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ABSTRACT
Optical tracking has a great future in applications of virtual
and augmented reality. It will assist to enhance the accep-
tance of virtual reality user interfaces, since optical tracking
allows wireless interaction and precise tracking. Existing
commercial motion capture systems are neither working re-
liably in real-time. Additionally, only few optical trackers
can smooth and predict motion and include a motion esti-
mator supplying similar results to the presented approach.

A Kalman filter formulation is proposed, providing the ro-
bustness required by most virtual reality applications. The
filter is evaluated with respect to different rigid body mo-
tions and provides precise prediction. Thereby, the fre-
quency and reliability of the optical tracker is enhanced.
Predicted motion can be used to cope with display lags of
complex virtual scenes or with acquisition or communica-
tion delays. The proposed filter may also be used with non-
optical based trackers providing the pose of an object with
six degrees of freedom.

Keywords
Optical tracking, Kalman filter, motion capture, user motion
tracking

1. INTRODUCTION
Virtual environments (VE) immerse users in a fantastic

world and enable them to take advantage of the interac-
tion metaphors people are used to for manipulating objects.
Within non-desktop virtual reality (VR) applications, users
are animated to physically move around and to explore the
virtual world. A new view provides a new perspective of
the scene, obtaining new details and thus new information
about the objects placed in the virtual world. Typically,
head movements are the simplest form of interaction that
a well designed application supports. The most fascinating
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applications in virtual environments are highly interactive.
Observing humans using entertainment applications, we see
that users want to touch objects and manipulate them like
children do in exploring the real world.

In order to enable users to move and to interact in this
fashion, the virtual reality interface needs precise informa-
tion about where users stand and in which direction they
are looking. This is due to the fact that each view of a
user is comparable to a virtual camera and its images need
to be calculated and displayed with high frequency and low
latency to not cause motion sickness when viewed through
a head mounted display (HMD). These are some of the re-
quirements a tracking sensor has to fulfill. Thus, developing
a motion tracker is a highly sophisticated task, and different
tracking principles do exist using acoustic, optic, magnetic
or inertial sensors. In fact, the future of tracking technology
is likely in hybrid tracking. This means different sensors are
combined to overcome the disadvantages each sensor has and
to thereby get an ultimate solution for the tracking problem.
It is not surprising that an ultimate tracker does not exist
since each VR application poses its own requirements.

There is a wide range of optical based tracking meth-
ods, but there are only few systems that are reliable and
near product stage so that designers of virtual reality in-
terfaces are able to make use of them. Commonly used
optical trackers of human motion capture for computer an-
imation do not meet the real-time constraints of virtual re-
ality applications. Those systems store either a captured
image sequence of moving objects or a sequence of cluster
centers obtained through hardware implemented segmenta-
tion of marker images. Afterwards, the images of markers
are matched through user intervention to obtain an initial
pose for tracking, which is then done off-line. During mo-
tion capturing those optical tracking systems provide high
update rates (over 200 Hz) with extremely high accuracy,
but also at high cost. Since real-time tracking of the human
pose is not a must for computer animation applications new
tracking technology needs to be developed.

Recently, inertial sensors with low drift were introduced
to track motion for virtual environments [12], but neverthe-
less, additional sensors are needed to refresh the system with
global position data. This can be done using e.g. optical
trackers. Therefore, optical tracking provides high accuracy
at low-cost due to the fact that more and more cameras
are sold at a low price. Connected with a standard PC one
can make use of image processing to extract data for track-
ing human motion in real-time. However, it is well known
that image processing is quite computational expensive so



that highly sophisticated algorithms are not applicable in
real-time. Nowadays, real-time computer vision uses short
and fast algorithms to track motion either by using artifi-
cial landmarks or even less restraining by tracking natural
features. In order to manage high frequency motion cap-
ture, the tracking system developer should be very careful in
choosing the landmarks being tracked. For segmenting nat-
ural landmarks, more computational time is needed. As a
consequence, trackers that utilize natural landmarks are less
reliable. Many algorithms have been published recently on
natural feature tracking, but since object recognition is still
an unsolved problem for real-time processing, those systems
are mostly capable to track certain frames after initializa-
tion, given an approximate object pose. It is obvious that
there is need for a real-time tracking system that is able
to perform a self-initialization, that offers a reliable track-
ing with high precision and high update rate, which can be
used in different application environments where dim light
is a rule rather than an exception.

This paper proposes an optical tracking system that pro-
vides reliable motion tracking results in dim light environ-
ments. The robustness of the tracking system is due to the
motion estimator and predictor incorporated into our opti-
cal tracking procedure. We first give an overview about the
tracking system itself and then depict formulas for motion
estimation with an extended Kalman filter. Experimental
results and simulated examples illustrate the well-performed
filtering of the proposed algorithm.

2. OPTICAL TRACKING SYSTEM
As we started to develop the proposed tracking system,

we acted from necessity. The application scenario allows for
using a responsive workbench as a semi-immersive display,
but available tracking technology fails either at tracking with
sufficient accuracy in environments containing metallic ob-
jects or at enabling wireless interaction. Therefore, optical
tracking has become a promising alternative, since it pro-
vides both, high precision and wireless user motion tracking.
It should be mentioned here that we started to implement
a first version of our optical tracker in 1997 [11] and about
that time, commercial optical tracking systems (like e.g. the
ART-Optical Tracking System [1]) were not available or did
not fulfill the requirements when using them at the respon-
sive workbench. But nevertheless, our tracking system has
many advantages in comparison to other optical trackers.
One advantage is the integration of a Kalman filter process
that makes tracking more reliable, enhances frequency and
optimizes latency. Thus, we want to discuss its implemen-
tation in this paper and emphasize that its interface and
filter formulation is not limited to optical tracking. Any
other tracker that provides the pose of a rigid body with
six degrees of freedom can be used as input for the Kalman
filter process. Another advantage of our tracking system is
a camera calibration that estimates intrinsic and extrinsic
camera parameters in one step. Generally, commercial op-
tical trackers are calibrated internally by the manufacturer.
Afterwards, external calibration is performed by the cus-
tomer. However, in case lenses need to be replaced, cameras
must be send back to the manufacturer for internal calibra-
tion. The calibration method we have developed does not
require an explicit internal calibration and is thus very easy
to use and user friendly. Additionally, the tracking system
is affordable for most public utilities like museums and re-

search institutes.

Figure 1: 6 DoF Interaction tool and camera with
infrared spot light and infrared pass filter for retro-
reflective marker tracking

When using the tracking system at the responsive work-
bench, lighting conditions around the responsive workbench
have to be subdued to not decrease the brightness of the
projection. This limits an optical tracking system to us-
ing infrared light, in which case one has two possibilities
to choose from: either the system may use active infrared
beacons, or the tracking area has to be illuminated with in-
frared light while the objects to be tracked are fitted with
reflective markers. Our first implementation used active in-
frared beacons [11] that are self-powered. Because of that,
shutterglasses fitted with active markers became heavy mak-
ing them uncomfortable. Additionally, the amount of light
emitted by the beacons is restricted by its LED specific ra-
diance angle. As we wanted to enable interaction with six
degrees of freedom, we extended our tracker to a more elab-
orated passive marker tracking system as depicted in Fig.
1.

In order to enable the users to walk around three sides
of the responsive workbench, the camera positions were re-
stricted to the far sides of the table, to the left and to the
right of the projector. Figure 2 illustrates the constellation
of the cameras at the responsive workbench. Mounting the
cameras closer together (e.g. both on top of the projector
cover) would create accuracy problems as the 3D position
of the beacon can be best calculated when the cameras are
arranged with a convergence angle of between 60 and 120
degrees between them.

The proposed optical outside-in tracker has been used in a

1,2m

0.4m

1,2m

0,4m

right Cameraleft Camera

Figure 2: Camera positions at the responsive work-
bench



Figure 3: Interacting with virtual objects

medical education application as shown in Fig. 3. Through
collision detection of a virtual representative of the pointing
device, button-press-and-release events are simulated and
cause changes of the virtual scene according to the source
of a callback function. In order to enhance the robustness
of emitting manipulation events, we have added a button
to the interaction device that transmits button-press-and-
release events via wireless radio link. The medical education
application allows to grab and rotate objects. To learn more
about the viscera of humans the user has to collide with their
virtual representations whereupon a two-dimensional infor-
mation card gives additional information in a specialized-
book-like metaphor.

One of the perspectives of the optical tracker is to track
the full body of a human to enable real-time character an-
imation or full body interactions. This requires tracking of
flexible objects and incorporates kinematic chains. One of
our extensions to the tracking system includes the detection
of a glove fitted with markers. Displaced balls on the back of
the finger (Fig. 4) were used that have good retro-reflective
properties and are not often significantly occluded by the

Klaus Dorfmüller-Ulhaas Finger tracking for interaction in augmented environments
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Figure 4: Glove fitted with retroreflective markers
to interact in an augmented reality chess game

fingers themselves. The use of displaced balls was enhanced
by connecting the balls with short pieces of wire mounted
to hinges in the balls to enforce a fixed known distance be-
tween the balls. Dimensions of these wire rods were chosen
to match the distances between finger joints. While this “ex-
oskeleton” looks awkward, it has the great advantage that it
follows the behavior of the finger as a kinematic chain, but
with easily detectable joint centers. Experiences confirmed
that it does not affect finger movement or interaction in any
noticeable way.

For reconstruction, a 3D finger model based on a kine-
matic chain of the finger joints was employed that directly
maps onto the markers. As the distance of the markers is

known, the system is independent of the actual dimensions
of the user’s finger (within certain limits), while the soft
glove’s material can be stretched to fit any user. The only
remaining user specific parameter is the actual offset from
the user’s finger tip to the last marker in the chain which
is used to determine the 6 DoF “hot spot”. To enable a
user to interact with his or her finger tip, this offset must
be determined. However, most users showed to be willing to
accept that the actual hot spot is deviant by a small amount
from their finger tip, and interaction is not affected. In this
paper, we limit ourselves to 6 DoF tracking and explain how
motion estimation of a rigid body works within our optical
tracking system.

In order to illustrate how Kalman filtering enhances the
robustness of an optical tracking system, let us consider Fig.
5. The images for the left and right camera view are seg-
mented to extract the markers’ center of gravity. Herewith,
the pose predicted by the Kalman filter is projected to the
image planes. This improves the frequency of the tracking
system, since information is provided about where marker
images may be located in the current frame. For matching
the marker images between camera image planes, the pose
predicted by the Kalman filter provides additional informa-
tion preventing wrong matches and undesired triangulations
of three-dimensional marker positions not existent in reality.
However, it can not completely assured that only marker po-
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Figure 5: Image processing tasks

sitions are three-dimensionally reconstructed. Reflections of
markers caused by glass or other reflective material in the
environment can provide additional marker positions. This
is why an additional matching algorithm was implemented
to find known sub-structures in a 3D point cloud. This
problem is NP-complete and could be solved much faster if
heuristics are available. In fact, the Kalman filter provides
the required information. Last but not least, pose predic-
tion can be used to cope with display lags, communication
delays and to reduce the latency of the optical tracker.

One low-cost optical tracking system that has inspired our
work essentially was invented by Madritsch and Gervautz
[16]. Disadvantages of their system include the use of LEDs
for tracking, the use of unsynchronized cameras and thus, it
was impossible for the system to prevent errors in pose esti-



mation during motion. Calibration is done with the cumber-
some and error-prone Tsai [20] calibration. A system using
synchronized cameras and an easy-to-use stereoscopic cam-
era calibration was proposed by Dorfmüller and Wirth [11].
The use of retro-reflective markers for real-time tracking in
VR and the invention of hand-held tools for interaction with
six degrees of freedom was introduced by Dorfmüller [10].
Different versions of this optical tracking system are cur-
rently in use at ZGDV in Darmstadt, Germany, at the Uni-
versity of Münster, Germany, at Ewha Womans University
Seoul, South Korea, at the Vienna University of Technol-
ogy, Austria, and at the University of Augsburg, Germany.
Application-related articles have been published by some of
these institutes [17, 15]. A re-implementation of and ex-
tensions to the proposed tracking system were developed
and published [19]. A similar optical tracker was created by
Mulder and Liere [18] and Chung et al. [9]. None of those
outside-in motion trackers has incorporated a motion esti-
mator to support a robust tracking in virtual environments.

3. MOTION ESTIMATION
Motion tracking is one of the most important parts of a

robustly working system. Many optical tracking systems
estimate the pose of an object at one frame more or less
independent of a previous frame. Prediction extrapolates
motion and can be used for motion smoothing and provides
heuristic information for optimization and matching prob-
lems. The filter formulation proposed in this paper also ad-
dresses virtual reality system developers who want to cope
with latency problems of their systems while displaying com-
plex virtual scenes. We propose here an elegant way to pre-
dict and smooth motion of a rigid body with six degrees of
freedom.

For motion estimation we have chosen to use an extended
Kalman filter, because Kalman filtering has the feasibility to
model noise, even allowing the system to filter state values
in noisy environments. Figure 6 shows how measurements
on the camera image planes can be used as indirect measure-
ments for the proposed EKF. First, function F1 backprojects
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Figure 6: Predicting the measurements on the image
planes of a stereo rig

the measurements to 3D space (compare pages 295ff in [14]).
Method F2 calculates the rotation and translation of a rigid
body given multiple 3D point measurements corresponding
to known ideal 3D points of the rigid body. It was shown by
Arun et al. [3] and Umeyama [21] how two 3D point sets are
related by rotation and translation. Umeyama has refined
the closed-form solution introduced by Arun for the case of

false matches. A nonlinear estimation algorithm refines the
rotation and translation values by comparing real measure-
ments of marker images with ideal ones obtained through
projection while incorporating the rigid bodies pose. Af-
ter rigid body’s rotation matrix R and translation vector t
have been precisely estimated, three imaginary points on
the rigid body can be computed to provide the input for
the proposed EKF. Motion kinematics as described later
are used to predict the velocity and angular values of the
rigid body. Function F3 calculates three arbitrary points
located in the coordinate system of the rigid body. Angular
velocity ω, translational velocity v, and translational accel-
eration a are filtered from these measurements and can be
predicted through an EKF. Module F4 transforms each 3D
object point to be measured corresponding to the predicted
pose of the rigid body using the estimated prediction val-
ues of the EKF. Function F5 is a projection of predicted
object points in 3D space on the camera image planes. If
the Kalman filter is used with other tracking sensors, only
function F3 is necessary, the extended Kalman filter itself,
and a postprocessing function F4 that calculates the pre-
dicted pose R+ and t+ using the predicted state vector val-
ues of the Kalman filter ω+, v+ and a+. This can be easily
implemented using Theorem 1, which is introduced in the
following.

Much work has been done recently for determining 3D
motion and structure of moving rigid objects in computer
vision [24, 8, 4]. The extraction of motion and shape para-
meters of a moving rigid 3D object from a 2D image sequence
is often named the structure from motion problem. How-
ever, the number of unknown parameters is directly related
to estimation performance and data requirements. If many
parameters like e.g. structure parameters are unknown, the
estimation process can be delicate and difficult. If fewer pa-
rameters, e.g. only kinematic parameters are involved, like
in [5, 26], the estimation process is more robust and ap-
plicable for real-time tracking. Most motion estimators are
based on EKF which has been the subject of much recent
work [5, 6, 7, 13, 22, 25], but it should be mentioned that
other approaches like the Levenberg-Marquardt technique
do exist that provide better and faster convergence under
some circumstances (compare [23]). Since Kalman filtering
is robust for measurements that suffer from noise, it is in
the focus of this paper.

3.1 Motion Model
Motion of a rigid body in three-dimensional space is con-

sidered a transformation including translation and rotation.
Translation has three degrees of freedom and can be repre-
sented as a linear function. Rotations represented as matri-
ces are also linear functions if applied to a point in space.
However, a rotation matrix is not a minimal rotation repre-
sentation. A rotation matrix is defined to be orthonormal
and thus, a rotation has only three degrees of freedom. Using
three parameters to represent a rotation results in nonlinear
functions and in addition singularities are obtained through
the use of a three parameter representation. Quaternions
have four degrees of freedom and are free from singulari-
ties. If derivatives of rotation known as angular velocities
are needed quaternion representations do not satisfy. Since
quaternions use four parameters to represent a three degree
of freedom rotation, there is always a direction of change in
calculating the partial derivative that is not a rotation. If a
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rotation is changed in the direction of its partial derivative,
the quaternion gets non-unit length and does no longer rep-
resent a rotation. A re-normalization can be performed, but
the result is not exact and numerically unstable. Therefore,
we propose to use a minimal rotation representation that
has its origin in mechanics and is known as the exponential
map which does not have the disadvantages of a quaternion
representation.

Consider Figure 7, depicting a 3D rotation in space by
an angle θ ∆t about an axis of rotation ω. The rotation
representation defines the instantaneous angle of rotation θ
with ∆t = 0 to be the length of vector ω, hence θ ∆t =
‖ω‖∆t =

p
ω2

x + ω2
y + ω2

z ∆t and the direction of ω is that
of the rotation axis.

The general motion of a point P on a rigid body may be
estimated by using Taylor series in order to approximate the
translational velocity vt and the angular velocity ωt at time
t. This would give the following equations:

vt =

nX
i=0

vi
(t− t0)

i

i!
(1)

= v0 + v1∆t + v2
(∆t)2

2
+ · · ·+ vn

(∆t)n

n!

ωt =

mX
i=0

ωi
(t− t0)

i

i!
(2)

v0, ω0 are known as the translational and rotational ve-
locity at time t − 1 and v1, ω1 are the translational and
rotational acceleration parameters at time t− 1. v2, ω2 are
the physical jerk. In practice it is sufficient to approximate
the motion of a rigid body by the first one or two terms of
the Taylor series. As long as ∆t is small, this linearized
kinematic model fits well. Now, we can introduce Theorem
1 which represents a linearized motion model used within
our implementation:

Theorem 1. The trajectory of a point P transfomed
from p0 to pt in time ∆t is given in the case of constant
angular velocity ω, linear translational velocity v and con-
stant translational acceleration a, by the following equation:

pt = Wp0 + Vv + Aa (3)

where W, V and A are given as:

W = I3 +
sin(θ∆t)

θ
ω̃ +

1− cos(θ∆t)

θ2
ω̃2 = eω̃∆t (4)

V = I3∆t +
1− cos(θ∆t)

θ2
ω̃ +

θ∆t− sin(θ∆t)

θ3
ω̃2 (5)

A =
∆t2

2
I3 +

θ∆t− sin(θ∆t)

θ3
ω̃

+
(θ∆t)2 − 2(1− cos(θ∆t))

2θ4
ω̃2 (6)

where

ω̃ =

2
4 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

3
5

is a skew symmetric matrix and ω̃2 = ω̃ · ω̃

Herewith, the rotation of a point P is given by the expo-
nential map of vector ω∆t, which is denoted as eω̃∆t and
describes a rotation matrix. Equation 4 is well known as
the Rodrigues formula [2]. The translation of a point P is
given by t = Vv + Aa 1.

3.2 Tracking
There are different possibilities how to solve the track-

ing problem when rotation and translation data are used
as sensor data input. Often the translational data and the
rotational data are treated independently and stored in the
state vector of a Kalman filter process, 

R− R̂
+

t− t̂
+

!
= 0 (7)

where R̂
+

and t̂
+

are a predicted rotation matrix and trans-
lation vector, respectively. In Augmented Reality the regis-
tration is best performed when virtual and real data align so
that the observer does not perceive any offset. This align-
ment is dependent on the measured rotation and translation
obtained through the tracking system. Thus, we assume
that modeling rotation and translation independently does
not assure that the final pose of a rigid body in VR aligns
best with the real one. We propose to use equations that
minimize the error of transformed points which is perceived
by the user of a VR system instead of treating those para-
meters independently and use a minimization as follows:0

@ M1 − M̂1(R, t)+

M2 − M̂2(R, t)+

M3 − M̂3(R, t)+

1
A = 0 (8)

1This formula can also be used for calculating a predicted
translation vector using the predicted acceleration and ve-
locity parameters of the Kalman filter



where M̂ i(R, t)+ is the ith predicted point located on the
rigid body using predicted pose parameters R and t. It is
left to future work to evaluate this statement by comparing
these two different approaches. It is recommended in this
paper that a relative movement of at least three 3D points
should be modeled in order to enhance the accuracy of a
predicted rigid body motion.

The Kalman filter requires a state vector holding the fol-
lowing variables in our application:

st =
�

ωt vt at

�T
(9)

where ωt is the constant angular velocity, vt is the transla-
tional velocity, and at is the constant translational acceler-
ation. In fact, we store only relative motion parameters in
the state vector since global orientation and translation can
be calculated from relative motion.

The filter formulation foresees a set of six 3D measure-
ments in the measurement vector, where three variables de-
note the current measurements at time t and three variables
give the previous measurements at time t − 1. This formu-
lation leads us to the estimation of relative motion.
The measurement vector is given as

xt =
�

P 1 P 2 P 3 P ′
1 P ′

2 P ′
3

�T
(10)

In case only rotational Rt and translational data tt are avail-
able from the sensor, these three 3D points may be cal-
culated using three non-coplanar vectors, for instance the
unit vectors of the coordinate system e1 = (1, 0, 0)T , e2 =
(0, 1, 0)T , and e3 = (0, 0, 1)T . The points needed for the
measurement vector are then obtained by the following trans-
formation.

P i = Rtei + tt (11)

For prediction of the state vector, the EKF uses the following
equation:

ŝt|t−1 = ht(ŝt−1)

Since the rotation parameters have been omitted from the
state vector, the state prediction is a linear function and can
thus be simplified as

ŝt|t−1 = Htŝt−1

where H is a matrix and is given as

H =

0
@ I3 0 0

0 I3 I3 ∆t
0 0 I3

1
A (12)

From Theorem 1, the following function which is minimized
by the Kalman filter, may be derived.

f
�
x′

t, ŝt|t−1

�
=

0
@ WP 1 + Vv + Aa− P ′

1

WP 2 + Vv + Aa− P ′
2

WP 3 + Vv + Aa− P ′
3

1
A = 0 (13)

This function is a residual between the measurement deter-
mined by using the motion model applied with the state
vector and the current measurement. If the state vector
and the motion model are exact and the measurement does
not include any noise, this function accumulates to a nine-
dimensional zero vector. Function f(x, s) is a nonlinear
function since the matrices W, V, and A are nonlinear expres-
sions. In order to apply the EKF algorithm, it is necessary
to compute the derivatives of f(x, s) with respect to x and

s. However, these derivatives include singularities as we will
see later in this section. We will provide a solution to this
problem.
The derivative ∂f

∂x can be computed as:

∂f

∂x
=

0
@ W −I3 0 0 0 0

0 0 W −I3 0 0
0 0 0 0 W −I3

1
A (14)

Singularities occur due to the derivative with respect to s:

∂f

∂s
=

0
@ ∂f1

∂ω
V A

∂f2
∂ω

V A
∂f3
∂ω

V A

1
A (15)

where

∂fi

∂ω
=

∂(WP i)

∂ω
+

∂(Vv)

∂ω
+

∂(Aa)

∂ω
(16)

Here, the derivatives of matrices W, V, and A are needed and
determined as follows:

∂(WP i)

∂ω
= −

sin(θ∆t)

θ
P̃ i

+
θ∆t cos(θ∆t) − sin(θ∆t)

θ3
(ω̃P i)ω

T

+
θ∆t sin(θ∆t) − 2(1 − cos(θ∆t))

θ4
(ω̃(ω̃P i))ω

T

+
1 − cos(θ∆t)

θ2

h
− g̃ωP i + (ω

T
P i)I3 − P iω

T
i

∂(Vv)

∂ω
= −

1 − cos(θ∆t)

θ2
ṽ

+
θ∆t sin(θ∆t) − 2(1 − cos(θ∆t))

θ4
(ω̃v)ω

T

+
3 sin(θ∆t) − θ∆t(2 + cos(θ∆t))

θ5
(ω̃(ω̃v))ω

T

+
θ∆t − sin(θ∆t)

θ3

h
−f̃ωv + (ω

T
v)I3 − vω

T
i

∂(Aa)

∂ω
= −

θ∆t − sin(θ∆t)

θ3
ã

+
3 sin(θ∆t) − θ∆t(2 + cos(θ∆t))

θ5
(ω̃a)ω

T

+
4(1 − cos(θ∆t)) − (θ∆t)2 − θ∆t sin(θ∆t)

θ6
(ω̃(ω̃a))ω

T

+
(θ∆t)2 − 2(1 − cos(θ∆t))

2θ4

h
−f̃ωa + (ω

T
a)I3 − aω

T
i

Even if ω = 0, the derivatives are not defined since θ be-
come zero. We may cope with this property if the limes near
ω = 0 can be determined. Most terms of the derivative be-
comes zero since ω becomes zero. For the others, the limes
of θ becoming zero is calculated by applying the rule of de
l’Hospital:

lim
θ→0

∂(WP i)

∂ω
= lim

θ→0
−

sin(θ∆t)

θ
P̃ i

= lim
θ→0

−
∆t · cos(θ∆t)

1
P̃ i = −∆tP̃ i

lim
θ→0

∂(Vv)

∂ω
= lim

θ→0
−

1 − cos(θ∆t)

θ2
ṽ

= lim
θ→0

−
cos(θ∆t)∆t2

2
ṽ = −

∆t2

2
ṽ

lim
θ→0

∂(Aa)

∂ω
= lim

θ→0
−

θ∆t − sin(θ∆t)

θ3
ã

= lim
θ→0

−
∆t3 cos(θ∆t)

6
ã = −

∆t3

6
ã

So far, the filter formulation is complete and we may per-
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Figure 8: Motion simulation of a rigid body. (a)
The rigid body is translated and rotated so that the
origin is still moved on a straight line. (b) The mea-
sured translation and rotation of the rigid body is
corrupted by noise. The origin of the rigid body’s
coordinate system is no longer located on a straight
line, causing the coordinate system to be enlarged
in x-y direction.

form some experiments with simulated data to evaluate a
successful working of the EKF.

3.3 Experimental Results
We first have implemented the proposed extended Kalman

filter formulation using MatLabTM and then translated the
code to C++ to integrate it into our optical tracker. The
MatLabTM application serves us to perform simulations and
to evaluate the filtering of rigid body motion. In the follow-
ing, we depict three of our simulations and show plots of
filtered motion data to see the correct working of the filter
and the weaknesses if the tracker’s frequency does not fulfill
Shannon’s sampling theorem.

For a first experiment, let us assume the constant angular
velocity of a moving object is given by ω = (0, 0, 0.02)T

and the constant acceleration is given by a = (0, 0, 0.001)T .
The translational velocity of the previously introduced mo-
tion model is not constant, but linear, so the velocity accu-
mulates over time to vt = vt−1 + a∆t. The initial velocity
motion of a rigid body is assumed to be v0 = (0, 0, 0.2)T .
The time between successive frames is taken to be constant
for simplification and defined as ∆t = 20 ms. Figure 8 (a)
shows this experimental rigid body motion. Three points
located imaginarily on the rigid body are displayed with dif-
ferent color circles. Ten time steps of this rigid body motion
are captured. A Kalman filter assumes that the measure-
ments may be perturbed by white noise. The measurements
of the second experiment we may consider are rectangularly
distributed. In contrast of using a gaussian distribution we

will see how the Kalman filter behaves if the error induced
is different from white noise. The range for varying the
angular velocity ω is ±10−3, for varying the translational
velocity ±10−2 and finally the translational acceleration is
perturbed in the range of ±10−5. A motion of a rigid body
suffering from this random noise is depicted in Fig. 8 (b).
The EKF formulation was applied to the artificial 3D point
data of Fig. 8 (a) and (b). The kinematic parameters are
extracted by the filter and predicted for ∆t = 20 ms. Fig-
ure 9 shows the prediction of angular velocity, where (a) is
obtained using ideal and (b) using corrupted data. It can
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Figure 9: Prediction values of angular velocity. (a)
Ideal measurement data are used. (b) Corrupted
data are used. After three iterations, the prediction
of the rotational velocity is stable and converges to
the true values ω = (0, 0, 0.02)T .

be seen in Fig. 9 that for both cases the EKF converges
to the true values of the angular velocity after three iter-
ations. After three iterations the covariance matrix P has
been adapted to the specific motion of the rigid body and
the angular velocity can be precisely predicted. In the first
case the angular velocity is ω = (0, 0, 0.02)T and for the
second case it is close to these values.

The translational velocity is predicted as illustrated in
Fig. 10. Remember that the translational velocity is not
constant. In the underlying motion model it is linear which
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Figure 10: Prediction of translational velocity. (a)
Ideal measurement data are used. (b) Corrupted
data are used. After three iterations, the prediction
of the translationasl velocity is stable. The velocity
is a linear function vt = vt−1 + a∆t what can be seen
by the value of vz.

can be seen in Fig. 10 (a) after three iterations for the
value vz. Noise does not influence the convergence of the
Kalman filter. Fig. 11 depicts the prediction of translational
acceleration derived from this motion prediction experiment.
The following experiment shows how the filter behaves if
the sampling rate is of low frequency. Shannon’s sampling
theorem says that the measurement or sampling frequency
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Figure 11: Prediction of translational acceleration.
(a) Ideal measurement data are used. (b) Corrupted
data are used. After three iterations, the prediction
of the translational acceleration is stable. It can
be seen that the translational acceleration is more
sensitive to noise than e. g. translational velocity.

should be at least twice the true target motion. We now as-
sume an abrupt change of target motion of the rigid body at
time frame 10. For such generated measurements the sam-
pling does not fulfill the previously mentioned requirements
for the change of direction from frame 9 over 10 to 11 (com-
pare Fig. 12). The rigid body motion shown in Fig. 8 is sup-
plemented with an abrupt change in motion defined by the
following kinematic vectors ω = (0.005, −0.01, −0.02)T ,
v = (0.2, 0.1, −0.2)T and a = (0.001, 0.0008, −0.001)T .
This situation is shown in Fig. 12. It can be seen in Fig.
13 and Fig. 14 that the filter realigns after three to four
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Figure 12: Simulation of a sudden change of direc-
tion. The motion data of a rigid body are corrupted
by noise. From frame 9 to 10 the direction of motion
is abruptly changed to evaluate the behavior of the
EKF for a too low sampling rate.

iterations. The translational acceleration is more sensitive
to this abrupt change and needs about five iterations. If the
sampling frequency is not high enough, the resulting pre-
dicted pose results in overshoots as can be seen in frame 11
of Fig. 15. Thus, it is crucial that the tracker fulfills this
sampling theorem.
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Figure 13: Prediction of angular velocities. The be-
havior of the EKF for frames 1 to 9 is similar to the
previously carried out simulation. From frame 9 to
11 the prediction of the angular velocity is unstable.
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Figure 14: Prediction of translational velocity and
acceleration. (a) Translational velocity (b) Transla-
tional acceleration. It can be seen that translational
velocity and -acceleration are more sensitive to noise
than angular velocities. The filter is stable only after
frame 13.

The integration of the Kalman filter has made the optical
tracker more reliable, since the predicted pose of a rigid body
is used to solve NP complete matching problems. It speeds
up our marker segmentation and thus, allows to achieve
tracking with full frame rate of the cameras. The cameras
we are using provide 30 frames per second so that in cases of
very fast rigid body movements Shannon’s theorem is bro-
ken. In order to track rigid bodies more reliably under such
circumstances, we plan to combine the optical tracker with
inertial sensors to create a hybrid tracking system which is
able to share the strengths of each sensor technology and to
fulfill the Shannon theorem in cases of very fast motion.

4. CONCLUSIONS
We have proposed an extended Kalman filter formula-

tion for robust optical tracking. It has been illustrated how
Kalman filtering enhances the reliability of an optical track-
ing system. A motion model based on exponential maps was
proposed to track motion. It has its strengths in numerical
robustness and fast convergence to the desired motion esti-
mate. The implemented Kalman filter was evaluated with
respect to different rigid body motions and provides filter-
ing and precise prediction unless the Shannon theorem is
fulfilled.

Our future work will compare our Kalman filter formula-
tion of rigid body motion with formulations that treat rota-
tion and translation independently from each other to pre-
dict motion. We want to show that our prediction method
is more precise with respect to pixel error in the context of
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Figure 15: Overshoots of predicted rigid body ro-
tation and translation. When calculating the global
rotation (a) and global translation (b) of the rigid
body using the state vector of the EKF, overshoots
in frames 10 to 12 for (a) and in frames 9 to 13 for
(b) can be recognized.

Augmented Reality applications, since our method reduces
the displacement error of points in three-dimensional space.

Optical tracking is very precise in estimating the position
of points in 3D space, but it suffers from line-of-sight prob-
lems. Also, if inexpensive standard cameras are used, the
frequency of an optical tracker cannot be higher than the
sensors’ frequency. Since standard cameras provide sam-
pling rates about only 30 Hz, a faster sensor technology
would be welcome. The line-of-sight problem as well as a
low sampling frequency can be overcome if inertial sensors
are incorporated. Drift correction will be done with optical
tracking and frequency enhancement and tracking in cases
of occlusion will be done with inertial sensors. Sensor fu-
sion will be done with an extension to our Kalman filter
formulation.
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