

Though B may have poles, 

B of (3), we investigate solutions 

J can be smoothly extended to the 
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whole interval I since from (2) and (3) we get the linear ODE 

(4) J" + R.J = 0 

E.g. if B satisfies t.B(t) -> Id as t -> 0 as in 1.4(b), the 

solutions of (2) are exactly the solutions J of (4) with 

J(0) = 0  9 

The case n=l is of particular interest since the general 

case is reduced to this by taking traces as follows: Let us put 

b = (trace B)/n , r = (trace R)/n 

Then S := B - b. Id is the trace free part of B , and IIS11 2 = 

UBII 2 - n.b 2 . Taking the trace of (3) we get 

(3a) b' + b 2 + r+ = 0 , 

r+ := r + llSll2/n 

Observe that r+ remains bounded if B has a pole at t0=0 with 

t-B(t) -> Id as t -> 0 as in 1.4(b) 

put 

Further, let Jl ..... Jn be a basis of solutions of (2) 

j = UJ 1 ^...^ Jnll I/n . Since 

n 
(Jl ^''" ^ Jn )' = Z Jl ^''" ^ B'Jk ^''" ^ J k=l n 

we get 

= (trace B)'JI ^'''^ Jn " 

(2a) j' = b.j 

and 

2.2 Consider first the case n = 1 and R = k = const , 

i.e. the equation 

(3) k b k' + bk2 + k = 0 
1/2 Putting a = lkl , we get the following families of solutions 

bk(t) : 
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k > 0 : 

k = 0 : 

k < 0 : 

o.cot(a(t-c)) for c < t < c + i/o , cER , 

(i) I/(t-c) for t > c , c E R , 

(ii) 0 for t E R , 

(iii) I/(t-c) for t < c , c E R , 

(i) o.coth(a(t-c)) for t > c , c E R , 

(ii) a for t e R , 

(iii) o.tanh(a(t-c)) for t E R , c E R , 

(iv) -a for t e R , 

(v) ~.coth(a(t-c)) for t < c , c s R . 

In particular, for any k E R the only solution with a pole at 0 

is Ck/S k where (Sk,C k) is the solution of 

s k' = c k , c k' = -k.s k , Sk(O) = 0 , Ok(O) = 1 . 

If n is arbitrary and R = k. Id where Id denotes the 

identity on E , then B = bk. Id are solutions of (3). By ch.l, 

these correspond to a family {S t } of umbilic parallel hyper- 

surfaces in a simply connected Riemannian space Qk of constant 

curvature k , and bk(t) is the mean curvature of S t For 

k > 0 , this is the family of concentric spheres. For k = 0 

there are three such families: concentric spheres with outer and 

inner normal vector and parallel hyperplanes. For k < 0 , we have 

five families: concentric spheres and horospheres, both with outer 

and inner normal vector, and parallel hypersurfaces of a totally 

geodesic hypersurface. 

302 



ESCHENBURG 

2.~ Now let I = (t_,t+) with -~ ~ t_ < t+ ~ +~ We 

consider two smooth curves R 1 , R 2 : R -> S(E) and solutions Bj 

(9=1,2) of the corresponding Riccati equations (3)j. Fix an 

initial point t O ~ I and let tj > t O be the first pole of Bj 

if there is some, otherwise put tj = t+ 

Proposition 2.3 Suppose 

(eL) Rl(t) a R2(t) for all t e I , 

(b) Bl(t 0) ~ B2(t 0) 
Then WE! qet 

(c) t I ~ t 2 , 

(d) Bl(t) ~ B2(t) for t o < t < t I 

If strong ineaualitv holds in (a), then it holds also in (d). 

Proof. Let us first assume strong inequality in (a). Suppose 

there exists s > t O such that Bl(t) ~ B2(t) for t O < t < s 

Then we certainly have Bl(S) ~ B2(s) 

Claim: Bl(S) < B2(s) Namely, otherwise 

positive semi-definite with a nonzero kernel. 

such that B2(s)x = Bl(S)X . Then the function 

g(t) := <(B 2 - Bl)(t)x, x> 

[t0,s] with a zero at 

B2(s) - Bl(S) is 

Choose x E E \ {0} 

is nonnegative on 

equations we have 

g'(s) = <(BI2 - B22)(s)x, x> + <(R 1 - R2)(s)x, x> 

The second term is positive, and the first term vanishes since 

<(BI2 - B22)(s)x, x> = <(B 1 - B2)(s)(Bl(S)X), x> 

= <Bl(S)X, (B 2 - Bl)(S)X> = 0 
So g'(s) > 0 which is a contradiction to gl[t0,s] > 0 . 

s . By the Riccati 
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Thus the strong inequality (d) holds up to the first pole of 

B 1 or B 2 . But since the eigenvalues at a pole can tend only to 

-~ , (d) shows that t I ~ t 2 

The initial assumption s > t O is clearly satisfied if 

strong inequality holds in (b). So this case is proved. By 

continuity, we get (d) also if only the weak inequality holds in 

(b). Thus in this case we also have such s > t o , and the 

argument above shows the strong inequality in (d). 

The assertion for the weak inequality in (a) follows by 

continuity. 

Remark I. If R I = R 2 and strong inequality holds in (b), then 

strong inequality holds also in (c) (cf. [6], 3.1). We do not know 

whether this is also true if R 1 ~ R 2 

Remark 2. If n = 1 , we can discuss the equality case in the 

previous proposition: If Bl(S) = B2(s) for some s ~ (t0,t I) , 

then on [0,s] we have B 1 = B 2 and hence R 1 = R 2 . 

Namely, if B 1 < B 2 on (t0,s) for some s E (t0,t I) , then 

the Riccati equation implies 

(log(B2-Bl))' ~ -(B 2 + B I) 

on (t0,s) Hence log(B2-B I) is bounded from below on [r,s] 

for every r E (t0,s) which implies Bl(S) < B2(s) 
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2.4 Proposition. Let R 1 ~ R 2 and B 1 , B 2 solutions of 

the corresponding Riccati equations which are invertible near 0 

with B,(t) -I -> 0 a__ss t -> 0 , j = 1,2 , Let t. > 0 be the 3 3 
first pole of Bj Then t I ~ t 2 and B 1 ~ B 2 own (0,t I) I_~f 

R 1 > R 2 , the strong ineuuality holds, 

-I Proof. Let Cj = Bj Then Cj solves Cj' = Id + Cj .Rj .Cj 

with initial condition Cj(0) = 0 . Differentiating, we get 

Cj'(0) = Id , Cj 

Suppose first R 1 > R 2 

expansions of C 2 and 

definite, hence Cl(t) 

Therefore Bl(t) < B2(t) 

(2)(0) = 0 , C.(3)(0) = 2 R. 3 3 
Then the leading terms of the Taylor 

of C 1 - C 2 near 0 are positive 

> C2(t) > 0 for t > 0 small enough. 

by the subsequent lemma. Thus choosing 

2.3 and get the result. t O > 0 small enough, we may apply Prop. 

The case R 1 ~ R 2 follows by continuity. 

Lemma. Let F, G E S(E) with F > G > 0 Then F -I < G -I 

Proof. 

convex cone P : S(E) . Therefore, the endomorphisms 

F t := t-F + (l-t).2.Id , 

G t := t.G + (l-t).Id 

F t - G t = t.(F - G) + (l-t).Id 

are positive definite for any t E [0,I] In particular, 

D t := G t - 1  _ F t  -1 = G t - I . ( F  t - G t ) . F t  -1 

is self adjoint and invertible. Since D O =  89 Id is in P , 

same is true for D 1 = G -I - F -I since OP contains 

invertible endomorphisms. So F -I < G -I 

The positive definite self adjoint endomorphisms form a 

the 

no 

which finishes the proof. 
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~,5 For A E S(E) let k+(A) denote the highest and 

k_(A) the lowest eigenvalue. For A 1 , A 2 E S(E) we have k+(A I) 

k_(A 2) if and only if A 1 S D-I-A2.D for every rotation 
D ~ O(E) 

Proposl~ion 2,~ Let B 1 , B 2 : I -> S(E) such that k+(B I) 

k_(B 2) everywhere. Let Jl " J2 : I -> E be nonzero solutions of 

Jj' = B..J.3 3 (j = 1,2) Then . . . . .  IIJIII/IIJ2U is monotonously 
decreasina. Moreover, if IIJIII/.J2U iS constant on a sub-interval 

I' c I , then on I' we have k+(B I) = k_(B 2) , and the 

corresponding eiqenspaces contain Jl/llJlll resD. J2/llJ211 which 

are constant on I' 

proof. Since Jj satisfies a I st order equation, IIJj l l  is 

nowhere zero and hence smooth. Now 

.,Jl>/llJ II 2 <Bi.Ji,Jl>/ItJlll2 (log llJlll ) ' = <Jl 1 = 

k+(B I) ~ k_(B 2) ~ <B2-J2,J2>/UJ2112 = (log llJ211)' 
Hence (log (UJIU/IIJ211) ' ~ 0 which implies that llJlll/llJ211 is 

monotonously decreasing. If equality holds on a subinterval [' , 

the computation above shows that k+(B I) = k_(B 2) and that Jj(t) 

are corresponding eigenvectors of B.(t) for t s I' Since J.' 3 3 
' and J are linearly dependent on I' which = Bj.Jj , JJ J 

shows that J./UJ.II is constant along I' 3 3 
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3. Sectional curvature comparison theorems 

Let S be a hypersurface in a Riemannian manifold with given 

unit normal vector field N along S To fix signs, the eigen- 

values of the Weingarten map DN will be called principal 

curvatures of S , and the mean value of those at any point the 

mean curvature of S . 

Throughout this chapter, let M 1 and M 2 be complete 

Riemannian manifolds of dimension n+l whose sectional curvature 

functions K 1 and K 2 satisfy 

inf K 1 ~ sup K 2 

on the subsets which we consider. The index j will always refer 

to {I,2} 

3.1 Theorem. Let S. c M. be hypersurfaces with unit 3 3 
normal fields Nj and let pj 6 Sj SUDDOSe that the laruest 

Drincipal curvature Q~ S 1 at Pl is not biqqer than the least 

princiDal curvature of S 2 at P2 " Then the same is true for the 

parallel hypersurfaces Sj, t at exp(t.Nj(pj)) for 0 ~ t ~ t 1 

where t I denotes the focal distance of S 1 at Pl 

Proof. Let f. : M.' -> R be the signed distance of S. near 3 3 3 
pj with level hypersurfaces Sj, t (of. 1.4(a)). Fix the 

geodesics ~j(t) = exp(t.Nj(pj)). Put Ej = TpjSj = (~j'(O)) I and 

let Bj(t) E S(Ej) as in 1.3. Then Bj(t) is the Weingarten map 

of Sj, t at ~j(t) , up to parallel transport along ~j By 

assumption, 
-i BI(O) ~ i o B2(0 ) o I 

307 



E S C H E N B U R G  

for every linear isometry i : E 1 -> E 2 
assumption and 2.3 we get 

-I Bl(t) ~ L o B2(t ) o I 
for t ~ 0 (up to the first focal point of 

therefore X+(Bl(t)) ~ k_(B2(t)) since l 
2.5). This proves the theorem. 

From the curvature 

S 1 along ~I ) and 
was arbitrary (of. 

3.~ Theorem. The principal curvatures of any smooth part 

of a distance sphere in M 1 with outer normal vector are not 

biuuer than those of a distance sphere with the same r~giu~ in 

M 2  9 

Proof, Let pj E Mj and fj = d( ,pj) as in 1.4(b). Fix an 

arbitrary unit speed geodesic ~j with ~j(0) = pj Put Ej = 
I (~j'(0)) and for t > 0 let Bj(t) ~ S(Ej) as in 1.3. As long 

as ~ji(0,t] contains no cut points of pj , Bj(t) is the 

Weingarten map of the distance sphere Zt(pj) at ~j(t) , up to 

parallel displacement. By the curvature assumption and 2.4, 
-I Bl(t) ~ I o B2(t) o 

for every isometry t : E 1 -> E 2 
(see 2.5) which finishes the proof. 

and thus k+(Bl(t)) $ k_(B2(t)) 

~,~ Theorem. (Rauch/Berger) Let ~j be unit speed 

ueodesics in Mj and Jj Jacobi fields alonu ~j with Jj i ~j 
and 

or" 

( a )  J j ( O )  = 0 . U J I ' ( O ) I I  = I I J 2 ' ( O ) l l  # 0 

' ( 0 )  = 0 I I J l ( O ) l l  = I IJ2(0)11 -J: 0 ( b )  J j  , 
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Then llJl(t)ll ~ llJ2(t)ll for t ~ 0 up to the first conjugate 

Doint (case (a)) or focal point (case (b) of 51 . If egualitu 

holds for some t O > 0 , it holds on [0,t 0] and Jj/llJjll i__ss 

parallel along 5jl[0,t 0 ] for j = 1,2 

Proof. Case (a): Let tj be the first conjugate point of 5j and 

= = '(0) Then in TpjM. there is an open put pj ~j(0) , vj ~j 3 
neighborhood U. of 0 containing t.v. for 0 ~ t < t. where 3 3 3 
exp has a smooth inverse, Let f be as in 1.4(b), We put E Pj J j 

I = (vj) and Bj(t) E S(Ej) as in 1.3. Now Jj (considered as a 

curve in Ej ) solves (2)j since it satisfies (4)j with Jj(0) = 0 

and t.Bj(t) -> Id as t -> 0 (cf. 2.1). By de l'Hopital's rule, 

11Jl(t)ll/llJ2(t)ll -> 1 as t -> 0 . Now the result follows from 2.4 
and 2.5. 

Case (b): This is immediate from the following general 
comparison theorem for Jacobi fields: 

3.4 Theorem. Let 6j be a unit speed geodesic in Mj 

and Jj I 6j' a Jacobi field along 5j with 

llJl(0)ll = llJ2(0)ll # 0 , Jj'(0) = Aj.Jj(0) 

for some Aj E S(Ej) , Ej = (5j'(0)) i with k+(A I) _< k_(A2) 

Then llJl(t)ll -< llJ2(t)ll for 0 _< t _< t I where t I is the 
smallest positive zero of all Jacobi fields J along 51 with 

J'(0) = AI.J(0) # 0 . Equality at t O E (0,t I) implies equality 
along [0,t 0] and Jj/llJjll is parallel along 5jl[0,t 0] 
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Proof. Let pj = ~j(0) and Sj' c TpjMj a hypersurface 

through the origin with ToS s ' = Ej and Weingarten map A s at 
0 with respect to the normal vector vj = ~j'(O) E.g. we may 

TpjMj <vj,x>} . ~ T M choose Sj' = {x s ; <Aj.x,x> = 2 Let U 3 PS j 
be an open neighborhood of the origin where the exponential map 

is diffeomorphic. Then Sj := exp(S 9' n Us) is a smooth hyper- 

surface with Weingarten map Aj with respect to vj Let fj : 

M.' -> R be the signed distance function of S. as in 1.4(a). If 3 3 
Uj is small enough, M s ' contains ~j([0,tj)) where tj is the 

first focal point of Sj along ~j Put Bj(t) E S(Ej) as in 

1.3. Then Bj(0) = Aj and from the initial values we see that J9 

.' = B..J. (up to parallel displacement along ~j ). Now solves J3 3 3 
the result follows from 2.3 and 2.5. 

Remark. The Rauch type theorem 8.13 in [ii] is incorrectly 

stated. The theorem above is the corrected version. 

4. Lower Ricci curvature bounds 

Throughout this section, let M be a complete Riemannian 

manifold of dimension n+l with Ricci curvature bounded from 

below, more precisely Ric(v) ~ k.n for some constant k E R 

and any unit tangent vector v . As in 2.2, let b k be a solution 

of 

(3) k b k' + bk 2 + k = 0 
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4.1 Theorem. Let S c M be a hypersurface with unit 

normal field N and p 6 S . Let b(t) be the mean curvature of 

the parallel hvPersurfaoe S t o_f_f S a_t_t ~(t) = exp(t.N(p)) Let 

b k be the solution of (3) k with bk(0) = b(0) Then 

b(t) ~ bk(t) 

for all t > 0 up to the first focal point of S along ~ For 

t < 0 , the opposite inequality holds. 

Proof (cf. [7]). Let f be the signed distance of S as in 

1.4(a) and B(t) as in 1.3. Then b(t) = trace B(t)/n and hence 

b solves equation (3a) in 2.1. So the inequality for t > 0 

follows from 2.3 (one-dimensional case) since r+ Z r ~ k The 

opposite inequality for t < 0 follows by reversing the normal 

field N . 

4. 2 Theorem (of [7]). The mean curvature of any smooth 

part of a distance sphere of radius t > 0 in M is bounded from 

above by ck(t)/sk(t) 

P~oof. Fix p E M and some unit speed geodesic ~ with ~(0) = 

p Let f = d(,p) as in 1.4(b) and B(t) as in 1.3. Then 

b(t):= trace B(t)/n is the mean curvature of the distance sphere 

zt(p) at ~(t) if ~l(0,t] contains no cut points of p . So b 

solves (3a) in 2.1 with a pole at 0 So the result follows from 

the one-dimensional case of 2.4 and 2.2. 
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4 . 3  For p E M let Br(p) denote the open ball of radius 

r centered at p and Vp(r) the volume of Br(p) Moreover, 

let V(r) be the volume of a ball of radius r in the simply 

connected space of constant sectional curvature k which we 

denote by Qk " 

Theorem 4.3 (Bishop-Gromov inequality, cf. [12]) For any p s M 

and 0 < r < R we have 

V (r)/V(r) ~ V (R)/V(R) P P 
Equality holds for some 0 < r < R ~ diam(M) if and only if 

BR(p) is isometric to a ball of radius R i__nn Qk ' 

Proof. Fix some p ~ M and r E (0,d) where d is the diameter 

of M Put E = TpM and e = eXpp : E -> M . Let S be the unit 

sphere in E For every v E S let ~v be the geodesic with 

~v'(0) = v Put 

cut(v) = sup {t < 0 ; ~vl[0,t] is shortest] 

and 

C = {t.v ; v E S , 0 ~ t ~ cut(v)} 

Let B r = E be the ball of radius r with center 0 , Then 

r(v) 
Vp(r) = ; Idet De I du = S ; Idet De t I t n dt dv 

B NC u S 0 .v r 
where du and dv denote the volume elements of E and S , and 

r(v) := min (r, cut(v)) Let (v, e 1 ..... e n) be an ortho- 

normal basis of E . Put Ji(t) = Det.v(t.e i) and 

jr(t) = llJl(t) ^ ... ^ Jn(t)ll I/n 

for 0 ~ t ~ cut(v) Then 

Idet Det.vl = Jv(t)n/t n 
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Thus putting Jr(t) = 0 for t > cut(v) , we get 

r 
Vp(r) = S I Jr(t) n dv dt 

0 S 

On the other hand, if we put f = d( ,p) and B(t) as in 1.3 

with ~ = ~v " then Jvl[0, cut(v)] solves (2a) in 2.1. Thus by 

2.4 and 2.5 (one-dimensional case), jv/j is monotonously 

decreasing on [0, cut(v)] for every j with j' = bk.J where 

b k = Ck/S k . If we choose j = s k , then Jv(t)/j(t) -> 1 as 

t -> 0 since Jr(0) = 0 , jr'(0) = 1 . Now the function 
n 

qv = (Jv/Sk) 
is (weakly) monotonously decreasing on [0,r) with qv(t) -> 1 

as t -> 0 . Putting w = (sk)n we get 

Hence 

r 
Vp(r) = ; ; qv(t)-w(t) dt dv , 

S 0 
r 

V(r) = ; ; w(t) dt dv 
S 0 

where 

Vp(r)/V(r) = ; my(r) dv / vol(S) 
S 

r r 
my(r) = ; qv(t)w(t)dt / ; w(t)dt 

0 0 

is a weighted mean of qv on the interval [0,r) . Therefore, m v 

is also monotonously decreasing for 0 ~ r ~ d Moreover, 

my(r) = my(R) for some r < R $ d implies that qv ~ 1 on 

[0,R) since otherwise, due to the monotonicity, the mean over 

[0,r] would be strictly larger than the mean over [r,R) So 

V /V is monotonously decreasing which shows the inequality. P 
Further, Vp(r)/V(r) = Vp(R)/V(R) for some 0 < r < R _< d 
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implies that Jv = Sk on [0,R) for any fixed v E S , hence b 

= b k and r+ = r = k in (3a), ch. 2.1. So B(t) = b(t).Id and 

by (3), R(t) = k. Id on (v) I . Thus Ji = sk'ei , up to parallel 

displacement along ~v " This shows that for any p 6 Qk the map 
-I exp~ o e is an isometry from BR(p) onto BR(p) c Qk 

4.4 Theorem (Myers - Cheng, cf. [2,21]) If k > 0 , then 

M is compact with diameter d ~ ~/~k . Equality holds if and only 

if M is isometric to Qk which is the (n+l)-sphere of radius 

I/~k . 

Proof. Fix p E M and let f = d(,p) as in 1.4(b). For any 

unit speed geodesic ~ with ~(0) = p let B(t) be as in 1.3. 

By 2.4, the first positive pole t I of b := trace B/n comes not 

later than that of Ck/S k which is ~/~k So B has a pole at 

t I ~ ~/~k which implies that some nonzero solution of (2) 

vanishes at t I , i.e. t I is a conjugate point. Therefore, no 

geodesic of length bigger than ~/~k can be shortest which shows 

the compactness and the inequality. 

Now suppose equality and fix two points Pl " P2 E M with 

maximal distance R = ~/~k . Put r = R/2 Then M = BR(pj) for 

j = 1,2 and Br(Pl) N Br(P2) = ~ On the other hand, by 4.3 

vol(M)/vol(Br(pj)) ~ V(R)/V(r) = 2 , 

thus 

vol (Br(Pl) u Br(P2)) ~ vol(M) 

This implies equality in 4.3, and therefore BR(Pl) is isometric 

to a ball of radius R in Qk which is the complement of a 

point. This shows that M is isometric to Qk 
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5. Riccati equatioD with siDuular initial values. 

5.1 As in ch.2, let E be a real n-dimensional inner 

product space and B a solution of 

(3) B' + B 2 + R = 0 

on S(E) for given R : R -> S(E) Assume that B has a pole at 

t = 0 . By (3), this can be only a pole of i st order. Thus we put 

B(t) = t-l.F + G + t.H + O(t 2) 

with F,G,H E S(E) It follows from (3) that 

(a) F 2 = F , 

(b) F | G = 0 , 

where X | Y := X.Y + Y.X for X,Y E S(E) Thus by (a), F is the 

orthogonal projection PN onto its image N = im(F). Let T = 

N I Then by (b), im(G) c T and N c ker(G) , hence G = AoP T 

for some A E S(T) (we omit the inclusion T c E ). Thus we get 

(5) B(t) = t-l.PN + AoP T + O(t) 

(3)&(5) is a singular initial value problem. The first order term 

H is already determined by (3)&(5): We get 

+ PN | H + A2op T + R(0) = 0 (6) H 

An easy case is T = 0 . Then B(t) = t-l.Id - t.R(0)/3 + O(t 2) 

(see 2.4). 

5.2 We want to show that the solution of (3)&(5) is uniquely 

determined and depends continuously on A and R. The easiest way is 

to pass to the corresponding Jacobi equation. For any solution 

B : I -> S(E) of (3) let Y : I -> End(E) be a solution of 
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(2) Y' = B.Y 

Then Y is also a solution of the Jacobi equation 

(4) Y" + R-u = 0 

and hence Y has a smooth extension to all of R Now B satis- 

fies (5) if and only if PNOu = 0 , PTOY'(0) = AoY(0) 

Thus (2) is satisfied by the solution Y of 

(7) u + R.Y = 0 , Y(0) = PT " u = PN + A~ 

and since Y(t) is invertible for small t > 0 , we have B = 

y,.y-I . So B is uniquely determined and depends continuously on 

A and R . 

5.3 Now let R 1 , R 2 : R -> S(E) and A I, A 2 E S(T) . Let 

Bj be a solution of (3)&(5) with R = Rj , A = Aj for j E 

{1,2} . Let D = B 2 - B 1 

[.,emma ~ , 3  I f  

for small t > 0 

RI(0) > R2(0) and A 1 < A 2 then D(t) > 0 

Proof. By (5), D has no pole at 0 and <D(0)x,x> ~ 0 with 

equality only if x E N . On the other hand, for x E N we get 

from (6): 

3 <D'(0)x,x> = <(D'(0) + PN | D'(0))x, x> 

= <(Rl(0)-R2(0))x,x> > 0 

Thus for any x E E with llxll = 1 we have <D(t)x,x> > 0 for 

sufficiently small t > 0 . Since the unit sphere in E is compact, 

this finishes the proof. 
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5~4 As above let t. ~ (0,| be the first positive pole of 3 
B. or ~ if such a pole does not exist. 3 

Prooosition 5.4 I_f_f R 1 ~ R 2 and A 1 ~ A 2 , then t I ~ t 2 and 

B 1 ~ B 2 o__n_n (0,t I) 

Proof. Assume first the strong inequalities RI(0) > R2(0) and 

A 1 < A 2 . Then Bl(t O) < B2(t 0) for small t o > 0 , by 5.3. Now 

the result follows from 2.3. The general case is true by 

continuity (see 5.2). 

6. Volume and distance of totally aeodesic submanifolds 

6.~ Let M be a Riemannian manifold and L c M a 

submanifold of codimension ~2 Let f = d( ,L) on M' = M \ 

(C(L) U L) as in 1.4(c). Let ~ be any unit speed geodesic with 
• p := ~(0) E L and v := ~'(0) I L Put E = (~'(0)) and B(t) 

E S(E) as in 1.6. Then B satisfies (5) where T = T L , N = P 
(TpL) I and where A = A v is the 2 nd fundamental tensor of L 

with respect to v , i.e. <AvX,Y> = - <DxY,V> for x,y E T . 

Thus immediately from 5.4 we get a generalization of Theorem 3.2 

to tubes around totally geodesic submanifolds. 

6-~ Moreover, from 5.4 we can derive a Bishop-Gromov 

inequality for tubes around a totally geodesic submanifold L c M 

which extends a result of Heintze and Karcher [15]. To do this, we 

first must exhibit the model spaces which replace the standard 

spaces Qk used in 4.3. Let ~ : E -> L be a vector bundle with 
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covariant derivative V . This determines a smooth decomposition 

TvE = V  9 H where V contains the tangent vectors of Exv 

("vertical vectors") and H_ v those of parallel vector fields 

along curves in L ("horizontal vectors"). We will often identify 

V_~ and E v. Let us denote vertical vector fields by A,B and let 

X,Y be horizontal vector fields which are "basic", i.e. there are 

vector fields X',Y' on L with D~oX = X'o~ , D~oY = Y'ol 

Assume that [X',Y'] = 0 Since the integral curves of X and u 

are parallel vector fields along the integral curves of X' and Y', 

we get that [X,Y] is vertical and 

[X,Y](v) = RE(X',Y')v 

for any v E E , where R E is the curvature tensor corresponding 

to V (e.g. compare [22], p. 5-41 and [9], p. 54). Moreover, if A 

is parallel along the integral curves of X', then IX,A] = 0 

Further recall that [A,B] is always vertical since V is 

integrable. 

6.___33 Now assume that L is Riemannian and complete with 

finite volume and E is equipped with a fibre metric (also denoted 

by II II) such that V is a metric connection. Let k ~ R and s k, 

c k as defined in 2.2. We define a Riemannian metric gk on E k = 

{v E E; ,vli < r 0} with r 0 = ~/2{k for k > 0 and r 0 = | 

otherwise as follows: On the fibres Ek, p we take the metric 

dr 2 + sk(r)2nd~U2 of constant curvature k where r(v) = llvll and 

~(v) = v/llv~ . Further, we declare H and K to be perpendicular and 

put llXvll k = Ck(llvll).llX' vll Then the sphere bundle Sk, r = 

{v E E k ; llvll = r} with the induced metric becomes a Riemannian 
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submersion over (L, ck(r).ll II). Putting Bk, r = {llvll ~ r} , we get 

r r h m( 
V(r) := Vol Bk, r = ; vol Sk, dr = ~h.VOl(L)- ; s k c k t) dt 0 r 0 

where m is the dimension of L and h+] the fibre dimension of E 

and ~h the volume of the euclidean unit sphere of dimension h. 

Further, E k has the following properties: 

~mma 6.3 The zero section, the fibres and the immersions F : 

(-r0,r0) x R -> E k , F(s,t) = s.a(t) for any parallel section a 

o~f E along any geodesic ~ : R -> L are totally geodesic. 

Proof. The zero section is clearly totally geodesic since it is 

the fixed point set of the isometry v -> -v on E k, Now choose A, 

B, X as above such that A, B are parallel along the integral 

curves of X'. Put < " >k = gk and D the Levi-Civita connection 

of gk" Then <A,B> k is constant along the integral curves of X, 

and by 6.2 and the Levi-Civita formula we get <DAB,X> k = 0 

Thus the fibres are totally geodesic. Now choose A,X such that 

Aof = ~f/~s and Xof = ~f/~t and B I A , Y I X with [X',u 

= 0 Then <DAX,B> k = -<DAB,X> k = 0 as above, and <DAX,Y> k = 0 

by the Levi-Civita formula since 

<A,[X,Y]>kOF = Ck(llFll)2.<(I/s)F, RE(x' ,u )F> = 0 

due to the skew symmetry of R E . Moreover, DAA o F = 0 since the 

fibres are totally geodesic. Further, since [B,X] = 0 , we have 

-<DxX,B> k = <X,DxB> k = <X,DBX> k = ~ B<X,X> k . 

But on any fibre, the gradient of the function <X,X> k is radial, 

and B I A is orthogonal to the radial direction along F . Thus 

we also get <DxX,B>kOF = 0 Finally, the horizontal vector 
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fields X and Y are tangent to the submanifolds Sk, r which are 

Riemannian submersions over L. Thus by O'Neill's formula [18] we 

have <DxX, Y> k = Ck(II~,)2.<Dx,X',Y'>o~ which vanishes along F 

since X'o5 is the tangent field of the geodesic ~. So F is a 

totally geodesic immersion. 

It follows that perpendicular to any geodesic in E k which 

starts orthogonally from the zero section L, there is a basis of 

Jacobi fields Jl ..... Jm+h and a parallel orthonormal basis 

E 1 ..... Em+ h with Ji = Ck'Ei for 1 ~ i ~ m and J = Sk.E r 

for m+l ~ r ~ m+h . Thus all "radial curvatures" equal k , i.e. 

we have K(o) = k for any plane o containing a tangent vector of 

a shortest geodesic from the base point of a to L ("radial 

plane"). 

6.4 Let M be a complete Riemannian manifold and L c M a 

closed totally geodesic submanifold of finite volume with 

dimension m and codimension h+l . Put 

Br(L) = {p E M ; d(p,L) < r} 

Let VL(r) and V(r) denote the volumes of Br(L) and Bk, r 

(as defined in 6.3). In the following theorem, the inequality for 

k=0 was already proved by Kasue [16]. 

Theorem 6.4 Let L r M be a closed totallv ueodesic submanifold 

of finite volume. SuPPose that K(a) ~ k for any radial plane o. 

Then for any radii 0 < r < R we have 

VL(r)/V(r) ~ VL(R)/V(R) 
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Equality holds for some 0 < r < R < r0(k) if and only if 

is isometric to Bk, R 

BR(L) 

Proof. We proceed as in 4.3. Let E be the normal bundle and S 

the unit normal bundle of L Put e = explE : E -> M We equip 

E with the Riemannian metric go (see 6,3). Let out(v) for v E 

S and C c E be as in 4.3, and let B c E be the set of normal r 
vectors of length smaller than r , For a fixed unit normal vector 

v at p E L choose an orthonormal basis e 1 ..... e m of TpL and 

extend it to an orthonormal basis e I ..... en,V of TpM For a E 

{I ..... n} let Ja be the Jacobi fields along ~ := ~v with 

initial values 

'(0) = 0 for i = I .,m Ji (0) = ei " Ji . . . .  

J (0) = 0 , J '(0) = e for ~ = m+l .... n , 

Define Jv = llJl^'" ' ̂ Jnlll/n on [0, cut(v) ] and Jv = 

(cut(v), ~) as in 4.3. Then as before, 

0 on 

r 
VL(r) = ; Idet Deul du = ; ; Jv(t) n dv dt 

B DC 0 S r 
On the other hand, if we put f = d(,L) and let B(t) as in 1.3 

then Jr' = b'Jv on [0, cut(v)] with b = trace(B)/n . Due to 

the curvature assumption and Proposition 5.4, we have B ~ B k 

where 

Bk(t)ei = (log Ck)'(t).e.l for i = 1, .... m , 

Bk(t)e ~ = (log Sk)'(t).e ~ for ~ = m+l ..... n , 

Then from the 1-dimensional case of 2.5 we conclude that jv/j is 

monotonously decreasing in [0, cut(v)] (and constant beyond 

j = (ckm-Skh)I/n The remainder of the proof is cut(v)), where 

strictly analogous to 4.3. The equality discussion leads to the 
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case B = B for any V 

gives an isometry of 

v E S for which the normal exponential map 

Bk, R onto BR(L) This finishes the proof. 

Remark. It follows from the Rauch-Berger Theorem (3.3(b)) that in 

the situation of Theorem 6.4 with k = 1 no point can have 

distance bigger than ~/2 from L This corresponds to Myers' 

Theorem (cf. 4.4). However, the rigidity part of 4.4 (Cheng's 

Theorem) does not extend to this case: We get equality if M is a 

rank-I symmetric space with K ~ 1 and L a subspace of the same 

type. But unless M has constant curvature, it is not isometric to 

the model space E 1 as defined in 6.3. We do not know whether 

there are other cases in which equality holds. 
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