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Abstract. Several proof systems allow the formal verification of Java
programs, and a specification language was specifically designed for Java.
However, none of these systems support generics that were introduced
in Java 5. Generics are very important and useful when the collection
framework (lists, sets, hash tables etc.) is used. Though they are mainly
dealt with at compile time, they have some effect on the run-time behav-
ior of a Java program. Most notably, heap pollution can cause exceptions.
A verification system for Java must incorporate these effects. In this pa-
per we describe what effects can occur at run time, and how they are
handled in the KIV system [18] [2]. To the authors knowledge, this makes
KIV the first verification system to support Java’s generics.

1 Introduction

The Java programming language [9] was from the beginning very popular with
respect to a formal treatment. Alves-Foss published early results (many of which
dealt with Java’s type system) in 1999 in [1]. Later work focused more on the
specification and verification of Java programs. The Java Modeling Language
JML [15] [19] allows the specification of Java programs in a language similar to
Java itself and is supported by many tools [6]. Several tools support the formal
verification of Java programs: the KeY tool [5], the LOOP compiler [14] using
PVS, or Krakatoa [21], to name just three. ESC/Java2 [7] and Jack [4] are static
checkers for Java that use underlying automated theorem prover(s) for their
reasoning.

Impressive applications have been specified and verified. Many verification
systems and case studies focus on Java Card [26] programs. This makes sense,
because programs running on Smart Cards are typically security critical. They
handle electronic cash (e.g. the Mondex card [22]), act as official documents,
or contain important personal information like finger prints, or health records.
A programming error could have serious consequences. And, from a verification
point of view, the programs are small, and do not employ all features of the Java
language. Examples are [13] [23] [11].

But there is a problem with ‘normal’ Java: The Java language evolves, and
every few years new features are introduced that have a significant impact on
a verification system. The same is true for C#. Java 1 [8] was released 1996,
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Java 2 [16] in 2000, and introduced inner classes. Java 5 [9] in 2005 added gener-
ics, annotations, enums, autoboxing, and other features (Java 6 added Scripting).
Experience shows that it is very difficult for the developers of verification systems
to keep up with the new features. (The same is true for formal API specifica-
tions.) They were designed without formal methods in mind, and it is very hard
to estimate how difficult it is to include these features in a prover, and what their
effects on actual proofs are without actually doing it. Furthermore, one may feel
that these features are not really necessary. They simplify programming in Java,
but if a program is to be formally proved anyway, this may not seem important.

We do not feel this way. We believe that there are programs worth verifying
that use generics, and that it is important to analyze the effects of specific
language features on formal proof systems. These and other results should be
taken into account in the design of future programming languages.

Several groups are currently trying to support Java generics for formal speci-
fication or verification purposes. The JML developers are “working on Java 1.5
(generics)” [20]; “reason about Java 1.5 source” is “ongoing work” for ESC/-
Java3 [17], and the KeY group has evaluated the consequences of supporting
generics in the KeY prover [27]. Spec# [3] supports generics for C#, but this is
easier because no heap pollution can occur.

This paper describes how generics are incorporated in the KIV prover. The
results can probably be adapted to other proof systems with little effort. It turns
out that generics have only a slight impact on run-time verification, mainly
because of heap pollution. The rest of the paper is organized as follows: Section
2 gives a short introduction to generics from a user’s (i.e. a programmer’s) point
of view, and section 3 describes the phenomenon of heap pollution. Section 4
gives a short introduction to the Java calculus in KIV, and the next two sections
describe in detail the effects of generics on run-time behavior. Section 7 reports
on results, and concludes.

2 Generics in Java

Generics were introduced in Java 5; they are described in the third edition of
the Java Language Specification (JLS 3) [9]. This section provides only a very
cursory overview that is focused on the run-time behavior of generics. Wildcards,
or bounds are omitted since they are relevant only when their type erasure is
computed (see Sect. 6).

Generic types are very useful for collections, e.g. lists. In Java 4, nothing is
known about the elements of a list. When an element is retrieved with
1i.get (0) the result is of type Object. If a programmer uses a list of in-
tegers (i.e. he knows that all elements will be integers) the result must be cast
anyway: (Integer)li.get(0). This can lead to an exception at run time
if inadvertently a list of strings is supplied. The type system of Java without
generics does not help in this case. With generics it is possible to declare a pa-
rameterized type List<Integer>. In this case the compiler will prevent the
programmer from supplying a list of strings (of type List<String>) where a
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list of integers is expected, or to add a string to a list of integers. Additionally,
no cast is necessary. Listing 1 shows a small example. The example includes two
other features that were introduced in Java 5: autobozing (automatic conversion
of primitive types into their object counterpart and back) in lines 6, 11, 12, and
the enhanced for statement in line 6.

1 inport java.util.=;

2 public class Examplel {

3

4 public int sum(List<Integer> 1i) ({
5 int res = 0;

6 for(int i : 1i) res += i;

7 return res;

8 }

9 public void examplel() {

10 List<Integer> 1i = new ArrayList<Integer> () ;
11 1li.add(5);

12 1li.add(7);

13 System.out.println(sum(1li)) ;

14 }

15 }

Listing 1. An example with parameterized lists

Trying to call the sum method with a list of strings (of type List<String>)
does not compile. The List interface is generic; it is declared as

public interface List<E> extends Collection<E> {

Here, E is a type variable that is instantiated with Integer in the example. The
add method used in lines 11 and 12 is declared as bool ean add (E e) ; and the
get method (that is used implicitly in the loop) as E get (i nt index). This
means the declared result type of the get method is the type variable E; if E is in-
stantiated to Integer the compiler knows that the result will be of type Integer.

The most important aspect of generics with respect to formal verification
is the fact that generics are “forgotten” at run time (“some type information
is erased during compilation”, JLS 3 p. 56). The reason is compatibility with
existing code; see the discussion in JLS 3, p. 57. In fact, the byte code produced
for the sum method in Listing 1 is identical to the byte code produced by the
source code in listing 2.

This code does not use generics. Furthermore, the enhanced for loop has been
replaced by a standard loop that uses an ITterator to access the list elements.
Line 4 contains an explicit cast of the list element to Integer. Without it the
code does not compile. However, the cast will produce a ClassCastException
at run time if sum is called with a list of strings. The source code in Listing 2
compiles in Java 4, and also in Java 5. This may be unexpected because the
parameterized interface List is used without an instance for the element type
(A parameterized class or interface without its parameters is called a raw type).



1 public int sum(List 1i) {

2 int res = 0;

3 for (Iterator iter = li.iterator(); iter.hasNext(); ) {
4 int i = ((Integer)iter.next()).intValue();

5 res += 1i;

6 }

7 return res;

8 3}

Listing 2. The same example without generics

But it is legal in Java 5 for compatibility reasons as mentioned above: Otherwise
it would not be possible to reuse existing class files that were compiled with Java
4. Usage of the raw type (among others) gives rise to an unchecked warning by
the Java 5 compiler:

Note: Some input files use unchecked or unsafe operations.

The code in listing 1 does not produce any compilation warnings. Still the byte
code for listing 1 is the same as for listing 2. Especially the cast to Integer is
contained in the byte code. This has implications for a formal verification in the
presence of heap pollution, and will be explained in detail in sections 5 and 6.

3 Heap Pollution

Heap pollution is described in JLS 3, 4.12.2.1:

It is possible that a variable of a parameterized type refers to an object
that is not of that parameterized type. This situation is known as heap
pollution. This situation can only occur if the program performed some
operation that would give rise to an unchecked warning at compile-time.

Heap pollution can lead to a ClassCastException at run time. Listing 3
shows a simple example.

1 public int sum(List<Integer> 1i) {

2 int res = 0;

3 for(int i : 1i) res += i; // throws

4 return res;

5 }

6 public void example3 () {

7 List 1i = new ArrayList<String>(); // raw type
8 li.add("foo") ;

9 List<Integer> 1ii = (List<Integer>)1li; // ok
10 System.out.println(sum(lii)) ;

11 }

Listing 3. An example for heap pollution
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In line 7 a raw type is used and a list containing a string is created. In
line 9 this list is assigned to a variable of type List<Integer>, causing heap
pollution. The code compiles, but running example3 () causes a ClassCast-
Exception in line 3. Line 9 does not cause a ClassCastException because
the cast effectively checks whether the argument is of type List — the type
parameter is erased and not available (and hence not checked) at run time. The
byte code for line 3 contains an explicit cast to Integer as described in the
previous section, causing the exception. The behavior of the code is the same if
11 is passed directly to the sum () method.

Heap pollution can occur even without involvement of the heap, and it is easy
to write very obfuscated programs where it is difficult to guess whether they will
compile, and what their run time behavior will be. Listing 4 contains an example
for this.

1 public class Exampled<X>{

2

3 public X m(bool ean flag) {

4 if (flag) return (X) "string";

5 el se return (X) Integer.valueOf (3);

6 }

7 public static void main(String[] args) {
8 Exampled ex = new Exampled<String> () ;

9 Exampled<Integer> ex4d = ex; // raw type
10 Integer x = ex4.m(fal se); // ok

11 Integer v = ex4.m(true); // throws
12 }

13}

Listing 4. Heap pollution without the heap

The example compiles. Method m in line 3 returns either a String or an
Integer object. This is possible because the type variable X is erased at run
time, and on the byte code level the method has the result type Object. Line
9 causes “heap pollution” because a raw type is used. In line 10 m returns
an Integer, and the assignment to x works. Line 11 causes a ClassCast-
Exception, because a String is returned.

Of course, both examples produce “unchecked” warnings at run time. It is
tempting to reason in the following manner: “Good programming practice will
not create code that produces unchecked warning. Therefore, we exclude those
programs from formal verification.” However, that is not true. Except for very
simple examples it is almost impossible to avoid unchecked warnings. For ex-
ample, the Java Collection Framework produces 96 unchecked warnings. This
means that a useful verification system must cope with them.
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4 Java Verification in KIV

The KIV system has a calculus for the interactive verification of sequential Java
programs. Before describing the specific features of generics concerning verifica-
tion we give a short introduction to the KIV calculus.

The calculus is a sequent calculus for dynamic logic [12] based on algebraic
specifications with a loose semantics. Dynamic logic extends predicate logic with
two modal operators, box | . ] and diamond ( . ). Box and diamond contain a
context (a store) st and a Java program running in this context. The context
contains the Java heap with the objects, and additional information about static
fields, initialization of classes, and the execution state to model exceptions. It is
specified algebraically. The class and interface declarations are part of a global
environment. The intuitive meaning of (st; ) ¢ is: with initial store st the Java
statement « terminates, and afterwards ¢ holds. ¢ is again a formula of dynamic
logic, i.e. it may contain boxes or diamonds. The meaning of [st; a] ¢ is: if a ter-
minates then afterwards ¢ holds. A sequent ¢1,...,om F 9¥1,...,1%n consists of
two lists of formulas (often abbreviated by I" and A) divided by - and is equiva-
lent to the formula w1 A ... A om — 1V ... V 9. The formulas @1, ... om
can be thought of as preconditions, while one of 91, ...,1, must be proved. A
Hoare triple {¢}a{1} can be expressed as ¢ = [st; o]y or ¢ F (st; ) 9 if termi-
nation is included. Java’s type system is not built into the calculus, but rather
specified algebraically. Logically, Java types in KIV are simple algebraic data
types. This makes it trivial to incorporate parameterized types, type variables,
wildcards, and bounds.

The calculus essentially has one rule for every Java expression and statement,
plus some general rules. It works by symbolic execution of the Java program from
its beginning to its end (i.e. computation of strongest postcondition). This means
it follows the natural execution of the program, which is very important for
interactive proofs. Nested expressions and blocks are flattened to a sequence of
simple expressions and statements that can be executed directly. Obviously, this
flattening must obey the evaluation order of Java. The result of a sub expression
is ‘stored’ with an assignment to a local variable. This is shown in the following
example.

'k {st;x = ml(m2(y), m3());)x=5

1. Here the arguments of the method call m1 must be evaluated first. This is
done by introducing a new local variable x2, and a new assignment to x2:
2. I'F (st;x2 = m2(y) ;) (st;x = ml (X2, m3());)xz=5
The sub expression is replaced by x2. Since the argument to m2 is a variable
the method call can be evaluated. A proof rule for the method call basically
replaces the method call by its body. If m2 is declared as
int m2(int 1) { return i + 1; }
the following goal is obtained:
3. Ii=ytk (st;return i + 1;) (st; target(x2))
(st;x = ml(x2, m3());)x=5H
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The formal parameter is bound to the actual parameter by the equation
i = y. This is only possible if the actual argument is already fully evaluated,
i.e. in KIV either a local variable or a literal.

The target (x2) statement (not part of Java, of course) acts as a catcher
for the return statement, and assigns x2 to the returned value. For i +
1 another variable is introduced:

4. TIi=y,il=i+1F (st;x2 = 11;) (st; x = ml(x2, m3());)xz =5
The assignment becomes an equation, and then the next sub expression can
be flattened. If variable conflicts occur, then a renaming will also take place:

5. Ii=y,il=i+1,22=4lF (st; x = ml(x2, m3());)x=5

And so on. After a finite number of applications of the flattening rule a list of
assignments is returned where every sub expression is either a local variable or
a literal. Then a rule for the main expression (e.g. a method call) or statement
is applicable.

As a last example we show the rule for an instance method invocation
e.m(e1, ...,en) ;. Figure 1 shows a class hierarchy where class ¢1 contains
a method declaration m with a body «j that is overridden in class ¢, with
another body ay.

The compiler determines at compile time a suitable method declaration, and
the method call is annotated with the computed method signature, i.e. the
method name m and the formal parameter types of the declaration. The ar-
gument types are needed because of overloading. Java verification in the KIV

m(...){az}

1. ,mode(st) # normal F
2. ,e=null,mode(st) = normal +
(st;t hrow new NullPointerException() ;)
3. ,e#null, mode(st) = normal  classOf(e, st) € {cl C2,C3},
4. ,e# null,mode(st) = normal, classOf(e, st) € {c1,Cs},
this’ =ez=e...,en F (st; 1) (st;target(x))
5. ,e=# null, mode(st) = normal, classOf(e, st) € {c2 },
this' =e,z=-e1,...,en F (st; 5) (st;target(x)) ,
F(sttx = em(€r, ..., &0 );)

Fig. 1. Example class hierarchy and rule for instance method invocation
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system uses as input an annotated abstract syntax tree of the Java program and
class declarations; so every method call is annotated with the computed method
signature, too. The dynamic method lookup for an instance method then works
as follows: The run-time class of the invoking object is determined, and the class
declaration is searched for a method declaration with an identical signature as
the annotated signature. If one is found this is the method to invoke. Otherwise
the super class is searched and so on. The proof rule in the KIV system works
in the same manner.

The proof rule is only applicable if e and the arguments es, ..., e, are fully
evaluated, i.e. local variables or literals obtained by the flattening rule. This
ensures that no side effects can occur. Premise 1 ensures that the method call
is evaluated at all, and not skipped due to an exception. Premise 2 throws a
NullPointerException if eis null. Premise 3 ensures that the type of e is
either c1, ¢z, or c3. If e is a reference to an object with type ¢; or ¢z then method
m(...){a1} is invoked (premise 4); if the type of e is ¢, then method m(...){az}
is invoked (premise 5). In both premises the parameters ey, ..., e are bound to
new variables z, a new variable this’ is introduced for this and bound to e,
in the method body the formal parameters are replaced with the new variables
yielding «f, and the new statement target (x) is added that will catch a return
statement and bind x to the returned value.

Instead of expanding the method call, pre- and postconditions can be used
(proof by contract). The calculus is well suited for interactive proofs because it
follows the evaluation order of the Java statements and expressions as described
in the Java language specification. Other proof rules modify or access the heap,
but they are not relevant with respect to the formal verification of generics. We
refer the reader to other literature [24] [25] [10].

5 Method Invocation

Method invocation is a situation where generics influence the run-time behavior
of Java, for two reasons:

1. Dynamic method lookup is more complicated than before because of type
variables and instantiation.

2. Heap pollution can cause an Exception during method invocation conversion
(JLS 3, section 5.3).

Both items are described in turn.

Dynamic method lookup. In the presence of generics, it can be very complicated
to compute the correct method signature that is associated with a method call
at compile time. The description in JLS 3 is 32 pages long as compared to 9
pages in JLS 2. As mentioned in the previous section this annotation process is
outside of KIV’s formal framework. The dynamic method lookup also becomes
more complicated if the types of the signature contain type variables. Listing 5
contains an example. (The heap pollution in the example can be ignored for the
moment. )
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1 interface I<T> { public int m(T x) ; }

2

3 class Cc<x> inplenents I<Integer> {

4 public int m(Integer x) { return 6; } // overrides m in I
5 public int m(string x) { return 8; } // does not
6 3

7 public class Example5 {

8

9 public static void main(String[] args) {

10 I<Object> o = new C(); // raw type
11 System.out.println(o.m(5)) ; // prints 6
12 System.out.println(o.m("foo")); // throws

13 }

14 3}

Listing 5. An example for dynamic method lookup

The program compiles. Since class C implements I<Integer> the method
m(Integer x) in line 4 implements the method m (T x) in interface I. The
two method calls in lines 11 and 12 are annotated with the method signature
m(T) because the type of the invoking expression is I. At run time, it is not
correct to search simply for a declaration with signature m (T). Rather, it must
be determined that the type variable T is instantiated with Integer in class C,
so in class C a method with signature m (Integer) must be searched. In other
classes that implement I the type variable may be instantiated with another
class, or not at all. The same is possible for subclasses of C that override m.

The proof rule for dynamic method lookup in KIV now works as follows:

.. The annotation for the method call must also include the name of the class
or interface containing the suitable method declaration, not only the method
signature. In the example this is interface I.

..Given a run-time class C, searching for the method declaration is done as
follows: It is computed in which manner C inherits the method m (T) from I.
This is done by following the chain of implements (or extends) clauses
downward from I to C. In this process a substitution for the type variable T
is computed. Because C<X> implements I<Integer>, and I has type
variable T, the substitution is T « Integer.

It may be noted that the description of the dynamic method lookup in JLS
3 (15.12.4.4) is identical to JLS 2, and the complication with instantiation of
type variables is not mentioned. Another possibility for a proof rule would be to
annotate every method declaration with those method signatures it overrides or
implements. Then searching a class of a matching method signature would mean
to search the annotations as well. This is comparable to using a dispatch table
in a real implementation.

Method invocation conversion. JLS 3 states that the arguments of the method
call are evaluated from left to right (15.12.4.2), then method invocation
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conversion takes place (15.12.4.3), then an additional check is performed that
may throw a ClassCastException (15.12.4.3). This is not correct, because
after evaluation of one argument unboxing takes place (if necessary), and only
then the next argument is evaluated. The evaluation order is significant, be-
cause unboxing can cause a NullPointerException if the reference to un-
box is null. However, the additional checks (casts) are performed only after all
arguments have been evaluated and converted.

Listing 5 is also an example why an additional cast may be necessary. In line
12 the method m is called with a string. The actual method to invoke depends
on the run-time class of the invoking expression and the method signature as
computed at compile time. In the example it is m(T) in interface I which is
overridden by the method m(Integer) in class C as described above. Since
a string cannot be converted to an Integer, a ClassCastException must be
thrown. The method m (String) does not implement m (T) in I, and is not used
even though the argument is a String. On the other hand, the incompatibility
cannot be determined at compile time because another class D could implement
I<String>, and for an invoker of class D a String argument is perfectly valid.

1. ,mode(st) # normal F
2. ,0=null,mode(st) = normal +
(st;t hrow new NullPointerException();) ,
3. ,0# null,mode(st) = normal + classOf(o, st) = C,
4. ,0# null,mode(st) = normal, classOf(o, st) = C,this =0,
(st;x = (Integer)e;) (st;return 6;) (st; target)
F (st;o.m(e) ;)

Fig. 2. Method call for o.m(e)

The proof rule for a method call now works as follows (Fig. 2):

1. All arguments must be either local variables or literals, and autoboxing has
been applied if necessary. This guarantees that no side effects occur.

2. For a given run-time class of the invoker the correct method declaration to
invoke is determined as described above, in the example m (Integer x)
{...}.

3. For every parameter of this declaration and actual argument:

(a) If the static type of the actual argument is a subtype of the parame-
ter type, then simply an equation formal parameter variable = actual
argument is generated.

(b) Otherwise an assignment to the formal parameter variable is generated,
and the actual argument is cast to the formal parameter type. In the
example the assignment x = (Integer)e; (premise 4 in Fig. 2) is
generated.

4. The method call is replaced by its body, and all generated assignments are
added before the body, in the example x = (Integer)e; return 6;
(premise 4 in Fig. 2)
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The Java compiler introduces a so called bridge method (JLS 3, 15.12.4.5) at
compile time that is called at run time and performs the casts. In the example the
bridge method is added to class C:m (Object o) {returnm( (Integer)o);}.
The proof rule has the identical behavior, but without additional transformations
that are outside the formal framework.

6 Invalid Result Values

Section 15.5 of JLS 3 states rather cryptically

A run-time type error can occur only in these situations: [...] ® In an
implicit, compiler-generated cast introduced to ensure the validity of an
operation on a non-reifiable type. [...]

Because of heap pollution, the result of a method call (or a field access) can
return a value that is not a subtype of (the erasure of) its static type (JLS
3, section 5.2). In these cases sometimes a ClassCastException is thrown.
Listing 6 shows an example.

1 class Bag<E> ({

2 public E content;

3 public Bag(E val) { content = val; }

4 public E get() { return content; }

5 )

6 public class Example6 {

7

8 static void mo(Object o) {

9 if (o instanceof String) System.out.println(1l);
10 el se System.out.println(2);

11 }

12 static void mi(Integer i) { System.out.println(i); }
13

14 public static void main(Stringl[] args) {

15 Bag<Integer> bi = new Bag("foo"); // raw type
16 mo (bi.get()); // ok, prints 1

17 mi (bi.get()); // throws

18 }

19 3}

Listing 6. An example for invalid return values

Line 15 creates heap pollution. In the following lines the static type of the
variable bi is Bag<Integer> which means that the content field of bi should
hold an Integer. However, it holds the string " foo". The method call bi.get ()
returns this string.

Line 16 does not raise an exception. This is surprising since the result of the
method call bi.get () (the string) is not a subtype of its static type Integer.
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However, the result value is used in a context where only an Object is required.
Therefore it is not necessary to throw a ClassCastException (JLS 3 5.2 and
5.3). The string is passed to the method mo, and the method prints 1. Line 17
throws a ClassCastException because the result is used in a context that
requires an Integer. This is a different situation than the method calls in listing
5 where bridge methods are used. The Java compiler guarantees this behavior
by simply inserting casts into the byte code. The byte code always contains the
casts, even when no “unchecked” warnings are issued because the heap pollution
could stem from already compiled code.

What are the implications for the formal verification? One possibility would
be to modify the source code during parsing and annotation. However, this would
be outside the formal framework, and in interactive proofs it is desirable to be as
close to the source code as possible. Therefore, these implicit (or “unchecked”)
casts are included in the calculus:

1. A new proof rule is introduced for “unchecked” casts.

2. The proof rules for field access and method call are applicable only if no
“unchecked” casts are required.

3. The flattening rule is modified to keep track of the type required by the
context.

In the same manner, a proof rule for autoboxing has been included in the calcu-
lus. The new proof rule for an “unchecked” cast is applicable for a method call
x = e.m(e1,...,en); (and similarly for a field access x = e. f) iff

..e and e1, ..., ey are local variables (possibly introduced by flattening), and

..the declared return type of m (in constrast to the computed result type) is
a type variable T, and

..the erasure of T is not a subtype of the static type of x. For a type variable
or wildcard without bounds this means that the type of x is neither Object
nor an unbounded type variable. For bounded type variables T extends C
or wildcards ? extends C the erasure is C.

Then the proof rule simply introduces a cast to the static type of x. Fig. 3
shows the rules. Conversely, the proof rules for method calls and field access
are only applicable if the “unchecked” rule is not applicable. The flattening rule
guarantees that the “unchecked” rule is not applied a second time.

Line 16 in listing 6 contains an example that the context is used to decide
whether a cast is added or not. Since the flattening rule transforms mo (bi.
get()) into x = bi.get(); mo(x); the static type of x must be Object
(the context type), not Integer (the computed result type of bi.get () ). The
modified flattening rule must use the context type where necessary.

F(st;x = (Ty)e.m(e1,...,en);) F(sttx = (Ty)e.£f;)
F(st;x = e.m(e1,...,en);) F(st;x = e.£;)

Fig. 3. The new “unchecked” proof rules
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This finishes the description of implicit casts for result values. JLS 3 does not
mention it, but the Java compilers treat an array access for an array of type E[ ]
with E a type variable in the same manner as a field access or method call. This
means an array access a[i] can also cause a ClassCastException.

7 Verification with Generics in KIV

The examples in the paper can be verified in KIV with the modified calculus. It
turns out that generics have almost no effect on the specification and verification
methodology used in KIV which is based on algebraic specifications and the proof
of functional properties. This is illustrated with the following example: We want
to prove that the sum method from listing 1 correctly computes the sum of
some integers, Y ints. ints is an algebraically specified list of integers, and )
an algebraic function. The proof can only succeed if we know (or assume) that
the input 11 to the sum method represents this list of integers, isList(ints, li, st).
1sList is a predicate that “looks” into the heap st. The goal to prove is therefore

isList(ints, li, st), ...F (st; 1 = x.sum(1li); )i=>_ ints

This property is not trivial: The iterator (used by the enhanced for loop as in
listing 2) must be implemented correctly; the hasNext method must eventu-
ally return false (for termination); the next method must successively return
Integer objects (not null, and not other objects because of heap pollution)
that represent the integers in ints; no integer over- or underflow may occur.

Essentially this means we need a very precise knowledge about the data struc-
ture represented by 1i in the heap — independent of whether generic types
are used or not. Of course, we do not have this knowledge because it is not
known which List implementation is used. Therefore, we must make assump-
tions about the methods iterator, hasNext, and next, and the predicate
isList (proof by contract). Then, for a given List implementation we can spec-
ify isList and prove the assumptions. E.g., the assumption for next is:

islterator(ints, iter, st), ints # [], ...
F (st; o = iter.next();) ( isIntegerObject(ints.first, o, st)
A islterator(ints.rest, iter, st) A ...)

Two auxiliary predicates are used: islterator(ints, iter, st) is true if iter is an
Iterator object that represents the integers ints. Then the next method
returns an Integer object that represents the first value of ints (isIntegerOb-
ject(ints.first, o, st), and by side effect the iterator has been modified so that it
represents the remaining integers ints.rest (islterator(ints.rest, iter, st)). Again,
this is completely independent of generic types.

For a given List implementation (for example, the ArrayList of the Java
collection framework) the predicates must be specified. This requires a look
into the actual implementation (how the next method accesses the element to
return etc.), and a class invariant about the iterator (the cursor field used by
the iterator is not greater than the size field of the ArrayList which in turn
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is less than the length of the array holding the elements etc.). And it must be
specified that all list elements are indeed Integer objects.

8 Conclusion

We have extended KIV’s Java calculus to support the formal verification of Java
generics. It may be mentioned that JLS 3 is sometimes cryptic, unclear, and
possibly wrong for generics. The main design decision was not to modify the
source code to verify, but to include the run-time effects of generics dynamically
into the appropriate proof rules. The effects are: First, dynamic method lookup
is more complicated than before (Listing 5); second, because of the possibility
of heap pollution (Sect. 3) a method invocation may require additional checks
(Listing 5); third, because of heap pollution the result of a method call or a
field access can cause a ClassCastException (Listing 6). This has the subtle
consequence that in addition to the static type of an expression the context
(the expected or required type) of the expression becomes important. It is now
possible to verify programs with “unchecked” warnings, and in the presence of
heap pollution (for example, the programs in this paper).

Experience shows that the effects of generics on proofs in KIV are small be-
cause the additional casts cause little overhead, and because KIV’s methodology
relies on algebraic properties where static types play a negligible role. A possible
direction for future work is a formal specification of a type correct Java program
with generics, and a proof of type soundness.
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