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1 Introduction

Let M be a Kähler manifold and J its complex structure. The complexified tangent
bundle TcM splits into the two eigenbundles T ′M and T ′′M of J corresponding to
the eigenvalues ±i, and any multi-linear map on TcM splits accordingly. Further, let
P = G/K a Riemannian symmetric space. A smooth map f : M → P is called plu-
riharmonic if the (1,1)-part of its hessian Ddf (the so-called Levi form) vanishes.1 In

1 In fact, this does not depend on the choice of the Kähler metric: A map f is pluriharmonic iff f |C is
harmonic for any complex curve C ⊂ M.
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“real” terms this means

Ddf(X, X) + Ddf(JX, JX) = 0 (1)

for any vector field X. If f is an immersion which is also pluriconformal, i.e. J is
an isometry for the inner product on M induced by f , then f is called pluriminimal
or (1,1)-geodesic (cf. [2]). For pluriharmonic maps, dfx(T ′

xM) is known to be a flat
subspace of Tc

f (x)
P for any x ∈ M, i.e. the (complexified) curvature tensor of P van-

ishes on dfx(T ′
xM) (cf. [7] or [3]). Hence the rank of dfx is bounded by the maximal

dimension of a flat subspace of pc = p ⊗ C where p is the Lie triple corresponding to
P, i.e. g = k + p is the corresponding Cartan decomposition. This dimension can be
quite large: If P happens to be hermitian symmetric with complex structure j, then
the eigenspaces p′ and p′′ of j (corresponding to T ′P and T ′′P) are flat subspaces.
In fact, df (T ′M) ⊂ f ∗T ′P would mean that f is holomorphic which is stronger than
pluriharmonic. But the rank of non-holomorphic pluriharmonic maps must satisfy a
more restrictive upper bound: We have to look for maximal flat subspaces a ⊂ pc

which are not of this type (a �= q′, q′′ for any hermitian symmetric subtriple q ⊂ p). In
many cases, the maximal dimension r of such abelian subspaces is known (cf. [8,9]).
In particular, for complex Grassmannians P = Gp(Cp+q) this number is

r = (p − 1)(q − 1) + 1, (2)

([9], p. 585; for an elementary proof see [5]). In the present paper, extending the
results of [6] we will construct non-holomorphic pluriharmonic maps (immersions) of
maximal rank r with values in complex Grassmannians. All constructed maps enjoy
the additional property of being isotropic. Recall that pluriharmonic maps always
come in so called associated families depending on an S1-parameter λ = eiθ (e.g. f. [3];
the best known example is the isometric deformation of the catenoid into the helicoid.
If the associated family is trivial, the pluriharmonic map will be called isotropic. Such
maps are also pluriconformal (cf [2]) and hence (in the immersion case) plurimini-
mal. We give a classification of all isotropic pluriharmonic maps of maximal rank into
complex Grassmannians. However we do not know if there are also non-isotropic
pluriharmonic maps which have maximal rank.

2 Isotropic pluriharmonic maps

An isotropic pluriharmonic map with values in a compact symmetric space P = G/K
(cf. [3]) is the projection of an holomorphic superhorizontal map into some adjoint
orbit Z = Ad(G)ξ ⊂ g which forms a fibration over P, called twistor fibration. More
precisely, ξ ∈ g is a so called canonical element (cf. [1]) which means that

√−1 · ad(ξ)

has integer eigenvalues k with corresponding eigenspaces gk ⊂ gc, and g1 +g−1 gener-
ates gc as a Lie algebra. Moreover,

∑
k even gk = kc and

∑
k odd gk = pc where g = k+p

is the Cartan decomposition corresponding to P. The subspace p defines a left invariant
distribution on the Lie group G which descends to a distribution on Z, the horizontal
distribution of the canonical projection (twistor projection) π : Z → P. Similarly,
the even smaller subspace (g1 + g−1) ∩ g ⊂ p defines the so called superhorizontal
distribution, and a map into Z is called superhorizontal if its differential takes values
in this subbundle of TZ.
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If P is the complex Grassmannian Gp = Gp(Cn) consisting of all p-dimensional
linear subspaces in C

n, the holomorphic superhorizontal maps for all twistor fibrations
have been described by F. Burstall (cf. [4], p. 185). The twistor spaces are classical flag
manifolds over C

n. Recall that a flag over C
n can be viewed in two different ways:

as a chain of subspaces 0 = W0 ⊂ W1 ⊂ · · · ⊂ Ws = C
n or else as an orthogonal

decomposition C
n = E1 ⊕ · · · ⊕ Es where Ei = Wi � Wi−1. A flag manifold Z is the

set of all flags of a fixed type where the type of a flag (Wi) = (Ei) is given by the
dimensions of the spaces Wj or Ej. A map from a manifold M into Z is a “moving flag”
(Wj) or (Ej) where Wj and Ej are “moving spaces”, i.e. vector bundles over M or maps
from M into the corresponding Grassmannian. The twistor projection π : Z → P is
the map (Ei) �→ ∑

j odd Ej ∈ P = Gp(Cn) with p = ∑
j odd dim Ej. If M is a complex

manifold, the moving flag (Wj) is holomorphic (i.e. locally spanned by holomorphic
C

n-valued functions on M) if for all j = 1, . . . , r

∂̄Wj ⊂ Wj, (3)

and (Wj) is also superhorizontal if additionally

∂Wj ⊂ Wj+1, (4)

i.e. for any local section f of Wj and any holomorphic chart (z1, . . . , zm) on M we have
∂f/∂ z̄i ∈ Wj and ∂f/∂zi ∈ Wj+1 for i = 1, . . . , m.

3 Short maximal superhorizontal flags

We start by considering flag manifolds Z containing flags W1 ⊂ W2 ⊂ C
n of length

s = 3. Let W = (W1, W2) : M → Z be a holomorphic superhorizontal map, i.e.
W1 ⊂ W2 are holomorphic bundles and

∂W1 ⊂ W2. (5)

We define ∂W1(z) for any z ∈ M as the linear span of the values at z of all fj and their
first partial derivatives ∂ifj for any local basis f1, . . . , fp1 of W1. Locally we may assume
that ∂W1 has constant dimension, hence it forms a subbundle of W2. Now we have
the following “moving decomposition”

C
n = E1 ⊕ E′

2 ⊕ E′′
2 ⊕ E3

E1 = W1,

E′
2 = ∂W1 � W1

E′′
2 = W2 � ∂W1

E3 = C
n � W2 (6)

and the dimension n decomposes according to (6) as

n = p1 + q1 + q2 + p2. (7)

Further we may assume that W is an immersion. Moreover, the map W1 : M → Gp1

has (locally) constant rank which means that it factorizes over some submersion
π : M → M1. This means that in fact the mapping W1 depends only on part of the
variables z, namely on z1 = π(z) ∈ M1. Hence for fixed z1 ∈ M1 the spaces W1(z1)

and ∂W1(z1) do not depend on the actual point z in the fibre Fz1 := π−1(z1). Thus
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E′′
2(z) is a q2-dimenional subspace of ∂W1(z1)

⊥, i.e. it belongs to the Grassmannian
Gq2(∂W1(z1)

⊥). Since W is an immersion on Fz1 while W1 is constant along Fz1 ,
the mapping z �→ E′′

2(z) : Fz1 → Gq2(∂W1(z1)
⊥) must be an immersion. Obviously,

the dimension of M can be maximal only if this immersion is a diffeomorphism, or
equivalently if Fz1 = Gq2(∂W1(z1)

⊥). Hence in order to maximize dimension we must
assume that M is a bundle over M1 with fibres Gq2(∂W1(z1)

⊥).

Example 0 (cf. [2]) Let M ⊂ CP
n−1 be a complex submanifold. Each tangent space

T[x]CP
n−1 of CP

n−1 (with x ∈ C
n\{0}) can be viewed as the complex subspace (Cx)⊥ ⊂

C
n, and consequently the tangent and normal subspaces TzM, NzM ⊂ TzCP

n−1

also become complex subspaces of C
n for any z ∈ M. If M is a hypersurface, i.e.

dim M = n − 2, we consider the Gauss map f : M → G2C
n which maps z ∈ M to the

2-dimensional subspace z+NzM ⊂ C
n. In this case we have M1 = M, and the moving

flag is W1 ⊂ W2 = ∂W1 with W1(z) = z and ∂W1(z) = z + TzM. The rank is maximal
since p = 2, q = n − 2 and r = (p − 1)(q − 1) + 1 = n − 2 = dim M.

Example 1 We can extend this example to the case of a complex submanifold M1 ⊂
CP

n−1 of arbitrary dimension m1 ≤ n − 2. Like in the real case, we obtain a hyper-
surface from of a submanifold M1 of higher codimenison by passing to the “tube”
around M1; in the holomorphic framework this is the projectivized normal bundle,

M = PNM1 (8)

with dim M = m1 + (n − 1 − m1 − 1) = n − 2. In fact, since there are plenty of normal
lines at each point of a submanifold of higher codimension, we pass to the set M of all
normal lines. This fibres naturally as π : M → M1. Now the corresponding maximal
isotropic pluriharmonic immersion is

f : M → G2(C
n), f (z) = z + π(z). (9)

Here W1(z) = π(z), ∂W1(z) = π(z)+ Tπ(z)M1 and W2(z) = ∂W1(z)+ z for all z ∈ M.
As above f is maximal since dim M = n − 2 = r.

Example 2 Let M1 ⊂ CP
n−1 be a one-dimensional submanifold (a complex projective

curve) and NM1 its normal bundle. Fix p ≤ n − 1 and let q = n − p. Let M be the
Grassmann bundle Gq−1(NM1) of all (q−1)-planes normal to M1. This fibres over M1

with projection π : M → M1. Let W1 be the inclusion map of M1 into CP
n−1, consid-

ered as a line bundle over M1. Then ∂W1(z1) = z1+Tz1 M1. Put W2(z) = ∂W1(π(z))+z
and note that dim W2(z) = 2 + q − 1 = q + 1. We consider the map

f : M → Gp(Cn), f (z) = π(z) + W2(z)⊥ (10)

Since dim M = 1 + (q − 1)(n − 2 − (q − 1)) = r, it is maximal.

General case For a local construction of all maximal isotropic pluriharmonic immer-
sions, we start with some m1-dimensional complex manifold M1 and a holomorphic
immersion W1 : M1 → Gp1 which can be considered as a q1-dimensional vector
bundle over M1. Adding the first partial derivatives of sections w1, . . . , wq1 forming a
local basis of W1, on a dense open subset we obtain a larger bundle ∂W1 of dimension
p1 +q1 which contains W1. Locally, we may choose a subspace C

p2+q2 ⊂ C
p+q which is

a complement to ∂W1(z1) for all z1 in some open subset of M1. We put M = M1 × M2
with M2 = Gq2(C

p2+q2). Then we let W2(z1, z2) = ∂W1(z1) + z2 and put

f : M → Gp(Cn), f (z2, z2) = W1(z1) ⊕ W2(z1, z2)
⊥. (11)



                              283

Now m = dim M satisfies

m = dim M1 + dim Gq2(C
p2+q2)

= m1 + q2p2

= m1 + (q − q1)(p − p1). (12)

This has to be compared to the upper bound

r = 1 + (q − 1)(p − 1). (13)

Lemma 1

m1 ≤ p1q1 (14)

q1 ≤ m1p1 (15)

Proof By assumption W1 : M1 → Gp1 is an immersion, hence the differential (dW1)z1

is injective at each point z1 ∈ M1. Let t �→ z1(t) be a smooth curve in M1 with

z1(0) = z1 and z′
1(0) = v ∈ Tz1 M1. Then dW1.v = d

dt

∣
∣
∣
t=0

W1(z1(t)) is a homo-

morphism of W1(z1) into W1(z1)
⊥, in fact into ∂W1(z1) � W1(z1).2 Hence m1 ≤

dim Hom(W1, ∂W1 � W1) = p1q1 which proves (14).
If w1, . . . , wp1 denotes a local basis of W1, then ∂W1 is spanned by the wj and

their partial derivatives ∂iwj where i = 1, . . . , m1 and j = 1, . . . , p1. Hence q1 =
dim(∂W1 � W1) ≤ m1p1 which proves (15). ��
Lemma 2 Up to equivalence, we have m = r if and only if p = 2 or m1 = 1.

Proof Let us first consider the special case p1 = 1. Then by (14) and (15) we get
m1 = q1, and from (13)–(12) we see

r − m = (p − 1)(m1 − 1) − (m1 − 1)

= (p − 2)(m1 − 1)

= 0 ⇐⇒ p = 2 or m1 = 1. (16)

In the general case we get

r − m = p(q1 − 1) + q(p1 − 1) − p1q1 − m1 − 2
(14)≥ p(q1 − 1) + q(p1 − 1) − 2p1q1 + 2
(∗)≥ (p1 + 1)(q1 − 1) + (q1 + 2)(p1 − 1) − 2p1q1 + 2

= 0. (17)

where the inequality at (∗) comes from p2, q2 ≥ 1. Hence r − m = 0 implies equality
at (∗), in particular p2 = 1. But the roles of p1 and p2 are interchangeable since we
may pass to the orthogonal flag W⊥

2 ⊂ W⊥
1 which is holomorphic with respect to the

negative complex structure on M. Thus we are back to the special case above. ��

2 For any local section w of W1 we have (dW1 ·v)·w(z1) =
(

d
dt

∣
∣
∣
t=0

w(z1(t))
)W⊥

1 ; this lies in ∂W1�W1

since d
dt

∣
∣
∣
t=0

w(z1(t)) ∈ ∂W1.
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Theorem 3 Let f : M → Gp(Cp+q) be an isotropic pluriharmonic immersion which is
neither holomorphic nor antiholomorphic, where M is any complex manifold. Then M
has maximal dimension m = (p − 1)(q − 1) + 1 if and only if f is locally of type (11)
with either p = 2 (Example 1) or m1 = 1 (Example 2).

Proof Since f is isotropic pluriharmonic, it is the projection of some holomorphic
superhorizontal map W : M → F where F is some flag manifold over Gp(Cp+q). If the
flags in F are short (s = 3), the assertion follows from the preceding discussion and
Lemma 1. In the next section we will show that F cannot consist of flags with length
s ≥ 4 which will finish the proof. ��

4 Long superhorizontal flags are not maximal

In this section we consider a length-s flag manifold, i.e. F consists of decompositions
C

n = E1 ⊕ · · · ⊕ Es. It fibres over the Grassmannian Gp(Cn) with

p =
∑

j odd

nj, q = n − p =
∑

k even

nk (18)

with ni := dim Ei. Throughout this section we will assume s ≥ 4 (“long” flags). The
superhorizontal space at some flag E = (E1, . . . , Es) ∈ F is

HE =
s−1⊕

i=1

Hom(Ei, Ei+1). (19)

Hence any a ∈ HE has a decomposition

a = (a1, . . . , as−1) (20)

with ai ∈ Hom(Ei, Ei+1).
Now let A ⊂ HE be some maximal abelian subalgebra, i.e.

dim A = r = (p − 1)(q − 1) + 1. (21)

Let πi : A → Hom(Ei, Ei+1) be the projection related to the decomposition (19). We
may assume πi(A) �= 0 for all i ∈ {1, . . . , s − 1} since otherwise we could reduce the
dimension or split.3

From the assumption s ≥ 4 we see that nj ≤ p − 1 for all odd j and nk ≤ q − 1 for
all even k, hence

dim Hom(Ei, Ei+1) = nini+1 < (p − 1)(q − 1) + 1 = r (22)

for all i ∈ {1, . . . , s−1}. Consequently, each of the projections πi : A → Hom(Ei, Ei+1)

must have a nonzero kernel.
Now we may assume that there is some a ∈ A and i ∈ {2, . . . , s − 1} with

ai−1 = 0, ai �= 0. (23)

In fact, any nonzero a = (a1, . . . , as−1) ∈ A has some nonzero component ak. If aj = 0
for some j < k, it is easy to find such an index i satisfying (23). Otherwise, we pass to

3 For this argument we must exclude the holomorphic and antiholomorphic cases where every second
component of A vanishes.
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the conjugate abelian subalgebra A∗ = {a∗; a ∈ A} (with a∗ = āT) where the order in
the string (20) is reversed.

Let Ai = ker πi−1. For any a ∈ Ai and b ∈ A we have

0 = [a, b]|Ei−1 = aibi−1 − biai−1 = aibi−1 (24)

since ai−1 = 0. Thus ai(im bi−1) = 0 (where “im ” stands for “image”). In other words,
for all b ∈ A we have

im bi−1 ⊂ E′
i :=

⋂

a∈Ai

ker ai. (25)

Consider the orthogonal splitting Ei = E′
i ⊕ E′′

i which is nontrivial, due to (23).
Denote the corresponding dimensions by ni = n′

i + n′′
i . Now we remove the E′′

i -com-
ponents of all elements of A: For any b = (b1, . . . , bs−1) ∈ A we let

b′ = π ′(b) = (b1, . . . , b′
i, . . . , bs−1), b′

i = bi|E′
i

(26)

and we put
A′ = π ′(A) = {b′; b ∈ A}. (27)

This is still abelian since for all b, c ∈ A,

[b′, c′]|Ei−1 = b′
ici−1 − c′

ibi−1 = bici−1 − cibi−1 = [b, c]|Ei−1 = 0

[b′, c′]|E′
i
= bi+1c′

i − ci+1b′
i = [b, c]|Ei = 0.

However, the vector space C
n is replaced by C

n � E′′
i = C

n−n′′
i . Hence we may view

A′ as an abelian subspace for another Grassmannian Gp′(Cp′+q′
) where either p′ or q′

is diminished by n′′
i . Interchanging the roles of p and q if necessary, we may assume

p′ = p − n′′
i , q′ = q. From the dimension restriction (2) with p, q replaced by p′, q′ we

obtain the upper bound

dim A′ ≤ r′ = (p − n′′
i − 1)(q − 1) + 1 = r − n′′

i (q − 1). (28)

On the other hand, dim A′ = dim A − dim ker π ′ where

ker π ′ = {b ∈ A; bi|E′
i
= 0, bj = 0 ∀j �= i}. (29)

For any b∈ker π ′, the only remaining nonzero component is the one in Hom(E′′
i , Ei+1),

hence dim ker π ′ ≤ n′′
i ni+1, and we get the lower bound

dim A′ ≥ r − n′′
i ni+1. (30)

Comparing (28) and (30) we end up with

q − 1 ≤ ni+1. (31)

This has strong consequences. Since ni−1 �= 0 and q ≥ ni−1+ni+1, it implies ni−1 = 1
and equality in (31) which in turn implies equality in (28) and (30). In particular,

Hom(E′′
i , Ei+1) = ker π ′ ⊂ A. (32)

But then bi+1 = 0 for all b ∈ A since otherwise we would find some c = ci ∈
Hom(E′′

i , Ei+1) ⊂ A with

[b, c]|E′′
i

= bi+1ci �= 0.
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Hence the string ends at Ei+1, i.e. s = i + 1. Since s ≥ 4 and q = ni−1 + ni+1, we must
have s = 4 and i − 2 = 1 (but we will keep the old notation with i).

Let b ∈ A with bi−1 �= 0. Since ni−1 = 1, this means that bi−1 is injective. Then we
have for all a ∈ Ai:

ai−2 = 0 (33)

since 0 = [b, a]|Ei−2 = bi−1ai−2. Since also ai−1 = 0 and ai|E′
i = 0, we obtain

ker πi−1 = Ai = Hom(E′′
i , Ei+1). (34)

But then πi−1|A′ is injective which implies

(p′ − 1)(q − 1) + 1 = dim A′ ≤ dim Hom(Ei−1, E′
i) = ni−1n′

i = n′
i. (35)

This is a contradiction since p′ − 1 ≥ n′
i and q − 1 ≥ 1. Hence we have shown that

long flags cannot be maximal and thus we have completed the proof of Theorem 3.
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