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Abstract. Today we see an increasing demand for flash memory because
it has certain advantages like resistance against kinetic shock. However,
reliable data storage also requires a specialized file system knowing and
handling the limitations of flash memory. This paper develops a formal,
abstract model for the UBIFS flash file system, which has recently been
included in the Linux kernel. We develop formal specifications for the
core components of the file system: the inode-based file store, the flash
index, its cached copy in the RAM and the journal to save the differences.
Based on these data structures we give an abstract specification of the
interface operations of UBIFS and prove some of the most important
properties using the interactive verification system KIV.

1 Introduction

Flash memory has become popular in recent years as a robust medium to store
data. Its main advantage compared to traditional hard disks is that it has no
moving parts and is therefore much less susceptible to mechanical shocks or
vibration. Therefore it is popular in digital audio players, digital cameras and
mobile phones.

Flash memory is also getting more and more important in embedded systems
(e.g. automotive [28]) where space restrictions rule out magnetic drives, as well
as in mass storage systems (solid state disk storage systems like the RamSan-
5000 from Texas Memory Systems) since it has shorter access times than hard
disks.

Flash memory has different characteristics when compared to a traditional
hard disk. These are explained in Section 2. In brief, flash memory cannot be
overwritten, but only erased in blocks and erasing should be done evenly (“wear
leveling”). These properties imply that standard file systems cannot be used
with flash memory directly.

Two solutions are possible: either a flash translation layer is implemented
(typically in hardware), translating standard file system operations into flash
operations. This is the standard solution used e.g. in USB flash drives. It has
the advantage that any file system can be used on top (e.g. NTFS or ext2). On
the other hand, the characteristics of file systems (e.g. partitioning of the data
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into the content of files, directory trees, or other meta data like journals etc.)
cannot be effectively exploited using this solution.

Therefore a number of flash file systems (abbreviated FFS in the following)
has been developed, that optimize the file system structure to be used with flash
memory. Many of these FFS are proprietary (see [9] for an overview). A very
recent development is UBIFS [14], which was added to the Linux kernel last
year.

Increased use of flash memory in safety-critical applications has led Joshi and
Holzmann [16] from the NASA Jet Propulsion Laboratory in 2007 to propose the
verification of a FFS as a new challenge in Hoare’s verification Grand Challenge
[13]. Their goal was a verified FFS for use in future missions. NASA already uses
flash memory in spacecraft, e.g. on the Mars Exploration Rovers. This already
had nearly disastrous consequences as the Mars Rover Spirit was almost lost due
to an anomaly in the software access to the flash store [22].

A roadmap to solving the challenge has been published by Freitas, Wood-
cock and Butterfield [8]. This paper presents our first steps towards solving this
challenge.

There has been other work on the formal specification of file systems. First,
some papers exist which start top-down by specifying directory trees and POSIX
like file operations, e.g. the specifications of [20] of a UNIX-like file system, or
our own specification of a mandatory security model for file systems on smart
cards [26]. More recently and targeted towards the Grand Challenge Damchoom,
Butler and Abrial [5] have given a high-level model of directory trees and some
refinements. An abstract specification of POSIX is also given in [7] (some results
are also in [21]). Butterfield and Woodcock [4] have started bottom-up with
a formal specification of the ONFI standard of flash memory itself. The most
elaborate work we are aware of is the one by Kang and Jackson [17] using
Alloy. Its relation to our work will be discussed in Section 7. Our approach is
middle-out, since our main goal was to understand the critical requirements of
an efficient, real implementation. Therefore we have analyzed the code of UBIFS
(ca. 35.000 loc), and developed an abstract, formal model from it. Although the
resulting model is still very abstract and leaves out a lot of relevant details, it
already covers some of the important aspects of any FFS implementation. These
are:

1. Updates on flash are out-of-place because overwriting is impossible.
2. Like most traditional file systems the FFS is structured as a graph of inodes.
3. For efficiency, the main index data structure is cached in RAM.
4. Due to e.g. a system crash the RAM index can always get lost. The FFS

stores a journal to recover from such a crash with a replay operation.
5. Care has been taken that the elementary assignments in the file system

operations will map to atomic updates in the final implementation, to ensure
that all intermediate states will be recoverable.

The paper is organized as follows. Section 2 gives an overview over the data
structures and how the implementation works. Section 3 gives details of the



structure of inodes, and how they represent directory trees. The formal speci-
fications we have set up in our interactive theorem prover KIV are explained.
Section 4 explains how the journal works. Section 5 lists the specified file system
operations and gives the code specifying the ‘create file’ operation as an exam-
ple. Section 6 lists the properties we have verified with KIV and discusses the
effort needed. Full specifications and proofs are available from the Web [18].

Section 7 presents a number of topics which still require future work to bring
our abstract model close to a verified implementation. In particular, our model,
just as UBIFS, does not consider wear leveling, but relegates it to a separate,
lower level, called UBI (“unsorted block images”). Finally, Section 8 concludes.

2 Flash memory and UBIFS

Flash memory has certain special characteristics that require a treatment that
is substantially different from magnetic storage. The crucial difference is that
in-place updates of data, i.e. overwriting stored data, are not possible. To write
new data on a currently used part of the flash memory, that part must first be
erased, i.e. set back to an unwritten state. Flash media are organized in so-called
erase blocks, which are the smallest data units that can be erased (typically 64
KB). Simulating in-place updates by reading a complete erase block, resetting
it and writing back the modified erase block is not viable for two reasons. First,
it is about 100 times slower than writing the modified data to a free erase block
and second, it wears out the media. This is due to the second great difference
between magnetic and flash storage. Flash memory gets destroyed by erasing.
Depending on the used flash technology, the flash storage is destroyed after
10.000 to 2.000.000 erase cycles. This requires special FFS treatment, because
the FFS must deal with the problem of deterioration of parts of the media that
are erased often and with the fact that in-place changes of already written data
are not possible. Therefore data is updated out-of-place instead, i.e. the new
version of the data is written somewhere else on the media. This entails the
need for garbage collection because sooner or later the different erase blocks all
contain parts with valid data and parts with obsolete data. Garbage collection
must be able to efficiently decide if an entry in an erase block still belongs to
a valid file or directory. This is done by storing additional meta-data with the
actual data. The combination of metadata and data is called a node.

A node records which file (or to be precise which inode) the node belongs to,
what kind of data is stored in the node and the data themselves. The structure
of the nodes in UBIFS and our resulting specification are described in Sect. 3. In
our model, the nodes that are stored on the flash are contained in the flash store.
The flash store is modeled as a finite mapping of addresses to nodes. Figure 1
shows the 4 central data structures of UBIFS (one of them the flash store) and
explains what impacts the different operations have on them. The flash store
is represented by the third column in Fig. 1, initially containing some data FS
and some empty areas (∅). In step 1 of the figure, a regular operation (OP) is
performed, e.g. overwriting data in a file. The second line shows the new state:
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Fig. 1. Impact of UBIFS operations on the data structures

The flash store has some new data (new), some unchanged parts (FS ′) and some
obsolete data (old) due to the out-of-place updates. These obsolete data can be
collected by garbage collection as shown in step 4 .

A problem that is crucial for the efficiency of the FFS is indexing. Without
an index that allows searching for a specific node efficiently, the whole media
would have to be scanned. Therefore UBIFS uses an index that maps so-called
keys (which are, roughly speaking, unique identifiers of nodes) to the address
of the node on the flash media. The index in UBIFS is organized as a B+-tree
and stored in memory (later on called RAM index ). For efficiency reasons, the
index should be stored on flash as well, because rebuilding the index by scanning
the complete media (as JFFS2 [29] does) takes up a lot of time at mount time.
Therefore UBIFS also stores the index on flash (later on flash index ). The RAM
index and the flash index are shown as the two leftmost columns in Fig. 1. Having
an index on flash poses some difficulties as

– the index must be updated out-of-place on the flash media (this is done by
using a wandering tree).

– the index has to be changed every time old data is changed or new data is
written (because the new data must be added to the index and the position
of the modified data changes due to out-of-place updates).

To limit the number of changes to the flash index, UBIFS does not update the
flash index immediately, but uses a journal (also called log) of recent changes
instead. Section 4 gives details on our model of the UBIFS journal. The log can
be seen in the rightmost column of Fig. 1. Its use is illustrated in the second line
of Fig. 1: The log contains references to the new data written to the flash store



in step 1 and the RAM index was updated accordingly (FI + new) while the
flash index remained unchanged.

At certain points in time, the flash index is synchronized with the RAM
index by the commit operation. This can be seen as step 3 in Fig. 1: The flash
index is replaced with the current RAM index and the log is emptied1. One
problem remains: What happens when the system crashes (e.g. power-failure)
before the RAM index is written to flash? In this case, the flash index is out-
of-date, compared to the data in the flash store. This problem is solved by the
journal, because it records all changes to the data on flash that have not yet
been added to the flash index. A special operation, replay, is done after a system
crash to recover an up-to-date RAM index (step 2 in Fig. 1): First, the flash
index is read as preliminary RAM index. Then all changes that were recorded in
the log are applied to this preliminary RAM index. After the replay, the correct
RAM index has been rebuilt.

3 Data Layout for UBIFS

The data layout used in UBIFS follows the file system representation used in the
Linux virtual file system switch (VFS). The Linux kernel implements POSIX file
system functions [15] as calls to VFS functions that provide a common interface
for all implemented file systems.

Inodes (index nodes) are the primary data structure used in VFS2. They
represent objects in the file system (such as files, directories, symlinks or devices)
and are identified by an inode number. Inodes store information about objects,
such as size, link count, modification date or permissions, but do not contain the
name of the object. Mapping between names and objects is done using dentries
(directory entries) which say that a certain object can be found in a certain
directory under a certain name3. This separation is required as a single inode
can be referred to in multiple directories (used for hard links). The directory tree
can be viewed as an edge-labeled, directed graph consisting of inodes as vertices
and dentries as edges. Furthermore negative dentries are used in memory to
express that no object with the given name exists in a directory. These are used
as a response when looking for nonexistent files, or as parameters for the file
name when creating new files or directories. File contents are stored as fixed-
size data blocks, called pages, belonging to file inodes. When opening a file or
directory to access its contents, a file data structure (called file handle in user
space) is used in memory to manage the inode number and the current position
within the inode.

1 This can be performed atomically, because all changes are stored out-of-place and
the effective replace is executed by updating pointers to the data structures.

2 See struct inode in include/linux/fs.h, [19]
3 See struct dentry in include/linux/dcache.h, [19]



We thus define inodes, dentries and file handles as free data types generated
by constructors mkinode, mkdentry, negdentry and mkfile.

inode = mkinode (. .ino : nat; . .directory : bool; . .nlink : nat; . .size : nat)
dentry = mkdentry (. .name : string; . .ino : nat) with . .dentry?

| negdentry (. .name : string) with . .negdentry?
file = mkfile (. .ino : nat; . .pos : nat)

This definition includes selector functions .ino, .directory, .nlink, .size,
.name and .pos for accessing the constructor arguments, as well as type pred-
icates .dentry? and .negdentry? to decide between the two types of dentries
(the dot before predicates and functions indicates postfix notation).

UBIFS stores these data structures (except for file handles and negative
dentries which are never stored) as nodes as described in the previous section.
These nodes contain meta data (called key) to uniquely identifiy the correspond-
ing node, and data containing the remaining information. For inodes, the inode
number is sufficient as a key, whereas dentries require the parent inode number
and the file name. Pages are referred to by the inode number and the position
within the file.

Figure 2 shows the representation of a sample directory tree as UBIFS nodes.
It contains two files, test.txt and empty.txt and a directory temp containing
a hard link to test.txt named test2.txt.

Fig. 2. Directory tree representation in UBIFS

Nodes for inodes in this abstraction contain extra information about size and
link count. For files, the size gives the file size, measured in number of pages, and
links gives the number of dentries (hard links) referencing the inode. Directories
use the number of contained objects as size, and the number of links is calculated
as (2 + number of subdirectories)4.

4 Directories may not appear as hard links, so this number is the result of counting
the one allowed link, the “virtual” hard link “.” of the directory to itself and the
“..” link to the parent in each subdirectory.



For nodes and keys, we use the following specification5:

node = inodenode (. .key : key; . .directory : bool;
. .nlink : nat; . .size : nat) with . .inode?

| dentrynode (. .key : key; . .name : string;
. .ino : nat) with . .dentry?

| datanode (. .key : key; . .data : page) with . .data?
key = inodekey (. .ino : nat) with . .inode?

| datakey (. .ino : nat; . .part : nat) with . .data?
| dentrykey (. .ino : nat; . .name : string) with . .dentry?

Information about inode 1 can be found in a node with inode key 1. To list all
objects contained in this directory, all (valid) nodes with a dentry key containing
1 as a first argument have to be enumerated. The same goes for reading contents
of a file, by scanning for corresponding data keys (their first parameter denotes
the inode number, the second states the position inside the file).

File system data cannot directly be indexed and accessed using flash mem-
ory locations, as this would require overwriting flash memory on data change.
Instead, data is referred to by its unique key. Finding matching nodes for a
given key by sequentially scanning the entire flash memory however is very slow.
UBIFS holds an index datastructure mapping keys to flash memory addresses
in the RAM (called RAM index ). It allows to quickly access nodes with a given
key, or to enumerate all existing dentry or data keys for a given inode. When
writing a new version of an existing node, the new copy is written to the flash
store, and the address for its key is updated in the RAM index.

Formally, both the flash store and the two indexes (in RAM and on flash)
are an instance of the abstract data type store(elem,data).

flashstore = store(address,node) index = store(key,address)

A store is a partial function with a finite domain of elements with type elem and
codomain data. In a set-theory based language such as Z [27] stores would be
represented as a relation (set of pairs) for the function graph, and the update
operation would be written as st⊕{k 7→ d}. In KIV stores are directly specified
as an abstract, non-free data type generated from the empty store and an update
operation st[k,d], which allocates k if necessary, and overwrites the value at k
with d. This avoids the need for a left-uniqueness constraint as an invariant.

4 The UBIFS journal

This section describes how the journal operates and how it is linked to flash
and RAM index. The correlation between flash store, journal and the indices is
shown in Fig. 3.

5 See struct ubifs data node, struct ubifs ino node and struct

ubifs data node in fs/ubifs/ubifs-media.h for nodes, and struct ubifs key in
fs/ubifs/ubifs.h as well as ino key init, dent key init and data key init in
fs/ubifs/key.h, [19]



Fig. 3. RAM index, flash index, flash store and journal

To create a new node, this is written to an unused address in the flash store
and simultaneously6 added to the log. Afterwards, its address is stored in the
RAM index for further access to its key. This way, the data is safe, even if the
RAM index gets lost without a commit e. g. caused by a power failure, because
the correct state of the RAM index can be restored by information from flash
index, flash store and log.

This method allows for creating new and overwriting existing nodes. However,
deleting nodes is not possible because it would require pure index operations
(delete a key from the index). Therefore, UBIFS uses specialized delete nodes
which are written to the flash store, but cause deletion from the RAM index
when replayed (marked as DEL7 in Fig. 3).

When performing a replay in the situation of Fig. 3, the contents of the flash
index are copied to the RAM index. When replaying address 6, the 6 is stored
in the RAM index as new address for key KEY5. The same goes for address 7,
while 8 adds KEY3 to the index. Address 9 contains a deletion entry that causes
KEY6 to be deleted from the index.

The figure also shows the need for garbage collection: addresses 1, 3 and 5

store data which are no longer in the index and therefore can be reused.

5 File System Operations

For applying changes to the contents of the file system, the Linux VFS provides
file system operations. These can be grouped into inode operations, file opera-

6 This is possible because UBIFS does not use an explicit list for the log, but treats
all nodes in certain LEBs as log entries.

7 UBIFS uses inode nodes with link count 0 or dentry nodes with destination inode
number 0 to delete the corresponding keys.



tions, and address space operations. Inode operations allow creating, renaming
or deleting inodes, whereas file operations allow for working with inode contents
(data stored in files or directory entries). Address space operations include all
operations that work with pages, and are used in the Linux kernel to implement
file operations accessing file contents. They are included here to allow for using
abstract pages when handling file contents.

We will start with an inode operation called create8, used for creating new
files. It expects the inode number of the containing directory (P INO), and a
negative dentry specifying the file name (DENT) as input. DENT is overwritten
with the newly created dentry.

create#(P INO; DENT, FS, RI, LOG) {
choose INO with ¬ inodekey(INO) ∈ RI ∧ INO > 0 in {

let INODE = getinode(P INO, FS, RI) in
choose ADR1, ADR2, ADR3 with new(ADR1, ADR2, ADR3, FS) in {

FS := FS
[ADR1, inodenode(inodekey(INO), false, 1, 0)]
[ADR2, dentrynode(dentrykey(P INO, DENT.name), DENT.name, INO)]
[ADR3, inodenode(inodekey(INODE.ino),

INODE.directory, INODE.nlink, INODE.size + 1)],
LOG := LOG + ADR1 + ADR2 + ADR3;
RI := RI[inodekey(INO), ADR1];
RI := RI[dentrykey(P INO, DENT.name), ADR2];
RI := RI[inodekey(INODE.ino), ADR3] };

DENT := mkdentry(DENT.name, INO) }};

The notation used to describe the rule is similar to that of ASM rules [11],
[3], but it should be noted that only parallel assignment, denoted with a comma,
is executed atomically, while sequential composition (with semicolon) is not.
choose binds new local variables (here e.g. INO) to values that satisfy the with
clause.

The operation writes a new inode node for the created file (link count 1, size
0) and a dentry node for a dentry pointing from the parent directory P INO to
the new inode, named as given in DENT. It increases the parent directory size by
1 to reflect the increased number of objects contained in the directory.

To correctly perform these changes, it first selects an unused inode number
and three new addresses from the flash store, and loads the inode given by P INO.
It then atomically writes three new nodes (predicate new) into new locations
of the flash store FS, simultaneously adding the locations to the journal LOG.
Afterwards it updates the RAM index RI with the new addresses, and changes
the reference parameter DENT to return the newly created dentry.

The following inode operations also change the directory structure. Their in-
formal description leaves out standard parameters FS, RI and LOG. Full details
can be found on the Web [18].
unlink(P INO, DENT) Removes the file referred to by DENT from the direc-
tory P INO. If the dentry was the last link to the referred file, the inode and file

8 See ubifs create in fs/ubifs/dir.c, [19]



contents are also deleted, otherwise only the dentry is removed. DENT is returned
as a negative dentry.
link(OLD DENT, NEW INO, NEW DENT) Creates a hard link to the
file referred to by OLD DENT, placed in the directory NEW INO and named as given
by the negative dentry NEW DENT. Returns the newly created dentry in NEW DENT.
mkdir(P INO, DENT) Creates a new directory in P INO, with the name given
in the negative dentry DENT. The newly created dentry is returned in DENT.
rmdir(P INO, DENT) Removes the (empty) directory referred to by the den-
try DENT located in the parent directory P INO. DENT is changed into a negative
dentry.
rename(OLD INO, OLD DENT, NEW INO, NEW DENT) Moves the
object (file or directory) referred to by OLD DENT from directory OLD INO to di-
rectory NEW INO, changing its name to NEW DENT.name. If the object referred to
by NEW DENT exists, it has to be of the same type (file or directory) as OLD DENT,
and it is overwritten (i. e. deleted).
lookup(P INO, DENT) Checks for the existence of a object named DENT.name

in the directory P INO. If it exists, the dentry is returned in DENT, otherwise a
negative dentry is returned.

For inode contents, the following file and address space operations exist:
open(INO, FILE) Opens the file or directory given in INO, and returns a new
file handle in FILE.
release(INO, FILE) Called when the last process closes an inode (file or di-
rectory), to clean up temporary data. Unused in the given specification.
readpage(FILE, PAGENO, PAGE) Reads the page with number PAGENO

from the file referred to in FILE, and returns it in PAGE.
writepage(FILE, PAGENO, PAGE) Writes the data from PAGE as new page
numbered PAGENO to file FILE.
truncate(FILE, PAGENO) Sets the file size of the file referred to in FILE to
PAGENO, deleting all pages beyond.
readdir(FILE, DENT) Returns the next object of the directory referred to in
FILE, or a negative dentry if no further file or directory exists. The (positive or
negative) dentry is returned in DENT, and the position stored in FILE is increased
to return the next object at the next call.

Finally, our model defines garbage collection, commit and replay as described
in Sect. 2.

6 Verification

Our verification efforts have focussed on three properties, described in the fol-
lowing paragraphs. The last paragraph gives a summary of the effort involved.

Functional Correctness of the Operations. We proved that all specified
operations terminate and fulfill postconditions about their results. As most op-
erations and all supporting functions are non-recursive and only use loops over
the elements of finite lists, termination is quite obvious, and proving does not
pose great complexity – even regardless whether any preconditions hold or not.



Only garbage collection has a precondition for termination, as it is specified as
a non-deterministic choice of a new, isomorphic state, which only terminates if
such a state exists.

For the other inode and file operations, we give and prove total correctness
assertions that describe their behaviour. We write wp(α,ϕ) to denote the weakest
precondition of program α with respect to a postcondition ϕ9. Proofs in KIV
are done using sequent calculus and symbolic execution of programs, see [23] for
details.

For the create operation described in the previous section we demand10.

valid-dir-ino(P) ∧ valid-negdentry(P, DENT)
→ wp(create(P; DENT), valid-dentry(P, DENT) ∧ valid-file-ino(DENT.ino))

When called with a valid directory inode (i. e. the inode exists, is of type directory
and has a link count of 2 or higher) and a valid negative dentry (i. e. no dentry
with the given name exists in the given directory) as parameters, the operations
yield a dentry (ideally with the same name, but we do not demand that here)
that exists in the given directory and references a valid file (i. e. the inode referred
to exists, is a file and has a link count of at least 1).

Giving postconditions for readpage or writepage individually turned out to be
rather hard when trying to remain implementation independent, so we decided to
use the combined postcondition that reading data after writing returns exactly
the data written:

wp(writepage(file, pageno, pg) ; readpage(file, pageno; pg2), pg = pg2)

Furthermore, file contents of a file remain unchanged when writing to another
file or to another position inside the file:

valid-file(f1)∧valid-file(f2)∧ (f1.ino6=f2.ino∨n16=n2)∧ store-cons(fs,ri,fi,log)
→wp(readpage#(f1,n1;p1);writepage#(f2,n2,p);readpage#(f1,n1;p2), p1=p2)

The pre- and postconditions for the other operations as well as their proofs
can be found on the Web [18].

Consistency of the File System. Another basic requirement is that the file
system is always consistent. We formally define a predicate fs-cons(fs,ri) for the
file store fs and the RAM index ri (flash index and log are irrelevant as they are
only required for replay), and prove that it is an invariant of all operations.

For each key stored in the RAM index, fs-cons requires that its address must
be allocated in the flash store, and that the key is stored as that node’s key.
Further requirements depend on the type of key.

Dentry keys must belong to a valid directory and reference a valid inode.
The name stored in the key must be equal to the copy of the name stored in
the node. Data keys have to belong to a valid file inode, and the requirements
for inode keys are differentiated between files and directories. For files, the link
count has to be equal to the number of dentries referencing the file, and for each

9 In KIV wp(α,ϕ) is written as 〈|α|〉ϕ.
10 We suppress standard parameters FS, RI and LOG in all predicates and procedure

calls for better readability.



data key belonging to the file, the page number (part) has to be less than the
file’s size. Directories have to have 2 + number of subdirectories as their link
count, and the number of contained dentries as size. Furthermore, no directory
may have more than 1 (stored) dentry referencing it11.

The formal proof obligation for invariance is

fs-cons(fs, ri) → wp(op, fs-cons(fs, ri))

where op stands for any of the operations defined in the previous section. As this
property describes correlations between the different types of keys, it cannot be
proven step by step for each individual update of flash store and RAM index;
the property is not restored until all steps of an operation are completed. So the
proofs have to take the operation as a whole, complicating the definition and
application of reusable lemmata.

Correctness of the Replay Process. The replay operation should be able
to restore a consistent state after a crash, losing as little data as possible. We
therefore define a predicate log-cons claiming that a replay in the current situa-
tion will correctly restore the RAM index to a state isomorphic to the one with
current RAM index contents. The formal definition is

log-cons(fs, ri, fi, log) ↔ wp(replay(fs, fi, log, ri2), (fs, ri) ∼= (fs, ri2))

If this predicate is true, we will not lose data at a crash (except maybe for the
changes of the current operation). A reliable file system should always preserve
this predicate, even in the middle of an operation. For verification we have taken
the weaker approach to prove that this predicate is invariant

log-cons(fs,ri,fi,log) ∧ store-cons(fs,ri,log) ∧ datanode-cons(fs,ri)
→ wp(op, log-cons(fs,ri,fi,log) ∧ store-cons(fs,ri,log) ∧ datanode-cons(fs,ri))

Note that log-cons used in the pre- and postcondition is defined using a wp-
formula itself, so the formula is not a total correctness formula in the usual sense,
where pre- and postcondition are defined using predicate logic only. Nevertheless
KIV’s logic can prove this formula using symbolic execution for formulas in
preconditions too.

The invariance above ensures the file system robust wrt. crashes between
operations. Still, the implementation of the operations is designed in a way such
that a similar property also holds anytime during the execution of operations.
As one of the next steps we plan to prove this fact using KIV’s temporal logic
[1], [2] which is able to express and prove the full property12.

To prove the invariance of log-cons required two auxiliary invariants, store-
cons and datanode-cons. The predicate store-cons requires that each address
referred to in the RAM index or log has to be allocated in the flash store, and
datanode-cons demands that each data key belongs to a valid file inode and

11 The root directory has no link, all other directories have one, as further hard links
to directories are not allowed.

12 An alternative would be to encode the operations as a sequence of small steps using
a program counter, as is often done for model checking. Then the property would
have to be proved to be invariant in every small step.



describes a page within the file length. The former is needed to avoid access-
ing addresses in the flash store that are not yet allocated, whereas the latter is
needed as replaying some operations causes data keys beyond the file size to be
deleted.

Statistics about our Specification and Verification. Developing and ver-
ifying our specification mainly consisted of four steps. We first collected and
analyzed material about UBIFS, mainly from the UBIFS whitepaper [14] and
the UBIFS source code in the Linux kernel. During four weeks, we developed a
basic understanding of the mechanisms and found a suitable abstraction level for
the specification. In the following two weeks, the required data structures and
operations were specified, as well as the invariants we wanted to prove. Proving
the correctness of the replay operation (log-cons) took another two weeks, during
which we corrected minor errors in the specification and found the additional
preconditions needed for log consistency. Our last steps were to prove the total
correctness assertions and the file system consistency. This took about as long
as the log consistency, though the resulting proofs for fs-cons were a lot larger
than the ones for log-cons – especially for the rename operation which contains
many case distinctions (file vs. directory, rename vs. overwrite).

7 Outlook

The work of this paper defines a first abstract model of the essential data struc-
tures needed in a FFS. We intend to use it as an intermediate layer in the
development of a sequence of refinements, which starts with an abstract POSIX
specification such as the ones of [5], [7] and ends with an implementation based
on a specification of flash memory, like the one of [4]. There will be many ob-
stacles deriving such refinements, and we discuss these problems briefly in the
following paragraphs on future work.

A rather different approach has been taken by Kang and Jackson [17]. This
work builds a vertical prototype by focussing on the read/write operations for
files, ignoring issues such as directory structure, indexes and journals (their file
system roughly corresponds to the file store component of our model). They
define an abstract level, where reading/writing a file is atomic. These are re-
fined to reading and writing pages, which is done on a model that is closer to
implementation than ours, since it already considers a mapping from logical to
physical blocks. The model also includes an interesting analysis of a high-level
recovery mechanism for failed write attempts. UBIFS delegates recovery mech-
anism mainly to UBI (see below). Two high-level mechanisms for recovery exist
in UBIFS: one for log entries, which may not have been completely written; an-
other for the root node of the B+-tree of the file index, see [14]. Both are very
different from the one analyzed in [17]. Since our model is still too abstract (no
B+-trees and no concrete layout of the journal as data in erase blocks), these
will only show up in refinements.

To check properties of the model, Alloy (and the Kodkod engine) is used to
check that finite approximations of the model do not have counter examples.



This approach is weaker than verification, but gives excellent results for debug-
ging specifications. Our current work is on attaching Kodkod as a pre-checker to
validate KIV theorems before proof attempts [6], similar to the proposal in [7].

From POSIX to our UBIFS Model. Our abstract model is based on the in-
terface that UBIFS offers to the general Linux virtual file system switch (VFS).
It assumes that our operations are protected by locks and will therefore not
be executed concurrently. This is mostly true in the implementation, with one
notable exception: the commit operation may be executed in parallel with reg-
ular operations. However, above our specification this is no longer true. As an
example, writing a full file can no longer be assumed to be atomic: it will consist
of several pages being written (it is possible that several processes concurrently
read and write a file!). In reality, these page writes will even be cached. Even if
a write operation has finished, the data may not yet be on the flash (the Linux
flush command ensures that caches are emptied). We therefore expect the theo-
retical question of how concurrency should be handled to dominate the question
of a correct refinement.

As a first step, it is of course possible to ignore the concurrency problem
(as has been done in [17]). Then implementing POSIX operations correctly us-
ing our abstract interface should be possible using standard data refinement. Of
course, for such a refinement, some additional data such as modification dates
and access rights would have to be added.

From our Model to Flash Memory. Our model has abstracted from many
details of a real flash file system. First, and most important we have abstracted
from wear leveling. Since wear leveling is not dealt within UBIFS, but in a sep-
arate UBI layer that maps logical to physical erase blocks, this seemed natural.
We expect the correctness of this layer not to pose too difficult theoretical ques-
tions. The challenging question for this refinement is whether it is possible to
prove something about the quality of wear leveling. This looks possible for UBI,
since its wear leveling strategy is based on counting erase cycles.

Second, we have abstracted index structures, which are B+-trees in reality.
The lower level representation allows two optimizations: first, only those parts
of the flash index which are currently needed, must be loaded into RAM. Sec-
ond, the commit operation does not simply copy the full B+-tree from RAM
to the flash memory as in our simple specification. Instead it copies only those
parts that have changed since the last commit. This means that the flash index
becomes a “wandering tree”. Parts of it move with every commit.

Third, all three data structures, the flash store, the flash index and the journal
will be represented uniformly by pieces of memory in logical erase blocks (LEBs).
The challenging problem here is to verify garbage collection, which we only
specified to give some isomorphic file system. This algorithm is rather complex.
It uses an auxiliary data structure, to find out efficiently how much room is
left in each LEB. This data structure, the LPT (“LEB property tree”) is also
implemented as a wandering tree.

Finally, there are several more issues which we have ignored: on the fly com-
pression (using zlib and LZO) and the handling of orphan nodes, which are



needed to handle still open files that have been deleted, or hashing of index keys
are three examples.

In summary, we think that the development of a verified flash file system will
need a lot more effort than our previous contribution to the Grand Challenge
with the Mondex case study ([12], [25], [24], [10]).

8 Conclusion

We have given an abstract specification of a flash file system which was derived
by abstracting as much as possible from the details of the UBIFS system. We
have specified the four central data structures: the file store which stores node-
structured data, the flash index, its cached copy in the RAM and the journal.
Based on these, we have specified the most relevant interface operations.

We have verified that the operations keep the file system in a consistent state,
and that they satisfy some total correctness assertions. We have also verified that
the journal is used correctly and enables recovery at every time.

Our model should be of general interest for the development of a correct
flash file system, since variants of the data structures and operations we describe
should be relevant for every realistic, efficient implementation.

Nevertheless the model given in this paper is only our first step towards
the development of a verified flash file system implementation. We plan to use
the model as an intermediate layer of a series of refinements, which starts with
an abstract model of POSIX-like operations and leads down to to an efficient
implementation like UBIFS based on a specification of flash memory.
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