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Summary

Developing high-assurance systems is always a challenging task. This is in par-
ticular true for safety-critical mechatronical systems. For these systems it is not
only necessary to develop efficient software, which must often run on processors
with limited resources but also to take carefully into account what environment is
to be controlled and how this environment can be monitored.

Esterel Technologies SCADE Suite is a state-of-the-art development tool for
safety-critical software. It is widely used in avionics and space applications. In
this paper we show, how a model driven approach for software development can
be used for mechatronical systems and what benefits can be achieved compared to
traditional development processes. We illustrate the process on a real world case
study: the height control system of the Elbe-Tunnel in Hamburg.
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1 Introduction

The way software is being developed has dramatically changed in the last years.
Traditional coding and programming has been significantly reduced and is now in
many domains supported by automatic code generation. This allows for increased
effort during design and analysis stages. The result of these new processes is, that
software products are faster to develop and better reflect the business processes of
the users they are built for. In the domain of mechatronical and embedded systems
these new process are only very rarely used. Most of the software in such applica-
tions is still programmed in a traditional manner. This results in extended need for
testing and a lot of — a posteriori — change requests.

In this paper we will show how model driven development processes can be used
in the domain of mechatronical systems. We will use an interesting real world ex-
ample for illustration and show what benefits this approach has compared to a tra-
ditional one. In Sect. 2 we will briefly describe Esterel Technologies” SCADE
Suite and how system development is being done with this tool. Sect. 3 informally
describes the case study and Sect. 4 illustrates a model driven development proc-
ess on this example. Conclusions are summarized in Sect. 5.

2 Developing Safety-Critical Systems

The basic idea of model-based development of software is to top-down build ex-
ecutable models and refine them stepwise. The big advantage is, that this allows
for very early evaluation and thus easy to correct models. In SCADE, models are
described as a combination of state charts and data flows. In Sect. 2.1 we give a
brief introduction to SCADE’s syntax and semantics, while Sect. 2.2 describes
how executable models for embedded and mechatronical systems may be built.

21 Semantics and Syntax of SCADE Models

The semantics of SCADE models is based on data flows'. Each single data flow
can be seen as a sequence of values for a variable. The set of all possible data
flows defines the semantics of the model. So semantically, this modeling language
is very similar to the set of traces defined by a Kripke structure (which is for ex-
ample used for many finite automata based languages).

! Technically, SCADE models are semantically grounded on LUSTRE. Detailed informations may
be found in [4,5,6].
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On the other hand specification in SCADE is very different. Every SCADE model
has a fixed set of input and output variables. Input variables are marked with an
arrow with a vertical line (see a, b, and ¢ in Fig. 1) and output with a normal arrow
(see o in Fig. 1). SCADE models are built of blocks. Each block has a fixed input
and output interface. Basic blocks are composed to larger models by connecting
outputs to inputs. A syntactic convention is that all inputs are drawn on the left
side of a block and all outputs are drawn on the right side. System inputs may be
connected to any block's input and system outputs can be any block's output.
Note, that input data is processed immediately throughout the whole model. This
is different to many other modeling languages, where information is propagated
step-by-step through different components. To avoid inconsistencies direct feed-
back is not allowed?. However, there exists a special operator FBY, whose output
is the input of the last step®. This operator is often used if data feedback is needed.
A simple SCADE model is shown in Fig. 1.

Figure 1: A simple SCADE model

This model has three inputs a, b and ¢. The first two inputs are added (*"+"-
operator) and multiplied (" *"-operator) with the third input. The output o is the
accumulation of all previous results ("'FBY"-operator). An example data flow
(a,b,c,0); of the system is:

(1,2,3,9);(1,2,2,15);(2,2,2,23);..."

SCADE also allows for embedding state machines in single blocks. Here, the se-
mantics is that the state machine executes exactly one step for every step of the

2 This is checked by a syntactic analysis.

3 For the initial state the output of this operator must be defined explicitly (for
more details see the documentation of SCADE).

* Because: (1+2)*3 + 0=9; (1+2)*2+9=15; (2+2)*2+15=23
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data flow. Note, that SCADE models must always be deterministic. So modeling
of failures — which typically occur non-deterministically — requires a little trick.

2.2 Building Executable Models of Safety Critical Systems

For building an executable system three things must be modeled: (1) the system
itself, (2) the important part of the environment and (3) the possible failure modes.
Note that (2) and (3) can also be put together in one category, but experience has
shown that it is very convenient to split modeling of an ideal environment and
failures into two phases. Fig. 2 sketches this structure”.
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Figure 2: Basic structure for an executable SCADE model

Building a SCADE model of the system itself is very much similar to designing
and implementing the system in a high-level, graphical design language. When us-
ing SCADE the whole system can then be encapsulated into one block, which
reacts on environment inputs and generates control outputs. The next step is to
build a model of the environment. This can also be encapsulated in a SCADE
block, which will ultimately produce as outputs the necessary inputs for the func-
tional system and will in some way react on the control measures of the system.

> Note, that FBY operators have been left out for better readability.
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The inputs of this component are necessary for indeterminism. As stated above,
all SCADE models must be deterministic. The only possibility for indeterminism
is to introduce unspecified input variables. Note, that it is also possible to build a
“chaotic” environment. This means the inputs for the control system are not re-
stricted at all. However this will not yield good analysis results for the system un-
der development in most practical applications.

When modeling failures, two different aspects are important. On the one hand it
must be modeled when and how failures occur (e.g. transient or persistent), on the
other hand it must be modeled what direct effect this failure will have (e.g. missed
detection of a sensor or loss of a communications package). The first aspect is
called occurrence pattern the later one is called the direct effects of the failure
mode.

Occurrence patterns of failure modes are modeled in specific failure mode blocks.
The outputs of these blocks are used in the SCADE model to trigger the direct ef-
fects in the system. Additionally the safety critical event (or hazard), which must
be prohibited, is modeled as a SCADE block which aggregates system outputs.
This allows for automatic check whether the hazard may occur or not. For the au-
tomatic check, SCADE has a rudimentary model checking [2] component called
Design Verifier implemented. This modeling approach is very intuitive and can be
easily understood, when taking a look at the example in Sect. 3.

3 An Example

As an example for developing and analyzing a safety-critical mechatronical sys-
tem, we will present the height control system of the Elbe-tunnel in Hamburg.

The Elbe-tunnel is a road tunnel, which connects the harbor with the city of Ham-
burg. The old tunnel consisted of three tubes with two lanes each. This tunnel has
been enhanced in late 2002 with a new fourth tube. The tunnel comprises a very
complex control system which contains traffic engineering aspects like dynamic
route control, locking of tunnel tubes, etc. We will consider only a small part of
the whole system — the height control — in this paper.

3.1 The Elbe-Tunnel’s Height Control System

The new tube has been built larger than the old tubes. This allows overhigh ve-
hicles carrying goods from the harbor to use the tunnel to reach the city. An over-
high vehicle is a vehicle whose overall height is greater than 4.5 meters. The
height control system must assure, that no collisions of overhigh vehicles with the
tunnel’s ceiling occur i.e. it must assure, that such vehicles only enter the correct
tube.
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Figure 3: Layout of the northern entrance of the Elbe-Tunnel

In the following, it is necessary to distinguish between high vehicles (HVs), which
may drive through all tubes and overhigh vehicles (OHVs), which may only drive
through the new, fourth tube. Figure 3 sketches the layout of the tunnel and the
planned sensors for the height control system. The fourth tube may be cruised
from north to south and the east-tube from south to north only. We focus the anal-
ysis on the northern entrance, because OHV's may only drive from north to south.

The system uses two different types of sensors. Light barriers (LB) are scanning
all lanes of one direction to detect, if an OHV passes. For technical reasons they
cannot be installed in such a way, that they supervise only one lane. Therefore
overhead detectors (OD) are necessary to detect, on which lane HVs and OHVs
pass. ODs can distinguish vehicles (e.g. cars) from high vehicles (e.g. buses,
trucks), but not HVs from OHVs (but light barriers can!). If the height control de-
tects an OHV heading towards a different than the fourth tube, then an emergency
stop is signaled, locking the tunnel entrance.

The idea of the height control is, that the detection starts, if an OHV drives
through the light barrier LBy.. To prevent unnecessary alarms through faulty
triggering of LB, the detection will be switched off after expiration of a timer
(30 minutes). Road traffic regulations require that after LBy, both HVs and
OHVs have to drive on the right lane through tunnel 4. If nevertheless an OHV
drives on the left lane towards the west-tube, detected trough the combination of
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LBost and ODyeqy, an emergency stop is triggered. If the OHV drives on the right
lane through LBy, it is still possible for the driver to switch to the left lanes and
drive to the west- or mid-tube. To detect this situation, the height control uses the
OD¥inar detector. To minimize undesired alarms (remember, that normal HVs may
also trigger the ODs), a second timer will switch off detection at ODgpy after 30
minutes. For safe operation it is necessary, that after the location of ODyypy it is
impossible to switch lanes. Infrequently, more than one OHV drives on the route.
Therefore the height control keeps track of several OHVs. A formal specification
of this system using finite automata may be found in [6,7].

3.2 Primary Failure and Hazards

There are two different, interesting hazards for the Elbe-Tunnel’s height control:
the collision Heo of an OHV with the tunnel entrance and the tripping of a false
alarm Hpa. For this paper only the hazard collision is taken into account. The
model can be easily extended to also contain false alarms. There exists a variety of
failure modes, which can be taken into account. Besides the obvious detector er-
rors, another error comes into play. An OHV may need more than the upper
bound of 30 minutes to travel through one of the zones. This may be caused by a
traffic jam. This is not a failure in the traditional sense, but rather an unexpected
behavior of the environment. However, from a logical point of view it may be
treated in the same way as a (hardware) component failure. Finally, the misbeha-
vior of high vehicles must be taken into account.

The component failures, which are considered in this case study — may be divided
into four different groups:

1. False detection (FD)
The sensor does indicate a vehicle, although there is none. Possible for all
Sensors.

2. Miss detection (MD)
The sensor does not indicate a vehicle, although there is one. Only possi-
ble for OD-type sensors.

3. Overtime (OT)
Actual driving time of an OHV exceeds the runtime of a timer. Possible
for zone 1 and zone 2.

4. High vehicles (HV)
A high vehicle beneath an overhead detector is interpreted as an OHV.

We write FDgna as abbreviation for false detection at overhead detector ODgina
and analogously for all other sensors. Overtime failures can occur in zone 1 and
zone 2. We write OT) resp. OT,. Note, that the last item (HV) is not a failure in
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the traditional sense, as overhead detectors can not distinguish between high ve-
hicles and OHVs, high vehicles at the location of the sensors are (incorrectly) in-
terpreted as OHVs. For the control system this has the same effect as a FD of the
sensor. Traffic regulations require high vehicle to drive on the right lane. Because
of this we introduce HV-type error only for ODj.x and ODygn,. High vehicles at
ODyign; are of course modeled (and may trigger the detector), but are not a failure
as they are part of the expected working environment of the system. So altogether
12 failure modes are taken into account: {FDright, MDryight, MDiest, MDiei, HV e,
FDﬁnal, MDﬁnal, HVﬁIlal; OTI, OTZ, FDpre, FDpost}-

4 A SCADE Model

How can this system be modeled in SCADE? The top level system model looks
exactly like in Fig. 2. The environment block contains models of OHVs and HVs.
These are very easy to build and basically model the physical properties of the ve-
hicles i.e. (1) they move continuously, (2) they move in one direction and (3) they
may be travelling at different speeds. In addition 12 failure mode blocks (see
above) have been integrated in the model. Fig. 4 shows an exemplary failure mode
block (for false detection at the first light barrier: FDy ) on the left and a model
of it direct effects on the right.

Input a

Input b

Figure 4: A failure mode block for the occurrence pattern of a
false detection at LBg. and its direct effect

Failure mode blocks describe how and when the failure may occur. They typically
contain a state machine with two sates (“yes” and “no”). In the example, the fail-
ure mode may occur non-deterministically. Therefore transitions may be taken
randomly at any time. This indeterminism is modeled with the input signal “ran-
domFault”. The output of this block (“FailureOccurs” in Fig. 4 left) is then fed in-
to the environment model to exhibit the effect of the failure. One such effect is
shown on the right side of Fig. 4. In the top part of the figure, the initial part of the
environment model of the first light barrier is shown: LBy, will be emitting a sig-
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nal, if the ray of light is interrupted (Input a) and if it is activated (Input b). In the
lower part of the figure, the direct effects of the failure mode (FD,) are modeled
also. Here, the light barrier component signals something if either the conditions
described above hold or if a false detection occurs. The output of the light barrier
LB, ‘s is either true because an overhigh vehicle is at the position of the light bar-
rier (and interrupts it) or because of a false detection of this component i.e.
FDiBpre.

The model of the control system is shown in Fig. 5. It basically consists of two
timers (TI1 and TI2), that activate the OD detectors (digital::count down) and a
counter (OHVcounter), that keeps track of how many OHVs are in the zone be-
tween LB, and LB, If the timer TI1 is timed out, then the counter is reset to 1
if at the same time there is a detection at LB, or to 0 otherwise.

Figure 5: The control system

The system works as follows: It continuously monitors the first light barrier LBy.
If a signal is detected, then a timer (TI1) is (re-)started. While this timer is active,
the system activates the second part of the control (LBpes, ODyight and ODyegy). If
the second light barrier (LBy.) detects a signal and ODyig; detects the high ve-
hicle on the right lane, then a second timer will be (re-)started’. While this second

6 All other combinations of detections of the overhead detectors, while LB, detects an OHV will
immediately trigger an emergency stop. This conservative approach has been chosen, because
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timer (TI2) is active, any detection of the sensors ODgp, Will trigger an emergen-
cy stop. The second part of the control system will be active as long as either (1)
TI1 expires (this means there has probably been a false detection at LByy.) or until
no more vehicles are between LB, and LB ;.

Results:

This model — system block together with environment and failure mode blocks —
may now be used for analysis and testing. Model checking can be directly done
using SCADE’s built in model checker — the design verifier. And it is also possi-
ble to evaluate the system design with the simulation engine.

For simulation runs, the user triggers input variables at his choices (this means in
the example starting and restarting OHVs and HVs). The simulation then shows,
that the control system in principle works as it should, the runtimes of the timers
are correct wrt. the environment specification and that the planned combination of
sensors works.

Bounded model checking can then be applied to rigorously check all scenarios up
to a certain maximum length. In the example, it turned out that the planned sys-
tems had a fundamental design error. The problem arises if two OHVs pass the
first light barrier simultaneously. The system will then only recognize one. This
alone is not safety-critical. If however, both vehicles drive at very different speeds
(one very fast and the other very slow). Then the second part of the control will be
deactivated (by the first OHV, as the OHV counter is decremented to zero). If the
second OHV continues driving at low (but still acceptable) speed, then it is possi-
ble, that TI2 has timed out before the second OHV reaches ODyina. As a conse-
quence, ODgina Will be deactivated when the second OHV passes the detector and
a collision might occur. Note, that this scenario does not involve any component
failures — it represents a major design flaw. This very improbable scenario was not
foreseen by the engineers. It can also only be found by very extensive testing. A
possibility to fix the problem is, to either never stop TI1 before it times out or to
add additional overhead detectors at LB .

Unfortunately, in SCADE — due to the complexity of the model — only bounded
model checking possible for this case study. So it can only be used to find/identify
design flaws and not for showing the absence of design flaws. However, it has
been shown, that the presented flaw is the only design error. In [7], this example is
translated into a specific model checking language for the SMV tool. This sym-
bolic model checker is capable of complete state space exploration for this model.

wrong driving OHVs should be stopped as soon as possible. Therefore some additional false
alarms are accepted in exchange for early emergency stops.



Developing safety-critical, mechatronical systems Page 11

5 Conclusion

Developing safety-critical system was and will always be a difficult task. Using a
model-based approach can help and support early detection of design flaws and
errors. A model-based approach is in particular useful, if code generation is possi-
ble. Esterel Technologies” SCADE Suite is a modern software development tool
for highly safety critical systems. It not only comes with a built in verification and
simulation engine but also contains a certified code generator for various target
platforms.

In this paper we showed, how SCADE Suite can be used for model-based devel-
opment of a mechatronical system. The approach allows for separate modeling of
functional aspect of the system, the environment and errors. If these three parts are
put together, then either SCADE’s design verifier or the simulation engine may be
used to validate and verify the design of the system at early stages. In the pre-
sented example this approach was applied to a traffic control scenario. A design
flaw was identified and some evaluations of failure tolerance were done.

In summary, we think that this approach for system development is easy and flex-
ible and results in high quality of the systems. This also corresponds with our ex-
perience and the observation, that testing and adaptations are often the major cost
factor in the development of mechatronical systems.
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