
                                         
           

                       

Riemannian Manifolds with Flat Ends

J.H. Eschenburg 1 .  and V. Schroeder 2
a Mathematisches Institut der Universit/it, Hebelstr. 29, D-7800 Freiburg,
Federal Republic of Germany
2 Mathematisches Institut der WWU, Einsteinstr. 62, D-4400 Mfinster,
Federal Republic of Germany

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  573
2. Convex Cutting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  574
3. Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  575
4. Isometric Flat Ends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  576
5. The Developing Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  577
6. Simply Connected Concave Manifold . . . . . . . . . . . . . . . . . . . . . . . .  577
7. The Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  580
8. Flat Ends in Manifolds of Nonpositive Curvature . . . . . . . . . . . . . . . . . . .  585
9. Examples and Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  587

1. Introduction

Let M be a complete noncompact  Riemannian manifold of dimension n>2 .
An end of M is a mapping E, which assigns to each compact subset f~ of
M a connected component E(f2) of M \ f 2  such that E(~2')cE(f2)  if f2cf2 '  (cf.
[E]). An end E is called f lat,  if E(~2) is flat for some compact subset f2 of
M, i.e. the sectional curvature vanishes on E(f2). The main purpose of this
paper is to classify flat ends up to isometry, i.e. we determine the isometry
type of E(f2) for a suitable set f2. An essential step in the classification is the
following result (Sect. 7):

Theorem. Let  E be a f ia t  end o f  a manifold M. Then there exists a compact
subset f2 in M such that E(f2) is isometric to the interior o f  (Y  x N~k)/F where

(a) either k = n -  1 and Y=IR+ = [-0, oo), and F is a Bieberbach group on IR"- 1,
(b) or k = n - 2  and Y is diffeomorphic to IRxlR+,  and F is a Bieberbach

group on IR x IR n- 2 preserving the product structure,
(c) or k < n - 3  and Y is the complement o f  a distance ball in Nn-k ,  and F

is a f ini te  extension o f  a Bieberbach group on IRk.

* Supported by DFG
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This result reduces the classification essentially to a 2-dimensional situation.
The 2-dimensional case itself is nontrivial. Namely, consider a complete regular
planar curve a: IR--, IR ~ with unit normal  vector field n and nonnegative curva-
ture function ~c= (cr", n ) > 0 .  Then g: N x l R +  ~ I R  2 with g(s, t)=a(s)-tn(s) is
an immersion. Let Y(a) be the surface N~ x N +  with the pull back metric. We
will show in Sect. 7 that case (b) of the theorem can be reduced further to
the case Y= Y(a~, R) where ap, R is the cycloide

a~, R (S) = (fl S-- R .  sin s, R- cos s).

Furthermore,  we study flat ends in manifolds which satisfy additional curvature
conditions. In particular, we consider the case that M is a complete manifold
of nonpositive sectional curvature with a flat end E. We represent M as H/F,
where H is simply connected and F~nl(M ). We prove that, besides in a few
exceptional cases (where the global structure of the manifold is determined),
there exists a compact  flat totally geodesic embedded hypersurface T and M
dividing M into the pieces E(T) and M\E(T). The piece E(T) is diffeomorphic
(under the normal  exponential map  of T) to T x (0, oo) and M\E(T) is totally
convex.

The proof  of this result and a discussion of the exceptional cases is contained
in Sect. 8. As a corollary of this description, we see that flat ends in nonpositively
curved manifolds are of type (a) or (b) as described in the Theorem and the
type (c) cannot occur. It  is interesting to remark that  this is also true in the
case of nonnegatively curved manifolds by a result in [SZ].

For hints and discussion we wish to thank Martin Strake.

2. Convex Cutting

A ray in a complete Riemannian manifold M is a unit speed geodesic 7:
[a, o o ) ~ M  such that 7][a,  b] is shortest for any b > a .  The ray y][a ' ,  oo) is
called a subray of 7 for any a'  > a.

Let E be a flat end of M and choose s such that  F,=E(g2) is flat. Let
7 be a ray in M with subray in F and let

by(x) = lira (t-d(x, g(t))
t ~ o O

be its Busemann function (e.g. cf. [EH]). Since ~2 is compact,  b is bounded
on ~2 and so, for sufficiently large 6 > 0, the "horo-ba l l"

B (7) = {x e M; b~ (x) > t~} = U Br (7 (t~ + r))
r > 0

lies outside a neighborhood of f2. So B ( 7 ) c F  because B(7) is connected and
contains a subray of g. Since F has sectional curvature K > 0 ,  the function
by is convex on F (cf. [CG, EH]) and therefore, C(7)'.=M\B(7) is a closed
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totally convex subset of M. Let R(F) be the set of all rays with a subray in
F. Put

Co= (]
7eR(F)

Then Co is a closed and totally convex subset containing f2, and the closure
of M\Co is contained in F.

Lemma. Co n Clos (F) is compact.
Proof. Suppose not. Then there exists a sequence (Pi)i>l in Coc~Clos(F) with
di:=d(po, pi)~oo for any po~f2. Let 7i: [0, d J - ~ M  be a shortest geodesic seg-
ment joining Po to p~. By convexity, 7i lies in Co. Let d be the diameter of
f2. Then 7i(t)EM\Q for t>d. Since 7i(di)=piEF, we get 7i((d, di])cF. Passing
to a subsequence, we may assume that (7~) converges to a ray 7 which lies
in C O and has a subray in Clos(F), hence in F, which is a contradiction to
the construction of Co.

3. Smoothing

We may reparametrize each ray 7~R(F) such that t~ becomes 0. Then the func-
tion f =  sup b~ is convex on F, and we get C o = { f < 0 } .  By Sect. 2, the set

7eR(F)

C O c~ Clos (F) is compact, and similarly Ct n Clos (F) is compact for all t_>_ 0,
where Ct= {f<t}.  The function b is nonexpanding, i.e. [f(x)-f(y)l  <d(x, y) for
all x, y, since the same property holds for the functions by. Therefore t3Ct has
distance at least t from 0Co. Choose t > 0  and e<t/2 so that for some 6~(0, e),
the ball B~(p) is isometric to a euclidean ball for any point p in the compact
set

T={t--e<f<=t+e}cF.

Let (p: N+--*N~+ be a smooth function with (p=const  near 0 and support in
[0, 6] such that

~o(llxll ) dx= 1,
Din

and put for pc  T
foGo)= S f(exppv)q0(Hvll)dv

TpM

where dv is the euclidean volume element on TpM. It is well known that f6
defines a smooth and convex function on T with [ f 6 - f ] < 6 .  In particular, S'

�9 "={f6=t} does not meet 0T, and S' is a smooth hypersurface, since t is not
a minimum value off~. Moreover, S' bounds the set

C={xeT; f~(x)<__t}wC~_, cCt+~,

which is totally convex, by convexity off6 on T and o f f  on M\Ct_~ c F.
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Let O ' = f 2 u ( C ~ C l o s ( F ) ) .  Then G,=E( f2 ' )cF  is a connected component
of M \ C ,  and since C is connected, S:=c?G is a connected component  of S'.

Let N be the unit normal  vector field on S which points into G. Let e:
S x IR+ ~ Clos (G) given by e(p, t )= expp(tNp). This map  is onto, and by convex-
ity of S and nonpositive curvature on G, it is a local diffeomorphism. We claim
that e is in fact a diffeomorphism. Namely, for small t > 0, the immersion et: S ---, G
with et(p)=e(p, t) is an embedding. Let s be the largest value such that e t is
one-to-one for every t ~ (0, s). If s < 0% then es(x ) = es(y) for different points x, y ~ S,
and the tangent hyperplanes at es(x) and es(y) agree. Then the geodesics g~(t)
=e(x, t) and gr(t)=e(y, t ) jo in  at es(X) and form an unbroken geodesic from
x to y which lies outside C. This is a contradiction since C was totally convex.

We may sum up the preceding results by using the following notion: A
complete connected Riemannian manifold-with-boundary is called concave if
the distance function from the boundary  is convex. E.g. the complement  of
an open convex subset with smooth boundary  in IR is concave. In general,
for a concave manifold M the normal  exponential map e: 8 M x I R + - - + M  is
a diffeomorphism. Namely, let g: 1R+--*M be a unit speed geodesic starting
orthogonally from the boundary.  Then for small t > 0  we have d(g(t), OM)=t.
By convexity, this holds for all t E N + .  Thus 0M has no cut locus which shows
that e is a diffeomorphism. The subsets Mt=e(c?Mx It, 0o)) are also concave
manifolds, for all t > 0. Now we obtain from the preceding considerations:

Proposition 1. Let M be a complete Riemannian manifold and E a f iat  end. Then
there is a compact subset f2 in M such that E(F2) is concave.

So from now on we may  forget M\E(s and assume that M is already
a flat concave manifold with compact  boundary which consequently has only
one end E.

4. Isometric Flat Ends

Let M and M' be flat concave manifolds with boundaries S and S'. An isometric
embedding g: M ~ M '  is called simple if g(S) projects diffeomorphically onto
S'. We claim that this is equivalent to saying that f : = g l  S is an isometric embed-
ding preserving the second fundamental  form such that ~' of: S--. S' is a diffeo-
morphism, where ~' is the projection of M' onto S'. Namely, if such an embedding
f :  S--*M' is given, we may define g: M - - , M '  by g(e(x, t))=exp(tNx) where N
is the unit normal  field along f which has positive scalar product  with the
gradient of d ' = d ( ,  S'). Since by convexity d' is increasing along the rays r~(t)
= e x p  (tNx), the mapping g is everywhere defined and one-to-one, by a similar
argument as in Sect. 3. By flatness, g is isometric, since f preserves the second
fundamental  forms with respect to the normal  fields V d ] S and N.

Recall that ends E, E' of two manifolds M, M' are called isometric if E(O)
is isometric to E(f2') for suitable compact  subsets f2 and (2' of M and M'.

Proposition 2. Let M, M' be fiat concave manifolds with compact boundaries
S and S'. Then M and M' have isometric ends if and only if there exists a simple
isometric embedding of M~ into M' for some t >= O.
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Proof Assume that M and M' have isometric ends. Since d = d ( ,  aM) is an
exhaustion function on M, there is an isometric embedding g: Mr -~ M' for some
t > 0  such that M ' \ g ( M  0 is relatively compact. Using g, we may consider Mr
as a subset of M'. Each ray in M' starting orthogonally from aM' intersects
Mr, and once entered, it can never leave Mr again since the function d on
Mr is convex. Moreover, by concavity of Mr, the unique intersection with Sr
=QMt is transversal. So the embedding g is simple. Conversely, if a simple
embedding g: M r ~ M '  is given, then d ' = d ( ,  aM') takes a maximum on g(aMr)
which shows that M\g(Mr)  is relatively compact. Thus M and M' have isometric
ends.

Observe that g: M t ~ M '  is a homotopy equivalence. So it defines an
isomorphism between the fundamental groups, and we get:

Corollary. Let M, M' as above and X,  X'  the universal covers with deck transforma-
tion groups F and F'. Then M and M' have isometric ends if and only if there
exists a group isomorphism O: F--+ U and a simple isometric embedding g" X--+ X '
such that goT=O(7)og for all ?~E

5. The Developing Map

Let X be an n-dimensional flat Riemannian manifold (possibly with boundary)
which is simply connected. For  any small open subset of X, there is an isometry
into the euclidean space JR", and this map can be analytically extended to an
isometric immersion D: X-~lR", the so called developing map [Th] which is
uniquely determined up to an isometry of ]R". Moreover, there exists a group
homomorphism ~p: I ( X ) ~ E ( n )  of the isometry group of X into the euclidean
group, i.e. the isometry group of IR", such that D is equivariant. The subgroup
I+(X) of orientation preserving isometrics is mapped under ~p into the group
E + (n) of proper (i.e. orientation preserving) motions of ~".

In particular, if M is an arbitrary flat manifold and X its universal cover,
then D: X ~IR" is F-equivariant, where F_~na(M ) is the deck transformation
group of the covering X ~ M.

6. Simply Connected Concave Flat Manifolds

Let M be a concave flat manifold with compact boundary. Let X be the universal
covering of M. Then X is also a concave flat manifold. The boundary 0X
is not necessarily compact, but since 0X covers aM, the isometry group of
X acts uniformly on aX. In other words, there is a compact subset B c a X
such that every point x ~ a X  can be mapped into B by an isometry of X.

Proposition 3. Let X be a simply connected concave f iat  manifold such that the
isometry group of  X acts uniformly on ax .  Then X is a Riemannian product
X =  Y• ~k, where Y is either JR+ or 2-dimensional or isometric to ]Rm\C where
C is an open, relatively compact subset of JR", and m >_ 3.
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The proposit ion a consequence of the following two lemmas.

Lemma 1. Let Y be a simply connected fiat concave manifold with compact bound-
ary of dimension m> 3. Then Y is isometric to IRm\c, where C is an open convex
relatively compact subset of IRm.

Lemma 2. Let X be a simply connected fiat concave manifold with noncompact
boundary such that the isometry group acts uniformly on ~X. I f  d i m ( X ) >  3, then
X splits isometrically as X = X'  x IR.

Before we prove these statements, we show that they imply Proposit ion 3:
Let k be the maximal integer such that X splits isometrically as X =  Y x IR k.
This decomposit ion is unique by the de Rham splitting theorem and is respected
by all isometrics of X. It  follows that the isometry group of Y acts uniformly
on ~ Y. If dim (Y)> 3, then ~ Y is compact  by Lemma 2 and the maximali ty
of k. Lemma 1 implies, that  Y is isometric to IRm\C.

Proof of Lemma 1. We consider the developing map  D" y__,iRm, let S=OY.
Then D ] S: S --, IR'~ is an immersed convex hypersurface. By Sacksteder's theorem
[S], this is an embedding and D(S) is the boundary  of a convex body in IR m.
Thus D maps Y bijectively onto the complement  of an open convex subset.

Remark. Since S is compact  and oriented, we can prove Sacksteder's theorem
for a locally convex immersion x: S--+ IRm easily as follows: We replace x with
another  immersion y: S--* IR m which is arbitrarily C~176 to x and all of whose
principal curvatures are strictly positive. Then the GauB map  of y is a local
diffeomorphism onto S" -1  and hence a diffeomorphism, since S" 1 is simply
connected. So the max imum value of each height function (y, v) for v~S "-~
is taken at exactly one point of S which immediately implies that y is an embed-
ding (Hadamard ' s  theorem, see [H, Es]). Therefore, x was already an embedding.

To prove the existence of y, we note that by compactness, the immersion
x is strictly convex near some point. By standard convolution methods like
in Sect. 3, one can replace x with a convex immersion y~ being arbitrarily
Coo-close to x such that the domain of strict convexity is larger. By iterating
this process one obtains y.

Proof of Lemma 2. Since X is flat and simply connected, we have a basis of
globally defined parallel vector fields on X. For  x, y e X  and ve TyX let PxvE TxX
be the parallel t ransport  of v to x. This allows us to define a global GauB
map v: ~X--,  S" - t  as follows. Let N:=Vd, where d is the distance function
of ~X. We fix a point o ~ X  and put v(x)=PoNx, identifying S "-1 with the unit
sphere in ToX.

Claim ( I ) .  Either, the image of v is open or there exists a complete geodesic
g: IR--* X in X \ O X  such that  d is constant along g.

Proof of (1). Let Po Ny be a point in v (~ X) for y e S. Let x = expy Ny, thus d (x) = 1.
Let QT= {re TxXI (v  , N~)=0}. If h is a geodesic with h(0)=x,  h'(O)eQ r, then
(doh) '(0)=0 and by the convexity of d, doh(s)>doh(O)=O for all s t i R  and h
does not reach the boundary  of X. Thus expx is defined on QT; let Q = e x p ~ Q  r.
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We claim that Q is isometric to ~ " - 1  and totally convex, i.e. every geodesic
in X joining two points of Q is contained in Q. Note that expx: Qr--*X is
a totally geodesic immersion. Let D ' X ~ I R "  be a developing map, then also
D o expx: Qr_~ N ,  is a totally geodesic isometric immersion. Thus D (Q) is a hyper-
plane in IR n and thus isometric to N~ "-1 and totally convex. We distinguish
the following cases:

(a) there exists a geodesic ray h : lR+-- ,Q with h (0 )=x  such that doh is
bounded. Since (d oh)'(0)=0 and d is convex, this implies that d is constant
on h. Thus the points h(i), ieN,  have bounded distance 1 from gX. Since the
isometry group of X acts uniformly on 0X, there are isometries ?i such that
7~ h(i) are contained in a fixed compact set. Since d is invariant under 7i, the
sequence ?i h has an accumulation geodesic g with d constant on g.

(b) If do h is unbounded for all such rays h, then, due to the convexity of
d, there exists a constant r > 0  such that d (y)>2  for all y~Q with dist (x, y)>r.
By continuity there exists a neighborhood U of Nx in the unit sphere of T~X
such that for u~U and a unit speed geodesic h with h(0)=x,  h'(0)A_u we have
doh(s)>= 1/2 for O<s<-r and doh(r)> 3/2.

By convexity, h(s) cannot reach the boundary for s>0 .  For  u~U let u •
be the hyperplane in Tx X orthogonal to u. As above, Q (u)= exp~ u • is a totally
geodesic hyperplane isometric to lit"-1 with d(x)= 1 and d(y)> 3/2 if y~Q(u)
and dist(x,y)>r, thus d assumes a minimum in say z~Q(u). It follows that
Nz is normal to Q(u) which means u = P~Nz. But Nz= P~N~(z) where n ' X  ~ ~?X
is the orthogonal projection. Therefore u=P~N~(z) and thus Pou=PoN~(~) is in
the image ofv  for all ueU.

Claim (2). If dim (X) > 3, then v (~X) ~ S"- 1 has measure 0.

Proof of (2). Note that 0X is a convex hypersurface in the flat manifold X.
The Gaug equations imply that the intrinsic sectional curvature of 0X is nonne-
gative. Since ~X is noncompact  but the group of isometries operates uniformly,
~X contains a globally minimizing intrinsic geodesic line. By Toponogov's  split-
ting theorem, 0X splits isometrically as a product Y x ~ .  We claim that the
GauB-Kronecker curvature of 3X, i.e. the determinant of the second fundamental
form, vanishes everywhere.

Let x~OX. Since 0X splits intrinsically and dim (~X)>2, there is a 2-plane
a~  TxOX such that the intrinsic curvature K(o-) vanishes. The Gaug equations
then imply det (b l~ )=0  for the second fundamental form of aX. Thus there
exists a vector vsa with b(v, v)=0. Since b is positive semidefinite, it follows
that det (b)= 0. The Gaug-Kronecker  curvature is the determinant of the differen-
tial of v. It follows that the image v(~?X)c S ~- ~ has zero measure.

Lemma 2 now follows from (1) and (2) by the following result:

Claim (3). If there exists a complete geodesic g ' N - ~ X  in the interior of X
such that d is constant on g, then X is isometric to X' x IR.

Proof of (3). Let v=g'(0), then we consider the parallel vector field V on X
defined by V(x)=P~v. For  x ~ X  let g~ be the geodesic g~(s)=exp~sV(x), thus
the geodesics g~ are the integral curves of V. Let

A = { x ~ X \ ~ X [ g x  is defined on lR and d is constant on g~}.
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Then A is not empty by assumption and A is clearly closed. We claim that
A is open. Let x ~ A  and gx the corresponding integral curve of V with d o gx_= a
>0.  Let J(s) be any normal  parallel vector field along g~ with I]JII <a .  Since
X is flat, h (s )=exp J(s) is a complete geodesic in X \ O X ,  which is an integral
curve of V. Since ]]Vdll<l,  we have doh(s)<2a and thus d is constant on h
as a bounded convex function. It follows that  A is open. Thus A = X \ ~ X  and
X \ O X  splits an euclidean de R h a m  factor. This splitting extends to X.

7. The Classification

As mentioned in the introduction, any regular complete curve o-:lR ~ ~_2 with
unit normal  vector n and curvature ~ =  (o", n)/llo'll 2 >0 defines a flat concave
metric on N x IR+, induced by the immersion

e : : ~ x l R +  ~ I R  2, e(s, t)=c(s)-tn(s).

Let Y(a) be the manifold N x IR + with this metric. The isometrics of Y are
those parameter  transformations ~k" N ~ • which preserve length and curvature
of o-, If Y is an arbitrary simply connected flat concave 2-dimensional manifold,
then 0 Y is isometric to N. Let D: Y--+ N 2 be the developing map. Then a = D [ ~ Y
is a complete curve and Y= Y(a).

In particular consider the cycloide a~: IR---, IR 2,

ar (s) = cry, R (s) - ( / ? s -  R sin s, R cos s),

for some f l > 0  and R~>fl. Let Y~= Y~,R= Y(O-e,R) and Y~ the upper halfplane.
Reparametrizing a~ as 68 (u) = a s (u/fl) we see that Y~ - ,  Y~ as fl ~ oo.

The isometry group of Yo and Y~o consists of all translations and reflections
of the first coordinate while I(Y~) for 0 <  fl < oo contains only those which pre-
serve the lattice 27cZ. In the latter case, the fixed points of any reflection is
rck for some integer k, and the reflections with even and with odd k belong
to two different conjugacy classes.

Theorem 1. Let M be a complete manifold with a f iat  end E. Then there exists
a compact set • in M such that E(s is isometric to the "standard end "" (Y  x IRk)/F,
where

(a) either Y is the complement of a closed metric ball of radius R around
0 in ]R m, and m = n - k > _ 3 ,  and F is a discrete uniform subgroup of O(m)x E(k),
in particuliar F is a finite extension of a Bieberbach group of rank k,

(b) or Y=Yp, R for 0 < f l < o o  and F is a uniform discrete subgroup of I(Yp)
x E(n--2);  in particular F is a Bieberbach group of rank n-- 1,

(c) or Y= [0, oo) and F is a Bieberbach group of  rank n -  1.
Moreover, two ends are isometric if and only if these standard ends (for

suitable R )  are isometric manifolds.

Proof. By Proposit ion 1, we may assume that  M is flat and concave. Let X
be its universal cover and F the deck transformation group. By Proposit ion
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3, we have an isometric splitting X = Y x ]Rk which is preserved by F, and three
cases m a y  occur :

Case 1. Y = I R + .  Then  we get Case (c) of  the theorem.

Case 2. Y=IRm\C, where C is an open, relatively compact ,  convex subset of
~ "  with m > 3. Let B be the smallest open distance ball in IR m conta ining C.
Since B is uniquely determined, it is invariant  under  all isometrics of  Y, i.e.
under  all isometries of  IR" leaving C invariant.  So X'==OR"\B)x IRk is a F-
invariant  subset of  X conta ined in X, for some t > 0, and (X \X ' ) /F  is relatively
compact .  I f  ~ is the closure of  this set, then E(Q) is as claimed in Case (a)
of  the theorem.

Case 3. Y is a 2-dimensional  concave, flat, simply connected manifold. Hence
Y= Y(a) for some complete,  locally convex curve a:  IR--+ IR 2. Moreover ,  F acts
as a Bieberbach group  on 0 Y x  IR n-2 and preserves the splitting, i.e. F c I ( Y )
x E ( n - - 2 ) .  Let F 1 be the project ion of  F into I (Y);  this acts uniformly on 0Y.

If F, is not  discrete, then o- mus t  have constant  curvature,  hence Y=  Yo or
Y =  Y~o, and we get cases (b) or  (c) of  the theorem. So we may  assume that
F~ is discrete and hence generated by a t ranslat ion 7o and possibly a reflection
71 of  0 Y=IR.

Let D: Y ~ N  2 be an or ientat ion preserving developing map  such that  cr
= D ] 0 Y. Let ~o: F~ --+ E(2) be the corresponding homomorph i sm.  Put  Ao = ~o (7o)
and Aa=q~(71) if 71 is present. Ao is a p roper  mot ion  and A1 a reflection.
N o w  we have

o - o 7 1 - - A l o O -

for i--  0 and possibly i = 1. We may  assume that  ~ is parametr ized by arc length
in such a way that  7o is given by the parameter  shift u ~ u + o ~  for some c o > 0
and 71 (if present) by the reflection u ~ - u .

Consider  the following two invariants of  the curve ~ and the t ranslat ion
70" first the total curvature  per period

" i= r(o-, 7o) = S ~c(u) du = lim (co/2r) ~c(u) du
0 r ~ ~ 1 7 6  - r

where ~ =  (o-", n )  is the nonnegat ive  curvature  function of  a, and second the
displacement per period " o n  the long r u n ' :

6 = 6 (o-, 70) = lim (o)/2 r) II o- ( - r) - ~ (r)[I-
~'--+ oo

Let e e l 0 ,  2re) be the angle between o-'(0) and a'((o). Then  t = 2 r c k + c ~  for some
integer k > 0. If  r = 0, then o- is a straight line and we get case (c) of  the theorem.
So we may  assume r > 0. We will distinguish between the cases 6 = 0 and 6 > 0.

Case (i). 6 = 0 .  Then  A o is a ro ta t ion  by the angle c~. We may  choose the
developing map  D in such a way that  the fixed point  of  A o is the origin. Then
the whole curve o-(N) has finite distance R > 0 f rom the origin. If  A 1 is present,
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it leaves invariant the ball B=BR(0). Thus its axis passes through 0 and we
may assume that A 1 is the reflection at the x2-axis.

Case (ii). (5>0. Then A o is a translation, and (5 its displacement. So we have
c(=0. By choice of D we may assume that A o ( x ) = x + b e  ,. If A1 is present,
it satisfies A I A o A I = A o  ~I, and so its axis is parallel to the x2-axis. Thus we
may assume that A1 is the reflection at the x2-axis.

In both cases, if A~ is present, then o-(0) lies on the x2-axis and a ' (0 )=  +_e~.
If A~ is not present, we may assume 0 ' (0)= - e ~  by choice of the parameter
of a. Moreover,  in case (ii) we may assume o-(0)=0, since the developing map
can still be changed by a translation of IR 2.

Let 0(7o) be the translation s ~ s + ~  in IR and 0(71) the reflection s ~ - s .
This defines a homomorph i sm 0: F~ ~ E(1) which we extend to a homomorph i sm
0: F ~ E ( 1 ) x  E ( n - 2 )  by putting 0 (7) = (0 (71) , 72) for any 7~--~(71, 72) e/~" Now the
following lemma shows that we end up with Case (b) of the theorem:

Lemma 1. The end of M is isometric to (Y~ x IR"- 2)/0 (F), where fi = g)/z.
Proof of  Lemma I. Let R ' > 0  be so big that a([0, o3]) is contained in BR,(O)
and put R = R ' + 2 z f i .  Then aBI [0, 2~3 and its tangents lie outside BR,(O ) where
a~ = a~, R is the cycloid defined above. In the following, we will assume # ( 0 ) =
- e l .  In case that a ' (0 )=  + e l ,  we must replace a~(s) with a~(s-rc) in the subse-
quent argument. Recall that the developing map of Y= Y(a) was given in coordi-
nates by the immersion e: l l  x IR+ ~ I R  2 with

e(u, t) = a(u)-- tn(u).

We will show that the rays r,  with r,,(t)=e(u, t) intersect ap transversally at
r,(t(u)) for some smooth, co-periodic function t : ] R ~ I R ,  and we have (7(u)
,=e(u, t(u))=ar for some parameter  t ransformation s: IR ~ I R  with s(Ti(u))
= 0(Ti)(s(u)) for i =  0 and i =  1 (if necessary).

Consider first the case 6=0 .  Then all rays ru start inside B=BR(0 ) and
so they intersect 0B exactly once and transversally, say at ru(t(u)) with t as
above. Thus (7(u)= a(u)- t (u)  n(u) is a parametrizat ion of the circle OB and hence
(7(u)=(r,~(s(u)) for some parameter  transformation s: 1R~tR. Observe that (7'
=(1 + ~ c t ) a ' - t ' n  and therefore ((7', a ' ) >  1. Thus on each finite interval, the
total curvatures of a and (7 differ by less than ~ which implies z((7, 7o)=r(a ,  7o)
='c. Since a~ is parametrized by total curvature, we have s(u + o3)= s(u)+ T and
moreover  s ( -  u) = - s (u).

Now we assume (~ > 0 and hence z = 2n k for some integer k > 0. Then the
rays r,, for 0<_u_<o3 have only transversal intersections with a ~ l [ - 2 z ,  2z].
Recall that we have assumed a ( 0 ) = 0  and a ' (0 )=  - -e  1. Then e(0, R)=a~(0).  By
the implicit function theorem, there is a maximal value u~e[-0, o33 such that
there are smooth functions s: [0, u~] ~ [ 0 ,  2z] with s'>O and t: [0, u~] ~ I R +
such that (7(u)".=e(u, t(u)) = a~(s(u)) for 0 _< u < u 1 .

If u~ <co, then s(u~)=2r,  by maximality of ul .  But this is impossible since
the total curvature of a 110, Ul] is not bigger than ~ and differs from that of
(7 by less than ~ (see above), but on the other hand, the total curvatures, of
ap I [0, 2~] and hence of (7[[0, ul] are 2~, a contradiction.
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Thus  we have u 1 = O. Let  sl = s(co). As above,  the total  curvatures  of  6110, o ]
and o-p[ [-0, s l ]  differs f rom z = 2 n k  by less than  re. Therefore,  the n u m b e r  of
intersect ions of o-~ ] [0, Sl] with the x l -ax is  lies between 2 k - 1  and 2k + 1. More -
over,

ap (s 1) = a (co) = 6 e 1 + t (co) ez,

and  since t(co)>0, the n u m b e r  of these intersections is exactly 2k. So we get
that  z-n/2<Sl<=Z+n/2. Since <a~(sl), e l ) = 6 = f i z ,  we mus t  have  s l=z  and
t(co)= t(0). Thus  t can be extended to a s m o o t h  o -per iod ic  funct ion on N and
s gets a p a r a m e t e r  t r ans fo rma t ion  with s (u + co) = s (u) + z and  s ( -  u) -- s (u).

To  sum up, the m a p  f :  IR x IR" - a ~ N x IR+ x N " -  2 with

f (s, v)=(u(s), t(u(s)), v)

gives a 8 -1 -equ iva r i an t  i sometr ic  embedd ing  of 0 (YaxIR  n-2) into X=Y(a )
x ~ n - 2  preserving the second fundamenta l  form, where u(s) denotes  the inverse

funct ion of s(u). Thus  we finish the p r o o f  of  L e m m a  1 using the corol lary  of
Propos i t ion  2.

The  p r o o f  of  the t heo rem now is finished by the following l emma:

L e m m a  2. Let M = X / F  and M'= X'/F' be standard ends (X, X' depending on
constants R, R'> O) as defined in the theorem. I f  M and M' have isometric ends
then they are isometric manifolds for suitable R and R'.

Proof If  M and M '  have isometr ic  ends, then there is a s imple isometr ic  embed-
ding g: X ~ X '  (possibly after enlarging the cons tan t  R of X) which is equivar iant
with respect  to an i s o m o r p h i s m  ~: F - ~  F '  (ef. the corol lary  of Prop.  2). We
have to show tha t  X = X '  and tha t  O is a conjuga t ion  in I(X).

Case (c). X'  = [R' ,  oo) x IR n- 1. Then  g(~X) is the g raph  of a F ' -per iodic  convex
funct ion on IR n- 1 which mus t  be constant .  Hence  X = JR, oo) x IR"-  1 and  F = F'.

Case (a). X'=(IRm\BR,(O))xlR k. Then  X is of the same type for topological
reasons.  Since X and  X' are open  subsets of lR" = I R "  x IR k, the isometr ic  embed-
ding g : X  ~ X '  extends to an i somet ry  of N "  which preserves the splitting, i.e.
g=(gl, g2) with g l e E ( m )  and g2eE(k), and we have  O(7)=goyog -1 for all 7eF.
if gaeO(m),  then ~ is a conjuga t ion  in I(X) and we are done. So suppose  tha t
g l - l ( 0 ) = v ~ , . m .  Then  v is a fixed vec tor  of  O(7)leO(m). Hence  0(7) commute s
with the t rans la t ion T. sending x to x + v. Put t ing  g ' =  g o T~ e O (m)x E(k)= I(X),
we have  0 ( 7 ) = g ' o T o g ' - ~  for all ~ E

Case (b). X '= Y 'x  N "-2  where Y'= Yp,,n,. Then  the only case which is left
for X is X = Y x l R  n-2 with Y=Yz, R for some f ie[0 ,  00). Since IR " - a  is the
euclidean de R h a m  factor  in X and X' ,  the isometr ic  embedd ing  g splits as
g = (gl, g2) where g l :  YB ~ YB, is an isometr ic  embedd ing  and g2 eE(n-2) .

F o r  an a rb i t ra ry  p lanar  curve a:  IR--*IR 2 with no rma l  vector  field n and
for any  p a r a m e t e r  shift y (s)= s + co~ preserving length and curva ture  of  a, we
have  defined the total  curva ture  and  the d isp lacement  " o n  the long r u n "  per
period,  z(a, 7) and  6(a, ~). Moreover ,  if ~= a - t n  for some co~-periodic funct ion
t: IR- -+R+,  then z(cr, 7 ) = r ( a ,  ~) and  6(a, 7)=6(~Y, 7). If  7 is a t rans la t ion of the
cycloid a~, then z(ap, 7) = co7 and ~5(a~, 7) = fl'co~-
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Now let D be the developing map of Y' such that D LOY'=crr By
assumption, we have an isometric embedding g: X--+ X' which is equivariant
with respect to an isomorphism 0: F ~ F '  and which splits as g=(g l ,  gz) with
g2eO(n-2), where gl:  Y--" Y' is an isometric embedding. Let 6=Dog I I~Y. Then
6=Aooa, R for some ACE(2). Moreover, ~7 is a graph over o, i.e. ~ is a reparame-
trization of 6 = o - - t n  where t is some positive function.

For  i=  1, 2, let F~ be the projection of F c I ( Y ) x  E(n--2) into the i th factor,
and similarly F{. Since 0(7)=govog-1  on the open subset U= g(Int (X)) of X',
we have the splitting

on U. This defines a splitting 0=(91,  02) with isomorphisms 0i: F~--. F{. Since
02 is the conjugation with g 2 e E ( n - 2 ) ,  it suffices to prove that fl'=fl and that
01 is a conjugation in I(Ya).

Note that F'I~ I(Y')~ E(1) contains an abelian translation subgroup of index
at most 2. Let 7eF'~ be any translation u~u+co~ where co~=z(~,7 ). Then t
is co~-periodic, and therefore z(a, 7)=r(~Y, 7)=~(~, 0~-1(7)), and similar, 6(a, 7)
=6(6, 0[  1(7)). So it follows that fl'=fl and 0i-1(7)= 7.

If F'~ contains only translations, we are done. So suppose that there is a
reflection 71 in F1. Then 0;-t(71) is also a reflection. We must show that 0~ 1(71)
=77~7 -1 for some translation 7: then 0~ -1 is the conjugation with 7 since F[
is generated by 71 and the translation subgroup. If fl=O, this is clear since
I(Yo)=E(1) and any two reflections in E(1) are conjugate under a translation
in E(1).

Now let us suppose f l>0.  After possibly reflecting the parameterization of
6=AoOp, R, we may assume that A is a proper motion. Since O-=O'a,R, and

(which is ~7, up to reparametrization) are invariant under the same group
of planar translations, A must be a translation, too.

Let u=krc be the fixed point of the reflection 71 of the parameter of a.
The unit tangent vector of o- at u is - - ( -  1) k el, and the sign distinguishes between
the two conjugacy classes of reflections of a. Let n and fi be the unit normal
fields of the curves o and ~ which point to the convex side so that the correspond-
ing curvatures are nonnegative. The ray r,(t)=a(u)--tn(u) leaves a towards
the concave side and meets c7 from the convex side at 6(u)=~(s(u)). Moreover,
r, is fixed by the planar reflection A 1 = qo(71), where q0: FI' ~ E(2) is the homo-
morphism corresponding to the developing map D. So 0i-~(71) is the reflection
at s(u) and the intersection of r, and ff is orthogonal. Hence n(u)=~(s(u)) and
therefore also the corresponding unit tangent vectors agree. This shows that
the reflections 71 and 0~-1(71) are conjugate under a translation in I(Ye) which
finishes the proof of the lemma and of the theorem.

Finitely, let us classify the 2-dimensional flat ends Y/E In this case, F is
an infinite cyclic group F(co), generated by the translation 3)~: s --+ s + co for some
co>0. The case (a) of the theorem does not occur, hence Y= Yp for some fie
[0, co]. If fl + 0, o% we have co = 27rk for some integer k > 0. Therefore we get:

Corollary. 2-dimensional flat ends have the following different isometry types:
(a) Yo/F(z) for ze(0, co) (" truncated cones "),
(b) Y~/F(2~zk) for keN, /~e(0 ,  co) ("generalized cylinders "),
(c) ]R+ x (lR/co. Jg) for co > 0 ("cylinders ").
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Remark. It  is now easy to describe the ends of complete metrics o n  ]R 2 with
K > 0 or K < 0 which are flat outside of a compact  set. The Gaul3-Bonnet theorem
implies that a convex curve surrounding the non-flat region has total curvature
v<2rc  (resp. v>2rc) where equality implies global flatness. If  Yp/F(co) is the
standard end of this metric as described in the corollary above, we therefore
must have ~(ap, 7~)<2~  (resp. >2~z). It  follows in the case K > 0  that only
the truncated cones with r < 2 ~  and the cylinders can occur. For  K < 0 ,  the
only possibilities are the truncated cones with z > 2 7c and the generalized cylin-
ders with k > 2 .  Note  that in the case k = l  we have total curvature 2re, but
this generalized cylinder is not isometric to the end of the euclidean plane.
Using polar  coordinates, one can explicitly construct the possible types.

8. Flat Ends in Manifolds of Nonpositive Curvature

Let V be a complete Riemannian manifold of nonpositive sectional curvature
with a flat end E. We represent V as H/F, where H is a complete simply connected
manifold and F,,~rcl(V ) the group of deck transformations (compare [EO,
BGS]). H is diffeomorphic to IR" and convex in the sense that any two points
in H can be joined by a unique geodesic.

It turns out that either E has a standard description or we are in a special
situation, where we control the global structure of the manifold. We first describe
the special cases:

Type A: H splits isometrically as H '  x lR "-2 with a twodimensional factor
H '  which is flat outside of a compact  set. F is a Bieberbach group of rank
n - 2 ,  every 7~F splits as (71,72) with 7~cI(H') ,  72~E(n-2 ) .  All elements 71
are elliptic with a common fixed point in H '  and the group formed by all
Y2 operates freely with compact  quotient on IR"-2.

Type B: H is isometric to H ' x  ~ " - 2  and H '  is flat outside of a horoball
BcH' .  F is a Bieberbach group of rank n - 1  and every 7EF splits as (h ,  72).
The elements 71 leave B invariant and F operates with compact  quotient on
0B x ~ n - 2 .

Type C: There exists a totally geodesic hyperplane S in H isometric to
IR" 1 invariant under E The group F operates with compact  quotient on S,
in particular F is a Bieberbach group of rank n - 1 .  There exists an element
7EF such that  7 interchanges the two components  of H\S.  Furthermore H
is flat outside of the a distance tube of radius a around S for some a > 0.

For  a more detailed description of manifolds of type C see Sect. 9.

Theorem 2. Let V=H/F be a complete manifold of nonpositive curvature with
a flat end E. Assume that V is neither flat nor of type A, B, C. Then we have

(i) There exists a totally geodesic compact flat hypersurface T dividing M
into the pieces E(T) and M\E(T) .

(ii) The closure of E(T) is diffeomorphic under the normal exponential map
to T x l R + .

(iii) The closure of E(T) is isometric to Q xlR"-2/A, where Q is a closed
convex 2-dimensional subset of H with totally geodesic boundary OQ isometric
to IR. There exists a number a > 0 such that Q is flat outside of the a-distance
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tube of OQ. A is a Bieberbach group of rank n -  1 which operates with compact
quotient on ~?Q x IR,- 2.

Proof. By Proposit ion 1, there exists a compact  set f2', such that E(f2') is isometric
to the interior of a concave flat manifold M'  with compact  boundary.  Thus
E(f2') contains the concave flat manifold M=M'~ where t > 0 .  Note  that M?
is the closure of E(f2) for a suitable compact  set f 2 ~ 2 ' .  Let re: H ~  V be the
universal covering of V, and let W be a connected component  of 7r- 1 (M) ~ H.
Then W is precisely invariant under the operation of F, i.e. either 7 W =  W or
?Wc~ W = 0  for all 7~E We identify M with WIFe, where Fw={7~F[?W=W}.
Then ~]w: W ~  M is a covering map.

Let 0 : X  ~ M  be the universal covering of M. Then we may lift 0 to a
covering ~o: X ~ W. Let X = X '  x IRk the splitting of the euclidean de Rham fac-
tor. For  p ~X', (p: {p} x lRk~  H is an isometric immersion, and thus ~0 ({p} x IR k)
is a k-flat in H, i.e. a totally geodesic submanifold isometric to IRk. Note  that
~o({pl} x IRk) and ~0({p2} x IR~) have bounded distance from each other and thus
are parallel by Eberlein's "Sandwich L e m m a "  [BGS, 2.3].

It  follows that cp (X)cP  v where Pv is the set of all parallels to F [BGS,
2.4]. PF is a closed convex subset of H which splits as P~; x IR k and is invariant
under Fw. Thus the map  ~0 : X - ,  PF which is a covering onto its image induces
an isometric map  ~0': X'--*Pi which is also a covering onto its image W'
= q~'(X') c P;.

By Proposit ion 3, X'  is either the complement of a relatively compact  convex
set in IR" or of dimension < 2. In the first case we can extend ~o': X'--* Pi
to an isometry q~: I R m  p~ by [BGS, Corollary 2, p. 67]. Thus P~ is flat and
hence V is also flat. Hence we can assume that dim X ' =  dim P~ < 2.

We first consider the case dim X'  = 2. Note  that W' is a concave 2-dimensional
flat manifold with boundary  3 W'. We consider the case that a W' is diffeomorphic
to S 1. Then one proves easily that W' is the complement  of a convex subset
of P~ and P~ is complete without boundary.  It  follows that H itself splits isometri-
cally as H ' x  IR"-2 and H '  is flat outside of a compact  set. We may assume
that H '  is not flat. Then there exists a smallest ball in H '  containing the points
with negative curvature [BGS, p. 10]. The center o of this ball is fixed by all
isometrics of H'.  Thus every 7~F splits as (71, ?a) with an elliptic isometry 71.
The group F leaves {o} x IR "-2 invariant and operates with compact  quotient
on this IR"- 2 since H/F has a flat end. Thus V is of type A.

We now assume that ~W' is diffeomorphic to IR. In this case, q0: X ~ Pv
and (p': X ' ~  Pi are injective and we can identify X with W and X'  with W'.
F~ operates with compact  quotient on 0 W =  ~ W' x IR"- 2. Hence Fw is a Bieber-
bach group of rank n -  1. Every ?eFw respects the splitting of OW and leaves
Pz =PF X IRn-2 invariant. It follows that there exists a nontrivial isometry c~ of
P~ which leaves W' invariant and translates the boundary  ~ W'.

Let Q be the convex hull of W' in P~, i.e. Q is the smallest closed convex
subset of P~ containing W'. We identify 0 W' with IR. Then let g~ be the geodesic
in P~ from i to - i .  Then we have the following alternatives:

(i) g~ has an accumulation geodesic g. Then it is not difficult to prove that
Q has boundary OQ=g.  Fur thermore  g is an axis of the isometry ~ and the
distance to W' is bounded on 0Q.
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(ii) The sequence gi diverges. Then larger and larger distance ball of a point
o~SW' are contained in Q. Then Q is complete without boundary.  The isometry

is not hyperbolic, since any axis of c~ would bound a convex halfspace contain-
ing W'. It  follows that c~ is a parabolic isometry and one verifies that V is
of type B.

It  remains to consider the case (i). Note  that Q x 11l " .2  is the convex hull
of IV.. Let S = 8 ( Q  x IR"-Z), then S is a totally geodesic hypersurface isometric
to ~,n-1. There exists a constant a > 0  such that dist(p, W)<__a for all peS.
Let C be the connected component  of H \ S  which contains W. Thus C is the
interior of Q x IR ~- 2.

We claim that S is precisely invariant under F, i.e. either 7S n S = 0  or 7S = S.
Let therefore 7~F such that 7 S ~ S  is not empty. Then the Hausdorff  distance
between S and 7S is infinite and therefore there exists a point pES such that
7p~C with dist (TP, S)>2a. Let qe  Wwith  dist (p, q)<=a. Then dist (p, 7q)<a and
hence 7q~C and dist(Tq, S)>a, thus ?qeW. Therefore 7Wc~W is not empty
and since W is precisely invariant it follows that 7 W= W. Then 7 leaves also
the convex hull of W and S invariant.

Let F= = {7 e F 17 S = S}, then F~ c I;. Let us assume that there exists an element
~ F=\Fw. Then e interchanges the components  of H\S.  In particular, the compo-

nent c~C is isometric to C. Let 7 be an arbitrary element of 7- Then 7 W is
either contained in C or in eC. Thus 7 W =  W or 7 W = e W .  It follows that 7eFw
or C~TEFw. So Fw is a subgroup of index 2 in 7 and F=F=. It  follows that  V
is of type C.

If F~ = F= then let T= 8 S/Fw. Then Q x IR=- 2 / I "  w is diffeomorphic to T x [-0, oo).
One easily checks now (i), (ii) and (iii) of the theorem.

At last it remains to consider the case that dim (X')= 1. In this situation,
W is isometric to IR "-1 x lR+ .  The group F w operates with compact  quotient
on 8 W =  IR"-1 and S = 0 W is precisely invariant with F~ c F=. If Fw and F= are
not equal, the H is fiat everywhere. If Fw=F=, then IR "-1 xlR+/Fw is indeed
isometric to T x l R +  with T=S/Fw.

The above theorem implies in particular that the isometry type of a fiat
end in manifolds of nonpositive curvature is restricted:

Corollary. Let V be a complete manifold of nonpositive curvature with a fiat
end E. I f  V is not flat, then there exists a compact set (2 in V such that E(g2)
is diffeomorphic to T x IR + where T is a compact flat space form.

Remark. We observe that any flat end in a manifold of nonpositive curvature
which is neither flat nor of type A, B, C has the topological type of an end
of finite volume in a manifold of constant negative curvature.

9. Examples and Remarks

1. To construct nonpositively curved manifolds with flat ends, we start with
a complete noncompact  hyperbolic manifold M ( K - - -  1) of finite volume. Let
E be an end of M. For  suitable f2, E((2) has topologically the structure T x [-0, oo)
where T is a compact  spaceform and the metric is a warped product  ds 2
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= e - 2 t d g Z q - d t  2 where da  2 is a flat metric on T (cf. [E]). We produce a new
metric d s 2 = f  2 d a 2 + d t  z on the end, where f is a convex function which coin-
cides with e - '  for small t and is a positive constant for t large. By the warped
product  formula [BO, 7.7] the new metric has nonpositive curvature and by
construction the end is finally isometric to T ' x  [0, oo) for a flat spaceform T'.
Thus the end is of type (c) of Theorem 1.

Let us consider the universal covering X = ] l " - I  x [-0, oo) of this end with
deckgroup F. If F respects a factor of IR"- 1 (e.g. this holds if F contains only
translations), then X splits F-invariantly as IR"-2 x ] l  x [0, o0). Now we can
change the metric on the factor IR x [0, oo) such that the new metric coincides
with the old one near the boundary  and is flat outside of a distance tube of
the boundary. We can do this in a way that all elements ~iEF operate as isome-
tries with respects to the new metric. Thus we can open the end in a two-
dimensional subspace and obtain a flat end of type (b).

2. Nonpositively curved manifolds of type C: Consider a metric of nonposi-
tive curvature on S ~ x [0, oo) which is flat outside of a compact  set and isometric
to S~ x [0, 1) near the boundary  where S~ is the circle of length e. Let W be
the Riemannian product of this manifold with S 1. The boundary  of W has
a colloring isometric to [0, 1)x S~ x S 1. Let W' be an isometric copy of W.
We glue W a n d  W' along the boundaries interchanging the S~-factors. We obtain
a complete graph manifold V' of nonpositive curvature (constructions of this
type are due to G r o m o v  ([G], also compare [E], [Sc]). One checks that V'
allows an isometry of order 2 without fixed points which leaves the common
boundary  torus S~ x S 1 invariant interchanging its factors which maps W onto
W'. Dividing V' by this involution we obtain a manifold of type C.

We can construct type C manifolds more generally in the following way:
Let F be a Bieberbach group on ] l " -  ~ such that there are parallel 1-dimensional
distributions D 1 and D2 with yDi=D ~ or yD~=Dj for all yEF. We consider
the operation of F on H = I R  " - * x  ] l  with y(x, t)=(7 x, P(Y)" t) where p(7)= 1
if 7 preserves the distributions and p(y)=  - 1 ,  if y interchanges the distributions.
The upper halfspace H+ splits as N " - 2 x  ] l  x [0, o0) where the ] l - factor  corre-
sponds to the distribution D 1 and the lower halfspace H _  splits as lR" -2x  ] l
x (-- c~, 0] where the IR-factor corresponds to D2. In general the splittings do

not agree on the hyperplane ]l~-~. By construction, F respects the product
structures. One can change the metric on the factors IR x [0, o0) of H+ and
IR x ( -  o% 0] of H_  such that the new metric is nonflat with K < 0 and F still
acts by isometries such that H/F is of type C.

3. On the other hand, let us consider a complete manifold M of nonnegative
sectional curvature with a flat end E. If M has more than one end, there exists
a geodesic line in M and M splits isometrically as M ' x i R  by Toponogov 's
theorem. Since M has a flat end, M' is flat. Thus we may assume that M
has only one end and hence M is flat outside of a compact  set.

If M is in addition simply connected at infinity, then M is isometric to
IR" by a result of [GW].  In general, the following classification holds [-SZ]:
Let M be complete of curvature K > 0  and flat outside of a compact  set. Then
M is flat or the universal covering X of M splits isometrically as X ' x  IR "-2
where X '  is diffeomorphic to IR a and flat outside of a compact  set. The deck
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group F respects the splitting, operates as a Bieberbach group on IR"-2 and
has a fixed point on X'.

Thus these manifolds are very similar to the nonpositively curved manifolds
of type A. In particular they also carry a flat metric.
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