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1. Introduction

Tilings of euclidean plane with a dihedral (Dn-)symmetry for n �= 2, 3, 4, 6 must be
aperiodic, due to the crystallographic restriction: there is no translation preserving the
tiling. However, there can be another type of ordering: self similarity. A tiling of the full
plane R2 is called self similar if its vertex set V contains a subset V ′ which is a homothetic
image of V , i.e. V ′ = λV for some λ > 1. It is our aim to show the following theorem:
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Theorem 1. When n � 5 is a prime, there exist self similar planar tilings with
Dn-symmetry.

The case n = 5 consists of the two well known Penrose tilings with exact pentagon
symmetry [3,1], while n = 7, 11 have been discussed in [2]. Pictures of the n = 7 tilings
can be found in [2] and [4].

We construct the tilings using the projection method [1], see also [2]: Our tilings are
obtained by orthogonal projection of a subset of the grid Zn ⊂ Rn onto a 2-dimensional
affine subspace E; the projected subset is the intersection of Zn with the so called strip
ΣE = E + In with I = (0, 1). The vertex set of the tiling is VE = πE(Zn ∩ΣE), and the
tiles are projections of unit squares in Rn all of whose vertices belong to Zn ∩ΣE . This
tiling is well defined provided that E is in general position with respect to Zn, i.e. for
every point of E at most 2 coordinates can be integers [1,5]. Assigning the n vertices of
an n-gon to the standard unit vectors e1, . . . , en of Rn, we obtain a linear action of the
dihedral group Dn onto Rn. If n = 2r + 1 is odd, this representation decomposes into a
1-dimensional fixed space Rd with d =

∑
i ei and irreducible 2-dimensional subrepresen-

tations E1, . . . , Er. We will choose E parallel to E1, say E = E1 + a for some a ∈ Rn.
This tiling will have local Dn symmetry at many places. But in order to have global Dn

symmetry we will choose a = k
nd where 1 � k � n− 1.

The self similarity will be caused by a self adjoint Dn-invariant integer matrix S (“in-
flation matrix”) which is integer invertible on W := d⊥ (i.e. there is another Dn-invariant
symmetric integer matrix T with ST = TS = I on W ) and which has eigenvalues λi

with |λi| > 1 on each 2-dimensional component Ei of W for i � 2. Then S acts as a
contraction on E1 and an expansion on the other Ei, and we have1 S(Σ) ⊃ Σ′ where
Σ′ = E′ + In with E′ = S(E) = E1 +Sa. Projecting the grid points in Σ′ onto E′ yields
the point set VE′ . By projecting the grid points in S(Σ) onto E′ we obtain a larger point
set S(VE) ⊃ VE′ . Since E1 is an eigenspace of S, the set S(VE) is homothetic to VE .
When VE is invariant under Dn, so is also S(VE) and VE′ . There are only finitely many
of such tilings with full Dn-symmetry. Therefore, passing to a power of S if necessary,
we can arrange for VE′ and VE to be homothetic. This reduces the proof of the theorem
to the construction of such a matrix S.

The Dn-invariant tilings are not so special as it seems; in fact any tiling corresponding
to E1 + a with a ∈ d⊥ is almost isometric to any of the symmetric tilings, as will be
explained in Theorem 2 below.

2. Dihedral tilings

Let Dn denote the group of all rotations and reflections of a regular n-gon (Dihedral
group). It acts by certain permutations on the set of vertices of the n-gon which may

1 More precisely, since S is not integer invertible on Rd, we might have to pass to a suitable power of S,
see [2].
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be identified with the standard basis of Rn. Thus we obtain an orthogonal integer rep-
resentation of Dn on Rn. Let A be the generator of the rotation subgroup Cn; hence
Aei = ei+1 for i = 1, . . . , n modulo n. The eigenbasis for A is vζ = (1, ζ, . . . , ζn−1) where
ζn = 1; in fact we have Avζ = ζ̄vζ . If n = 2r + 1 is odd, the only real eigenvalue is 1,
corresponding to the eigenvector d =

∑
i ei. The remaining eigenvalues come in complex

conjugate pairs ζj , ζ̄j where ζj = e2jπi/n and the real and imaginary parts of vζj span a
2-dimensional real subspace Ej on which A acts via rotation by the angle 2πj/n.

From now on we assume that n = 2r + 1 is a prime � 5.

Lemma 1. W = d⊥ is a rationally irreducible representation for Dn.

Proof. The 2-dimensional subspaces Ej are inequivalent Dn-modules. Thus any Dn-mod-
ule W1 ⊂ W is a sum of some of the Ej . On the other hand, a nonzero rational vector
v =

∑
λζvζ ∈ W ∩Qn has only nonzero coefficients, λζ �= 0 for all ζ. In fact, since v is

rational and vζ ∈ Kn where K = Q(ζ1), we have λζ ∈ K for all ζ. Now v ∈ Qn iff vσ = v

for all σ ∈ GK where GK denotes the Galois group of K over Q. Each σ ∈ GK is of the
type ζ �→ ζk for k ∈ {1, . . . , n− 1}. Hence vσ =

∑
ζ(λζ)σvζk , and vσ = v iff (λζ)σ = λζk

for all ζ. Therefore, if λζ �= 0 for some ζ, then also λζk �= 0. Thus λζ �= 0 for all ζ, and
hence W1 cannot miss any Ej if it contains a nonzero rational vector v. �
Lemma 2. Let n = 2r + 1 be a prime and F = W 	 E1 = E2 + · · · + Er. Then the
orthogonal projection πF (Zn) of the grid onto F is dense in F .

Proof. The closure of πF (Zn) is a closed abelian subgroup of (F,+) and hence of the type
V ⊕Γ where V is a linear subspace of F and Γ a lattice in F	V . Then Zn ⊂ E1+V +Γ ,
and hence S = (E1 + V + Γ )/Zn is a proper closed subgroup of T = Rn/Zn. But Zn

acts transitively on the set of cosets {E1 + V + γ: γ ∈ Γ} and therefore S = π(E1 + V )
where π : Rn → Rn/Zn = T is the canonical projection. Hence S is connected, a proper
subtorus of T . Since π(E1 + V ) is a torus, E1 + V must contain a sublattice of Zn, and
hence it is a “rational subspace”, that is it is spanned by rational vectors. Since E1 is
Dn-invariant, so is its rational hull, the smallest rational subspace containing E1. Thus
the rational hull of E1 is W and therefore we have E1 + V = W and V = F . But V was
the closure of the non-discrete part of πF (Zn). Since V = F , there is no discrete part
and πF (Zn) is dense in F . �
Theorem 2. Let E = E1 + a and E′ = E1 + a′ with a, a′ ∈ W . Then the corresponding
tilings are almost isometric, that is up to a translation the two tilings agree on the entire
plane up to a set of errors spread over the entire plane with arbitrary small density
everywhere.

Proof. Let E = E1 + a and E′ = E1 + a′ with a, a′ ∈ W ; in fact we may assume
a, a′ ∈ F = W 	 E1. Since πF (Zn) is dense in F , we may approximate a′ − a ∈ F by
some πF (zε) with zε ∈ Zn. Hence E′′ = E + zε is arbitrary close to E′. Consequently,
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ΣE′ and ΣE′′ are almost equal which means that most lattice points admissible for E′ are
also admissible for E′′ and vice versa. Deviations occur only for the grid points contained
in (ΣE′ \ΣE′′)∪(ΣE′′ \ΣE′). Let C = In be the open unit cube, Ck = {x ∈ C:

∑
xi = k}

for k = 1, . . . , n− 1 and Vi = πF (Ck). Then Vk + a+ z is arbitrary close to Vk + a′, and
its intersection is a set of arbitrarily small measure ε. The ratio ε/ vol(Vk) measures the
probability for a grid point z with

∑
zi = k to behave differently for E′ and E′′. �

Remark. For the Dn-symmetric tilings we put a = k
nd. This seems to violate the condition

of Theorem 2 since a /∈ W . However, we may replace a by (say) a′ = a− ke1 ∈ W ; the
translation by ke1 ∈ Zn does not change the geometry of the tiling.

3. General position

We must convince ourselves that the affine space E1 + a with a = k
nd is in general

position, i.e. for any x ∈ E1 at most two coordinates of x+a can be integers. We are using
the complex basis v, v̄ for Ec

1 = E1⊗C with v = (ζ, ζ2, . . . , ζn) and ζ = ζ1 = e2πi/n. Then
any element x ∈ E1 can be written in the form x = cv + c̄v̄ for some complex number c.
We have to show that not more than two components of such a vector can be an integer.

More generally we assume for two different k, l

cζk + c̄ζ̄k = p, cζl + c̄ζ̄l = q

for some nonzero rational numbers p, q. Multiplying the first equation by ζl and the
second by ζk and substracting we obtain

c̄ = pζl − qζk

ζl−k − ζ̄l−k
, c = −pζ̄l + qζ̄k

ζl−k − ζ̄l−k
.

Now suppose that we have a third such equation:

cζj + c̄ζ̄j = r

where j, k, l are different modulo n and r ∈ Q \ {0}. Plugging in our results for c̄ and c

we obtain
(
−pζ̄l + qζ̄k

)
ζj +

(
pζl − qζk

)
ζ̄j = r

(
ζl−k − ζ̄l−k

)
which is a rational linear dependence of certain powers of ζ or rather their imaginary
parts, the corresponding sine values:

p
(
ζl−j − ζ̄l−j

)
+ q

(
ζj−k − ζ̄j−k

)
+ r

(
ζk−l − ζ̄k−l

)
= 0. (∗)

Since n is prime, the powers ζ, ζ2, . . . , ζn−1 are linearly independent over the rationals,
thus p, q, r must vanish, unless two of the three numbers l− j, j − k, k− l are equal up
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to sign, say l − j = j − k. Then the trivial relation p = −q, r = 0 remains, but this is
excluded by the assumption p, q, r �= 0.

4. Construction of the inflation matrix

Consider the symmetric integer matrix Sk = Ak+A−k sending each ej onto ej+k+ej−k

(the indices have to be taken mod n). Being Dn-invariant it keeps the Ej invariant, and
the eigenvalue on Ej is λjk = ζjk + ζ̄jk. We look for an integer matrix S, a polynomial
in the Sk, which is invertible on W = d⊥ such that |λi| > 1 for all eigenvalues λi with
i � 2.

Let ζ be any primitive n-th unit root where n = 2r + 1. For every positive integer
a � r we have 1−ζa

1−ζ = 1 + ζ + · · ·+ ζa−1. This number is invertible in the ring Z[ζ] since
its inverse 1−ζ

1−ζa is a sum of powers of ζa; note that ζ is itself a power of ζa. Multiplying
by ζ−b with b = a−1

2 ∈ Fn in the field Fn = Z/nZ makes this sum of powers symmetric,
hence real, and we obtain an invertible element ξa ∈ Z[ζ + ζ̄],

ξa := ζ−b 1 − ζa

1 − ζ
=

c∑
j=−c

ζj where c =
{

a−1
2 if a− 1 is even,

n−a+1
2 if a− 1 is odd.

(1)

For any a ∈ {2, . . . , r} we consider the matrix

Ua =
c∑

j=−c

Aj = I + S1 + · · · + Sc. (2)

Putting ζ = ζj , the eigenvalue of Ua on Ej will be ξa in (1) which now more precisely
will be called ξja. Since all ξa are invertible in Z[ζ + ζ̄], all Ua are integer invertible on
W = d⊥. Our inflation matrix will be of the form

S = U t2
2 U t3

3 · · ·U tr
r (3)

for suitable powers t2, . . . , tr ∈ Z. The eigenvalue of S on Ej is

λj = (ξj2)t2 · · · (ξjr)tr . (4)

We want |λj | > 1 for all j = 2, . . . , r. Taking logarithms of absolute values we obtain

t2 log |ξj2| + · · · + tr log |ξjr| = log |λj | (5)

for j = 2, . . . , r. This is viewed as a system of r − 1 linear equations for the unknowns
t2, . . . , tr with coefficient matrix X = (log |ξjk|)j,k�2. By [6, Theorem 8.2, p. 145], the
determinant of X is nonzero (the so called regulator). Thus the solution of (5) is �t = X−1�l

where �l = (l2, . . . , lr)T with lj = log |λj |. In particular, near any “positive” vector �l with
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l2, . . . , lr > 0 there is a positive vector �l′ such that �t = X−1�l′ is a rational vector.
Multiplying by the product (or the lcm) of the denominators we may assume that �t is
an integer vector. Thus the eigenvalues λj of S = U t2

2 U t3
3 · · ·U tr

r satisfy |λj | > 1 for
j = 2, . . . , r and hence S is an inflation matrix. This finishes the proof of Theorem 1.
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