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Abstract. We present a verified JavaCard implementation for the Mon-
dex Verification Challenge. This completes a series of verification efforts
that we made to verify the Mondex case study starting at abstract trans-
action specifications, continuing with an introduction of a security pro-
tocol and now finally the refinement of this protocol to running source
code. We show that current verification techniques and tool support are
not only suitable to verify the original case study as stated in the Grand
Challenge but also can cope with extensions of it resulting in verified
and running code. The Mondex verification presented in this paper is
the first one that carries security properties proven on an abstract level
to an implementation level using refinement.

1 Introduction

The Mondex [22] case study is a significant contribution to the Verified Software
Repository [4] [37] which has its origin in the Grand Challenge in Software Ver-
ification [18]. Mondex is an electronic purse application for smart cards. It was
originally implemented by Mastercard and became famous for being one of the
first applications to be verified according to the highest criteria of ITSEC [8].
The challenge is the machine assisted verification of Mondex smart cards security
properties. It was first done by paper and pencil proofs by Stepney, Cooper and
Woodcock [34]. A lot of groups recently showed that their verification tools and
methods can cope with the case study (e.g. [25] [2] [17] [38] [20]). Some small er-
rors were found in the original case study. Our group also solved the challenge in
[30] and [29] using Abstract State Machines (ASM) [6] and ASM Refinement [5]
[26] [27] with the interactive theorem prover KIV [1]. Furthermore, we extended
the case study by introducing a suitable cryptographic security protocol in [15],
while the original specifications do not deal with explicit cryptography, but only
assume messages to be unforgeable. We also introduced an UML-based mod-
elling framework for security protocols in general and used it to model Mondex
in [24].

In this paper we adopt our refinement method for security protocol implemen-
tations (already presented in [12]), to the verification of a Mondex implemen-
tation. The code we are verifying is running on Java smart cards [35]. Besides
the original Mondex challenge, this paper addresses especially the problems of
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Data Abstraction and of Complex Heap Data Structures as stated in a current
verification challenge [21].

We prove that our implementation
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Fig. 1. Our Mondex layers

preserves the Mondex security prop-
erties. First, security is proved for the
abstract levels. Then, the refinement
theory carries the properties over to
the concrete level. All proofs and the
implementation are available on the
Web [19]. Fig. 1 shows an overview of
our specification and verification lay-
ers for Mondex. The levels 1 and 2
are the A and C levels of the original
case study, using ASMs as the speci-
fication language. The third layer in-
troduces cryptography and was not
present in the original specification.
Level 4 is the JavaCard implementa-
tion level. The refinement from level 3
to 4 is the main content of this paper.

Sect. 2 will introduce Mondex, Sect.
3 describes the source code. Sect. 4 in-
troduces Java in KIV and the refinement framework, Sect. 5 explains the proof
strategy. Sect. 6 compares the approach to related work.

2 Mondex in a Nutshell

Mondex smart cards are electronic purses, that store an amount of money. They
can be used to pay by transferring money from one purse (called the FROM
Purse) to another one (the TO Purse). Those transactions are assumed to be
possibly faulty. While the most abstract level in the case study only uses non-
deterministic choice between successful money transfer or loss of money (both
possible in one atomic step), the first refinement introduces a protocol using
five different messages, together forming a transaction. All messages can be lost
during transmission, thereby leading to an error on any of the cards in any state.
Level 2 also uses an ether of messages which are currently in transit. Receiving
a message is basically taking an arbitrary one out of the ether. Thereby replay
attacks are modeled by adding the possibility of taking the same message out
more than once. Besides that, there is no explicit attacker analyzing messages
or generating new ones. Also there is no cryptography on this level: all messages
are assumed to be unforgeable. Any error during one protocol run (like receiving
a replayed message) leads to logging of the current transaction. The first refine-
ment shows that the log entries correctly represent the lost money on level 1.
This was shown e.g. in [30].
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The original verification of Mondex ends at our level 2. Level 3 now introduces
cryptography for this protocol using the Pr osecco specification approach [14]
[13], which is also based on Abstract State Machines. We chose this approach
because Pr osecco already provides lots of specification libraries for security
protocols and is well integrated into the KIV system. Pr osecco contains an
explicit Dolev-Yao attacker [9] who is analyzing and building messages. The
ether of level 2 is now modelled using explicit input queues. Also additional
participants (like the terminal or the card holder) are introduced to get closer
to reality. We proved that this protocol is a correct refinement of level 2 [29]. A
symmetric secret key shared between all the authentic purses is used to encrypt
most messages and thereby ensures that the attacker cannot generate forged
critical messages. Some details on level 2 and level 3 were already given in [15].
Our Java implementation of Mondex on level 4 is a correct refinement of the
abstract ASM specification on level 3.

The protocol of level 3 and
to : Purse from : Purseterm : Terminal

getData

name(from), seqno(from),

name(to), seqno(to), 
balance(to)

balance(from)

getData

startFrom(name(to),

idle

epv

seqNo(to), amount)

enc{startTo(paydetails)}
enc{startTo(paydetails)}

enc{req(paydetails)}
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balance Š value
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balance + value
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enc{val(paydetails)}
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enc{ack(paydetails)}
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idle

paydetails = (name(from), seqNo(from), name(to), seqNo(to), amount)
where:

Fig. 2. The Mondex Protocol

4 is shown in Fig. 2. After
the purses’ data was queried,
the two messages STARTTO
and STARTFROM set up the
transaction by sending one
purse the data of the other.
Every purse has a name and
a sequence number. The lat-
ter is used to avoid replay
attacks. The first messages
establish a transaction con-
text called PayDetails, con-
sisting of both purse names,
both sequence numbers and
the money in transfer. The
messages REQ(uest), VAL(ue),
and ACK(knowledge) are used
to transfer money. All mes-
sages contain the PayDetails
of the current transaction. The
FROM purse withdraws money from its balance after receiving a correct REQ
and before sending VAL, whereas the TO Purse deposits the same amount af-
ter receiving VAL and before sending ACK. Sending STARTTO as a response to
STARTFROM is a slight modification of the original protocol of [34], because we
found a possible attack in [29]. Another modification is the addition of an ex-
plicit getData message to query the sequence number, the name and the current
balance of a purse, which is necessary in a realistic environment. Furthermore
the messages STARTTO, REQ, VAL and ACK are secured by symmetrically en-
crypting them with a shared secret key (also shown by i talic font and prefix
enc in Fig. 2). STARTFROM and getData messages are not encrypted. Those
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protocol modifications and extensions do not incur any problems with the se-
curity properties since we proved that this is a correct refinement of level 2
[29].

3 An Implementation of Mondex

3.1 D at a T ypes and Communicat ion

One of the main problems for a cor-

*
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byte[] value
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EncDoc(Key  k,
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*
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Document[] docs
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IntDoc
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Fig. 3. Mondex Document classes

rect refinement from an abstract spec-
ification is the correct mapping of data
types from specification to implemen-
tation. Level 3 uses a algebraic data
type called Document with various
subtypes for modelling messages. For
Mondex, we will need the following
ones: A Document is either � (an
empty document), an IntDoc repre-
senting an arbitrary large integer, or
the result of cryptographic encryption
of a document doc using the crypto-
graphic key key (i.e. EncDoc(key, doc)). Arbitrary protocol data (like the purse’s
name or sequence number) is modeled using the IntDoc type. Messages in com-
munication protocols are composed of those basic data types. To model compo-
sition the Document type also contains the Doclist constructor, which contains a
list of documents (Documentlist). The Documentlist type itself can either be the
empty list [ ] or a composition of a Document and another Documentlist. This
gives a mutual recursive algebraic specification of a free data type Document:
Document = � |

IntDoc(value : int) |
EncDoc(key : Key, doc : Document) |
Doclist(docs : Documentlist)

Key = mkKey(value : int)
Documentlist = [ ] | . + .(“ rst : Document, rest : Documentlist)

The implementation uses a Java class type Document to implement this ab-
stract type, resulting in the classes of Fig. 3. We use byt e[ ] as the representation
of the integer values in the abstract type. Those classes and the mapping from
the abstract to the concrete world was described in more detail in [11].

We implement a communication interface, which contains send and r ecei ve
methods for the Document type. This is the Si mpl eComminterface:

1 public interface SimpleComm {
2 public Document receive ();
3 public void send(Document d);}

An embedding of this Si mpl eComminterface into JavaCard will be introduced
in Sect. 3.3
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3.2 Pur se Funct ional i t y

Using the communication interface, the Pur se functionality benefits from the
high-level Java class type Document instead of low-level byte sequences. The
resulting implementation works as follows1:

1 public class Purse{
2 SimpleComm comm; Document payDetails , name;
3 short exLogCounter ; Document [] exLog;
4 ...
5 public void step () {
6 Document outdoc = null;
7 if(exLogCounter < exLog.length){
8 Document indoc = comm.receive ();
9 ... / / decr ypt and check i ndoc

10 switch(getInsByte (indoc)) {
11 case START_FROM : outdoc = startFrom (indoc); break;
12 ... / / same f or ot her s t eps
13 case ACK: ack(indoc); break;
14 default: abort(); break;}
15 if(outdoc!= null) comm.send(outdoc );}}}

The Pur se class uses the Si mpl eComm. r ecei ve( ) method to receive the next
input (line 8). Since in a smart card implementation the exception log must have
a bounded length (it is unbounded in the original case study, the refinement to
bounded lengths is done from level 2 to 3), it is first checked, whether the log is
already full (line 7). The exception log is implemented using a field Document [ ]
exLog of class Pur se. We use an additional field exLogCount er , which stores
the index of the next free exception log entry. A full log can be checked by
comparing this field to the maximum log length constant. If the log is full, no
further step is performed (the restriction to fixed length exception logs itself
is already introduced on the abstract level 3). If space is available, the input
document structure is decrypted (if necessary, line 9) and its structure is checked.
Level 3 already introduced a document format for all the Mondex messages of
Fig. 2. For example, the ACK message is:
EncDoc(

mkKey(THESECRETKEY), } Crypto
Key

Doclist(

IntDoc(ACK) } Type
Flag

+ Doclist( IntDoc(namefrom) + IntDoc(seqnofrom)
+ IntDoc(nameto) + IntDoc(seqnoto)
+ IntDoc(amount))))

⎫
⎬

⎭

Pay
Details

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Encrypted
Message

The other messages (except STARTFROM, which is slightly shorter) have the
same structure. This structure maps directly to Java Document s.

1 For the sake of readability we slightly pretty printed the programs for this paper.
The original verified programs can be found on the web [19].
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After checking the input structure, the get I nsByt e method (line 9 above)
returns the type of the input message and the correct protocol step method (e.g.
ack( . . . ) , line 13) is chosen. The ack( ) method now has to check whether the
PayDetails are correct and that it is no replayed message from an older protocol
run. Since the PayDetailsare also implemented using the Document type (using a
field Document payDet ai l s in class Pur se), we can do this by calling a generic
equal s Method on Document (line 3 below):

1 private void ack(Document indoc) {
2 indoc = getPaydetails (indoc);
3 if(! payDetails .equals(indoc)){ abort(); return; }
4 state = STATE_IDLE ;}

The abor t ( ) method now only has to check whether the current state is
critical (line 2 below). Money can only be lost if the TO Purse is in state EPV
or the FROM Purse is in state EPA (see Fig. 2). If we are in a critical state,
the current PayDetails have to be copied to the exception log exLog (using the
method copyLogPDs, line 3):

1 private void abort() {
2 if(state== STATE_EPA || state == STATE_EPV ) {
3 exLog[exLogCounter ] = copyLogPDs ();
4 exLogCounter ++;}
5 state = STATE_IDLE ;}

ack( ) is relatively short. In contrast, the st ar t Fr om( ) method has to perform
more checks, since it has to set up the PayDetails correctly:

1 private Document startFrom (Document indoc) {
2 Document othername = checkName (indoc);
3 short value = checkBalance (indoc);
4 short otherSeqNo = checkSeqNo (indoc);
5 if( 32767 == sequenceNo || otherSeqNo == -1
6 || value == -1 || othername == null) {
7 abort(); return null ;}
8 if(state != STATE_IDLE ) abort();
9 if(exLogCounter < exLog.length) {

10 setPaydetails (name ,sequenceNo ,othername ,
11 otherSeqNo ,value);
12 sequenceNo ++; state = STATE_EPR ;
13 return generateOutmsg (START_TO );}
14 else return null ;}

First it has to check, whether the transmitted name of the TO Purse is au-
thentic and different from the FROM purse name (in this implementation all
names with a length of 8 bytes are authentic2). This is checked in the method
2 Authenticity of names is a concept introduced in the abstract levels of Mondex, used

to distinguish real Mondex cards from faked ones. The original case study does not
state which names are authentic. Note that a check of authenticity of names using
e.g. cryptographic signatures does not add any security to the Mondex application.
All security of Mondex is based on the encryption and the sequence numbers.
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checkName (line 2). Also the amount of money to be deposited must be positive
and smaller than the current balance (checkBal ance, line 3) and the transmitted
sequence number of the other purse must be reasonable (checkSeqNo, line 4).
Since the sequence number is a short value, we only allow a further protocol run,
if the maximum sequence number (32767) is not yet reached. This restriction
was already made on the abstract Pr osecco level 3. The three check meth-
ods return an error value (nul l or -1), if anything is wrong. In those cases, we
simply abort and stop (line 7). If we receive a STARTFROM message when we
are in not in the IDLE state, we abort and continue afterwards (line 8). This is
an extension of the original case study where STARTFROM is only accepted in
IDLE. The approach of the original case study would have the negative effect
that every new transaction started directly after a previously interrupted trans-
action would fail, too. This is not what a user expects in reality. If all parameter
checks are successful, we store the PayDetails, increment the sequence number
and generate a STARTTO return message (lines 10 to 13).

3.3 Embedding in Javacar d

The implementation of Mondex runs on Java smart cards. Those cards communi-
cate with APDUs (Application Protocol Data Units), which are essentially byte
arrays. To use Java Document classes on Java smart cards we provide a trans-
formation layer that encodes and decodes instances of the Document classes to
byte sequences and sends them over the APDU interface. This can be combined
with certain checks on the structure of incoming and outgoing messages. An
attacker generating for example non well-formed APDU messages has no chance
of attacking the protocol, if all those invalid inputs are filtered out in a transfor-
mation layer before even starting with the real protocol functionality. We have
implemented and proved correct such a transformation layer in [11] for normal
network communication and adopted it here to the use on Java smart cards.

The Pur se class uses the Si mpl eComminterface to communicate. The embed-
ding of Si mpl eCommin the JavaCard world is is done schematically as described
in the following code:

1 public class PurseAppletWrapper
2 extends javacard .framework .Applet implements SimpleComm {
3 Document input; Purse protocolimpl ;
4 public void process(APDU apdu ){
5 ...
6 input = decode(apdu.getBuffer ());
7 protocolimpl .step ();}
8 public Document receive (){ return input; }
9 public void send(Document d){

10 byte [] outbytes = encode(d);
11 ... / / copy out by t es t o apdu buf f er and send t hem }
12 / / f or an i mpl ement at i on of encode and decode see [11]
13 private byte [] encode(Document d){...}
14 private Document decode(byte [] b){...}}
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In JavaCard, every execution of a protocol step on the card is started by a call
of the Appl et . pr ocess( APDU apdu) method (line 4). Therefore the byte array
input, which is wrapped in the parameter apdu of this method, is decoded into a
Java Document pointer structure (line 6). Then a st ep( ) Method on the Pur se
implementation class is called (line 7). This method uses r ecei ve( ) , which re-
turns the decoded input Document . It will also eventually call send( Document ) ,
which encodes the output and sends it over the APDU interface (line 10-11).

Additionally, the encoding scheme can be used to deal with cryptography (not
shown above), which is inherently necessary for Mondex: If we want to encrypt a
Document object with a certain key, we can simply encode it to an array of bytes
using the encoding scheme and then use the standard Java cryptographic archi-
tecture to encrypt this array using the given key’s value. This is also the reason
why our EncDoc class contains an array of bytes as the encrypted value. The
only assumption we have to make here is the standard assumption about per-
fect cryptography used in almost all approaches to security protocol verification:
cryptography can only be broken when knowing the right key.

All together, the Pur se class implementation consists of over 600 lines of
code, not counting the various Document classes and the encoding/decoding
implementation. All classes verified for this case study have around 1800 lines,
which is quite a large number for interactive source code verification.

4 Refinement Method

We described our refinement framework for Java protocol implementations using
another case study in [12]. The method is based on the Java calculus in KIV
[32] [33]. For the Mondex verification, ASM Refinement theory [5] is used in a
variant which is preserving invariants over the refinement [27] 3. Every method
call of the st ep method in the implementation corresponds to exactly one step
of the abstract specification. Our refinement approach consists of the following
steps (described in more detail in [12]):

1. Speci fy t he I mplement at ion Level (Level 4, F ig. 1) : First specify
the implementation level as a copy of the abstract Pr osecco level. Then
replace the part of the abstract specification dealing with the Mondex purse
steps with a call of the Java Pur se. st ep( ) method. Further replace the
abstract initialization with a constructor call for Pur se. This is possible
within KIV, since both ASM Verification and Java Verification are based
on the same logical background framework, Dynamic Logic (DL) [16] and
algebraic specifications. ASMs are modeled using the programs of DL , Java
Verification is done by extending the program operators of DL by introducing
an explicit memory model for the heap, as described later. So we can add

3 In [12], standard Data Refinement theory is used. ASM Refinement is used in all
the other levels of our Mondex refinements, and ASM Refinement was shown to be
a generalization of Data Refinement [28]. So, technically this does not make any
difference, because all our proof obligations are standard 1:1 refinement properties.



173

the heaps of the Java purses as an additional state function to the ASM.
Then we execute the Java implementation using those heaps to define the
concrete agents’ behaviour.

2. D at a Transfor mat ion for I nput s: Insert a data transformation function
from abstract input Documents to Java objects before the actual call of the
Java implementation Pur se. st ep( ) .

3. D at a Transfor mat ion for Out put s: Insert a data transformation function
from Java objects to abstract output Documents after the actual call of the
Java implementation Pur se. st ep( ) .

4. Simulat ion R elat ion: Find a simulation relation R, that maps the ab-
stract Pr osecco state to the concrete Java state using data transformation
functions that are similar to input/output transformation. Additionally, find
suitable invariants for the abstract and concrete levels.

5. Prove I ni t ial izat ion: Prove that the Java constructor call of Pur se leads
to a Java state, where a corresponding initial abstract state can be found in
which the simulation relation holds.

6. Prove Cor rect ness: Prove that if the simulation relation holds and if we ex-
ecute a sequence of data input transformation to Java, call of Pur se. st ep( )
and data output transformation back to Documents, we then find a step of
the abstract ASM purse specification which results in a state where the sim-
ulation relation holds again.

We will describe these steps in more detail now. The state of the Pr osecco
ASM is given by different state functions, which map an agent to some data,
where agent is a free data type specifying the protocol participants:

Agent = purse(int : name) | terminal | user(int : name) | attacker
For the Mondex purses, the level 3 ASM specification uses the state functions:

inputs : agent � documentlist input messages of each agent
seqNo : agent � int current sequence numbers
balance : agent � int current balances
payDetails : agent � Document current transaction details
exLog : agent � Documentlist current exception logs
To define the ASM rules for the agents on level 3, we use macro definitions

MACRO#(input; output) with input parameters input and input/output param-
eters output. For an agent representing a purse, the rule is:

1 PURSE# (agent, ... ;inputs, exLog, balance, ...)
2 i f i nput s ( agent ) �= [ ] ∧ # exLog ( agent ) < MAXLENGTH
3 then let indoc = input s ( agent ) . f i r s t in
4 input s ( agent ) := r e s t ( input s ( agent ) ) ;
5 // check the input and decrypt
6 . . .
7 i f i s s t a r t f r om ( indoc ) then STARTFROM# ( . . . )
8 else i f . . . then . . .
9 i f i s a c k ( indoc ) then ACK# ( . . . )

10 else i f i n sby te = 0 then ABORT# ( . . . ) ;
11 SEND#(outdoc , . . . ; i nput s )
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The abstract specification first selects the next available input from the inputs
state function (if one is available and the log is not yet full, line 2 and 3). Then the
inputs state function is updated accordingly (line 4), and the received Document
is cut off (rest(...)). After checking the input message, a case distinction over
the type of the message is performed, and the matching ASM Macro for that
protocol step is executed (just as in the implementation).

Now we have to define the concrete specification layer for the refinement. The
purse ASM rule is now substituted with a Java implementation. Since no other
agent protocol definitions are modified, and since those other definitions still use
the Documents to communicate, we keep the inputsstate function on the concrete
level. We introduce data transformation functions from and to the Java world
before and after our protocol step. This will be done by Macros TOSTORE and
FROMSTORE. TOSTORE takes an input document from inputs and transforms
it into the Java world, FROMSTORE does the inverse. For this, we have to take
a look at how the state of Java programs is modeled in KIV [32] [33]. Since
KIV is a very elaborated system for the verification using Dynamic Logic and
algebraic specifications, we have a huge library of algebraically specified data
types. The state of Java programs is modeled explicitly using an algebraic data
type in KIV, too. This is the store data type. A store defines a mapping from
a tuple of a reference (a pointer to an object or array) and a field (a field of a
class or an array index) to a Java value. A Java value can be a primitive value
like an i nt or shor t , or a reference representing a pointer to another object.
This allows representation of arbitrary pointer structures. We write st [r.f ] for
the access to field f of reference r in store st .

Now back to refinement, we store the states of the Java purses using another
state function cstore : agent � store. The functions seqNo, balance, ... of the ab-
stract level are not present on the refined level, since their values are contained
in the corresponding fields of the Pur se inside the store. Formally, we have the
state functions:

inputs : agent � documentlist current input messages of each agent
cstore : agent � store current Java heaps
Java programs are now integrated into the logic by extending the Box and

Diamond operators of Dynamic Logic (shown here only for Diamond):
� st ; � � � states that Java program � terminates if executed in

the context of store st and afterwards formula � holds
With those operators, KIV provides a sequent calculus for the complete se-

quential part of Java [10]. We do not perform any transformation on the Java
code we verify, the running original source code is verified. With those modified
DL operators, the concrete purse step is defined as:

1 JAVAPURSE(agent, ... ;inputs, cstore, ...)
2 TOSTORE( agent , input s ; c s t o r e ) ;
3 s t 0 := c s t o r e ( agent ) ;
4 choose s t with 〈 s t 0 ; Purse.instance.step();〉 ( s t 0 = st ) in
5 c s t o r e ( agent ) := s t ;
6 FROMSTORE( agent , s t ; outdoc ) ;
7 SEND( outdoc , . . . ; i nput s )
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The current Pur se object is stored in a static field Pur se. i nst ance which is
set by the constructor as a Singleton. First the input from inputs(agent) is trans-
formed into cstore using TOSTORE (line 2), then step() is called (line 4) on a
Purseobject in the context of the heap of that agent (which is st0 = cstore(agent),
line 3). As described later, step() then calls SimpleComm.receive() to get the in-
put and calls SimpleComm.send() to produce some output, which we transform
afterwards from the store into variable outdoc using FROMSTORE (line 6). Fi-
nally, the SEND macro is used (as on the abstract level) to update the inputs
function for the receiver of the document (line 7).

The next step is to define, how concrete Java states and abstract ASM states
relate to each other. This is done in the simulation relation R. It defines that the
Java state is the same as the corresponding abstract state. For example, for the
exception log in the JavaCard program, this means that the array of exception
log entries exLog from index 0 to index exLogCount er is (transformed to the ab-
stract world) equal to the abstract exLog state function. For Document classes,
a generic transformation function java2doc : reference × store � Document is
defined for this purpose. It takes a store and a reference pointing to some
Document Java object and constructs the corresponding abstract Document. Us-
ing a simple recursion, this is lifted to lists of references java2doc : referencelist
× store � Documentlist. Additionally, we use a function getarray : reference×
startindex× length× store � referencelist to extract the references contained in
an array in the store. Using such functions, the property for the exception log
is:
exLogCorrect(cstore, exLog) � (� agent. is purse(agent) �

java2doc(getarray(cstore(agent)[Purse.instance.exLog], 0,
cstore(agent)[Purse.instance.exLogCounter], cstore(agent)),

cstore(agent)) = exLog(agent))
Similar definitions are needed for all the different state functions. Besides such

value definitions, a lot of invariants, both for the concrete and the abstract level
are needed: a good example for the abstract level is the property that the exLog is
always shorter or equally long as the MAXLENGTH. Additionally, all exception
log entries have the correct format of PayDetails. Another example is that all
purses always share the same secret key, and that the attacker never knows it.

On the concrete level, one needs the property that the exLogCounter is always
smaller than the exLog. l engt h. Here again all exception log entries have to be
well-formed. This is a lot harder to formulate than on the abstract level since
we are now talking about pointer structures. For example, one has to deal with
properties like sharing among the pointers or cyclic structures. Those structures
must be ruled out.

The whole invariant for the concrete level is way too long to be presented
here. It can be viewed on the web [19]. It consists of 87 properties, all of them
again divided into lots of different formulas. For example, the pure value map-
ping between abstract and concrete world requires 8 properties, the invariant
on the abstract level 21 and the invariant on the Java level requires 58 different
properties.
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Using such a simulation relation now directly translates the security properties
of the abstract world to the implementation. It follows directly from refinement
theory that for the concrete balances and for the concrete exception log entries the
sameproperties holdas on theabstract level.This is because the simulation relation
simply states that their values are equal (modulo transformation from Java pointer
structures to abstract data types). Thereby, all security properties (which are all
invariants on the state) of the abstract world hold for the implementation as well.

5 Proof Strategy and Experiences

The proof strategy for the case study is symbolic execution of the Java program,
extended by the use of lemmata for every method that is called on the way. The
main proof obligation for correct refinement of the Purse step is (abbreviating
the abstract state to astate and the concrete state to cstate): In every abstract
state astate, in which the simulation relation R holds with some concrete state
cstate, we have to show that if we do a step of the concrete JAVAPURSE , then
a step of abstract PURSE exists, after which the simulation relation holds again
with the new abstract and concrete states. In Dynamic Logic, this is:

R(astate, cstate)
� �|JAVAPURSE(cstate)|� �PURSE(astate)� R(astate, cstate)

We now can use symbolic execution for JAVAPURSE, leading to a formula that
contains a sequence of TOSTORE, Pur se. st ep and FROMSTORE. Using further
symbolic execution on the st ep method at some point will lead to the swi t ch
case distinction of the implementation deciding which protocol method to call.
Each protocol step is now treated by formulating a lemma, which discards the
Java method call for the protocol functionality and the corresponding abstract
specification ASM rule. Those lemmata have to state that the Java method,
when given the same input, behaves the same as the corresponding abstract
ASM macro. E.g. for STARTFROM we have schematically:

R(astate, cstate)
� ...// some more preconditions about structure of inputs and state
� st = cstore(agent) � java2doc(in, st) = indoc
� � st/ Document out = Pur se.i nst ance.st ar t f r om(i n); �

�STARTFROM#(agent, indoc; outdoc, astate)�
(java2doc(out, st) = outdoc � R(astate, setStore(agent, cstate, st))

where setStore(agent, cstate, st) updates cstate by setting the new Java store st
for the given agent.

Using such lemmata the method calls in the Java program are discarded one
after another together with the corresponding abstract specification. Finally the
simulation relation holds on the resulting states. The same strategy is then applied
to prove those lemmata themselves, meaning that for STARTFROM more lemmata
about checkName or set Paydet ai l s are formulated and proven the same way un-
til we reach methods not containing other method calls. This is quite similar to the
approach used in Design by Contract [23], but making it more specific by linking
Java methods to abstract ASM program definitions as shown above.
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The verification described was done using the KIV system for the protocol
steps STARTFROM and ACK. Although these are only 2 of 6 different protocol
steps, the verification nevertheless covered almost 85% of the total lines of code
of the Pur se class. This is because the other protocol steps are nearly symmetric
to those two (STARTTO is nearly the same as STARTFROM, REQ and VAL are
equal to ACK). So, we can state that the verification done gives a representative
insight on the case study. One of the hardest parts was getting the invariant right.
This is not really a matter of difficulty, more a matter of complexity, because
the state of the Java program and of the abstract specification is not trivial.
The most important part of the proofs was the formulation of suitable lemmata,
which can divide the complexity of the overall case study into smaller parts.
Especially sometimes a method called early in the program ensured properties
needed late in the program, but this was not predictable in the first iteration
of the proofs. All together, the Java KIV project for Mondex, consisting of the
abstract specification, its invariants, the concrete specification and finally the re-
finement proof, took around 4200 lines of specification and 600 lines of Java code
for Pur se, around 1800 in total. Over 1700 theorems where formulated, which
took 85000 proof steps (with an automation degree of around 70%). This is not
counting any libraries, like the transformation functions for abstract Documents
to Java and vice versa and basic libraries for Pr osecco, refinement theory or
simple data types. Nevertheless, the Mondex case study heavily accounted to
the growth of those libraries too. The time needed for verifying the case study
is hard to measure, but it certainly was more than half a year of verification for
one person. Most of the pure verification work was done in a master’s thesis.

6 Related Work

A lot of work has already been done for Mondex on more abstract specification
levels as mentioned in the introduction. Since all of them are not focusing on source
code verification we omit a detailed explanation of those approaches in this paper.

The most important work that is closely related to what we are presenting in
this paper is the verification by Tonin and Schmitt presented in [31] and in more
detail in a technical report [36]. They also claim to verify an implementation of
the Mondex case study for smart cards in JavaCard. Furthermore, they state to
have verified the security properties of the original Mondex case study on the
code level. Their approach uses JML[7] annotations for every method and class
and generates proof obligations from those annotations to be discarded using the
KeY Verification System [3]. There is no abstract specification and no refinement
theory. However, their implementation does not really implement the case study
in the sense that one could use the code on a real smart card and it would be
secure. That is because they do not use cryptography in their implementation
and therefore have very strong assumptions about the environment the cards are
used in. Without using cryptography, a malicious attacker can easily generate a
faked smart card and use it for payment, thereby generating money. They also
assume that a terminal exists which generates all the messages for the protocol
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instead of generating the messages by the cards themselves. But the latter, com-
bined with the need for cryptography in a real implementation, is postulated
in the original case study. The corresponding original technical monograph [34]
clearly states on p. 1 that “All security measures have to be implemented on the
card” and “Once released into the field, each purse is on its own: it has to en-
sure the security of all its transactions without recourse to a central controller.”.
In the work of Schmitt and Tonin, every card only answers “OK” or “Error”
to every input. Such a smart card can easily be faked. Also their formalization
of the security properties of Mondex does not capture the original work in all
their aspects. The property “All value accounted” (which states that no money
is really lost but correctly logged in the exception logs on the cards) is formu-
lated without using the exception logs in the formalization. They argue that this
is because JML lacks the abilily to formulate causality between different opera-
tions, and argue that their formalization still captures the essence of the security
property. But actually, their implementation contains a bug in the handling of
the exception logs. All previous exception log entries are changed by side effect
when adding a new exception log entry because there is a problem with pointer
sharing. So the security property “All value accounted”, which states that the
exception logs really captures exactly the lost money due to failed transactions
cannot hold in their implementation. They did not find that bug, because their
proof obligations do not state anything about the contents of the log entries.
Summarizing, in our opinion their work can be viewed as an additional speci-
fication of the Mondex case study using the Java programming language as a
kind of specification language, rather than an actual implementation of it, which
is usable and secure in the real world. Our aim in this work, however, was to
achieve the latter.

7 Conclusion

We presented a verification of the Mondex case study starting at abstract spec-
ifications and ending at the proof of correctness and security of an implementa-
tion in Java. The result is based on several techniques ranging from refinement
theories, implementation techniques, encoding and decoding of messages in the
implementation, modelling and specification of security protocols on an abstract
level. It is, to our best knowledge, the largest and most comprehensive approach
to the Mondex case study. We succeded showing that current elaborated verifi-
cation tools like KIV can cope with the challenge of verifying such applications.
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