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Abstract—During the last 15 years the way how software
products are being developed has changed dramatically. Today,
software is developed very efficiently in an industrialized man-
ner. One of the cornerstones is that new development processes
introduced a domain-centric view rather than a technology-
centric view. As a result, big and complex software systems can
be built very fast, reliable and according to customers’ require-
ments. Unfortunately, these advances in software engineering
have had little to no effect on the software development process
for robotic applications. This paper explains how domain-
centric design can be introduced in the domain of industrial
robotics and which possible benefits it might yield.

Index Terms—object-oriented design, software architectures,
object-level robot programming

I. INTRODUCTION

Industrial robots nowadays are usually programmed with
proprietary languages varying among manufacturers. Ex-
amples are the KUKA Robot Language [1], ABB’s robot
programming language RAPID [2], or KAREL developed by
FANUC Robotics [3]. These languages are tailored to robot
programming by using special commands for robot motion or
controlling robot tools. However, these languages are rather
old and are based on concepts of programming languages
like Pascal, which date back to the 1970s. The common
concept of those languages is programming on manipulator
level, i.e. the programmer mainly writes control logic for the
robot’s end-effector. [4] gives an overview about manipulator-
level programming languages and other robot programming
paradigms like object-level programming, which is particu-
larly interesting for this work.

Software development for robotic applications is often
done as follows: For a given domain-specific problem, an ex-
pert in robot programming tries to understand the domain and
then writes a program for the robot, such that the intended
task is achieved. This can be done either directly in a robot
programming language or for modern target hardware in
high-level languages. However, manipulator-level program-
ming still requires translating the specific domain problem
into a solution on the level of the relevant manipulators.
This translation process is time consuming and does not
only require the knowledge of domain experts, but also
a considerable expertise in robot programming. Moreover,
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there exists no process for systematically constructing such
translations.

On the other hand, software engineering is developing
more and more into an engineering discipline. Development
processes (e.g. the Unified Process) greatly support devel-
opment of all kinds of software. These processes provide
methods for analyzing the application domain, capturing the
results in a set of artifacts (graphical and textual documents)
and finally transforming the results into a software design
that fulfills the initial requirements. The concept of object-
orientation is an important paradigm in today’s software
engineering, as it allows direct and systematic translation of
real world concepts into software objects.

This work proposes an approach to introduce the advances
in software engineering into the domain of robotics applica-
tion development. One step towards this achievement is the
usc of object-level robot programming. It allows modeling
applications on the level of the entities involved in the task
rather than the manipulators as in traditional manipulator-
level programming. Early object-level robot programming
languages are RAPT [5], AL [6] and TORBOL [7]. By
introducing object-oriented programming, this leads to an
object-centric approach for modeling robotic applications.
It can be seen as an enabler for the integration of robotic
application development into standard software engineer-
ing processes. Consequently, software development becomes
more systematic and efficient.

Section II presents the approach of object-centric mod-
eling in detail and outlines its advantages over classical
manipulator-level programming. A prototypical realization of
a software architecture for developing object-centric applica-
tions is outlined in Section IIl. Concluding remarks and an
outlook are given in Section IV.

II. CORE CONCEPTS

Today’s object-oriented software engineering approach is
driven by creating an abstract model of the application
domain and use it for the structure of the software that is
constructed. Usually, the starting point is a description of the
task the system has to achieve. This is often done by writing
down use cases [8]. The next step focuses on identifying
important concepts of the application domain, transforming



them into a hierarchy of classes, and adding their depen-
dencies. In object-oriented analysis and design [9], the focus
lies on the task that has to be be fulfilled and on the domain
of the application rather than on the technical realization.
As a consequence, software development has become more
efficient and the resulting products are tailored to fulfill the
requirements. Moreover, re-usability and maintainability are
increased significantly. This leads to the question: “What
benefits can be transferred into the domain of robotics?” In
order to answer this questions, a traditional and an object-
centric solution for a small example from the palletizing
domain is compared. A prototypical realization for the object-
centric solution will be shown afterwards in Section III.

A. Simple example task

Fig. 1 shows a simple example taken from a palletizing
application. A common (sub-)task of such applications is to
staple items onto each other. In the figure, the relevant objects
are two boxes. This task is quite simple. Nevertheless, it is
already complex enough to show the differences between tra-
ditional programming and object-centric solutions. Consider
the following common variations in the task:

e Dimensions or position: If size or position of a work-
piece vary, the same manipulator might still be able to
handle it, but the exact movement has to be varied.

o Shape and weight: 1f shape and weight of workpieces
vary, it might be necessary to use other or even multiple
manipulators to move the item. Examples are lack of
stiffness, heavy weight or the necessity to move/rotate
the pallets in the example above.

o Environment and obstacles: A changing environment
with new obstacles is a characteristic feature of many
scenarios, €.g. in palettizing. Movement paths may have
to be adapted to avoid collisions.

B. Manipulator-level solution to the example

A classical manipulator-level approach yields a solution
like the pseudo code in the following listing:

Move Robot to point PL;
Close Gripper;
Move Robot to point P2;
Open Gripper;

Listing 1. Manipulator-level program for stacking boxes

The point PI represents the position/orientation where the
robot has to be moved to for gripping the workpiece, and P2
is where the robot has to be positioned so that the workpiece
is located at its destination — on top of the other workpiece.

1) Dimensions or position: If size or position of a work-
piece differs from the specification the program was origi-
nally developed for, the absolute positions in space of P1 and
P2 have to be adapted. This can, in general, be handled by
adequate parametrization of the robot program. An elegant
way to deal with this case would be the introduction of
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Fig. 1.

Stacking boxes: an example task

data structures representing characteristic properties of a
workpiece, like e.g. a point where it can be gripped. The
common solution for this problem in robot programming
languages is the definition of a special coordinate system for
the description of points relative to workpieces. Certain cases,
like changes of the position of the workpiece in workspace,
can then be handled by adapting this coordinate system.
This automatically causes the adaption of all points defined
relative to the coordinate system.

2) Shape and weight: Changes in shape and weight of
the workpiece that is to be transported generally cannot
be covered by simple parametrization of a program on
manipulator level. In case the workpiece’s weight exceeds
the load capacity of the commanded manipulator, further
available manipulators could solve the problem. The same
is true if a lack in the workpiece’s stiffness requires it to be
gripped at several sides for transportation. Imagine a scenario
in which two robots palletize goods in the same work cell.
Normally they should do the palletizing task in parallel and
independently from each other to achieve a high throughput
of workpieces. Only in situations where load sharing is
required they should work together carrying one workpiece.

A manipulator-level program that can cope with this case
completely differs from the basic program shown in List-
ing 1. The following listing shows in pseudo code how the
program has to be extended for load sharing:

Move Robotl to Pla;
Close Gripperl;
Move Robot2 to Plb;
Close Gripper2;

Sync Robotl and Robot2;

Move Robotl (and Robot2) to P2;
Open Gripperl;

Open Gripper2;

Listing 2. Manipulator-level program for stacking boxes with load sharing



Pla and P1b represent points where the two grippers
should take the workpiece. For every additional robot, the
program gets more complex. this complexity has to be
considered initially, otherwise the program has to be rewritten
when such workplaces come into play.

3) Environment and obstacles: Variations in the move-
ment path almost always lead to changes in manipulator-
level programs. As the movements are usually defined as
a sequence of single motions between some defined points,
moving the robot and its workpiece around obstacles requires
the definition of one or more intermediate points that can vary
depending on the current workpiece’s size and the current
state of the work cell. An example program is shown in
Listing 3 where P1 to Pn denote a sequence of intermediate
points with Pn being the target point for the movement.

Move Robot to P1;
Close Gripper;
Move Robot to P2;

Move Robot to Pn;
Open Gripper;

Listing 3. Manipulator-level program, obstacle avoidance

Common solutions for this problem are either iterating over
an array of points or using elaborate movement commands
which accept a sequence of points as input (e.g. a spline).

C. Object-centric solution to the example

As shown previously, there exists a manipulator-level so-
Iution for each variation of the basic scenario. On the other
hand, those solutions yield substantially different programs —
though the actual task remains the same. It is a well-known
fact in software engineering that encoding the (business) logic
of the task and all additional requirements and variations in
one program introduces a high coupling between all elements
of the program, in this case between the control program
and the workpieces that it can handle. As a consequence, the
resulting software will be hard to maintain, reuse and extend.

This also holds for the robotic domain. A robot program
that considers all those variations at once or even additional
ones will obviously become very complex. With the object-
centric approach, this problem is addressed. The key concept
is programming on the level of the objects that are involved
in the task that has to be achieved, and augmenting those
objects with certain properties and functionalities. The goal
is being able to handle variations in tasks efficiently by a
modular design with reusable components.

Box1l.Bottom.Move (Rox2.Top) ;

Listing 4. Object centric program for stacking boxes

The pseudo code snippet in Listing 4 illustrates how an
object-centric program looks like. First, there is a notion of
workpieces, BoxI and Box2, which represent the two boxes
involved in the scenario. Workpieces are distinct entities that
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have certain properties and the ability to execute certain
actions. Interesting properties of a workpiece would be a
point where it can be gripped, and points located at its top,
bottom and sides. An important ability of a workpiece is
the execution of movements. In the example, this ability is
addressed by the method Move(). This method belongs to
Bottom, which itself is a property of Box! and represents
a point located at the bottom of the box. Semantically the
invocation of this method is the instruction to execute a move-
ment, with the point BoxI.Bottom as origin and Box2.Top
(located on top of Box2) as the target of the movement.

Note that in Listing 4 no robots are addressed at all.
The prominent concept in this example is the notion of
domain- and task-specific objects that are not only passive
data objects, but can actively react to instructions. This is a
standard approach in modern software development. Standard
graphic libraries e.g. offer classes like Circle or Polyline.
These classes have specific implementations of methods like
Draw() or Move(). The actual graphic board commands are
hidden in the class-specific implementations.

The logic for executing such tasks and handling variations
of tasks is inevitable, of course. But instead of encoding it as
part of the task description as it is done in manipulator-level
programming, the logic is distributed to objects that have all
necessary information. For example, the Move() operation
typically contains two sub-operations: choosing an adequate
manipulator and subsequently giving appropriate commands
to the manipulator. Both sub-operations are highly workpiece-
specific and, therefore, are defined as a method of the
according object. A workpiece or part of a workpiece knows
how it is to be gripped and can find matching manipulators
and generate matching commands for them.

Hence, the variations of the previously introduced example
can be handled easily with the object-centric approach:

1) Dimensions or position: The size and the position of a
workpiece are naturally modeled as properties of the work-
piece. They can either be set by the programmer at design
time or determined by sensors at runtime. These values are
encapsulated within the workpiece (cf. BoxI.Bottom) and can
be considered when handling commands.

2) Shape and weight: Variations in the workpiece’s shape
can partially be reflected by its properties, for example re-
garding a different location of the point where the workpiece
can be gripped by a manipulator. This data is processed
within the Move() method. It will be an important input
data for choosing a manipulator and also for generating
movement commands for the manipulator. Possible solutions
could apply mechanisms similar to service-oriented archi-
tectures. Here, a query to a service directory for a service
fulfilling certain requirements is performed. Translated into
the robotics domain, the workpiece has to query for one
or more manipulators that — single or in sum — can solve
the requirements for moving the workpiece. When adequate
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Fig. 2. Stacking boxes: entities and frames

manipulators have been found, the workpiece has to trigger
the movement and gripping process for each manipulator.
Finally, after the box is gripped, the synchronized movement
must be started. Note, that the (workpiece-specific) logic
is again encapsulated within the according object and the
program describing the actual task stays untouched.

3) Environment and obstacles: Besides specifying tasks in
a robotic system, the object-centric programming approach
explicitly describes as a prerequisite real world objects
like workpieces, pallets or any other objects of relevance.
Together, this forms a partial model of the reality. Research
has developed many algorithms for planning collision free
movement paths. Such algorithms can be easily integrated
into the logic that processes movement commands in the
object-centric programming approach, and the existent world
model can be used as input describing the environment.

III. REALIZATION APPROACH

The last section introduced the core concepts of an object-
centric programming paradigm. The idea is putting tasks
and target objects in the center of any robotic program,
rather than the robots. This allows for much easier, more
modular and more extensible programs. Building on that,
this section presents a possible realization approach and a
prototypical object-oriented framework for developing novel
object-centric robotic applications.

A. Basic concepts for describing spatial properties

To every important spatial point of physical objects, a
frame is attached, describing its position and orientation
(cf. [10]). A frame F, is a Cartesian coordinate system,
defined as a tuple (F,.ef,A;"f ), where F.s is the reference
frame and A;ef is the homogeneous transformation used to
gain I, from F,;;. The inverse transformation is denoted
with (A7¢f )_:l or A7 ;. In many cases, transformations are
fix, but dynamic transformations that e.g. change over time
are also possible by adequate parametrization. There is no
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Fig. 3. Conceptual model enabling object-centric robot programming

restriction to the choice of the reference frame: A frame can
be defined relative to any other previously defined frame.
However, there exists one special frame F,,,q — the world
frame — that is a globally unique anchor frame which all other
frames must be based on directly or indirectly. By definition,
the world frame is the only frame that does not have a refer-
ence frame. To determine the absolute position of a particular
frame at a certain point of time, the complete transformation
to Fyorig has to be calculated by recursively traversing the
transformations to the frame’s direct and indirect parents.

Any frame F, is defined with respect to its reference frame
F,_; in the first instance. By utilizing the transformations
between frames, F, can be expressed relative to any other
frame Fj. The precondition for that is that there exists a
sequence of transformations AY_, that connects F, and F,,.
With the definitions above, there exists for every frame a
sequence of transformations connecting it with F,,.4. The
dotted arrows in Fig. 2 indicate the relationships between the
frames in the palletizing example. Each frame (except the
world frame) has an incoming arrow starting at its reference
frame.

B. Software architecture

In order to write object-centric programs as previously
described, a specially designed control software is needed.
This software must support the notion of arbitrary objects that
are capable of receiving and processing commands depending
on their current context. Additionally, it must be possible to
express relationships among those objects (e.g. the geometric
relationship shown in Fig. 2). It should be noted that real-time
aspects, which certainly play an important role in low-level
robot control, are not considered at this level. Instead, it is
assumed that finally all basic commands can be delegated to
a robot control system which executes the commands while



taking care of all real-time critical aspects. The architecture
described in this section provides a framework for object-
centric specification of robotic applications, and completely
abstracts from the underlying robot control. Fig. 3 shows a
conceptual model fulfilling this requirement.

The central concepts are Commands and CommandableOb-
jects. A CommandableObject can be any entity that (directly
or indirectly) performs actions relevant in a certain task. Ex-
amples are robots, tools or workpieces. Tasks are specified by
Commands. As an abstract class it is the base for any concrete
command and provides methods for execution. The approach
of representing commands as distinct objects is a variant of
the Command pattern [11] and has some advantages over
implementing commands as methods like the pseudo code in
Listing 4 indicated:

o Standard Commands can be defined once and used for

many (new) CommandableObjects.

o Commands can encapsulate their status of execution.

o Bach Command can be extended e.g. by undo/redo.

« Special macro commands can be introduced that aggre-

gate a series of Commands that have to be executed as
an atomic step in a serial or parallel manner.

Which Commands are accepted by a CommandableObject
and how it interprets them depends on the type, but also
on the current context of the object. For example, when
a box should execute a movement command, it will only
be able to execute that command if it can be gripped and
moved by a manipulator. To enable this context-specific
handling of commands, each CommandableObject relies on a
ProcessingStrategy determining how entities interpret certain
commands in their current context. The ProcessingStrategy
of a CommandableObject is exchangeable during runtime, re-
flecting changes in the context of the object. This mechanism
is an application of the Strategy pattern [11].

To represent spatial relationships, real-world physical ob-
jects are represented in the framework by PhysicalObjects.
They can be part of a geometric hierarchy such that each
PhysicalObject can have other PhysicalObjects as parent
or child elements. An example for such a hierarchy is a
robot that has a gripper holding a workpiece attached to its
flange. The workpiece’s parent element would be the gripper,
which is a child of the robot’s flange. To every parent-
child-relationship, a Transformation is attached. By using this
transformation, a Command intended for the PhysicalObject
in the parent role can be transformed to a Command for the
PhysicalObject in the child role (and vice versa). However,
both Commands must still have the same interpretation for
the system as a whole. In the example given above, the
command telling the workpiece to move on a linear path
can be transformed into a movement command for the
gripper holding the box (and finally into a command for the
robot). Hence, the transformed command must describe a
movement of the gripper (or rather the robot) that results in
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the movement of the workpiece as it was specified by the
original command.

The concept of a Frame is explicitly included in the
concept model, as it is intended to be a central instrument
for describing important parts of physical objects. Each
PhysicalObject has at least one Frame attached to it iden-
tifying its location in space. Note that a Frame, being a
PhysicalObject, is also a CommandableObject and thus can
receive Commands. This enables writing programs like in
Listing 4 where the command is actually given to a Frame.

C. Implementation and dynamic aspects

Fig. 3 depicts the static structure of the software design.
To illustrate dynamic sequences of actions, the implemented
prototype is explained below. The implementation uses the
object-oriented language C# that is part of Microsoft’s .NET
framework [12]. For testing and visualization, Microsoft
Robotics Developer Studio 2008 [13] was utilized. It is
a service-oriented programming environment for robotic
devices that incorporates a visual simulation environment
with an integrated physics engine (see Fig. 1). The simu-
lation environment greatly served the purpose of building a
lightweight prototype by supporting the creation of a visual
and physical model of the scenery.

The simple box-stacking example introduced in Sect. II
was implemented using the object-centric architecture. The
robot, its gripper and the boxes are modeled as PhysicalOb-
jects with the gripper being a child of the robot. We assume
that the box is already gripped. During the gripping, the
gripper became the parent of the box, and a special processing
strategy called DelegationStrategy was associated with the
box. This strategy assumes that the CommandableObject
cannot process Commands itself. Therefore, it tries to find
a manipulator capable of executing the movement command
by delegating the command to an object’s direct parent. It
uses the Transformation to transform the Command such that
the semantics is preserved when it is delegated. The parent
will then decide, based on his own processing strategy, how
to further process the Command.

Figure 4 shows the delegation process in detail. The issuer
of the linear movement command cmd of type LinCommand
invokes the method Execute() to trigger execution. Then, the
command delegates the processing to the object the command
was intended for — the Frame called bottom (cf. step 2).
However, the actual processing of the command is done
by a DelegationStrategy. It retrieves the parent elements of
the frame and picks the first one. It is assumed here that
each PhysicalObject has only one parent. The next step
is obtaining the Transformation for the parent (cf. steps 7
and 8). The transformation is a GeometricTransformation,
which uses the information about the spatial relationship
between parent and child to transform movement commands.
Finally, the DelegationStrategy calls the Process() method of
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its PhysicalObject’s parent (cf. step 11) which does the same
internal processing of the (now transformed) Command. This
recursive internal processing determines how the command
is interpreted in the end (or if it is even handled at all). This
mechanism can be seen as an extension of the pattern Chain
of Responsibility [11]. By combining this pattern with the
afore mentioned Strategy pattern, the way how each node in
the chain (i.e. the parent-child-relationship) treats commands
can change dynamically.

IV. CONCLUSION & FUTURE WORK

This paper introduces a new programming paradigm for
industrial robots called object-centric programming. Object-
centric robot programs are basically the consequent applica-
tion of object-orientation and modern software engineering
paradigms to the domain of industrial robotics. This enables
a systematic translation from domain problems into robot
programs, which arc automatically transformed into manip-
ulator instructions. As a consequence, software development
for industrial robots will become easier and more efficient.
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While there exists a number of object-oriented robotic
frameworks, they mainly focus on providing real-time control
structures and do not abstract from manipulator-level pro-
gramming. They could, however, be used for implementing
a real-time capable robotic control core that processes basic
commands to robots, tools and other devices. Examples
are MRROC++ [4], ZERO++ [14], SIMOO-RT [15] and
OROCOS [16].

The software architecture introduced in Sect. III enables
the programming of object-centric applications. With this
design, various objects can handle commands depending on
their current context, which allows a reduction of coupling
between robot control programs and specific objects they op-
erate on. Moreover, the approach was tested by implementing
a prototype using the object-oriented language C# and Mi-
crosoft Robotics Developer Studio. While the implemented
scenario only covers parts of possible task variations that
were discussed in this work, the architectural design allows
for a straightforward handling of other variants. Besides
extending the prototype in this direction, current work also
includes the integration of a KUKA LBR robot into the
framework. First results are very promising. Further research
is done to develop mechanisms for specifying coordination
between dependent commands, like in the case of load
sharing with multiple robots.
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