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Abstract. In this note we discuss geometric applications of the
classical theory (going back to H.A. Schwarz [S]) of second order
linear ODEs

y′′ + py′ + qy = 0

where p, q are real rational functions with only regular singularities
in R̂ = R ∪ {∞}, so called (real) Fuchsian equations. In partic-
ular we investigate in which cases the monodromy group is (up
to conjugation) contained in the isometry group of the 2-sphere,
the euclidean plane or the hyperbolic plane. As an application we
study punctured spheres of constant mean curvature in euclidean
3-space where all punctures lie on a common circle.

1. Introduction

Surfaces of constant mean curvature (cmc) in euclidean 3-space dis-
play many similarities to minimal surfaces. They are local area mini-
mizers, however under the constraint that the variations preserve the
volume bounded by the surface [BD]. They come in associated fami-
lies, i.e. isometric one-parameter deformations preserving the principal
curvatures while rotating the principal curvature directions. And, most
importantly, all cmc surfaces are constructed globally by a generalized
Weierstrass representation [DPW] which explicitly involves the defor-
mation parameter λ. The surfaces (immersions) fλ, defined on a simply

connected open domain S ⊂ Ĉ, are obtained from a fundamental sys-
tem of the complex ODE on S with parameter λ,

(1) y′′ + py′ + qy = 0.

Here p and q are holomorphic functions of x ∈ S and λ ∈ C
∗; they can

be viewed as generalized Weierstrass data for fλ.
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If S is no longer simply connected, the surfaces fλ are defined on
the universal cover S̃ rather than on S itself. A critical quantity is the
monodromy group Mλ ⊂ GL2(C) of the ODE (1), see below. If Mλ is
unitarizable for some λ, i.e. if there is a matrix A ∈ GL2(C) such that
AMλA

−1 ⊂ U2, then the deck transformations of the covering S̃ → S
act as euclidean motions on fλ, cf. [DW1]. We need an additional
closing condition in order to assure that fλ is defined on S.

In the present paper, S will be the multiply punctured sphere,

S = Ĉ \ {s1, . . . , sk}

with k ≥ 3. For k = 2, examples are the unduloids, i.e. embedded
surfaces of revolution of Delaunay, see [E2],[E1]. If we fix the mean
curvature, the Delaunay surfaces are determined by a single quantity,
the neck size. It has been shown in [KKS] that embedded ends look
asymptocially like the ends of unduloids. This imposes restrictions on
the functions p, q on Ĉ \ {s1, . . . , sk}. In particular, we assume that p
and q are rational functions of x with poles at sj. The main question is
which of the admissible data p, q lead to cmc surfaces with embedded
ends, so called k-noids. In this case, unitarizability of the monodromy
for all λ is already sufficient to ensure that f = f1 is defined on S, see
[DW1].

If our k-noid is planar and is symmetric under reflection in the k-
noid plane, then all punctures lie on the equator, the real axis R̂ =
R ∪ {∞} ⊂ Ĉ. This translates on S to an anti-holomorphic involution
fixing the real axis. Thus we are led to assume that p and q are real
along the real axis.

The paper is mainly concerned with the differential equation (1), a
special type of a Fuchsian equation. The question of unitarizability
of the monodromy can be transformed into a geometric question in
its own right which has been discussed and partially answered hundred
years ago by Hilb [H] and his student Gerstenmeier [G]. We will present
and apply some of these ideas. The application to cmc surfaces will be
presented in Section 11 at the end of the paper.

2. Regular singular equations

Let us consider the general linear second order ODE

(2) y′′ + py′ + qy = 0

where p, q are holomorphic functions on an open domain S ⊂ Ĉ. An
isolated singularity s ∈ Ĉ of p or q is called regular for (2) if it is a



FUCHSIAN EQUATIONS AND CMC SURFACES 3

simple pole for p and/or a pole of order at most two for q. We will
assume that p, q are real functions (i.e. p(x), q(x) ∈ R for all x ∈ R

where p, q are defined) and that all singularities are real, too.

E.g. s = 0 is a regular singularity iff p = p̂/x and q = q̂/x2 with regular
p̂, q̂. This means that (2) allows solutions of the form y = xαŷ with
regular ŷ where α solves the quadratic equation

(3) α(α − 1 + p0) + q0 = 0

with p0 = p̂(0) and q0 = q̂(0). We assume (cf. [DW1]) that

(4) (p0 − 1)2 > 4q0,

i.e. there exist two real solutions α′ and α′′ of (2). From (2) we obtain
a similar differential equation for ŷ = y/xα′

where the solutions of the
corresponding quadratic equation (3) are shifted to 0 and α := α′′−α′.
In other words, for the new equation we have q0 = 0 which means that
the pole of q is also first order, and

(5) p0 = 1 − α.

Then we have a fundamental basis of (2)

(6) y1 = xαŷ1 and y2

where ŷ1 and y2 are regular with nonzero value at 0. Of course we may
replace 0 with any other isolated singularity s ∈ C by changing the
independent variable from x to x̃ = x − s.

Now we assume S = C \ {s1, . . . , sk−1} and all singularities sj with
1 ≤ j ≤ k − 1 as well as sk := ∞ are regular; then (2) is called a
Fuchsian equation. If we apply the above transformations at all finite
singular points s1, . . . , sk−1, our coefficient functions p, q are almost
determined. Using (5) at any sj we obtain:

(7) p =
k−1
∑

j=1

1 − αj

x − sj

, q =
f(x)

∏k−1
j=1(x − sj)

where

(8) f(x) = Axk−3 + Bxk−4 + . . .

is a polynomial of degree k − 3 in order to ensure that q has a pole of
degree two at ∞ (see below). We will assume throughout this paper
that αj ∈ (0, 1), for all j = 1, ...., k. Thus we also assume this for the
quantity αk at ∞. In our application to cmc k-noids, the quantitiy αj

is determined by the neck size of the Delauney end at sj, cf. [DW1].
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3. The singularity at ∞

In order to investigate the singular point at ∞ we are changing the
independent variable from x to x̃ = 1/x, i.e. we put y(x) = ỹ(x̃) where
x̃ = 1/x. Then y′ = −x̃2ỹ′ and y′′ = 2x̃3ỹ′ + x̃4ỹ′′, and ỹ satisfies the
equation

ỹ′′ + p̃ỹ′ + q̃ỹ = 0

with

p̃ =
2

x̃
−

p

x̃2
, q̃ =

q

x̃4
.

From (7) we see that the lowest order coefficients are

p̃o =
k−1
∑

j=1

αj − (k − 3), q̃o = A.

Thus from (3) we derive that the exponents α at x̃ = 0 satisfy

α

(

α +
k−1
∑

j=1

αj − (k − 2)

)

+ A = 0

and hence the solutions α′, α′′ satisfy

α′ + α′′ = k − 2 −
k−1
∑

j=1

αj, α′α′′ = A.

As before we are interested primarily in the difference

αk := α′ − α′′.

Then

α2
k = (α′ + α′′)2 − 4α′α′′

=

(

k − 2 −
k−1
∑

j=1

αj

)2

− 4A.(9)

Thus the condition αk ∈ (0, 1) amounts to

(10) 0 <

(

k − 2 −
k−1
∑

j=1

αj

)2

− 4A < 1.

Remark. For later use we put

(11) δ = k − 2 −
k
∑

j=1

αj = α′ + α′′ − αk = 2α′′.

This quantity has a geometric meaning: The numbers αjπ will be the
angles of a certain planar k-gon with circular arcs (see Theorem 7.1),
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and πδ is the deviation of π
∑k

j=1 αj from the angle sum of a planar

k-gon with straight edges (which is (k − 2)π). From (9) we obtain

(12) α2
k − (αk + δ)2 = −4A,

Consequently, if A < 0, we have δ < 0, using αk > 0,.

4. Simplifying the equation between singular points

We may remove the function p from (2) by replacing x by another
parameter t with x = x(t). Denoting ẏ = dy

dt
while y′ = dy

dx
, we have

y′ = ẏt′ and y′′ = ÿ(t′)2 + ẏt′′, and (2) will be transformed into

(13) (t′)2ÿ + (t′′ + pt′)ẏ + qy = 0.

In order to remove the ẏ-Term we choose t(x) such that t′′ + pt′ = 0,
e.g. t′ = e−

R

p. For p as in (7) we have

∫

p = ln
k−1
∏

j=1

|x − sj|
1−αj

and

(14) t′ =
k−1
∏

j=1

1

|x − sj|1−αj
.

Now we obtain from (13) and (7) the transformed equation

(15) ÿ + ry = 0

with

r = q/(t′)2 =
k−1
∏

j=1

|x − sj|
2−2αj

(x − sj)
f(x).

Let us consider a fundamental system y1, y2 as in (6), Section 2,
replacing x = 0 by any of the singular points, say s. We have ẏ2 =
y′

2/t
′ → 0 for t ց t(s). Moreover, y1 = ỹ(x − s)α for some regular

function ỹ with ỹ(s) 6= 0, hence y′
1 = ỹ′(x − s)α + ỹα(x − s)α−1, and

therefore ẏ1 = y′
1/t

′ has a finite nonzero limit as t ց t(s). Thus we
may assume that the initial values at x = s or t = 0 are

(16) y1 = 0, ẏ1 = 1, y2 = 1, ẏ2 = 0.
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5. Logarithmic derivatives

From (15) we obtain a nonlinear first order equation for the logarith-

mic derivative u = ẏ/y of a solution y of (2): Since u̇ = ÿ

y
− ẏ2

y2 = −r−u2,

(17) u̇ + u2 + r = 0.

This Riccati type equation has a nice comparison theory: If we consider
two coefficient functions r, r̃ with r > r̃ on some open interval I and
solutions u, ũ of the corresponding equation (17) which are defined on
I, the difference w = ũ − u satisfies

ẇ + (ũ + u)w + r̃ − r = 0.

Hence ẇ > 0 whenever w = 0. Thus w cannot pass the value zero from
above. This means: If w(xo) ≥ 0 for some xo ∈ I, then w(x) > 0 for
all x ∈ I with x > xo, and if w(x0) ≤ 0, then w(x) < 0 for all x ∈ I
with x < xo. Thus we have seen:

Lemma 5.1. Let u, ũ : I → R be solutions of (17) corresponding to
coefficient functions r, r̃ with r > r̃. Let xo ∈ I and put I+ = {x ∈
I; x > xo} and I− = {x ∈ I; x < xo}. Then:
(a) If u(xo) ≤ ũ(xo), then u < ũ on I+.
(b) If u(xo) ≥ ũ(xo), then u > ũ on I−.

In particular we consider u1 = ẏ1/y1 and u2 = ẏ2/y2 for x > s, starting
with +∞ and 0 at the initial point s. Similar, for x < s we consider the
solution u−

1 with final value −∞ at s.1 Since (x − s)α−1 is integrable
on I+ (due to α < 1), we can choose t(x) with t(s) = 0, cf. (14).

If r(t) > 0 for all t > 0, then (u1, u2) roughly behave like (cot,− tan):
We can compare with the solutions 1/(t− to) and 0 for (17) with r̃ = 0,
and if r is sufficiently positive in a fixed subinterval I ′, say r > 1/ω2

on I, then u1 and u2 attain a given number of poles on I ′ as we see by
comparing with the solution ũ = ω cot ω(t − to) of (17) for r̃ = 1/ω2.
If however r < 0, then we may compare with r̃ = 0 or r̃ = −1/ω2

(reversing the above rôles of r and r̃), and (u1, u2) behave roughly like
(coth, tanh): On I+ they are above 1/t) and 0, respectively, and in
particular they have both the same sign. On I− in turn, u−

1 and u−
2 are

below 1/t and 0, respectively.

1We have y1(x) → 0 and ẏ1(x) → 1 for x ց s, thus u1(x) → +∞. Similar, for
x ր s we have y−

1
(x) → 0 and y′

1
(x) → −1 and thus u−

1
(x) → −∞.
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6. Monodromy

As before, we consider the multiply connected punctured sphere S =
Ĉ \ {s1, ..., sk} which, in view of sk = ∞, we can interpret as S =
C \ {s1, ..., sk−1}. In the preceeding sections we have discussed the
solutions to the ODE (2),(7) near the points sj, j = 1, ..., k. Since S
is not simply connected, there is monodromy: If we extend a solution
along a closed path which is defined in the domain where p, q are defined
and which is not contractible, then after returning to the starting point
we will end up in general with a solution which is different from the
original one. Starting from a fundamental system y1, y2, we obtain
at the end of the path another fundamental system ỹ1 = ay1 + by2,
ỹ2 = cy1 + dy2. The matrix M = ( a b

c d ) ∈ GL2(C) is called monodromy
matrix. More generally, the monodromy is a group homomorphism
µ : π1(S) → GL2(C) where π1(S) denotes the fundamental group of
S. In our geometric applications the monodromy matrices will depend
on the additional “loop parameter” λ ∈ S1 and will be contained in
SL2(C).

Example. Let us consider (2) with a regular singularity at 0 as in
Section 2. Then S = C

∗, and the solutions of (2) are y1 = xα′

ŷ1 and
y2 = xα′′

ŷ2 where ŷ1, ŷ2 are holomorphic at 0. Thus along any simply
closed curve around 0, the solution y1 changes to ỹ1 = eα′(ln x+2πi)ŷ1 =
e2πiα′

xα′

ŷ1 = e2πiα′

y1, and similarly y2 changes to e2πiα′′

y2, hence

(18) ỹ1 = e2πiα′

y1, ỹ2 = e2πiα′′

y2,

and the monodromy matrix is

(19) M =

(

e2πiα′

0
0 e2πiα′′

)

.

The same result is obtained if one replaces C
∗ by any small disk with

its center removed.

It is easy to see that the class of Fuchsian equations is invariant under
fractional linear transformations x̃ = ax+b

cx+d
of the independent variable,

and such transformations do not change the monodromy. In particular,
(18) and (19) remain true for any of the singularities sj which we see
by passing to x̃ = x − sj or to x̃ = 1/x.

However, the monodromy does depend on the fundamental system: Let
y = ( y1

y2
) and ỹ =

(

ỹ1

ỹ2

)

be two fundamental systems with ỹ = W y and

M and M̃ the monodromy matrices for y and ỹ with respect to some
fixed closed curve. Then M̃ ỹ = WMy and hence

(20) M̃ = WMW−1.
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7. Schwarz’s function

Now let (y1, y2) be a fundamental system for (2),(7). The discussion
of the quotient

(21) η = y1/y2

was suggested by H.A. Schwarz [S]. We have η′ = w/y2
2 with w =

y′
1y2 − y1y

′
2. From w′ = y′′

2y1 − y2y
′′
1 = −pw we see that

(22) w = C · e−
R

p

for some real constant C whenever the antiderivative
∫

p of p exists.
In particular,

∫

p exists on the upper half plane

H = {x = u + iv; u, v ∈ R, v > 0}

and η is a local diffeomorphism on H. Further, η is strongly monotonic,
η′ > 0 or η′ < 0, on any nonsingular intervall

Ij = (sj, sj+1) ⊂ R = ∂H

if y1, y2 are real on Ij. But note that the values of η|Ij
may pass through

∞, since y2 may vanish at points of Ij.

If we pass to another fundamental basis

ỹ1 = ay1 + by2, ỹ2 = cy1 + dy2,

the corresponding Schwarz functions η and η̃ differ only by a fractional
linear transformation: η̃ = f ◦ η with f(x) = ax+b

cx+d
. In particular

this applies to the fractional linear transformations representing some
monodromy matrix. If the monodromy is as in (18), then

(23) η̃ =
ỹ1

ỹ2

= e2πiαη

where α = α′ − α′′ as defined earlier.

Theorem 7.1. The Schwarz function η = y1/y2 maps the upper half

plane H onto a k-gon η(H) ⊂ Ĉ, bounded by k circular arcs η(Ij), with
interior angles παj, j = 1, . . . , k (“Schwarz polygon”).

Proof. Our assertion is invariant under fractional linear transforma-
tions. Therefore in our proof we can choose any fundamental system.
Let y1, y2 be a fundamental system which is real on I1 = (s1, s2), e.g.
the one chosen in (6). Then η maps I1 monotonically onto a segment of

the augmented real line R̂ = R∪{∞} which we consider as the equator

of S
2 = Ĉ. We may extend the solutions y1, y2 to H. Likewise, for any

j ∈ {2, , . . . , k} there is a fundamental system ỹ1, ỹ2 which is real on
Ij = (sj, sj+1) (where j is taken mod k) and which also extends to
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H. The corresponding Schwarz function η̃ = ỹ1/ỹ2 maps this intervall

Ij monotonically onto a segment J ⊂ R̂. Since η = m ◦ η̃ for some
fractional linear transformation m, we see that η maps Ij onto m(J)
which is part of a circle. Thus η(H) is bounded by circular arcs (which
might wrap around the circle more than once).

η

πα
η

1 2

(H)

−

η

η

ηη 2

1

1

3
3

πα2s s s
(s )σ

(s )

(s )

(s )

τ ση(H)

η(s )3τ

=

(H)ητσ

2

2

H

H

−

σ
t

(H )ησ
τ

To determine the angle of the Schwarz polygon η(H) at, say, η(s2),
we extend η further to the lower half plane H−, using the Schwarz re-
flection principle over the interval (s2, s3) ⊂ R. Then we reflect back
to the upper half plane H over the neighboring interval (s1, s2). So
we have analytically extended η along a circle around s2 (wrongly ori-
ented). Thus the composition τσ of the two reflections σ, τ is the inverse
monodromy transformation around s2 which changes η to e−2πiα2η, cf.
(23). This shows that the angle of η(H) at η(s2) must be half of the
rotation angle 2πα2 of the monodromy at s2. The same argument can
be applied to the other singular points, replacing η by η̃.

In our geometric applications it will be important to understand when
the monodromy group is unitary. Using stereographic projection, we
may identify Ĉ = CP

1 with the standard sphere S
2. The fractional

linear transformations act on CP
1 as the projective group PGL2(C) =

SL2(C)/{±I}, and the subgroup PU2
∼= SO3 acts as the standard

rotation group on S
2. By (19) and (20), the monodromy matrices have

| det M | = 1, and thus M ∈ U2 iff its action on CP
1 is in PU2 = SO3.

From this observation we obtain:

Corollary 7.2. The monodromy group of (2),(7) for the fundamental
system y1, y2 is unitary if and only if all edges of the Schwarz polygon
η(H) ⊂ Ĉ = S

2 are great circle segments.
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8. The monodromy axes of η

As we have seen, the angles of the Schwarz polygon η(H) can easily be
read off the coefficients of (2),(7). But these do not yet fully determine
the monodromy matrices. In order to find the missing piece we use
another model of the conformal geometry of S

2 = Ĉ by embedding it
into real projective 3-space. More precisely, S

2 is the projectivized light
cone in Minkowski space:

(24) S
2 = {[v]; v ∈ R

4 \ {0}, 〈v, v〉− = 0} ⊂ RP
3

where 〈v, w〉− = v1w1+v2w2+v3w3−v4w4 is the Lorentz scalar product.

The conformal group PGL2(C) = SL2(C)/{±I} acting on Ĉ = CP
1

by fractional linear transformtions now becomes the Lorentz group
PSO3,1. Since the monodromy transformations M ∈ PSL2(C) =
PSO3,1 are conjugate to rotations (which are elements of PU2 = SO3),
they have a one-dimensional axis, a fixed line in RP

3. How can we
determine this axis? The edges of the Schwarz polygon are subsets
of circles Cj, intersections of S

2 with planes Πj, and two neighboring
planes Πj−1, Πj have a common line of intersection Lj passing through
η(sj). This is the axis of the monodromy matrix corresponding to the
point sj.

Pj

Cj

Cj−1

Pj−1

2S

Lj

In fact, as we have seen, the monodromy matrix is the composition
of the reflections at the two circles Cj−1, Cj which extend to (Lorentz)
reflections at the corresponding planes Πj−1, Πj, thus the common in-
tersection of these planes is fixed.

Remark. We observe, in particular, that two neighboring axes Lj, Lj+1

lie in a common plane, the plane Πj of the connecting edge η(Ij). Con-
sequently, Lj and Lj+1 intersect. This is a special feature of the “real”
case at hand where the coefficients and the singularities of (7) are real.
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9. Where neighboring monodromy axes meet

How can we compute the axes from (7)? At any fixed singularity
sj let y = (y1, y2) be the fundamental system with standard initial
conditions (16) at sj; this fundamental system is real valued on Ij =
(sj, sj+1). From the example in Section 6 we see that the monodromy
is the multiplication by ζ = e2πiαj with its two fixed points 0 and ∞
on Ĉ. Thus the axis is the vertical line passing through the poles [1, 0]
and [0, 1] of S

2 = CP
1.

Now let ỹ = (ỹ1, ỹ2) be the fundamental system which is still real on
Ij but with “final” conditions

(25) ỹ1 = 0, ˙̃y2 = 0

at the final t-value corresponding to sj+1. Likewise, the monodromy
axis of η̃ = ỹ1/ỹ2 at sj+1 is the vertical axis through the poles 0 = [1, 0]
and ∞ = [0, 1] in CP

1. What is the monodromy axis L of η at sj+1?
We have ỹ = Ay with A = ( a b

c d ) or

ỹ1 = ay1 + by2

ỹ2 = cy1 + dy2(26)

and we may assume that ad − bc = det A = 1. Then A−1 =
(

d −b
−c a

)

.

Lemma 9.1. The axis L meets S
2 = Ĉ in the points −b/a and −d/c.

Proof. We have ỹ = Ay with y = ( y1

y0
) and A = ( a b

c d ). Thus A
transforms η = [ y1

y2
] = [y] into η̃ = [ỹ] and the monodromy axis of η at

sj+1 is mapped onto that of η̃. But the monodromy axis of η̃ at sj+1 is
the vertical axis passing through the poles 0 = [ 0

1 ] and ∞ = [ 1
0 ]. Thus

the monodromy axis of y at sj+1 passes through

A−1 [ 0
1 ] = [ d

−c ] = −d/c and A−1 [ 1
0 ] = [ −b

a ] = −b/a. �

Lemma 9.2. Putting ũj = ˙̃yj/ỹj we have

(27) −b/a = −1/ũ1(sj), −d/c = −1/ũ2(sj).

Proof. We have

ũ1 =
aẏ1 + bẏ2

ay1 + by2

, ũ2 =
cẏ1 + dẏ2

cy1 + dy2

,

and the values at the point sj are

ẏ1 = 1, ẏ2 = 0, y1 = 0, y2 = 1. (9)

Thus we obtain ũ1(sj) = a/b and ũ2(sj) = c/d as claimed.
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Corollary 9.3. If r < 0 throughout (sj, sj+1) for some j ≤ k − 2, the
monodromy axes cannot meet inside B

3.

Proof. We have seen that the monodromy axis of η at sj+1 is given
by the value of the logarithmic derivatives ũ1 and ũ2 at sj. From
Section 5 we know how these functions behave in the case r < 0: The
function ũ1 = ˙̃y1/ỹ1 approaches −∞ for x ր sj+1, and it will never be
positive for x < sj. Moreover, ũ2 is zero at sj+1 and stays below zero
for x < sj+1. Thus these values have the same sign and therefore the

monodromy axis at sj+1 which meets R̂ ⊂ Ĉ = S
2 at −1/u1(sj) and

−1/u2(sj) does not cross the vertical axis (the monodromy axis at sj)
inside B

3.

B3

S2
8

−1/

0 −1/ 1u~

2u~ (s )j

(s )j

Theorem 9.4. If A ≥ 0, the monodromy of (2),(7) is not unitarizable.

Proof. We need to avoid r < 0 in any of the bounded regular intervalls
Ij = (sj, sj+1) for j = 1, . . . , k − 2. The sign of ro = r/f (cf. (15))
on each of the intervals Ij is alternately positive and negative: positive
on Ik−1 = (sk−1,∞), negative on Ik−2 = (sk−2, sk−1), again positive on
Ik−3 etc. We call a bounded regular intervall Ij “positive” if ro > 0 on Ij

and “negative” if ro < 0 on Ij. Then r|Ij
< 0 for some j ∈ {1, . . . , k−2}

unless {f < 0} intersects each negative intervall and {f > 0} each
positive intervall. Hence f must change sign at least k− 3 times which
means that its degree is ≥ k − 3. By (8) this implies A 6= 0.

If A > 0, then f(x) is positive for all x ∈ (x1,∞) where x1 is the
largest real root of f . In order to avoid r < 0 on Ik−2 we need to have
x1 ≥ sk−2. Let x2 < x1 be the next largest root. Then f < 0 on
(x2, x1) and hence we need x2 ≥ sk−3 in order to avoid r < 0 on Ik−3.
By induction we need xj ≥ sk−j−1 for all real roots xj. But j ≤ k−3 =
degree(f), hence xj ≥ s3 for all j, and therefore r has the wrong sign
on either I1 or I2.
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10. Unitary monodromy

Lemma 10.1. In the real case, considered exclusively in this paper, all
monodromy axes L1, . . . , Lk meet at a common point o ∈ RP

3 iff the
axes L1, . . . , Lk−1 meet in a common point.

Proof. Suppose that the axes L1, . . . , Lk−1 meet at a point o. Then
Lk−1 and L1 are coplanar. Likewise, the neighboring pairs of axes
Lk−1, Lk and Lk, L1 are coplanar. Thus Lk, Lk−1, L1 meet in a common
point (which must be o) unless they lie in a common plane. But in
the latter case the angle αkπ at η(sk) equals 0 or π which is impossible
since αk ∈ (0, 1). Thus all axes L1, . . . , Lk meet at o.

Lemma 10.2. Suppose that all axes L1, . . . , Lk meet in a common
point o ∈ RP

3. Let B
3 ⊂ RP

3 denote the open 3-ball bounded by S
2.

Then η(H) is conformally equivalent to a geodesic polygon in either the
spherical or euclidean or hyperbolic metric, depending on the position
of o:

spherical ⇐⇒ o ∈ B
3

euclidean ⇐⇒ o ∈ S
2

hyperbolic ⇐⇒ o ∈ RP
3 \ B3

euclidean

o

o

o

hyperbolicspherical

Proof. Case 1: Assume o ∈ B
3. Recall that PSO3,1 acts transitively

on B
3 as the hyperbolic isometry group. Thus, after applying an ap-

propriate transformation in PSO3,1 (acting conformally on S
2 = ∂B

3),
we may assume that o is the center of euclidean B

3. Thus all planes
Πj defining the edges of η(H) pass through the center o which implies
that the edges are subsets of great circles.

Case 2: Assume o ∈ S
2. In this case we apply the stereographic pro-

jection with center o ( = “north pole”). Then any plane through o
(with the exception of the tangent plane to S

2 at o) will be projected
onto a straight line in the euclidean plane, hence the Schwarz polygon
is mapped conformally onto a polygon with straight edges in euclidean
plane.
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Case 3: Assume o ∈ RP
3 \ B3. In this case we use a transformation

in PSO3,1 moving o into the plane at infinity in RP
3. Thus in the

affine picture, o becomes a certain direction in 3-space, say the vertical
direction, and all planes through o are parallel to this direction, hence
vertical. Thus they intersect S

2 in a circle which meets the horizontal
equator perpendicularly, and such circles are hyperbolic geodesics in
the Poincaré model on the upper half sphere.

Theorem 10.3. The monodromy group is unitarizable, i.e. conjugate
to a subgroup of PU2 ⊂ PGL2(C), if and only if the monodromy axes
meet at a common point inside B

3.

Proof. If the monodromy group is unitarizable for some fundamental
system ỹ, we find W ∈ GL2(C) such that y = W ỹ has unitary mon-
odromy. Then the corresponding transformations on CP

1 = S
2 lie in

PU2 = SO3 and thus their axes pass through the origin 0 ∈ B
3.

Vice versa, if all monodromy axes pass through o ∈ B
3, we may assume

o = 0 after applying a transformation in PSO3,1. Thus η(H) is a
geodesic spherical polygon. Therefore the reflections at the circles are
isometries of S

2, and the same holds for the monodromy elements which
are generated by compositions of two reflections. Thus the monodromy
matrices modulo complex scalars are in SO3 = PU2. But from (19)
and (20) we know that | det M | = 1 for any monodromy matrix M ∈
GL2(C), thus M ∈ U2.

Theorem 10.4. The monodromy is unitarizable if and only if all (up
to possibly one) monodromy axes pass through a common point and
A < 0 in (8).

Proof. If A ≥ 0, the monodromy is not unitarizable by Theorem 9.4
(unless the monodromy is trivial). Thus we may assume A < 0. From
Lemma 10.1 we know that all k axes pass through a common point
if k − 1 of them do. Then one of the cases of Lemma 10.2 applies.
The three cases can be distinguished by the angle defect = “angle sum
minus euclidean angle sum” for the geodesic k-gon η(H). This is −πδ
with δ as in (11). From (12) and A < 0 we see δ < 0, thus we are in
the spherical case and hence o ∈ B

3. Now the claim follows from the
previous theorem.



FUCHSIAN EQUATIONS AND CMC SURFACES 15

Particular Cases:

For k = 3, the first condition of Theorem 10.4 holds trivially. Thus we
have unitarizable monodromy if and only if A < 0.

For k = 4, we assure the first condition of Theorem 10.4 by a symmetry
assumption: We assume that our ODE is invariant not only under
the transformation x 7→ x̄ of the domain (the reality condition), but
also under x 7→ −x, and we assume in addition that two of the four
singularities are 0 and ∞, the fixed points of this transformation. Then
the other two singularities are a > 0 and −a, and we may choose a = 1.
Now by the symmetry assumptions the coefficients of (2),(7) are

(28) p =
1 − α

x + 1
+

1 − α

x − 1
+

1 − β

x
, q =

A

x2 − 1

with constants α, β ∈ (0, 1) and A < 0.

For k arbitrary, the first condition of Theorem 10.4 can be satisfied
again by symmetry if the singularities sj are equidistant on R̂ (viewed
as a great circle in S

2) and all αj are the same for j = 1, . . . , k.

11. Construction of CMC-4-noids

In this section we will outline how one can use the previous sections
to construct CMC-4-noids of genus g = 0 and embedded ends, using
the so-called “loop group method” [DPW].

Roughly speaking, the construction goes as follows: Let S ⊂ Ĉ be
a simply connected open domain. Let ν(z, λ), τ(z, λ) be holomorphic
functions on S × C

∗ with a simple pole at 0 in the second variable λ.
Let η = ( 0 ν

τ 0 ) and solve the matrix ODE

(29) H ′ = Hη

(where ′ denotes the complex derivative ∂/∂z) for H : S×C
∗ → SL2(C)

with initial value H(z∗, λ) = I at some fixed z∗ ∈ S. Then apply the
so called Iwasawa splitting H = FV+ where F (z, λ) takes values in
SU2 for all λ ∈ S

1 and V+ =
∑

k≥0 Vk(z)λk is a power series in λ.
Put Fλ(z) = F (z, λ). Viewing the Lie algebra su2 as euclidean 3-
space with basis e1 = ( i

−i ), e2 = ( −1
1 ), e3 = ( i

i ), the map hλ =
Ad(Fλ) e3 : S → S

2 is harmonic and hence the Gauss map of a cmc
surface fλ : S → su2 = R

3 which we obtain by the Sym-Bobenko
formula fλ = gλ + hλ where gλ =

(

∂
∂θ

Fλ

)

F−1
λ , putting λ = e−iθ. (cf.

[EQ] for a geometric interpretation of this formula).

The matrix valued first order ODE (29) can be changed into a scalar
valued second order equation. In fact it is straightforward to see that
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the solutions H of (29) are of the type

(30) H =

(

y′
1/ν y1

y′
2/ν y2

)

where y1, y2 form a fundamental system of the scalar ODE

(31) y′′ −
ν ′

ν
y′ − ντ y = 0,

and the assumptions imply that the coefficients ν′

ν
and ντ have poles

of the right order turning (31) into a regular singular equation.
We need to start by choosing a potential η. Following [DPW] we will

obtain a CMC-immersion from very many such potentials. To obtain
some CMC-4-noid we need to choose η just right. In a first step we
choose η as in section 5.1. of [DW1] with singularities at the “ends”,
0, 1, a ∈ R,∞. Then [DPW] produces some CMC-immersion.

Rewriting the matrix ODE (29) we obtain the second order scalar
ODE (31) , which has the same regular singular points as the matrix
ODE.

Following standard ODE theory as explained in Section 2, we trans-
form our equation equivalently into a standardized equation, namely
where the exponents of all finite singular points have one exponent
equal to 0.

For 4-noids, i.e. equations with four singular points this is the Heun
equation. The transformation to Heun form is done by writing the
solution y to equation (31) in the form

(32) y(z) = zr0−(z − 1)r1−(z − a)r2−w(z),

where the exponents rj− are chosen as in [DW1], equation (3.3.8). Sub-
stituting this expression into (31) we obtain the differential equation
(see (7), (12) and [DS]):

(33)

w′′ +

(

1 − 2µ0

z
+

1 − 2µ1

z − 1
+

1 − 2µ2

z − a

)

w′

+
Az + B

z(z − 1)(z − a)
w = 0.

where

(34) A = (µ0 + µ1 + µ2 − µ∞ − 1)(µ0 + µ1 + µ2 + µ∞ − 1)

and

(35) B = −
1

2
(1 − 2µ0)(1 − 2µ1)a −

1

2
(1 − 2µ0)(1 − 2µ2) + ac0.

The expressions µj are given in [DW1], formula (5.11) and are called
| Dj | there. They are functions of the loop parameter λ and encode all
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properties of the Delaunay surfaces which are asymptotic to the ends
of the 4-noid to be constructed. More precisely, for λ = 1 they encode
the neck sizes of the asymptotic ends. From the definition (see loc.cit.)
it is clear that the µj are real and attain valued between 0 and 1/2.

Thus the expressions 2µj are real and attain values between 0 and 1.
It is clear that they correspond to the expressions αj of the previous
sections. In particular, A is real.

At this point we need to remember that our chosen potential will
produce for every λ ∈ S

1 some CMC-immersion, but not necessarily a
4-noid.

The main result of [DW1], Theorem 5.4.1, states that, starting from
a potential as in [DW1], we obtain for λ = 1 a CMC-4-noid if the
monodromy matrices corresponding to the ends are simultaneously r-
unitarizable (see below).

Actually, if and only if is true.
Let’s note first that the monodromy groups considered in this paper

all are generated by the monodromy matrices associated to the four
ends and let’s explain the terms:

First of all, it is easy to see that the conjugacy classes of monodromy
groups defined for the matrix ODE and the associated scalar second
order ODE are the same. Next we note that the monodromy matri-
ces occurring naturally in the loop group method are holomorphic in
λ ∈ C∗. At values of λ, where the chosen (λ-dependent) fundamental
system of solutions becomes linearly dependent, the monodromy ma-
trices will become singular. Due to the holomorphic dependence of the
monodromy matrices, we can find some number 0 < r0 < 1 such that
for all r between r0 and 1 the determinant of each generator of the
monodromy group never vanishes on the circle of radius r.

The term “r-unitarizable” now means that one can conjugate simul-
taneously the four generators of the monodromy group by some matrix
which is holomorphic in the disk of radius r (and possibly multivalued
outside) such that, after conjugation, the new monodromy matrices are
still holomorphic in C

∗, but now also are unitary on S
1, cf. [DW2].

The question now is:
How can we make sure that the monodromy matrices associated with

the given potential η can be simultaneously r-unitarized?
In view of Theorem 10.4 we need to make sure that A < 0 and that

at least three of the four monodromy axes pass through one point.
Actually, we need to require this for all but finitely many λ ∈ S

1.
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Since µ0 +µ1 +µ2 −µ∞−1 < µ0 +µ1 +µ2 +µ∞−1 and the product
of the two sides is A, the condition A < 0 is equivalent to

1 < µ0 + µ1 + µ2 + µ∞,(36)

µ0 + µ1 + µ2 − µ∞ < 1(37)

for all but finitely many λ ∈ S
1. Condition (37) also shows up in a

related context. One usually considers the spherical 4-gon which is
dual to the Schwarz 4-gon considered in this paper and which has side
lengths 2πνj with νj = 1

2
− µj. Thus a necessary condition for the

simultaneous unitarizability of the monodromy matrices are the 4-gon
inequalities ([DS], Section 6 and the literature quoted there):

(38)
∑

i∈P

νi −
∑

j∈P ′

νj −
1

2
(|P | − 1) ≤ 0

where P ⊂ {0, 1, a,∞} with |P | odd and P ′ = {0, 1, a,∞}\P . We note
that there are two types of inequalities: |P | = 1 and |P | = 3. Clearly,
one of the inequalities of type |P | = 1 is (37). The other |P | = 1
inequalities follow from Theorem 10.4 by interchanging j ∈ {0, 1, a}
with ∞. One of the inequalities of type |P | = 3 follows from (37) and
the other ones again by interchanging j ∈ {0, 1, a} with ∞.

Altogether, these inequalities give severe constraints on the µ0, µ1, µ2,
µ∞ for the monodromy matrices to be simultaneously unitarizable.
However, it is known that these inequalities are not sufficient. This
is at least plausible since in (33) the coefficient B, see (35), contains a
function c0 = c0(λ) for which no condition was given yet. In Theorem
10.4 the function c0 is fixed implicitly by the condition that at least
three monodromy axes meet in one point. Unfortunately, this condition
is not explicit and is uncheckable in most cases.

However, in the last example of Section 10, given by (28), it is pos-
sible to check everything. For this example we put a = −1 and thus
have singularities in (32) and (33) at z = x = −1, 0, 1,∞, like in (28).
The symmetry condition for this example mentioned in Section 10 im-
plies that the differential equation is invariant under the transformation
z 7→ −z which fixes 0 and ∞ and interchanges 1 and −1. Applying
this to (33), we obtain

(39) µ1 = µ2, B = 0.

Note that all equalities hold for all λ ∈ S
1 and all inequalities for all

but finitely many λ ∈ S
1.

From Theorem 10.4 we obtain that for all but finitely many λ ∈ S
1

the monodromy matrices are simultaneously unitarizable. It is known
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that this implies that the monodromy matrices are simultaneously r-
unitarizable.

Thus we have shown:

Theorem 11.1. Let η be chosen as above with ends at −1, 0, 1,∞ and
assume (39). Then the procedure presented in [DPW] yields for λ = 1
a CMC-4-noid of genus g = 0 with embedded ends.
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