Hiding Real-Time: A new Approach for the Software Development of
Industrial Robots

Alwin Hoffmann, Andreas Angerer, Frank Ortmeier, Michael Vistein and Wolfgang Reif
Institute of Software and Systems Engineering
University of Augsburg, Germany
{alwin.hoffimann, angerer, ortimeier, vistein, reif} @informatik.uni-augsburg.de

Abstract— The application of industrial robots is strongly
limited by the use of old-style robot programming languages.
Due to these languages, the development of robotic software is
a complex and expensive task requiring technical expertise and
time. Hence, the use of industrial robots is often not a question
of technical feasibility but of economic efficiency. This paper
introduces a new architectural approach making available
modern concepts of software engineering for industrial robots.
The core idea is to hide the real-time critical robot control
from application developers. Instead, common functionality is
provided by a generic and extensible application programming
interface and can be easily used. Hence, this approach can lead
to an industrialization of software development for industrial
robotics.

I. INTRODUCTION

Compared to traditional production machines, industrial
robots are designed to be flexible and adaptive. Given an
appropriate tool, robots can be programmed to perform a
large variety of tasks ranging from industrial manufacturing
to medical applications [1]. For example, robots are able
to perform quality assurance with optical sensors, assist
humans in manufacturing or adapt their behaviour according
to external sensing and environmental constraints. However,
most applications where industrial robots are in use today
share two characteristics: (1) mass production and (2) simple
tasks. The most prominent example is the automotive pro-
duction. In this domain, industrial robots are integrated into
large-scale production systems to perform repetitive tasks
like assembly, welding, or painting. In contrast, the use of
industrial robots in aeronautics or in small and medium
enterprises, where applications require robots to perform
specialized and fast changing tasks, is rare.

The main reason for this limitation is the high program-
ming effort which is necessary for adapting industrial robots
to such tasks. Today, industrial robots are still programmed
with specifically developed robot programming languages.
These languages are derived from early imperative languages
like ALGOL or Pascal and have not evolved much since then.
Due to these low-level languages, programming an industrial
robot is a complex task requiring considerable technical
expertise and time. Because even trained users are hardly
able to change and adapt robot programs, industrial robots
are usually equipped and programmed to perform only one
specific task. For example, an effort of six person months
for programming a robot to weld a new car series, which is

produced one million times, may be acceptable. But the same
effort is not acceptable for a company that manufactures fast
changing products in small production batches. It is worth
mentioning that this problem becomes more important the
more complex the tasks are. Hence, the use of industrial
robots is often not a question of technical feasibility but of
economic efficiency.

On the other hand, software development in general has
changed much during the last 15 years. It is evolving more
and more into an engineering discipline with the systematic
use of methods and tools to develop, operate and maintain
software [2]. The intention is to reduce the complexity of
software development and to improve efficiency and quality.
The application of software process models structures the
development of software covering activities like requirement
analysis, software design, implementation and maintenance.
In object-oriented development, real-life concepts are mod-
elled as closely as possible using software objects. Modern
programming languages like C# and Java include strong type
checking, reflection, exception handling and automatic mem-
ory management. A broad variety of libraries is available
for those languages. Furthermore, integrated development
environments have been created to assist programming teams
in the creation of complex applications.

This paper outlines a concept for an integrated software ar-
chitecture for programming and controlling industrial robots.
The main goal is to make available the methods and tools
of modern software engineering for the development of
software for industrial robots. Techniques like high-level
programming (e.g. by demonstration), more natural human-
machine interfaces (e.g. using speech or gesture recognition),
and easy-to-use applications with intuitive graphical user
interfaces [3] often need to be adapted to a particular domain
or even a specific problem. Considering the current software
architectures with their proprietary, old-style programming
languages, it is clear that the development of appropriate
software is complex and expensive. Hence, the transition
towards a modern software architecture has to be seen as an
enabling technology. Efficient, fast and affordable software
development is a key requirement for a wider distribution of
industrial robots especially in small and medium enterprises.

The structure of the paper is as follows. Section II de-
scribes the core idea and motivates the proposed architecture.
Subsequently, in Section III, the software architecture is

2108

introduced in detail. An example is given in Section IV
illustrating the benefits of this approach. In Section V, related
approaches are presented. Finally, conclusions are given in
Section VI.

II. CORE IDEA

Industrial robots are able to perform tasks with an impres-
sive performance regarding speed, repeatability and accuracy.
One reason is of course the excellent mechanical design of
industrial-strength manipulators. However, the control design
and its implementation is as important. A key requirement
for the implementation of control methods where time con-
straints are important is programming of real-time systems.
If certain computations exceed a defined barrier, the resulting
behaviour is indeterministic and can lead to a system failure
with unacceptable consequences. For example, a manipulator
can follow a desired trajectory only by synchronized motions
of all its joints. The exact duration of each single movement
must be identical every time a program is run. Deviations
from a given trajectory can result in severe damage. There-
fore, hard real-time constraints and deterministic behaviour
are major requirements for industrial robotics. Real-time is
also important for controlling tools during movements (e.g.
a glueing gun has to be turned on at a precise position) or
the communication between cooperating robots (e.g. load-
sharing).

However, applications for industrial robots are not neces-
sarily real-time critical over the whole duration of their ex-
ecution. The analysis of a broad variety of typical industrial
applications (e.g. glueing, welding, palletizing) has shown
that these applications embody only a small set of real-time
critical tasks. A task can be considered real-time critical, if a
coordinated and synchronized execution of multiple control
actions is necessary. A single control action is always real-
time critical and needs to be deterministic and precisely
repeatable. For example, glueing a sequence of straight lines
without stopping is a real-time critical task. The control
actions of this task are the operation of the glueing gun
and the linear movement of the robot. If control actions
do not need to be synchronized, they can be considered
as single independent tasks (e.g. moving the glueing gun
from one seam to another along certain auxiliary positions).
The main application only controls the proper execution of
several tasks and is usually not real-time critical (e.g. the
work flow of a glueing application).

This observation has two consequences. Firstly, applica-
tions for industrial robots can be mainly developed using
standard technologies and environments. For example, mod-
ern general-purpose programming languages like C# and in-
tegrated development environments can be used. Secondly, it
is even possible to hide robot control and real-time program-
ming from application developers. Common functionality of
industrial robotics can be provided by a well-defined and
extensible application programming interface, and can be
easily used by application developers. In consequence, they
are able to focus on solving domain-specific problems and,

Applications

v

Robotics Application Programming Interface ‘

use

Non Real-Time Environment
(e.g. Windows with .NET)

Robotics Base Class Library

T
1
\:/ uses

Realtime Primitives Interface

[A)

Robot Control Core

Real-Time
Environment

Fig. 1. The components of the proposed three-tier software architecture

as far as possible, do not have to deal with robot control
problems and real-time constraints.

From this point of view, software development for in-
dustrial robotics is changing in the same way as software
development for business applications was changing a decade
ago. Today, standard business applications are developed
on top of modern frameworks like Microsoft .NET or Java
Enterprise Edition. These frameworks incorporate solutions
that software engineering has developed for many stan-
dard problems like synchronisation and communication in
distributed systems, transactions, persistency and security
concepts. The underlying complexity of those solutions is
hidden from developers, who thus are able to focus on the
business logic rather than on low-level and infrastructure
functionality. We believe that a similar approach concerning
hiding the complexity of real-time robot control can substan-
tially improve the speed, efficiency and quality of robotic
software in the future.

III. ARCHITECTURE

To achieve the desired abstraction of real-time critical
tasks, a three-tiered architecture, as shown in Figure 1, was
chosen. The Robotics Application Programming Interface
(RAPI) offers the application developers an object oriented
interface for robot programming. The RAPI is implemented
by the Robotics Base Class Library (RBCL) in C#. Library
developers are able to extend the RAPI with own interfaces
(and implementations). These extensions can combine basic
functionality to add convenient features for domain-specific
tasks or add support for new hardware (e.g. special sensors
or tools). An example for a function provided by the RAPI
is a motion. The glueing instruction, which is used as an
example in Section IV, is a domain-specific extension of the
RAPL

An easy-to-use interface like RAPI alone does not solve
the problems concerning real-time issues in robotics. Al-
though the RBCL can take care of many scheduling and
synchronisation issues, it cannot provide means for the
execution of real-time critical parts of the programs, because
RBCL itself is still a library running in a non real-time
environment. The Realtime Primitives Interface (RPI) offers

2109

a descriptive language for issuing real-time critical tasks to a
robot controller. The Robot Control Core (RCC) is a special
part of a robot controlling system that implements the RPI.
The RCC is the only part of the architecture that must be
implemented with real-time aspects in mind. The RCC must
be executed within a real-time operating system such as RTAI
or VxWorks.

In the following sections, the different layers and inter-
faces are described in more detail, starting from the bottom
with the Realtime Primitives Interface and the Robot Control
Core.

A. Realtime Primitives Interface

As stated in Section II, high-level programs often contain
only a small set of real-time critical tasks. The Realtime
Primitives Interface (RPI) is an interface for submitting such
tasks to the Robot Control Core. All tasks that have been
submitted using RPI will be executed atomically under real-
time conditions. It is important to note that RPI is not
an interface as known from object-oriented programming
languages. The RPI is a language that describes a real-time
critical task in a formal way. Instead of executable code,
only data describing a task is transferred between the RBCL
and the RCC. Tasks expressed with RPI consist of two main
concepts:

1) Realtime primitives (RT-primitives) are functions that

map #n input values to m output values where n,m € N.
In particular, RT-primitives with no input or no output
values are legitimate. Examples for basic RT-primitives
are robot joint controls or trajectory planners.

2) A link connects an output value of one RT-primitive
with an input value of another RT-primitive. A link
is always connected with exactly one RT-primitive on
the output side, and another RT-primitive on the input
side. An output value may have multiple links attached,
whereas an input value may only be connected to a
single link.

Furthermore, new RT-primitives can be created by com-
posing existing RT-primitives and links. Composed RT-
primitives are a convenience feature and allow easy reuse of
already existing functionality. When transmitted to the RCC,
all composed RT-primitives can be unfolded to contain only
atomic RT-primitives and links. The example in Section IV
makes use of composed RT-primitives.

RT-primitives and links form a graph. RT-commands are
special graphs which are acyclic and do not contain RT-
primitives with any unconnected input or output value. The
execution of RT-commands is done periodically on the Robot
Control Core. In each period, the whole graph is evaluated.
This means that every RT-primitive has read all its input
values, potentially performed a calculation and written all
its output values. Because the graph is acyclic, a complete
linearisation is possible, providing a sequential order of RT-
primitives for execution. This execution semantic is closely
related to the execution semantics of widely used tools like
Matlab Simulink [4] or Scade [5]. The Worst Case Execution
Time (WCET) of the whole RT-command is the sum of the

WCETs of all RT-primitives plus a small offset for the time
needed to transfer data among the primitives. Naturally, the
period duration for evaluating the RT-command must be at
least as big as its WCET.

There is no exhaustive list of RT-primitives. A few basic
RT-primitives are sufficient for using a standard industrial
robot in standard tasks. However, special actuators, sensors
etc. will need to define new RT-primitives and provide a
real-time capable implementation.

B. Robot Control Core

The Robot Control Core (RCC) is an interpreter for RT-
commands under real-time conditions. It is responsible for
direct hardware control. It needs the ability to communicate
with the robot hardware, e.g. define the set points for the
servo motors. The core must provide all functionality that is
real-time critical and, thus, is usually running on a real-time
operating system. Real-time critical actions include the actual
robot movement (new set points must be defined at exact
intervals to ensurc a smooth and deterministic movement)
and the control of sensors and tools (e.g. a welding torch
must be turned on and off at exactly the right positions).

Implementation details of the Robot Control Core are not
of interest for the architecture, as long as the RCC can exe-
cute tasks specified with RPI. This allows for replacing the
core. For example, an application can be programmed based
on a simulated robot control and subsequently transferred to
a real robot control.

C. Robotics Application Programming Interface

The Robotics Application Programming Interface (RAPI)
provides means for the application developer to program
a robot. It is object-oriented and offers a set of classes
and routines in order to support the building of robotic
applications. Main concepts of the RAPI are objects for
robots, tools, frames or instructions (e.g. motions or tool
actions). Developers are able to extend the RAPI in order to
encapsulate domain-specific functionality or add new robots
and tools.

Although the RAPI hides real-time issues, some syn-
chronisation is necessary in robotics. Therefore, the RAPI
provides special operators that are able to combine multiple
instructions. For example, there are operators especially for
combining instructions with a defined temporal relation. Fur-
ther common operators (e.g. superposition) are also available.

D. Robotics Base Class Library

The Robotics Base Class Library (RBCL) is an implemen-
tation of the RAPI. The RBCL must provide means to re-
trieve objects for all available robots and tools. Furthermore,
common instructions for different types of motion must be
provided. The RBCL must map the high-level objects like
robots, tools and instructions to low-level RT-commands and
RT-primitives. The synchronization hereby is solved with the
deterministic, periodic evaluation of RT-commands.

2110

IV. EXAMPLE

To illustrate the approach, a small example is presented
showing how a robot instruction, specified in C#, can be
translated into an RT-command that can be executed within
a real-time environment on the Robot Control Core. In the
example, the task is glueing a straight line on a work piece.
In practice, starting the glueing gun does not immediately
start the output of glue because some hoses might need to
be filled first and a certain pressure at the nozzle must be
reached. Therefore, the glueing gun must be started slightly
previous to the motion.

During the analysis and design phase, the application de-
veloper decided to create a class Glueing that encapsulates
all required functionality for the glueing task. Having created
this class once, he can reuse the functionality many times
without having to think about the glueing details again. The
resulting class diagram of the object-oriented design is shown
in Figure 2. The Glueing class needs associations with a
robot and a glueing gun, and supports setting an additional
filter.

Internally, the implementation of the Glueing class must
use basic objects from the RAPI library like robots, tools,
instructions and operators. The glueing task can be separated
into two fundamental tasks. One task is the motion of the
robot (more exactly, of the tool centre point), the other the
control of the glueing gun. Although both instructions can be
executed independently, for a correct result it is indispensable
that both actions are timed highly accurate. The gun may
be turned on neither too early, nor too late. The RAPI
offers means to synchronize two instructions with a specified
temporal relation. For the glueing example, the gun must be
turned on immediately, while the linear movement must be
delayed slightly (but for a precise time).

The implementation of the Glueing class for executing
the task is shown in the following listing.

public class Glueing {

public void Execute() {
LinearPath path =
new LinearPath (this.startPoint, this.stopPoint);

Instruction motion =

new MotionInstruction(path, this.actuator);
Instruction guncontrol =

new GunControlInstruction (this.gun);

Instruction synchronize =
new Synchronize (this.preStart, guncontrol, motion);

// execution omitted

}
}

Listing 1. Simplified implementation of the method Execute in the
Glueing class.

The Execute method contains only calls to RAPI functions.
At the beginning, a new LinearPath object is instantiated
with values for the start and destination points. The next step
is the creation of a MotionInstruction object, which
connects the path with a robot that executes the motion. In-
dependently of the motion, a GunControlInstruction
object is instantiated. Subsequently, both instructions need

Glueing
Filter ilter tstartPoint +actuator Robot
+stopPoint
0.1 * |+preStart * 1
+Execute()
lﬁ * +gun Gun
Sine 1
+amplitude
+frequency

Fig. 2. UML class diagram modelling the functional requirements of the
glueing task.

Motion
active
StartPoint:
EndPoint.

active MotionType:

—
Delay:

active

Guncontrol

Fig. 3. Composed RT-primitive from mapping the synchronized motion
and gun control instructions.

to be synchronized. This is done using the Synchronize
operator, which delays the start of the motion instruction.
Finally, the generated object structure needs to be converted
to an RT-primitive which can be executed. For this purpose,
a mapping mechanism is employed which recursively tra-
verses the object structure and tries to map each part to
its representation in RPI. Therefore, each object needs to
provide information about its mapping. For example, the
LinearPath and its parametrisation is mapped to a RT-
primitive called TrajectoryPlanner.

Figure 3 shows the RT-primitive obtained by the mapping
in a graphical way. Each block represents one RT-primitive.
The name of the RT-primitive is displayed in the upper left
corner, the time-invariant parameters in the box in the lower
right corner. Input values are displayed on the left side of a
block, output values on the right side. The Synchronize
operator is mapped to a Timer block that handles the timing
issues, and controls the RT-primitives Motion and Guncontrol
with the active port they provide. The Motion primitive is the
result of mapping the MotionInstruction and consists
of a TrajectoryPlanner (from mapping the LinearPath)
and a Robot primitive, as it can be seen in Figure 4.

In the glueing example, the synchronisation has been
done using a fixed time delay. It is also possible to trigger
actions on geometrical conditions, i.e. when a certain point is
reached. Basically there are two ways of achieving a geomet-
rical trigger. (1) If no real-time sensor value is considered, the
planned trajectory is deterministic which allows to convert
the geometrical position into a time constraint again. (2) It is
also possible to design a synchronisation module that reads
the trajectory position and triggers an action depending on
the current actual position which can be be sensor-corrected.

Sometimes, it is not only desired to glue along a straight
line, but slightly change the position of the gun in a sine
wave over the work piece to enlarge the area covered with

2111

Motion

Trajectory Planner Robot

active position
StartPoint:
EndPoint:

MotionType:

Fig. 4. Composed RT-primitive from mapping the motion instruction.
It consists of a trajectory planner for the linear path and a primitive
representing the robot.

glue. The Glueing class might provide a special setting
Filter to overlay the linear path with another function.
An excerpt of the modified method Execute is displayed
in the following listing.

public class Glueing {

public void Execute () {
LinearPath path =
new LinearPath (this.startPoint, this.stopPoint);

if (this.filter != null)
path = new Superposition(path, this.filter);

Instruction motion =

new MotionInstruction(path, this.actuator);

}
}

Listing 2. Modified Execute method to support additional filters which
modify the trajectory.

If the instance variable filter is available, the linear
path is first modified with the operator Superposition.
The result of applying this operator can be used in the
creation of the motion instruction exactly like the original
linear path. The synchronization does not need to be changed.
The Timer primitive in Figure 3 now simply uses the more
complex motion primitive of Figure 5 instead of the primitive
of Figure 4.

Once the Glueing class has been defined, it can be easily
used in new C# programs. Listing 3 displays the usage of
the class with a sine wave superposed to the linear trajectory.
The developer now does not need to care about real-time, or
even synchronization of multiple instructions.

public void DoSineGlueing(...) {
Glueing glue = new Glueing();
glue.startPoint = startPoint;
glue.stopPoint = stopPoint;
glue.preStart = start;
glue.actuator = robot;
glue.gun = gun;
Sine sine = new Sine (amplitude,
glue.filter = sine;
glue.Execute () ;

}

frequency) ;

Listing 3. Exemplary program for glueing along a straight line, superposed
with a sine wave.

V. RELATED WORK

Robot programming languages are specifically developed
programming languages with robot-specific instructions and
commands derived from early imperative languages like
ALGOL or Pascal. Typically, they are provided by robot
manufacturers and can be used to create simple programs
for their robot controllers. Examples for these languages

Motion

Superposed Trajectory

Trajectory Planner Superposition Robot

active position position

StartPoint:
EndPoint:
MotionType:

Coordinate:

Sine Generator

Amplitude:
Frequency:

Fig. 5. Composed RT-primitive from mapping the motion instruction with
superposed sine. It was generated by modifying the trajectory planner with
the superposition operator.

are VAL-II [6], the KUKA Robot Language, ABB’s robot
programming language RAPID, or KAREL developed by
FANUC Robotics. Although these languages hide real-
time issues from the application developers, they are still
proprietary, low-level languages and it is difficult to use
libraries written in general-purpose languages (e.g. for graph-
ical user interfaces). To overcome these limitations, robot
manufacturers have started to provide libraries for general-
purpose languages. These libraries are based on the un-
derlying controller-specific language and can be seen as
simple wrappers. Hence, they do not offer the possibility to
extend the library and dynamically generate new commands.
An example is the Robot Application Builder from ABB
providing a programming interface in C#.

Furthermore, there are several academic approaches pro-
viding robot-specific libraries for general-purpose languages.
Early examples are RCCL [7] in C and PasRo [8] in Pascal.
With the emergence of object-oriented languages, robot-
specific libraries for these languages have been implemented,
too. Examples are ZERO++ [9] and MRROC++ [10]. These
C++ libraries are designed for real-time operating systems
and, as a consequence, do not hide real-time issues from the
application developer. A robot command library using the
imperative language Occam is presented in [11]. This library
is based on two proprietary robot controls and provides
eight different commands which are an intersection of the
two underlying robot controls. Pires and da Costa [12] use
distributed objects to remotely call predefined operations of
the robot control. The Robotic Platform [13] also provides
an object-oriented model for programming robots, but does
not abstract from real-time issues.

Besides, there have been major efforts in the research
community to develop modular robot control frameworks.
An open source object-oriented framework for controlling
robots is OROCOS [14]. It is written in C++ and allows
for developing component-based real-time control applica-
tions. Moreover, it provides ready-to-use components (e.g.
for kinematics, dynamics, and motion control). Other real-
time capable frameworks are e.g. Player [15], Orca [16],
MiRPA [17], and SIMOO-RT [18]. These frameworks have
in common that they focus on real-time robot control and
use object-oriented concepts. In contrast to our approach,
the abstraction of real-time issues and the mapping from

2112

high-level commands to low-level robot control is secondary.
However, these frameworks could be used to implement
the Realtime Primitives Interface. A real-time programming
environment for robotic systems written in C++ is ORC-
CAD [19]. It introduces a three-layered architecture to offer
different abstraction levels (from control to application tasks)
and uses the Esterel language to specify robot control laws
as well as application logic.

The manipulation primitives approach [20] is similar to
RPI where a complex robot task is also segmented into single
motions and tool actions. However, in RPI the atomic items
(RT-primitives) are more generic, as they only describe parts
of a motion or a tool action and can be combined to form
any kind of command.

VI. CONCLUSION

We have proposed a three-tier software architecture for
programming and controlling industrial robots. By using
standard technologies, this architecture enables the applica-
tion of modern methods of software engineering. However,
the main problem that must be addressed is the separation of
non real-time application logic and real-time critical control
of actuators. The core idea is that robotic applications can be
split into small subtasks requiring hard real-time constraints.
The orchestration of these subtasks, i.e. the application logic,
can be performed inside a non real-time environment.

In order to submit such real-time critical subtasks to a
robot controller, we have introduced an extensible, descrip-
tive language, the Realtime Primitives Interface. On top of
this interface, we have outlined the Robotics Application
Programming Interface. This interface provides an object-
oriented approach to robot programming. Main concepts
are objects representing robots, tools, sensors and instruc-
tions which application developers can use. The RAPI also
transparently handles the mapping to low-level, real-time
primitives, providing high-level support for commands syn-
chronizing multiple robots and tools. By using this interface,
application developers can fully concentrate on the domain-
specific problems and do not have to worry about low-
level real-time issues. From our point of view, this approach
enables efficient, fast and affordable software development
for industrial robots.

Furthermore, our approach does not only work well for
standard industrial applications like glueing or welding, but
for every application which has a defined set of real-time
critical tasks. Apart from the industrial domain, this approach
can also be applied e.g. in service robotics. Because the
Realtime Primitives Interface allows a very dynamic descrip-
tion of robot tasks, the integration of external input devices
and sensors or the implementation of force/torque controlled
motions are possible. Due to the RAPI and its mapping
mechanism, such complex tasks can be implemented and
used much more easily. Moreover, applications for cooper-
ating robots or even mobile systems can be developed using
the same techniques.

The approach has been successfully applied to a KUKA
robot system. In order to show the advantages and the usabil-

ity of our approach, next steps will focus on extending this
prototype and realizing more complex examples. However,
first results are very promising. In addition to that, we are
currently working on an example application comparing our
approach to programming in the KUKA robot language.

REFERENCES

[1] U. Hagn, M. Nickl, S. Jorg, G. Passig, T. Bahls, A. Nothhelfer,
F. Hacker, L. Le-Tien, A. Albu-Schiffer, R. Konietschke, M. Greben-
stein, R. Warpup, R. Haslinger, M. Frommberger, and G. Hirzinger,
“The DLR MIRO: A versatile lightweight robot for surgical applica-
tions,” Industrial Robot, vol. 35, no. 4, pp. 324 — 336, 2008.

[2] I. Sommerville, Software Engineering, 8th ed. Addison-Wesley, 2007.

[3] J. G. Ge and X. G. Yin, “An object oriented robot programming
approach in robot served plastic injection molding application,” in
Robotic Welding, Intelligence and Automation, ser. Lecture Notes in
Control and Information Sciences, T.-J. Tarn, S.-B. Chen, and C. Zhou,
Eds., vol. 362. Springer-Verlag, 2007, pp. 91-97.

[4] MATLAB Simulink. The MathWorks. [Online]. Available:
http://www.mathworks.com/products/simulink/
[S] SCADE Suite. Esterel Technologies. [Online]. Available:

http://www.esterel-technologies.com/products/scade-suite/

[6] B. E. Shimano, C. C. Geschke, and C. H. Spalding, “VAL-II: A new
robot control system for automatic manufacturing,” in Proceedings of
the 1984 IEEE International Conference on Robotics and Automation,
March 1984, pp. 278-292.

[7]1 V. Hayward and R. P. Paul, “Robot manipulator control under unix
RCCL: A robot control C library,” International Journal of Robotics
Research, vol. 5, no. 4, pp. 94-111, 1986.

[8] C. Blume and W. Jakob, Programming Languages for Industrial
Robots. Springer-Verlag, 1986.

[9] C. Pelich and E. M. Wahl, “ZERO++: An OOP environment for
multiprocessor robot control,” International Journal of Robotics and
Automation, vol. 12, no. 2, pp. 49-57, 1997.

[10] C. Zielifiski, “Object-oriented robot programming,” Robotica, vol. 15,
no. 1, pp. 4148, 1997.

[11] G. Tewkesbury and D. Sanders, “A new robot command library which
includes simulation,” Industrial Robot, vol. 26, no. 1, pp. 39-48, 1999.

[12] J. N. Pires and J. S. da Costa, “Object-oriented and distributed
approach for programming robotic manufacuring cells,” IFAC Journal
on Robotics and Computer Integrated Manufacturing, vol. 16, no. 1,
pp- 2942, 2000.

[13] M. S. Loffler, V. Chitrakaran, and D. M. Dawson, “Design and
implementation of the Robotic Platform,” Journal of Intelligent and
Robotic System, vol. 39, pp. 105-129, 2004.

[14] H. Bruyninckx, “Open robot control software: the OROCOS project,”
in Proceedings of the 2001 IEEE International Conference on Robotics
and Automation, Seoul, Korea, May 2001, pp. 2523-2528.

[15] T. H. Collett, B. A. MacDonald, and B. P. Gerkey, “Player 2.0: Toward
a practical robot programming framework,” in Proceedings of the 2005
Australasian Conference on Robotics and Automation, C. Sammut,
Ed., Sydney, Australia, December 2005.

[16] A. Brooks, T. Kaupp, A. Makarenko, S. Williams, and A. Orebick,
“Towards component-based robotics,” in Proceedings of the 2005
1EEE/RSJ International Conference on Intelligent Robots and Systems,
Edmonton, Canada, August 2005, pp. 163-168.

[17] B. Finkemeyer, T. Kroger, D. Kubus, M. Olschewski, and F. M. Wahl,
“MiRPA: Middleware for robotic and process control applications,” in
Workshop on Measures and Procedures for the Evaluation of Robot
Architectures and Middleware. IEEE/RSJ International Conference on
Intelligent Robots and Systems, San Diego, USA, October 2007, pp.
76-90.

[18] L. B. Becker and C. E. Pereira, “SIMOO-RT — An object oriented
framework for the development of real-time industrial automation
systems,” IEEE Transactions on Robotics and Automation, vol. 18,
no. 4, pp. 421-430, August 2002.

[19] D. Simon, B. Espiau, E. Castillo, and K. Kapellos, “Computer-aided
design of a generic robot controller handling reactivity and real-time
control issues,” IEEE Transactions on Control Systems Technology,
vol. 1, no. 4, pp. 213-229, December 1993.

[20] B. Finkemeyer, T. Kroger, and F. M. Wahl, “Executing assembly tasks
specified by manipulation primitive nets,” Advanced Robotics, vol. 19,
no. 5, pp. 591-611, 2005.

2113

