COMPARISON THEOREMS AND HYPERSURFACES

J.-H. Eschenburg

We compare the second fundamental forms of a family of parallel hypersurfaces in different Riemannian manifolds. This leads to new proofs for the distance and volume comparison theorems in Riemannian geometry. In particular, we get a new result on the volume of the set of points with distance $\leq r$ from a totally geodesic submanifold, for any r. The analytic prerequisite is the investigation of the Riccati type ODE which is satisfied by the second fundamental form of a parallel hypersurface family.

Contents

0 . Introduction

1. Parallel hypersurface families
2. The Riccati equation
3. Sectional curvature comparison theorems
4. Lower Ricci curvature bounds
5. Riccati equation with singular initial values
6. Volume and distance of totally geodesic submanifolds References
[^0]
0. Introduction

Comparison theorems in Riemannian geometry usually are derived by means of the index form and the minimizing property of the Jacobi fields (cf. [1,3,9,12]). In the present paper, we want to show a different approach: Sectional curvature controls the principal curvatures in a family of parallel hypersurfaces. The bigger the sectional curvatures, the smaller are these principal curvatures. E.g. the distance spheres in a space of positive curvature get concave for big radii, while they stay convex if the sectional curvature is nonpositive. This is expressed by a comparison theorem for solutions of the Riccati equation (ch.2) which among others implies the Rauch comparison theorems (ch.3). Similarly, the Ricci curvature controls to some extend the mean curvature of parallel hypersurfaces. So the Ricci curvature comparison theorems can be derived in the same fashion, in particular the Bishop-Gromov inequality for the volume of balls (ch.4). One advantage of our approach is that equality discussions become very easy since we estimate logarithmic derivatives. So we get an even simpler version of Shiohama's proof of Cheng's rigidity theorem [2,21]. In ch. 5 and 6 we discuss comparison theorems for tubes around submanifolds of higher codimension in our framework and prove the corresponding Bishop-Gromov type inequality, extending results of Heintze and Karcher [15].

The idea of using the matrix valued Riccati equation for comparison arguments was common in Sturmian theory for ODE's since long time (cf. [19,20]). In Riemannian geometry, it has been
applied by L.W.Green [8] and later by several other authors [4,5, 14,17,10,11]. It was used in General Relativity by Hawking and Ellis [13]. Especially M. Gromov [11] has emphasized that the evolution of the principal curvatures of a parallel hypersurface family is the source of the comparison theorems. However, a systematic treatment of the Riemannian comparison theory via Riccati equation was still missing. The ODE theorems of ch. 2 also apply to spacelike hypersurfaces in a Lorentzian manifold.

For hints and discussion we thank Brigitte Beekmann, Hermann Karcher, Viktor Schroeder and Martin Strake.

1. Parallel hypersurface families

1.1 Let (M, < , >) be a complete Riemannian manifold and let D be its Levi-Civita connection. For an open subset $M^{\prime}=M$ let $E: M^{\prime} \rightarrow R$ be a C^{2}-function whose gradient $V=\nabla f$ has unit length. Then for any $x \in T M$, we have

$$
0=x(\langle V, V\rangle)=2\left\langle D_{x} V, V\right\rangle=2\left\langle D_{V} V, x\right\rangle,
$$

thus

$$
\begin{equation*}
D_{V} V=0 \tag{1}
\end{equation*}
$$

So the gradient lines are unit speed geodesics. The function f can be considered as a Riemannian submersion onto an open subset of R or else, at least locally, it is the distance function of each of its level sets $S_{t}=\{f=t\}$, up to a constant and a sign. In particular, close level hypersurfaces have constant distance from each other Therefore $\left\{S_{t} ; t \in f\left(M^{\prime}\right)\right\}$ is called a

parallel hypersurface family.

1.2 Let $B=D V$ be the Hessean tensor field of f. By (1), V is in the kernel of B, so we will often restrict ourselves to B / V^{\perp}. Since V is a unit normal field for each level hypersurface, B / V^{\perp} can be viewed as the $2^{\text {nd }}$ fundamental tensor or Weingarten map of the level hypersurfaces.

For any vector field J on M^{\prime} with $[J, V]=0$ we have

$$
\begin{equation*}
\mathrm{D}_{\mathrm{V}} \mathrm{~J}=\mathrm{B} \cdot \mathrm{~J}, \tag{2}
\end{equation*}
$$

and moreover, by (1) and (2),

$$
\left(D_{V} B\right) J=D_{V} D_{J} V-B\left(D_{V} J\right)=R(V, J) V-B(B \cdot J),
$$

where R denotes the Riemannian curvature tensor. Thus putting $R_{V}=R(, V) V$, we get the so called Riccati equation

$$
\begin{equation*}
D_{v} B+B^{2}+R_{V}=0 \tag{3}
\end{equation*}
$$

Thus differentiation of (2) yields

$$
\begin{equation*}
D_{v^{D}} v^{J}+R_{V}^{J}=0 \tag{4}
\end{equation*}
$$

This shows that J is a Jacobi field along any integral curve of V which is clear also from (1) and $[J, V]=0$. Hence the Jacobi equation (4) is broken up into the two first order equations (2) and (3). Though (3) is no longer linear, it is very useful for the comparison theory since B is a self adjoint tensor field.
1.3 Fix an integral curve $\gamma: I \rightarrow M^{\prime}$ of V. Using parallel transport along γ, we may identify the normal bundle of γ with $I \times E$ where E is some fixed normal space $\left(\gamma^{\prime}\left(t_{0}\right)\right)^{\perp}$. Then $B(t):=B I_{\gamma(t)}$ and $R(t):=R_{V} l_{\gamma}(t)$ are considered as self
adjoint endomorphisms of E satisfying

$$
\begin{equation*}
B^{\prime}+B^{2}+R=0 . \tag{3}
\end{equation*}
$$

1.4 Examples: (a) Let $S \in M$ be an oriented hypersurface with unit normal vector field N along S. This gives a trivialisation of the normal bundle ϕ : $N S \rightarrow S \times R$. Let M^{\prime} be a neighborhood of S where e := explnS has a smooth inverse e^{-1}. Put $f=\operatorname{pr}_{2} \circ \phi \circ e^{-1}$. Then f is called signed distance of S on M^{\prime}. The level set $S_{t}=E^{-1}(t)$ is a hypersurface with constant distance $|t|$ from S.
(b) Let $p \in M$ with cut locus $C(p)$. Let $U \subset T_{p} M$ be a neighborhood of the origin where the exponential map $e=\exp _{p}$ is a diffeomorphism. Let $M^{\prime}=e(U) \backslash\{p\}$ and put $f(q)=\left\|e^{-1}(q)\right\|$. In particular, we may choose $e(U)=M \backslash C(p)$ where $C(p)$ is the cut locus of p. Then $f=d(, p)$ and the level sets are the distance spheres centered at p. In this case, the vector field $X=f \cdot V$ extends smoothly to p with $(D X)_{p}=I d$. Thus, if γ is a unit speed geodesic with $\gamma(0)=p$ and $B(t) \in S(E)$ with $E=\left(\gamma^{\prime}(0)\right)^{\perp}$ as in 1.3 , then $t \cdot B(t) \rightarrow I d$ as $t \rightarrow 0$.
(c) More generally, the point p may be replaced with a submanifold L of codimension ≥ 2. Then the level hypersurfaces are the tubes around L.
(d) Let M be a simply connected manifold without focal points and $f: M \rightarrow R$ the Busemann function of a ray in M (cf. [5,14]). The level hypersurfaces are the horospheres corresponding to the ray.

2. The Riccati equation

2.1 Let E be a real n-dimensional vector space with euclidean inner product < , > . The space $S(E)$ of self adjoint endomorphisms inherits the inner product

$$
\langle A, B\rangle=\operatorname{trace} A \cdot B
$$

for $A, B \in S(E)$. We get a partial ordering $<(\leq)$ on $S(E)$ by putting $A\langle B(A \leq B)$ if $\langle A x, x\rangle\langle\langle B x, x\rangle(\langle A x, x\rangle \leq\langle B x, x\rangle)$ for every $x \in E(\{0\}$.

Now let $I \subset R$ be an open real interval and $R: I \rightarrow S(E)$ a smooth curve. We consider the corresponding Riccati equation on S(E) :
(3)

$$
B^{\prime}+B^{2}+R=0 .
$$

Due to the non-linearity of (3), a solution B may have poles on I , more precisely, some eigenvalue of $B(t)$ may tend to $-\infty$ as $t \rightarrow t_{1}$, $t<t_{1}$, for some $t_{1} \in I$, but not to $+\infty$, since $-B^{2}$ is negative semi-definite.

If B is non-singular, one may pass to the inverse $C=B^{-1}$ to treat poles as in example $1.4(b)$. Since $C^{\prime}=-B^{-1} \cdot B^{\prime} \cdot B^{-1}$, is equivalent to the ODE

$$
C^{\prime}=I d+C \cdot R \cdot C
$$

Together with a solution B of (3), we investigate solutions J : I $\rightarrow E$ of the equation
(2)

$$
J^{\prime}=B \cdot J .
$$

Though B may have poles, J can be smoothly extended to the
whole interval I since from (2) and (3) we get the linear ODE
(4) $\mathrm{J}^{\prime \prime}+\mathrm{R} \cdot \mathrm{J}=0$.
E.g. if B satisfies $t \cdot B(t) \rightarrow$ Id as $t \rightarrow 0$ as in $1.4(b)$, the solutions of (2) are exactly the solutions J of (4) with $J(0)=0$.

The case $n=1$ is of particular interest since the general case is reduced to this by taking traces as follows: Let us put

$$
b=(\text { trace } B) / n, \quad r=(\text { trace } R) / n
$$

Then $S:=B-b \cdot I d$ is the trace free part of B, and $\|S\|^{2}=$ $\|B\|^{2}-n \cdot b^{2}$. Taking the trace of (3) we get
(3a)

$$
\begin{aligned}
& b^{\prime}+b^{2}+r_{+}=0 \\
& r_{+}:=r+\|S\|^{2} / n
\end{aligned}
$$

Observe that r_{+}remains bounded if B has a pole at $t_{0}=0$ with $t \cdot B(t) \rightarrow I d$ as $t \rightarrow 0$ as in $1.4(b)$

Further, let J_{1}, \ldots, J_{n} be a basis of solutions of (2) and put $j=\left\|J_{1} \wedge \ldots \wedge J_{n}\right\|^{1 / n}$. Since

$$
\begin{aligned}
\left(J_{1} \wedge \ldots \wedge J_{n}\right)^{\prime} & =\sum_{k=1}^{n} J_{1} \wedge \ldots \wedge B \cdot J_{k} \wedge \ldots \wedge J_{n} \\
& =(\operatorname{trace} \quad B) \cdot J_{1} \wedge \ldots \wedge J_{n},
\end{aligned}
$$

we get
(2a)

$$
j^{\prime}=b \cdot j
$$

2. 2 Consider first the case $n=1$ and $R=k=$ const. i.e. the equation
(3) ${ }_{k} \quad b_{k}{ }^{\prime}+b_{k}{ }^{2}+k=0$.

Putting $\sigma=|k|^{1 / 2}$, we get the following families of solutions $b_{k}(t):$

In particular, for any $k \in R$ the only solution with a pole at 0 is c_{k} / s_{k} where $\left(s_{k}, c_{k}\right)$ is the solution of

$$
s_{k}^{\prime}=c_{k}, \quad c_{k}^{\prime}=-k \cdot s_{k}, \quad s_{k}(0)=0, \quad c_{k}(0)=1
$$

If n is arbitrary and $R=k \cdot I d$ where Id denotes the identity on E, then $B=b_{k}$.Id are solutions of (3). By ch. 1, these correspond to a family $\left\{S_{t}\right\}$ of umbilic parallel hypersurfaces in a simply connected Riemannian space Q_{k} of constant curvature k, and $b_{k}(t)$ is the mean curvature of S_{t}. For $k>0$, this is the family of concentric spheres. For $k=0$ there are three such families: concentric spheres with outer and inner normal vector and parallel hyperplanes. For $k<0$, we have five families: concentric spheres and horospheres, both with outer and inner normal vector, and parallel hypersurfaces of a totally geodesic hypersurface.
2. 3 Now let $I=\left(t_{-}, t_{+}\right)$with $-\infty \leq t_{-}<t_{+} \leq+\infty$. We consider two smooth curves $R_{1}, R_{2}: R \rightarrow S(E)$ and solutions B_{j}
 initial point $t_{0} \in I$ and let $t_{j}>t_{0}$ be the first pole of B_{j} if there is some, otherwise put $t_{j}=t_{+}$.

Proposition 2.3 Suppose

(a) $\quad R_{1}(t) \geq R_{2}(t)$ for all $t \in I$.
(b) $\quad B_{1}\left(t_{0}\right) \leq B_{2}\left(t_{0}\right) \quad$.

Then we get
(c) $\mathrm{t}_{1} \leq \mathrm{t}_{2}$,
(d) $\quad B_{1}(t) \leq B_{2}(t)$ for $t_{0}<t<t_{1}$.

If strong inequality holds in (a), then it holds also in (d).

Proof. Let us first assume strong inequality in (a). Suppose there exists $s>t_{0}$ such that $B_{1}(t) \leq B_{2}(t)$ for $t_{0}<t<s$. Then we certainly have $\mathrm{B}_{1}(\mathrm{~s}) \leq \mathrm{B}_{2}(\mathrm{~s})$.

Claim: $B_{1}(s)<B_{2}(s)$. Namely, otherwise $B_{2}(s)-B_{1}(s)$ is positive semi-definite with a nonzero kernel. Choose $x \in E(\{0\}$ such that $B_{2}(s) x=B_{1}(s) x$. Then the function

$$
g(t):=\left\langle\left(B_{2}-B_{1}\right)(t) x, x\right\rangle
$$

is nonnegative on $\left[t_{0}, s\right]$ with a zero at s. By the Riccati equations we have

$$
g^{\prime}(s)=\left\langle\left(B_{1}^{2}-B_{2}^{2}\right)(s) x, x\right\rangle+\left\langle\left(R_{1}-R_{2}\right)(s) x, x\right\rangle .
$$

The second term is positive, and the first term vanishes since

$$
\begin{gathered}
\left\langle\left(B_{1}^{2}-B_{2}^{2}\right)(s) x, x\right\rangle=\left\langle\left(B_{1}-B_{2}\right)(s)\left(B_{1}(s) x\right), x\right\rangle \\
=\left\langle B_{1}(s) x,\left(B_{2}-B_{1}\right)(s) x\right\rangle=0 .
\end{gathered}
$$

So $g^{\prime}(s)>0$ which is a contradiction to $g \mid\left[t_{0}, s\right]>0$.

Thus the strong inequality (d) holds up to the first pole of B_{1} or B_{2}. But since the eigenvalues at a pole can tend only to $-\infty$, (d) shows that $t_{1} \leq t_{2}$.

The initial assumption $s>t_{0}$ is clearly satisfied if strong inequality holds in (b). So this case is proved. By continuity, we get (d) also if only the weak inequality holds in (b). Thus in this case we also have such $s>t_{0}$, and the argument above shows the strong inequality in (d).

The assertion for the weak inequality in (a) follows by continuity.

Remark 1. If $R_{1}=R_{2}$ and strong inequality holds in (b), then strong inequality holds also in (c) (cf. [6], 3.1). We do not know whether this is also true if $R_{1} \geq R_{2}$.

Remark 2. If $n=1$, we can discuss the equality case in the previous proposition: If $B_{1}(s)=B_{2}(5)$ for some $s \in\left(t_{0}, t_{1}\right)$, then on $[0, S]$ we have $B_{1}=B_{2}$ and hence $R_{1}=R_{2}$.

Namely, if $B_{1}<B_{2}$ on $\left(t_{0}, s\right)$ for some $s \in\left(t_{0}, t_{1}\right)$, then the Riccati equation implies

$$
\left(\log \left(B_{2}-B_{1}\right)\right)^{\prime} \geq-\left(B_{2}+B_{1}\right)
$$

on ($t_{0,5}$) . Hence $\log \left(B_{2}{ }^{-B_{1}}\right.$) is bounded from below on [r,s] for every $r \in\left(t_{0}, s\right)$ which implies $B_{1}(s)<B_{2}(s)$.
2.4 Proposition Let $R_{1} \geq R_{2}$ and B_{1}, B_{2} solutions of the corresponding Riccati equations which are invertible near 0 with $B_{j}(t)^{-1} \rightarrow 0$ as $t \rightarrow 0, j=1,2$. Let $t_{j}>0$ be the first pole of B_{j}. Then $t_{1} \leqslant t_{2}$ and $B_{1} \leq B_{2}$ on $\left(0, t_{1}\right)$. If $R_{1}>R_{2}$. the strong inequality holds.

Proof. Let $C_{j}=B_{j}{ }^{-1}$. Then C_{j} solves $C_{j}^{\prime}=I d+C_{j} \cdot R_{j} \cdot C_{j}$ with initial condition $C_{j}(0)=0$. Differentiating, we get

$$
C_{j}^{\prime}(0)=I d, \quad C_{j}^{(2)}(0)=0, \quad C_{j}^{(3)}(0)=2 R_{j} .
$$

Suppose first $R_{1}>R_{2}$. Then the leading terms of the Taylor expansions of C_{2} and of $C_{1}-C_{2}$ near 0 are positive definite, hence $C_{1}(t)>C_{2}(t)>0$ for $t>0$ small enough. Therefore $B_{1}(t)<B_{2}(t)$ by the subsequent lemma. Thus choosing $t_{0}>0$ small enough, we may apply prop. 2.3 and get the result. The case $R_{1} \geq R_{2}$ follows by continuity.

Lemma. Let $F, G \in S(E)$ with $F>G>0$. Then $F^{-1}\left\langle G^{-1}\right.$.

Proof. The positive definite self adjoint endomorphisms form a convex cone $P \subset S(E)$. Therefore, the endomorphisms

$$
\begin{aligned}
F_{t} & :=t \cdot F+(1-t) \cdot 2 \cdot I d \\
G_{t} & :=t \cdot G+(1-t) \cdot I d \\
F_{t}-G_{t} & =t \cdot(F-G)+(1-t) \cdot I d
\end{aligned}
$$

are positive definite for any $t \in[0,1]$. In particular,

$$
D_{t}:=G_{t}^{-1}-F_{t}^{-1}=G_{t}^{-1} \cdot\left(F_{t}-G_{t}\right) \cdot F_{t}^{-1}
$$

is self adjoint and invertible. Since $D_{0}=1 / 2$ Id is in P, the same is true for $D_{1}=G^{-1}-F^{-1}$ since ∂P contains no invertible endomorphisms. So $F^{-1}<G^{-1}$ which finishes the proof.
2.5 For $A \in S(E)$ let $\lambda_{+}(A)$ denote the highest and $\lambda_{-}(A)$ the lowest eigenvalue. For $A_{1}, A_{2} \in S(E)$ we have $\lambda_{+}\left(A_{1}\right)$ $\leq \lambda_{-}\left(A_{2}\right)$ if and only if $A_{1} \leq D^{-1} \cdot A_{2} \cdot D \quad$ for every rotation $D \in O(E)$.

Proposition 2.5 Let $B_{1}, B_{2}: I \rightarrow S(E)$ such that $\lambda_{+}\left(B_{1}\right) \leq$ $\lambda_{-}\left(B_{2}\right)$ everywhere. Let $J_{1}, J_{2}: I \rightarrow E$ be nonzero solutions of $J_{j}{ }^{\prime}=B_{j} \cdot J_{j}(j=1,2)$. Then $\left\|J_{1}\right\| /\left\|J_{2}\right\|$ is monotonously decreasing. Moreover, if $\left\|J_{1}\right\| /\left\|J_{2}\right\|$ is constant on a sub-interval $I^{\prime} c I$, then on I^{\prime} we have $\lambda_{+}\left(B_{1}\right)=\lambda_{-}\left(B_{2}\right)$, and the corresponding eigenspaces contain $J_{1} /\left\|J_{1}\right\|$ resp. $J_{2} /\left\|J_{2}\right\|$ which are constant on I^{\prime}.

Proof, Since J_{j} satisfies a $1^{5 t}$ order equation, $\left\|J_{j}\right\|$ is nowhere zero and hence smooth. Now

$$
\begin{aligned}
& \left(\log \left\|J_{1}\right\|\right)^{\prime}=\left\langle J_{1} \cdot, J_{1}\right\rangle /\left\|J_{1}\right\|^{2}=\left\langle B_{1} \cdot J_{1}, J_{1}\right\rangle /\left\|J_{1}\right\|^{2} \\
& \leq \lambda_{+}\left(B_{1}\right) \leq \lambda_{-}\left(B_{2}\right) \leq\left\langle B_{2} \cdot J_{2} \cdot J_{2}\right\rangle /\left\|J_{2}\right\|^{2}=\left(\log \left\|J_{2}\right\|\right) \cdot .
\end{aligned}
$$

Hence $\left(\log \left(\left\|J_{1}\right\| /\left\|J_{2}\right\|\right)^{\prime} \leq 0 \quad\right.$ which implies that $\left\|J_{1}\right\| /\left\|J_{2}\right\|$ is monotonously decreasing. If equality holds on a subinterval I' , the computation above shows that $\lambda_{+}\left(B_{1}\right)=\lambda_{-}\left(B_{2}\right)$ and that $J_{j}(t)$ are corresponding eigenvectors of $B_{j}(t)$ for $t \in I^{\prime}$. Since $J_{j}{ }^{\prime}$ $=B_{j} \cdot J_{j}, J_{j}$ ' and J_{j} are linearly dependent on I^{\prime} which shows that $\mathrm{J}_{\mathrm{j}} /\left\|\mathrm{J}_{\mathrm{j}}\right\|$ is constant along I^{\prime}.

3. Sectional curvature comparison theorems

Let S be a hypersurface in a Riemannian manifold with given unit normal vector field N along S. To fix signs, the eigenvalues of the Weingarten map $D N$ will be called principal curvatures of S, and the mean value of those at any point the mean curvature of S.

Throughout this chapter, let M_{1} and M_{2} be complete Riemannian manifolds of dimension $n+1$ whose sectional curvature functions K_{1} and K_{2} satisfy $\inf K_{1} \geq \sup K_{2}$
on the subsets which we consider. The index j will always refer to $\{1,2\}$.
3.1 Theorem. Let $S_{j} \subset M_{j}$ be hypersurfaces with unit normal fields N_{j} and let $p_{j} \in S_{j}$. Suppose that the largest principal curvature of S_{1} at P_{1} is not bigger than the least principal curvature of S_{2} at p_{2}. Then the same is true for the parallel hypersurfaces $S_{j, t}$ at $\exp \left(t \cdot N_{j}\left(p_{j}\right)\right)$ for $0 \leq t \leq t_{1}$ where t_{1} denotes the focal distance of S_{1} at p_{1}.

Proof. Let $f_{j}: M_{j}{ }^{\prime} \rightarrow R$ be the signed distance of S_{j} near p_{j} with level hypersurfaces $S_{j, t}$ (cf. 1.4(a)). Fix the geodesics $\gamma_{j}(t)=\exp \left(t \cdot N_{j}\left(p_{j}\right)\right)$. Put $E_{j}=T_{p_{j}} S_{j}=\left(\gamma_{j}{ }^{\prime}(0)\right)^{\perp}$ and let $B_{j}(t) \in S\left(E_{j}\right)$ as in 1.3. Then $B_{j}(t)$ is the Weingarten map of $S_{j, t}$ at $\gamma_{j}(t)$, up to parallel transport along $\gamma_{j} \quad B y$ assumption,

$$
B_{1}(0) \leq 1^{-1} \circ B_{2}(0) \circ 2
$$

for every linear isometry $\quad 1: E_{1} \rightarrow E_{2}$. From the curvature assumption and 2.3 we get

$$
B_{1}(t) \leq i^{-1} \circ B_{2}(t) \circ 1
$$

for $t \geq 0$ (up to the first focal point of S_{1} along γ_{1}) and therefore $\quad \lambda_{+}\left(B_{1}(t)\right) \leq \lambda_{-}\left(B_{2}(t)\right)$ since \quad was arbitrary (cf. 2.5). This proves the theorem.

3.2 Theorem. The principal curvatures of any smooth part of a distance sphere in M_{1} with outer normal vector are not

 bigger than those of a distance sphere with the same radius in M_{2}.Proof. Let $p_{j} \in M_{j}$ and $f_{j}=d\left(, p_{j}\right)$ as in 1.4(b). Fix an arbitrary unit speed geodesic γ_{j} with $\gamma_{j}(0)=p_{j}$. Put $E_{j}=$ $\left(\gamma_{j},(0)\right)^{\perp}$ and for $t>0$ let $B_{j}(t) \in S\left(E_{j}\right)$ as in 1.3. As long as $\gamma_{j} \mid(0, t]$ contains no cut points of p_{j}, $B_{j}(t)$ is the Weingarten map of the distance sphere $\Sigma_{t}\left(p_{j}\right)$ at $\gamma_{j}(t)$, up to parallel displacement. By the curvature assumption and 2.4,

$$
B_{1}(t) \leq i^{-1} \circ B_{2}(t) \circ q
$$

for every isometry $t: E_{1} \rightarrow E_{2}$ and thus $\lambda_{+}\left(B_{1}(t)\right) \leq \lambda_{-}\left(B_{2}(t)\right)$ (see 2.5) which finishes the proof.
3.3 Theorem, (Rauch/Berger) Let γ_{j} be unit speed geodesics in M_{j} and J_{j} Jacobi fields along γ_{j} with $J_{j} \perp \gamma_{j}$ and
(a)

$$
J_{j}(0)=0, \quad\left\|J_{1}^{\prime}(0)\right\|=\left\|J_{2}^{\prime}(0)\right\| \neq 0
$$

or
(b)

$$
J_{j} \cdot(0)=0, \quad\left\|J_{1}(0)\right\|=\left\|J_{2}(0)\right\| \neq 0
$$

Then $\left\|J_{1}(t)\right\| \leq\left\|J_{2}(t)\right\|$ for $t \geq 0$ up to the first conjugate point (case (a)) or focal point (case (b) of γ_{1}. If equality holds for some $t_{0}>0$, it holds on $\left[0, t_{0}\right]$ and $J_{j} /\left\|J_{j}\right\|$ is parallel along $\gamma_{j} \mid\left[0, t_{0}\right]$ for $j=1,2$.

Proof. Case (a): Let t_{j} be the first conjugate point of γ_{j} and put $p_{j}=\gamma_{j}(0), v_{j}=\gamma_{j}{ }^{\prime}(0)$. Then in $T p_{j}{ }_{j}$ there is an open neighborhood U_{j} of 0 containing $t \cdot v_{j}$ for $0 \leq t<t_{j}$ where $\exp _{p_{j}}$ has a smooth inverse. Let f_{j} be as in $1.4(b)$. We put E_{j} $=\left(v_{j}\right)^{1}$ and $B_{j}(t) \in S\left(E_{j}\right)$ as in 1.3. Now J_{j} (considered as a curve in E_{j}) solves (2) ${ }_{j}$ since it satisfies (4) ${ }_{j}$ with $J_{j}(0)=0$ and $t \cdot B_{j}(t) \rightarrow I d$ as $t \rightarrow 0(c f .2 .1)$. By de l'Hopital's rule, $\left\|J_{1}(t)\right\| /\left\|J_{2}(t)\right\| \rightarrow 1$ as $t \rightarrow 0$. Now the result follows from 2.4 and 2.5.

Case (b): This is immediate from the following general comparison theorem for Jacobi fields:
3.4 Theorem. Let γ_{j} be a unit speed geodesic in M_{j} and $J_{j} \perp \gamma_{j}$ a Jacobi field along γ_{j} with

$$
\left\|J_{1}(0)\right\|=\left\|J_{2}(0)\right\| \neq 0, \quad J_{j}(0)=A_{j} \cdot J_{j}(0)
$$

for some $A_{j} \in S\left(E_{j}\right), \quad E_{j}=\left(\gamma_{j}^{\prime}(0)\right)^{\perp}$ with $\lambda_{+}\left(A_{1}\right) \leq \lambda_{-}\left(A_{2}\right)$. Then $\left\|J_{1}(t)\right\| \leq\left\|J_{2}(t)\right\|$ for $0 \leq t \leq t_{1}$ where t_{1} is the smallest positive zero of all Jacobi fields J along γ_{1} with $J^{\prime}(0)=A_{1} \cdot J(0) \neq 0$. Equality at $t_{0} \in\left(0, t_{1}\right)$ implies equality along $\left[0, t_{0}\right]$ and $J_{j} /\left\|J_{j}\right\|$ is parallel along $\gamma_{j} \mid\left[0, t_{0}\right]$.

Proof. Let $p_{j}=\gamma_{j}(0)$ and $S_{j}{ }^{\prime} \subset T_{p_{j}}{ }_{j}$ a hypersurface through the origin with $T_{0} S_{j}{ }^{\prime}=E_{j}$ and Weingarten map A_{j} at 0 with respect to the normal vector $v_{j}=\gamma_{j}{ }^{\prime}(0)$. E.g. we may choose $S_{j}{ }^{\prime}=\left\{x \in T_{p_{j}} M_{j} ;\left\langle A_{j} \cdot x, x\right\rangle=2\left\langle v_{j}, x\right\rangle\right\}$. Let $U_{j} \subset T_{p_{j}} M_{j}$ be an open neighborhood of the origin where the exponential map is diffeomorphic. Then $S_{j}:=\exp \left(S_{j}{ }^{\prime} \cap U_{j}\right)$ is a smooth hypersurface with Weingarten map A_{j} with respect to $\mathbf{v}_{\mathbf{j}}$. Let $\mathrm{f}_{\mathbf{j}}$: $M_{j}, \rightarrow R$ be the signed distance function of S_{j} as in 1.4(a). If U_{j} is small enough, $M_{j}{ }^{\prime}$ contains $\gamma_{j}\left(\left[0, t_{j}\right)\right)$ where t_{j} is the first focal point of S_{j} along γ_{j}. Put $B_{j}(t) \in S\left(E_{j}\right)$ as in 1.3. Then $B_{j}(0)=A_{j}$ and from the initial values we see that J_{j} solves $J_{j}{ }^{\prime}=B_{j} \cdot J_{j}$ (up to parallel displacement along γ_{j}). Now the result follows from 2.3 and 2.5 .

Remark. The Rauch type theorem 8.13 in [11] is incorrectly stated. The theorem above is the corrected version.

4. Lower Ricci curvature bounds

Throughout this section, let M be a complete Riemannian manifold of dimension $n+1$ with Ricci curvature bounded from below, more precisely $\operatorname{Ric}(v) \geq k \cdot n$ for some constant $k \in R$ and any unit tangent vector v. As in 2.2 , let b_{k} be a solution of
(3) k

$$
b_{k}^{\prime}+b_{k}^{2}+k=0 .
$$

4. 1 Theorem. Let $S \subset M$ be a hypersurface with unit normal field N and $p \in S$. Let $b(t)$ be the mean curvature of the parallel hypersurface S_{t} of S at $\gamma(t)=\exp (t \cdot N(p))$. Let b_{k} be the solution of $(3)_{k}$ with $b_{k}(0)=b(0)$. Then $b(t) \leq b_{k}(t)$
for all $t>0$ up to the first focal point of S along γ. For $t<0$, the opposite inequality holds.

Proof (cf. [7]). Let f be the signed distance of S as in 1.4(a) and $B(t)$ as in 1.3. Then $b(t)=$ trace $B(t) / n$ and hence b solves equation (3a) in 2.1. So the inequality for $t>0$ follows from 2.3 (one-dimensional case) since $r_{+} \geq r \geq k$. The opposite inequality for $t<0$ follows by reversing the normal field N .
4. 2 Theorem (cf [7]). The mean curvature of any smooth part of a distance sphere of radius $t>0$ in M is bounded from above by $c_{k}(t) / s_{k}(t)$.

Proof. Fix $p \in M$ and some unit speed geodesic γ with $\gamma(0)=$ p. Let $f=d(, p)$ as in $1.4(b)$ and $B(t)$ as in 1.3. Then $b(t):=$ trace $B(t) / n$ is the mean curvature of the distance sphere $\Sigma_{t}(p)$ at $\gamma(t)$ if $\gamma(0, t]$ contains no cut points of p. So b solves (3a) in 2.1 with a pole at 0 . So the result follows from the one-dimensional case of 2.4 and 2.2.
4. 3 For $p \in M$ let $B_{r}(p)$ denote the open ball of radius r centered at p and $V_{p}(r)$ the volume of $B_{r}(p)$. Moreover, let $V(r)$ be the volume of a ball of radius r in the simply connected space of constant sectional curvature k which we denote by Q_{k}.

Theorem 4.3 (Bishop-Gromov inequality, cf. [12]) For any $p \in M$ and $0<r<R$ we have

$$
V_{p}(r) / V(r) \geq V_{p}(R) / V(R)
$$

Equality holds for some $0<r<R \leqslant \operatorname{diam}(M)$ if and only if $B_{R}(p)$ is isometric to a ball of radius R in Q_{k}.

Proof. Fix some $p \in M$ and $r \in(0, d)$ where d is the diameter of M. Put $E=T_{p} M$ and $e=\exp _{p}: E \rightarrow M$. Let S be the unit sphere in E. For every $v \in S$ let γ_{v} be the geodesic with $\gamma_{v}{ }^{\prime}(0)=v$. Put

$$
\operatorname{cut}(v)=\sup \left\{t<0 ; \gamma_{v} \mid[0, t] \text { is shortest }\right\}
$$

and

$$
C=\{t \cdot v ; v \in S, 0 \leq t \leq \operatorname{cut}(v)\}
$$

Let $B_{r}=E$ be the ball of radius r with center 0 . Then
where $d u$ and $d v$ denote the volume elements of E and S, and $r(v):=\min (r, \operatorname{cut}(v))$. Let $\left(v, e_{1}, \ldots, e_{n}\right)$ be an orthonormal basis of E. Put $J_{i}(t)=D e_{t \cdot v}\left(t \cdot e_{i}\right)$ and

$$
j_{v}(t)=\left\|J_{1}(t) \wedge \ldots \wedge J_{n}(t)\right\|^{1 / n}
$$

for $0 \leq t \leq \operatorname{cut}(v)$. Then

$$
\left|\operatorname{det} D e_{t \cdot v}\right|=j_{v}(t)^{n} / t^{n}
$$

ESCHENBURG

Thus putting $j_{v}(t)=0$ for $t>\operatorname{cut}(v)$, we get

$$
V_{p}(r)=\int_{0}^{r} \int_{S} j_{v}(t)^{n} d v d t
$$

On the other hand, if we put $f=d(, p)$ and $B(t)$ as in 1.3 with $\gamma=\gamma_{v}$, then $j_{v}[[0$, cut($v)]$ solves (2a) in 2.1. Thus by 2.4 and 2.5 (one-dimensional case), j_{v} / j is monotonously decreasing on [0 , cut(v)] for every j with $j^{\prime}=b_{k} \cdot j$ where $b_{k}=c_{k} / s_{k}$. If we choose $j=s_{k}$, then $j_{v}(t) / j(t) \rightarrow 1$ as $t \rightarrow 0$ since $j_{v}(0)=0, j_{v}(0)=1$. Now the function

$$
q_{v}=\left(j_{v} / s_{k}\right)^{n}
$$

is (weakly) monotonously decreasing on $\left[0, r\right.$) with $q_{v}(t) \rightarrow 1$ as $t \rightarrow 0$. Putting $w=\left(s_{k}\right)^{n}$ we get

$$
\begin{aligned}
& V_{p}(r)=\underset{S}{\int} \underset{0}{r} q_{v}(t) \cdot w(t) d t d v, \\
& V(r)=\underset{S}{f} \int_{0}^{r} w(t) d t d v .
\end{aligned}
$$

Hence

$$
V_{p}(r) / V(r)=\int_{S} m_{v}(r) d v / \operatorname{vol}(S)
$$

where
is a weighted mean of q_{v} on the interval $[0, r)$. Therefore, m_{v} is also monotonously decreasing for $0 \leq r \leq d$. Moreover, $m_{v}(r)=m_{v}(R)$ for some $r<R \leq d$ implies that $q_{v} \equiv 1$ on [0,R) since otherwise, due to the monotonicity, the mean over [0,r] would be strictly larger than the mean over $[r, R$). So $\mathrm{V}_{\mathrm{p}} / V$ is monotonously decreasing which shows the inequality. Further, $\quad V_{p}(r) / V(r)=V_{p}(R) / V(R)$ for some $0<r<R \leq d$
implies that $j_{v}=s_{k}$ on $[0, R)$ for any fixed $v \in S$, hence b $=b_{k}$ and $r_{+}=r=k$ in (3a), ch. 2.1. So $B(t)=b(t) \cdot I d$ and by (3), $R(t)=k \cdot I d$ on $(v)^{\perp}$. Thus $J_{i}=s_{k} \cdot e_{i}$, up to parallel displacement along γ_{v}. This shows that for any $\bar{p} \in Q_{k}$ the map $\exp _{\bar{p}} \circ e^{-1}$ is an isometry from $B_{R}(p)$ onto $B_{R}(\bar{p}) \subset Q_{k}$.
4.4 Theorem (Myers - Cheng, cf. $\{2,211$) If $k>0$, then M is compact with diameter $d \leq \pi / \gamma k$. Equality holds if and only if M is isometric to Q_{k} which is the $(n+1)$-sphere of radius 1/rk.

Proof. Fix $p \in M$ and let $f=d(, p)$ as in 1.4(b). For any unit speed geodesic γ with $\gamma(0)=p$ let $B(t)$ be as in 1.3. By 2.4, the first positive pole t_{1} of $b:=$ trace B / n comes not later than that of $\mathrm{C}_{\mathrm{k}} / \mathrm{s}_{\mathrm{k}}$ which is π / rk. So B has a pole at $t_{1} \leq w / v k$ which implies that some nonzero solution of (2) vanishes at t_{1}, i.e. t_{1} is a conjugate point. Therefore, no geodesic of length bigger than $\pi / r k$ can be shortest which shows the compactness and the inequality.

Now suppose equality and fix two points $p_{1}, p_{2} \in M$ with maximal distance $R=\pi / r k$. Put $r=R / 2$. Then $M=B_{R}\left(p_{j}\right)$ for $j=1,2$ and $B_{r}\left(p_{1}\right) \cap B_{r}\left(p_{2}\right)=\phi$. On the other hand, by 4.3 $\operatorname{vol}(M) / \operatorname{vol}\left(B_{r}\left(p_{j}\right)\right) \leq V(R) / V(r)=2$.
thus

$$
\operatorname{vol}\left(B_{r}\left(p_{1}\right) \cup B_{r}\left(p_{2}\right)\right) \geq \operatorname{vol}(M) .
$$

This implies equality in 4.3, and therefore $B_{R}\left(p_{1}\right)$ is isometric to a ball of radius R in Q_{k} which is the complement of a point. This shows that M is isometric to Q_{k}.

5. Riccati equation with singular initial values.

5.1 As in ch.2, let E be a real n-dimensional inner product space and B a solution of

$$
\begin{equation*}
B^{\prime}+B^{2}+R=0 \tag{3}
\end{equation*}
$$

on $S(E)$ for given $R: R \rightarrow S(E)$. Assume that B has a pole at $t=0$. By (3), this can be only a pole of $1^{\text {st }}$ order. Thus we put $B(t)=t^{-1} \cdot F+G+t \cdot H+O\left(t^{2}\right)$
with F,G,H $\in S(E)$. It follows from (3) that
(a) $\mathrm{F}^{2}=\mathrm{F}$.
(b) $\quad F \circ G=0$,
where $X \odot Y:=X \cdot Y+Y \cdot X$ for $X, Y \in S(E)$. Thus by (a), F is the orthogonal projection P_{N} onto its image $\mathrm{N}=\operatorname{im}(\mathrm{F})$. Let $\mathrm{T}=$ N^{\perp}. Then by (b), $\quad \operatorname{im}(G)=T$ and $N \in \operatorname{ker}(G)$, hence $G=A \circ P_{T}$ for some $A \in S(T)$ (we omit the inclusion $T \subset E$). Thus we get

$$
\begin{equation*}
B(t)=t^{-1} \cdot P_{N}+A \circ P_{T}+O(t) . \tag{5}
\end{equation*}
$$

(3)\&(5) is a singular initial value problem. The first order term H is already determined by (3)\&(5): We get

$$
\begin{equation*}
H+P_{N} \odot H+A^{2} \circ P_{T}+R(0)=0 . \tag{6}
\end{equation*}
$$

An easy case is $T=0$. Then $B(t)=t^{-1} \cdot I d-t \cdot R(0) / 3+O\left(t^{2}\right)$ (see 2.4).
5.2 We want to show that the solution of (3)\&(5) is uniquely determined and depends continuously on A and R. The easiest way is to pass to the corresponding Jacobi equation. For any solution B : I \rightarrow S(E) of (3) let Y : I \rightarrow End(E) be a solution of

$$
\begin{equation*}
Y^{\prime}=B \cdot Y \text {. } \tag{2}
\end{equation*}
$$

Then Y is also a solution of the Jacobi equation
(4)

$$
Y^{\prime \prime}+R \cdot Y=0
$$

and hence Y has a smooth extension to all of R. Now B satisfies (5) if and only if $P_{N} \circ Y(0)=0, \quad P_{T} \circ Y^{\prime}(0)=A \circ Y(0)$. Thus (2) is satisfied by the solution Y of

$$
\begin{equation*}
Y^{\prime \prime}+R \cdot Y=0, Y(0)=P_{T}, Y^{\prime}(0)=P_{N}+A \circ P_{T}, \tag{7}
\end{equation*}
$$

and since $Y(t)$ is invertible for small $t>0$, we have $B=$ $Y^{\prime} \cdot Y^{-1}$. So B is uniquely determined and depends continuously on A and R.
5.3 Now let $R_{1}, R_{2}: R \rightarrow S(E)$ and $A_{1}, A_{2} \in S(T)$. Let B_{j} be a solution of (3)\&(5) with $R=R_{j}, A=A_{j}$ for $j \in$ $\{1,2\}$. Let $D=B_{2}-B_{1}$.

Lemma 5.3 If $R_{1}(0)>R_{2}(0)$ and $A_{1}\left\langle A_{2}\right.$ then $D(t)>0$ for small $t>0$.

Proof. By (5), D has no pole at 0 and $\langle D(0) x, x\rangle \geq 0$ with equality only if $x \in N$. On the other hand, for $x \in N$ we get from (6):

$$
\begin{gathered}
3\left\langle D^{\prime}(0) x, x\right\rangle=\left\langle\left(D^{\prime}(0)+P_{N} \odot D^{\prime}(0)\right) x, x\right\rangle \\
\left.=\left\langle\left(R_{1}(0)-R_{2}(0)\right) x, x\right\rangle\right\rangle 0 .
\end{gathered}
$$

Thus for any $x \in E$ with $\|x\|=1$ we have $\langle D(t) x, x\rangle\rangle 0$ for sufficiently small $t>0$. Since the unit sphere in E is compact, this finishes the proof.
5.4 As above let $t_{j} \in(0, \infty]$ be the first positive pole of B_{j} or ∞ if such a pole does not exist.

Proposition 5.4 If $R_{1} \geq R_{2}$ and $A_{1} \leq A_{2}$, then $t_{1} \leq t_{2}$ and $B_{1} \leq B_{2}$ on $\left(0, t_{1}\right)$.

Proof. Assume first the strong inequalities $R_{1}(0)>R_{2}(0)$ and $A_{1}<A_{2}$. Then $B_{1}\left(t_{0}\right)\left\langle B_{2}\left(t_{0}\right)\right.$ for small $\left.t_{0}\right\rangle 0$, by 5.3. Now the result follows from 2.3. The general case is true by continuity (see 5.2).

6. Volume and distance of totally geodesic submanifolds

6. 1 Let M be a Riemannian manifold and $L \subset M \quad a$ submanifold of codimension ≥ 2. Let $f=d(, L)$ on $M^{\prime}=M \quad 1$ (C(L) U L) as in 1.4(c). Let γ be any unit speed geodesic with $p:=\gamma(0) \in L$ and $v:=\gamma^{\prime}(0) \perp L$. Put $E=\left(\gamma^{\prime}(0)\right)^{\perp}$ and $B(t)$ $\epsilon S(E)$ as in 1.6 . Then B satisfies (5) where $T=T_{p} L, N=$ $\left(T_{p} L\right)^{\perp}$ and where $A=A_{v}$ is the $2^{\text {nd }}$ fundamental tensor of L with respect to $v, i . e . \quad\left\langle A_{v} x, y\right\rangle=-\left\langle D_{x} y, v\right\rangle$ for $x, y \in T$. Thus immediately from 5.4 we get a generalization of Theorem 3.2 to tubes around totally geodesic submanifolds.
6.2 Moreover, from 5.4 we can derive a Bishop-Gromov inequality for tubes around a totally geodesic submanifold $L \subset M$ which extends a result of Heintze and Karcher [15]. To do this, we first must exhibit the model spaces which replace the standard spaces Q_{k} used in 4.3. Let $\pi: E \rightarrow L$ be a vector bundle with
covariant derivative ∇. This determines a smooth decomposition $T_{v} E=V_{v} \oplus \underbrace{}_{V}$ where \underline{V}_{V} contains the tangent vectors of $E_{\pi v}$
 along curves in L ("horizontal vectors"). We will often identify V_{V} and $E_{\pi V}$. Let us denote vertical vector fields by A, B and let X, Y be horizontal vector fields which are "basic", i.e. there are vector fields X^{\prime}, Y on L with $D \pi o X=X ' o \pi, ~ D \pi o Y=Y ' o \pi$. Assume that $\left[X^{\prime}, Y^{\prime}\right]=0$. Since the integral curves of X and Y are parallel vector fields along the integral curves of X^{\prime} and Y ', we get that $[X, Y]$ is vertical and

$$
[X, Y](v)=R^{E}\left(X^{\prime}, Y^{\prime}\right) v
$$

for any $v \in E$, where R^{E} is the curvature tensor corresponding to ∇ (e.g. compare [22], p. 5-41 and [9], p. 54). Moreover, if A is parallel along the integral curves of X ', then $[X, A]=0$. Further recall that $[A, B]$ is always vertical since \underline{V} is integrable.
6.3 Now assume that L is Riemannian and complete with finite volume and E is equipped with a fibre metric (also denoted by $\left\|\|\right.$) such that ∇ is a metric connection. Let $k \in R$ and s_{k}, c_{k} as defined in 2.2. We define a Riemannian metric g_{k} on $E_{k}=$ $\left\{v \in E ;\|v\|<r_{0}\right\}$ with $r_{0}=\pi / 2 v k$ for $k>0$ and $r_{0}=\infty$ otherwise as follows: On the fibres $E_{k, p}$ we take the metric $d r^{2}+s_{k}(r)^{2}\|d \omega\|^{2}$ of constant curvature k where $r(v)=\|v\| \quad$ and $\omega(v)=v /\|v\|$. Further, we declare \underline{H} and \underline{V} to be perpendicular and put $\left\|X_{v}\right\|_{k}=c_{k}(\|v\|) \cdot\left\|X^{\prime}{ }_{\pi V}\right\|$. Then the sphere bundle $S_{k, r}=$ $\left\{v \in E_{k} ;\|v\|=r\right\}$ with the induced metric becomes a Riemannian
submersion over ($\left.L, c_{k}(r) \cdot\| \|\right)$. Putting $B_{k, r}=\{\|v\| \leq r\}$, we get

$$
V(r):=\operatorname{Vol} B_{k, r}=\int_{0}^{r} \operatorname{vol} S_{k, r} d r=\omega_{h} \cdot \operatorname{vol}(L) \cdot \int_{0}^{r} s_{k} h_{k}{ }^{m}(t) d t
$$

where m is the dimension of L and $h+1$ the fibre dimension of E and ω_{h} the volume of the euclidean unit sphere of dimension h. Further, F_{k} has the following properties:

Lemma 6.3 The zero section, the fibres and the immersions F : $\left(-r_{0}, r_{0}\right) \times R \rightarrow E_{k} . F(s, t)=s \cdot a(t)$ for any parallel section a oE E alonq any geodesic $\gamma: R \rightarrow L$ are totally geodesic.

Proof. The zero section is clearly totally geodesic since it is the fixed point set of the isometry $v \rightarrow-v$ on E_{k}. Now choose A, B, X as above such that A, B are parallel along the integral curves of X^{\prime}. Put $\langle,\rangle_{k}=g_{k}$ and D the Levi-Civita connection of g_{k}. Then $\langle A, B\rangle_{k}$ is constant along the integral curves of X, and by 6.2 and the Levi-Civita formula we get $\left\langle D_{A} B, X\right\rangle_{k}=0$. Thus the fibres are totally geodesic. Now choose A, X such that $A \circ f=\partial f / \partial s$ and $X \circ f=\partial f / \partial t$ and $B \perp A, Y \perp X$ with [X'.Y'] $=0$. Then $\left\langle D_{A} X, B\right\rangle_{k}=-\left\langle D_{A} B, X\right\rangle_{k}=0$ as above, and $\left\langle D_{A} X, Y\right\rangle_{k}=0$ by the Levi-Civita formula since

$$
\langle A,[X, Y]\rangle_{k} \circ F=c_{k}(\|F\|)^{2} \cdot\left\langle(1 / s) F, R^{E}\left(X_{\gamma}^{\prime}, Y_{\gamma}^{\prime}\right) F\right\rangle=0,
$$

due to the skew symmetry of R^{E}. Moreover, $D_{A} A \circ F=0$ since the fibres are totally geodesic. Further, since $[B, X]=0$, we have

$$
-\left\langle D_{X} X, B\right\rangle_{k}=\left\langle X, D_{X} B\right\rangle_{k}=\left\langle X, D_{B} X\right\rangle_{k}=y_{2} B\langle X, X\rangle_{k} .
$$

But on any fibre, the gradient of the function $\langle X, X\rangle_{k}$ is radial, and $B \perp A$ is orthogonal to the radial direction along F. Thus we also get $\left\langle D_{X} X, B\right\rangle_{k}{ }^{\circ}=0$. Finally, the horizontal vector
fields X and Y are tangent to the submanifolds $S_{k, r}$ which are Riemannian submersions over L. Thus by O'Neill's formula [18] we have $\left\langle D_{X} X, Y\right\rangle_{k}=C_{K}(\| \pi H)^{2} \cdot\left\langle D_{X}, X^{\prime}, Y^{\prime}\right\rangle \circ \pi$ which vanishes along F since X 'or is the tangent field of the geodesic γ. So F is a totally geodesic immersion.

It follows that perpendicular to any geodesic in E_{k} which starts orthogonally from the zero section L, there is a basis of Jacobi fields J_{1}, \ldots, J_{m+h} and a parallel orthonormal basis E_{1}, \ldots, E_{m+h} with $J_{i}=c_{k} \cdot E_{i}$ for $1 \leq i \leq m$ and $J_{\alpha}=s_{k} \cdot E_{\alpha}$ for $m+1 \leq \alpha \leq m+h$. Thus all "radial curvatures" equal k, i.e. we have $K(\sigma)=k$ for any plane σ containing a tangent vector of a shortest geodesic from the base point of σ to L ("radial plane").
6.4 Let M be a complete Riemannian manifold and $L=M$ a closed totally geodesic submanifold of finite volume with dimension m and codimension $h+1$. Put

$$
B_{r}(L)=\{p \in M ; d(p, L)<r\} .
$$

Let $V_{L}(r)$ and $V(r)$ denote the volumes of $B_{r}(L)$ and $B_{k, r}$ (as defined in 6.3). In the following theorem, the inequality for k=0 was already proved by Kasue [16].

Theorem 6.4 Let $L \in M$ be a closed totally geodesic submanifold of finite volume. Suppose that $K(\sigma) \geq k$ for any radial plane σ. Then for any radii $0<r<R$ we have

$$
V_{L}(r) / V(r) \geq V_{L}(R) / V(R)
$$

Equality holds for some $0<r<R<r_{0}(k)$ if and only if $B_{R}(L)$ is isometric to $B_{k, R}$.

Proof. We proceed as in 4.3. Let E be the normal bundle and S the unit normal bundle of L. Put $e=\operatorname{exple}: E \rightarrow M$. We equip E with the Riemannian metric g_{0} (see 6.3). Let cut(v) for $v \in$ S and $C \subset E$ be as in 4.3, and let $B_{r} \subset E$ be the set of normal vectors of length smaller than r. For a fixed unit normal vector v at $p \in L$ choose an orthonormal basis e_{1}, \ldots, e_{m} of T_{p} and extend it to an orthonormal basis e_{1}, \ldots, e_{n}, v of $T_{p} M$. For a ϵ \{1,....n\} let J_{a} be the Jacobi fields along $\gamma:=\gamma_{v}$ with initial values

$$
\begin{array}{ll}
J_{i}(0)=e_{i}, & J_{i}^{\prime}(0)=0 \quad \text { for } \quad i=1, \ldots, m, \\
J_{\alpha}(0)=0, & J_{\alpha}^{\prime}(0)=e_{\alpha} \quad \text { for } \quad \alpha=m+1, \ldots n .
\end{array}
$$

Define $j_{v}=\left\|J_{1} \wedge \ldots \wedge J_{n}\right\|^{1 / n}$ on $[0, \operatorname{cut}(v)]$ and $j_{v}=0$ on (cut(v), ∞) as in 4.3. Then as before,

$$
V_{L}(r)={\underset{B}{B_{r} \cap C}}_{f} \mid \text { det } D e_{u} \mid d u=\int_{0}^{r} \int_{S} j_{v}(t)^{n} d v d t
$$

On the other hand, if we put $f=d(, L)$ and let $B(t)$ as in 1.3 then $j_{v}^{\prime}=b \cdot j_{v}$ on $[0, \operatorname{cut}(v)]$ with $b=\operatorname{trace}(B) / n$. Due to the curvature assumption and Proposition 5.4, we have $B \leq B_{k}$ where

$$
\begin{aligned}
& B_{k}(t) e_{i}=\left(\log c_{k}\right)^{\prime}(t) \cdot e_{i} \quad \text { for } i=1, \ldots, m, \\
& B_{k}(t) e_{\alpha}=\left(\log s_{k}\right)^{\prime}(t) \cdot e_{\alpha} \text { for } \alpha=m+1, \ldots, n .
\end{aligned}
$$

Then from the 1 -dimensional case of 2.5 we conclude that j_{v} / j is monotonously decreasing in [0, cut(v)] (and constant beyond cut(v)), where $j=\left(c_{k}{ }^{m} \cdot s_{k}\right)^{1 / n}$. The remainder of the proof is strictly analogous to 4.3. The equality discussion leads to the
case $B=B_{v}$ for any $v \in S$ for which the normal exponential map gives an isometry of $B_{k, R}$ onto $B_{R}(L)$. This finishes the proof.

Remark. It follows from the Rauch-Berger Theorem (3.3(b)) that in the situation of Theorem 6.4 with $k=1$ no point can have distance bigger than $\pi / 2$ from L. This corresponds to Myers' Theorem (cf. 4.4). However, the rigidity part of 4.4 (Cheng's Theorem) does not extend to this case: We get equality if M is a rank-1 symmetric space with $K \geq 1$ and L a subspace of the same type. But unless M has constant curvature, it is not isometric to the model space E_{1} as defined in 6.3. We do not know whether there are other cases in which equality holds.

References.

1. J.Cheeger, D.G.Ebin: Comparison Theorems in Riemannian Geometry. North-Holland 1975
2. S.Y.Cheng: Eigenvalue comparison theorems and its geometric applications. Math. 2. 143, 289-297 (1975)
3. M.P. Do Carmo: Geometria Riemanniana. IMPA 1979
4. P.Eberlein: When is a geodesic flow Anosow? I. J. Diff. Geom. 8, 437-463 (1973)
5. J.-H.Eschenburg: Stabilitätsverhalten des Geodätischen Flusses Riemannscher Mannigfaltigkeiten. Bonner Math. Schr. 87 (1976)
6. J.-H.Eschenburg: Local convexity and nonnegative curvature Gromov's proof of the sphere theorem. Invent. math. 84. 507522 (1986)
7. J.-H.Eschenburg, J.J. O'Sullivan: Jacobi tensors and Ricci curvature. Math. Ann. 252, 1 - 26 (1980)

ESCHENBURG
8. L.W.Green: A theorem of E.Hopf. Mich.Math.J. 5, 31 - 34 (1958)
9. D.Gromoll, W.Klingenberg, W. Meyer: Riemannsche Geometrie im Großen. Springer Lecture Notes in Math. 55 (1968)
10. D. Gromoll, W.Meyer: Examples of complete manifolds with positive Ricci curvature. J. Diff. Geom. 21, 195-211 (1985)
11. M.Gromov: Structures metriques pour les varietes riemanniennes. Cedic/Nathan 1981
12. K.Grove: Metric Differential Geometry. Differential Geometry, proceedings Lyngby 1985 (ed. V.L.Hansen), Springer Lecture Notes in Math. 1263, 171 - 227
13. S.W.Hawking, G.F.R.Ellis: The Large Scale Structure of Spacetime. Cambridge 1973
14. E. Heintze, H.C. Im Hof: Geometry of horospheres. J. Diff. Geom. 12, 481 - 491 (1977)
15. E. Heintze, H. Karcher: A general comparison theorem with applications to volume estimates for submanifolds. Ann. Scient. Ec. Norm. Sup. (4)11, 451-470 (1978)
16. A. Kasue: On manifolds of asymptotically nonnegative curvature. Preprint Berkeley, Ca., 1987
17. H. Karcher: Riemannian center of mass and mollifier smoothing. Commun. Pure Appl. Math. 30, 509-541 (1977)
18. B. O'Neill: The fundammental equations of a submersion. Mich. Math. J. 23. 459-469 (1966)
19. W.T.Reid: Riccati Differential Equations. Academic Press 1972
20. W.T.Reid: Sturmian Theory for Ordinary Differential Equations. Springer 1972
21. K.Shiohama: A sphere theorem for manifolds of positive Ricci curvature. Trans. Amer. Math. Soc. 275, 811-819 (1983)
22. Spivak, M.: Differential Geometry, vol. I. - Publish or Perish 1970

Mathematisches Institut der WWU Einsteinstr. 62 D-4400 Münster

Mathematisches Institut der Universitảt Freiburg Hebelstr. 29 D-7800 Freiburg/Br.

[^1]
[^0]: * Supported by DFG

[^1]: (Received November 5, 1986;
 in revised form June 3, 1987)

