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Abstract. In this paper we report on our first experiences using the rela-
tional analysis provided by the Alloy tool with the theorem prover KIV in
the context of specifications of freely generated data types. The presented
approach aims at improving KIV’s performance on first-order theories.
In theorem proving practice a significant amount of time is spent on un-
successful proof attempts. An automatic method that exhibits counter
examples for unprovable theorems would offer an extremely valuable sup-
port for a proof engineer by saving his time and effort. In practice, such
counterexamples tend to be small, so usually there is no need to search
for big instances. The paper defines a translation from KIV’s recursive
definitions to Alloy, discusses its correctness and gives some examples.

Keywords: First-order logic, theorem proving, SAT checking, abstract
data types, model checking, verification, formal methods.

1 Introduction

In our work we present an integration of an automatic procedure for finding finite
counter examples or witnesses for first-order theories in the theorem prover KIV
[4]. KIV supports both functional and state-based approaches to model systems.
In this paper, we concern ourselves with the functional approach, which uses
hierarchically structured higher-order algebraic specifications. More precisely,
we are interested in the automation of its first-order part.

As first-order logic is undecidable we can construct either a decision proce-
dure for decidable fragments or use an automated prover for full logic. Both
approaches are useful for provable goals.

Since most of the time in interactive theorem proving is spent to find out
why certain goals are not provable, an alternative approach is to try to disprove
conjectures and to generate counter examples. Therefore, we were inspired by
the automatic analysis method for first-order relational logic with transitive
closure implemented in the Alloy Analyzer [10] and its successful application in
the Mondex challenge by Ramananandro [15]. Alloy’s algorithm handles the full
first-order relational logic with quantifiers and transitive closure [11].
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Because formal theories in KIV are constructed using structured algebraic
specifications, the sought-after automatic procedure involving Alloy Analyzer
would represent a relational analysis of algebraic data types. A fundamental
work on this topic was done by Kuncak and Jackson [12]. They present a method
for the satisfiability checking of first-order formulas which is based on finite
model finding, formulate essential properties which should be satisfied by an an-
alyzed data structure and identify a class of the amenable formulas. A reduction
from reasoning about infinite structures to reasoning about finite structures was
achieved for a minimal theory consisting of selectors only.

In this paper we elaborate the results in [12] by extending the considered
language from just selector functions to constructors and recursive functions as
they usually occur in first-order theories. We apply these results to universally
closed formulas in the KIV theorem prover. As a first step in this direction, the
approach presented in this paper is confined to the analysis of recursive defini-
tions over free data types', e.g. lists, stacks, binary trees. In our experiments we
used Alloy Analyzer version 4.0 [10].

1.1 Related Work

There are different approaches of combining interactive methods with automated
ones, which have in common the aim to strengthen interactive proving tools by
adding automatic methods. One approach is to use automated theorem provers
based on resolution or other calculi as a tactic in KIV to prove first-order theo-
rems. A fundamental investigation of a conceptual integration that goes beyond
a loose coupling of two proof systems was performed in [1] and some improve-
ments on exploiting the structure of algebraic theories were presented in [16]. In
[13] an automation procedure for a theorem prover is described which bridges
numerous differences between Isabelle with its higher-order logic and resolution
provers Vampire and SPASS (restricted first-order, untyped, clause form). In [7]
a proof certification using theorem prover Isabelle/HOL for a decision procedure
for the quantifier-free first-order logic in SMT-solver haRVey is described. The
theorem prover is used to guarantee soundness of automatically produced proofs,
while the automated tool is used as an oracle.

Nevertheless automated theorem provers are of limited use, since they do
not support induction necessary to reason about algebraic types and recursive
definitions. They are also applicable only for provable theorems, while most of
the time in interactive theorem proving is spent on unsuccessful proof attempts.

For many applications knowing a counter model to a wrong assumption is
as useful as knowing that a conjecture is true itself. This idea is realized in [6],
where a proof procedure based on finite model finding techniques is designed for
first-order logic. Reversely, [14] presents a so-called small model theorem, which
calculates a threshold size for data types. If no counter examples are found at
the threshold, the theorem guarantees that increasing the scope still produces
no counter examples.

1 Syntactically different terms built up from the constructors denote different values.
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1.2 Outline

We provide some background on the theorem prover KIV and the specification
of algebraic data types in Section 2. Section 3 gives a short overview of the
Alloy Analyzer tool, the logic it uses and the analysis. Section 4 introduces in
generating models for free data types in Alloy. Section 5, which is the central
one, provides a detailed insight into an axiomatization of recursive functions for
finite models in Alloy. In Section 6 we report on our first experiences from an
application in KIV for an example, that has been analyzed earlier using KIV’s
own counter example generation. This is followed by conclusions and an outlook
in Section 7. Throughout this work we use lists as a representative example of
free algebraic data types.

2 Theorem Prover KIV

KIV is a tool for formal system development. It provides a strong proof support
for all validation and verification tasks and is capable of handling large-scale
theories by efficient proof techniques and an ergonomic user interface. Details
on KIV can be found in [4,5].

2.1 Specification of Algebraic Data Types

The basic logic underlying the KIV system combines Higher-Order Logic (HOL)
and Dynamic Logic (DL) [8], which allows to reason over imperative programs
(partial and total correctness as well as program equivalence are expressible).

In this work we are particularly interested in the FOL part of the KIV system.
The reason is, that in almost all proof tasks carried out interactively in KIV,
whether in the basic logic or in extensions for temporal logic proofs [2], ASM
specifications [19], statecharts [21,3] or Java program proofs [20], eventually a lot
of first-order proof obligations arise. These are typically discharged using simpli-
fier rules. Most simplifier rules are first-order lemmas which are automatically
used for rewriting and other simplifications. In large case studies the number of
used rewrite rules is often several thousands, many of them imported from the
KIV library of data types.

Defining and proving such simplifier rules is therefore a regular task in in-
teractive verification. Usually, some of these theorems are wrong on the first
attempt, so a quick check that identifies unprovable ones is very helpful.

A theory in KIV describes data types, e.g. naturals, lists, arrays or records,
which afterwards are used in DL programs. Theories are specified using struc-
tured algebraic specifications. To specify data structures adequately, in addition
to first-order axioms we also need axioms for induction. Unfortunately an induc-
tion scheme cannot be specified by a finite set of first-order formulas. As a re-
placement generation clauses are used: s generated by ci,...,c,, where s is a
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generic data specification
parameter elem

list = [0J | .+ . (. .first : elem; . .rest : list);
variables

X, y, z : list;
order predicates . < . : list x list;

end generic data specification

enrich list with

functions
.+ . : list x list -> list;
rev : list -> list;

axioms

app-nil : [] + x = x;

app-cons : (a +x) +y=a+ (x+7y);

rev-nil : rev([]) = [1;

rev-cons : rev(a + x) = rev(x) + (a + [1);
end enrich

Fig. 1. KIV specification of lists

sort, and cy,...,c, are its constructors. The simplest example of a generated
sort are natural numbers: nat generated by 0,-+1.

A Dbasic specification consists of three parts: a description of the signature,
the axioms and the principles of induction. Figure 1 shows the specification
of lists in KIV. It contains a basic specification of the sort elem (not shown),
a generic data specification of lists and finally an enrichment of the list data
specification by recursive functions app and rev. Line 1ist = [] | ... generates
four axioms specifying the free data type list. The first axiom is generated
by clause which declares that the sort is generated by its constructors: list
generated by [],+. From freeness the following axioms are generated. selector
axioms: (a+z).first = a, (a+x).rest = x, uniqueness of constructors: a+x # ||
and injectivity of constructors: a+x =b+x—a=bAz=y.

For free data types, axioms for the order predicate <, which corresponds to
the subterm relation, are automatically included in the theory. In the enrichment
we specify two recursive functions rev and app (overloaded + for append). These
are defined by structural recursion over the first argument of a function.

3 Alloy Analyzer

In this section we introduce a logic which underlies this work. This logic is also
used as an intermediate language to which Alloy input is translated and which
is also handled by the Alloy algorithm. Although the logic is multi-sorted, for
the sake of a better illustration we consider only two sorts: elem and list. In the
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sort ::=list | elem
F == A|Vz €sort. F|3z € sort. F | F1 A\ Fo | -Fy
A = (21,...,%n) ER" |21 = 22
R" =:=r"n#2
R® := "R} |r?

M= (L,E,~), a:Vars - LUFE
IV xelist. F]"*  =Vvie L. [[F]]M’a,, o =afz =1
[3 xelist. FJ**  =31¢ L. [[F]]M’a,, o =alz =1
[V xgelem. F]**  =VecE. [[F]]M’a,, o = afz =0
[3 xeelem. F]™* =3ecE. [[F]]M’a,, o = afz = o]
[F A Fo] ™ = [F]M A [FR] M
N L A

[(z1,...,zn) € R"]]M‘a = (az1), ..., zn)) € [[Rn]]M’a

"R = {(z1,22) | In >1.30, ...l € L. \ (li-1, 1) € [R]"}
=1
[ =9(r")

Fig. 2. Syntax and Semantics for Relational Logic with Transitive Closure [11]

next section we will discuss an axiomatization of free data types in this logic,
where we will use the specification of lists as a generic example.

3.1 Logic

The logic used by the Alloy analyzer is a first-order relational logic with transitive
closure [11]. Figure 2 shows its syntax and semantics. The input language of Alloy
has a very rich syntax, but here we stick only to the most essential part.

We consider two sorts: lists and elements. Formulas F' can be constructed using
universal as well as existential quantifiers. Atomic formulas A are defined using €
operator on variables x1, ..., z, for a n-ary relation R™ and using equality opera-
tor. Relation-valued expressions R™ are introduced using terminal symbols r™. In
case of binary relations R? a transitive closure operator can be applied: " R2.

Other types of atomic formulas like R} C Ry or R} = R4 are provided by
the Alloy’s syntax which can be derived from the basic ones:

setOp ==U| N |\
A =R} CRY|R} =R}
R" := R} setOp R} | R¥.RY', where k+k —1=n
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where
RY C Ry VZ.Z € R} — T € R}
"—Rp = R} CRy ARy CRY
(z1,...,Thsr—1) € RY.RE = Jy. (x1,...,26-1,y) € RY

A (Ys Ty T 1) € RE

This logic has a standard semantics of multisorted logic. Formulas of the logic
are interpreted over structures M = (L, E,v), where L and E represent disjoint
domains of both sorts list and elem. Function « interprets relational symbols
r™ by mapping them on the relations between individual atoms of M, e.g. for a
binary relational symbol first C list x elem the corresponding mapping would
be v(first) C L x E. Further, a valuation function « : Vars — L U E assigns
values from M to free variables x; of an evaluated formula. A generic definition
of [¢] ™ for a given structure M and a valuation « is shown in Figure 2. For a
given structure M and a formula ¢ we call M model of ¢ iff [¢] M s true for
any valuation «, i.e. M |= . Similarly, we define M = {p1,..., 0} iff M = @;
holds for each ;.

3.2 Model Finding

Alloy implements a fully automatic analysis for a relational logic and is an effi-
cient model finder. By defining a signature and a set of axioms ®,, we specify
the analyzed system. For a formula ¢ and a given scope r (upper bound on
the size of the domains) Alloy searches for models M satisfying axioms @, but
violating the property ¢, i.e. M = ®gy U {—p}.

We utilize this capability to search for structures M = (FE, L, ) which repre-
sent finite cutouts from infinite term algebras. We recall, that analyzed formulas
are normalized to Qqvy :: 81....Qnvp :: Sp. ¥ where ¥ is a quantifier-free for-
mula with free variables v1,...,v,. In the case of a successful search, Alloy
identifies a finite structure M and a valuation g for the specified scope r such
that ﬂ[[zp]]M’a(’. For example, for a universal formula Vz,y :: list. = y and the
scope r > 2 Alloy would identify M with L containing at least two different
atoms lo, [; such that —[z = y]]M’a[w::lo’y::ll]. A detailed demonstration using a
more sophisticated example is given in Section 6, where an implementation of
interval lists does not satisfy an invariant.

3.3 Translation of KIV Formulas to Relational Form

Since Alloy is based on relational logic, KIV specifications involving functions
have to be translated to specifications using relations. Therefore, as a first step
we map each function symbol f to the corresponding relation (predicate) F:

f:s—4 ~ F:sx ¢
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The basic idea is that the relation F' encodes the graph of the function f:

[fl(a1,...,an) =b< [F](a,...,a1,b) (1)

where [f] is the semantics of f in a model of the KIV specification and [F] is
the semantics of F' in the corresponding model of the translated specification.

To achieve this we need two axioms for every function, that state that F' is
the translation result of a total function, namely the uniqueness axiom:

V1, Ty Yy 2. F(x1, .y, ) ANF (21,0 &0, 2) >y =2 (2)
and the totality axiom:
Va1, ..o &n. Y. F(z1,...,2Z0,Y) (3)

We also need to translate the axioms of KIV to axioms over relations. This can be
done schematically, the main idea is to introduce auxiliary variables for all inter-
mediate results and to finally replace f(z1,...,2,) =y by F(z1,...,2Tn,y). We
give a formal definition which assumes that each axiom ¢ has been normalized
to have all quantifiers in front of the formula (prenex normal form):

©=Q1v1 it 81....Qnuy it Sp. Y, (4)

where v is a quantifier-free formula with free variables v1, ..., v,.

The restriction to prenex normal form is not really necessary, but avoids
a discussion about a suitable renaming of bound variables and occurrences of
terms. As an example, consider a formula ¢ from the specification of lists in
KIV:

¢ = Va,y = list. rev(z+y) = rev(y) + rev(x) (5)

Tts quantifier-free subformula ¢ contains the function symbols rev and + (for
the append function). Therefore the translated axiom will use predicates REV :
list x list for rev and APP : list x list x list for +.

To define the translation, we need two sets of terms: the set of “top-level”
terms Top, which consist of all terms t; that occur in equations ¢; = t; or pred-
icates P(t1,...t,) of ¥ and which are not just variables. In our example Ty, =
{rev(z + y), rev(y) + rev(z)}. Second we need the set T,y of all non-variable
subterms of terms in ;,,. For our example Ty = Tiop U{x +y, rev(y), rev(z)}.

Based on these two sets the translated formula 7(p) of an axiom ¢ is then
defined as follows:

Definition 1 (Relational form)

Given a mapping ¥ : Toy — Vars that generates fresh variables for terms in
Tair and a functional formula ¢ in KIV of the form given in (4). We construct
its relational counterpart T(p) for Alloy:

T(p) = Q1v1 = 81+ .. Quuy it Sn. VI (Zan).
(O(t1), .., O(te), I(f(t1, - tr)) € F — U[Ztop \HTtop)]

flti,ete)€Zan
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where Y[Tiop D (Zrop)] is ¥ with terms from Ty, substituted by corresponding
fresh variables V(Ztop).

To continue with our example above, we compute 7(¢) for (5):

() =
Y,y i list. V21, 22, 23, 24, 25 3 list. (z3,21) € REV A (24, 25,22) € APP
A (x,y,23) € APP A (y,24) € REV A (2,25) € REV — z1 = 29

It is easy to prove (by induction on the complexity of terms and formulas)
that the syntactical transformation 7 preserves the meaning of formulas in the
following sense: for each model of the original formula ¢, the corresponding
relational model (where the semantics of F is defined via (1)) satisfies 7(y).
Similarly, for each model of 7(yp), that also satisfies the axioms Totality and
Uniqueness, a model of the original signature can be constructed such that ¢
and (1) hold. The transformation has linear complexity with respect to the size
of a formula.

4 Generating Models of Free Data Types in Alloy

The semantics of free data types is defined on algebraic structures called term
algebras which represent concrete models of specifications. In term algebras car-
rier sets are composed of inductively generated terms. Terms are generated using
constructor operations (functions), e.g. the constant nil and the function cons :
elem x list — list for lists.

Here we refer to the work of Kuncak and Jackson [12]. We adopt their ideas
to generate term algebras in Alloy. We have to specify corresponding structures
M = (E,L,v), where E and L represent domains and -y interprets relational
symbols r™ over F and L. Again we are using lists as a generic example of a free
data type.

In Alloy new sorts (types of atoms) are introduced by the keyword sig. We
specify two new sorts: elem and list, see Figure 3. Using the keyword extends
we split the set of atoms of type list in two disjunctive subsets: the singleton set
nil (defined to have exactly one atom, keyword one) and the set cons which can
have an arbitrary number of atoms within specified bounds. Atoms of type cons
represent results of the constructor function cons : elem x list — list and are
always connected over selector relations first and rest with atoms from which
they are constructed. On the right side in Figure 3 the generated metamodel of
the signature is shown.

In the next step we specify axioms in Alloy which restrict relations first and
rest to behave properly in M. The following four axioms (SUGA) are necessary,
see Figure 4. SUGA axioms generate infinite structures M which contain an iso-
morphic copy of the term model Mo, = (E, L, ). Here the language is restricted
only to selector functions first and rest.
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module list

sig elem {}
sig list {}

one sig nil extends list {}
sig cons extends list {
first : elem,
rest : list

Fig. 3. Metamodel of lists in Alloy

selectors: Vi :list. 1 # nil — A1 :list, e:elem. lrest =1" A l.first=e
Vi : list, e: elem. (nil,e) & rest A (nil,l) & first
uniqueness: V1,1 :list. I.first =1 . first A lrest=1.rest — l=1
generator: VU :list, e:elem. 3 : list. l.first =e A lrest=1
acyclicity: V1 :list. (1,1) & “rest

Fig. 4. SUGA axioms

The infiniteness of M., prevents it to be constructed by Alloy. A possible
solution to this problem is to omit the generator axiom (SUA axioms). This
results in producing finite models My which represent specific parts of original
infinite structure M., so-called subterm-closed models, i.e. models closed under
transitive closure of selector relation rest, see Figure 5.

[12] establishes a finite satisfiability result by proving that for a specific class
of formulas? (existential - bounded universal, EBU) satisfiability can be checked
on finite models of SUA axioms (axioms without generator). For this purpose
a notion of bounded quantification is introduced, see [12]. Roughly, if a witness
for an EBU formula is found in a finite model My, we can pick the same witness
in the infinite model M. So a semi-decision procedure involving Alloy can be
constructed that checks satisfiability of these formulas.

Unfortunately, we found that these encouraging results apply to theories only,
where just selector functions are present in formulas. In order to use it in practice
we have to cope with several difficulties. In the next section we will discuss what
we have done to incorporate recursively defined functions in the method and
what implications can possibly emerge.

% e.g., formula Vz :: list. Jy :: list. (z,z,y) € APP contains unbounded quantification
and has no finite models.



108

resl= ; rest
M rest M

Test

O®

Fig. 5. Finite subterm-closed substructure My of infinite structure Mo (2 elem and 5
list atoms). Relation first is omitted for reasons of clearness.

5 Axiomatization of Recursive Functions

We would like to extend our language containing just selector relational symbols
{first,rest} to the complete language with recursive functions that we use in KIV.
Such recursive definitions have the following form:

Definition 2 (KIV axioms for recursion). To define a function f : s1x-+-x
s — S1 by structural recursion over the first argument, axioms of the following
form are used:

V’U,,'U. /(/)i - f(Ci(U),U) = @i(f/u,'l))

where each c¢; is one of the constructors for the sort s1, each W; is a term that
contains invocations of f with the first argument u. The cases v; for one of the
constructors ¢ form a complete case distinction, i.e. the disjunction of all 1;,
where ¢; = ¢ is true.

As a first step we translate the signature. Both the constructors and the recur-
sive definitions have to be defined. For the constructor function cons we add a
predicate definition in Alloy:

pred cons [e: elem, 1: list, c: list] { c.first = e and c.rest = 1 }

Recursive functions like APP and REV are added to the list signature and
thus declared as relations between the corresponding sorts:

sig list {
app: list -> lone list,
rev: lone list

}

By the keyword lone we tell Alloy that a relation satisfies the uniqueness axiom
(2) of the relational translation, i.e. that there is at most one result for append
and reverse. The totality axiom (3) would be satisfied too by using the key-
word one instead of lone, but assuming totality of reverse or append prevents
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finite models. Therefore we drop this axiom, just like the generator axiom for
constructors.

As a second step we have to add appropriate axioms as facts to the Alloy
specification that are translated from the axioms of the KIV specification from
Figure 1. A simple idea would be to translate axioms directly (using 7) but this
yields too weak axioms. Therefore we first combine the axioms for each function
into one axiom. The resulting axioms for reverse and append are

app(z,y) =z —x=[Az=yVIag,xo. ¢ = ap+ 2o Az = ag + app(zo,y)
y:

rev(z) =y x=[A | V3ag,x0.  =ag+xo Ay =rev(zg) + ag

Although the translation is schematic, it exploits uniqueness and totality. We
then translate the resulting axioms to relations. For reverse we get:

Va,y ::list. (x,y) € REV < (x € NIL AN y=2xaV
Ja :: elem, z, 21, 22, 23 :: list. (a,21,2) € CONS
A (z1,2) € REV A z9 € NIL A (a,z9,23) € CONS
A (z,23,y) € APP)

(6)

The translated formula is stronger than what we would get by translating the
original axioms: these only would give the implication from right to left of (6).
The other direction would have to be inferred using the uniqueness and totality
axioms. For the equivalence we do not need uniqueness and totality any more,
since it is an instance of the well-founded recursion theorem:

Theorem 1 (Well-founded recursion). Given a specification that is enriched
with a new function g defined by the single axiom

g9(v) = ¥(g,v)

where all arguments of recursive calls to g in W are smaller than v with respect
to a well-founded order <. Then for each model M of the original specification
the enrichment defines exactly one function g.

A formal proof of this theorem, which views ¥ as a higher-order function, can be
found in [9]. For our case g is the relation (= boolean function) F'. The theorem
implies that just translating the equivalence already fixes exactly one relation
F'. Since the relational translation, when adding uniqueness and totality gives
the relation F' that is equal to the graph of f, the translated axiom alone must
already specify the correct F'.

The well-founded recursion theorem is applicable not only for the term models
but also for the finite models that Alloy constructs, since the restriction of the
well-founded subterm relation to finite models is obviously well-founded again.
It is also applicable for the original recursive definitions in KIV.

Together we have: the recursive definitions of KIV extend the term model by a
unique function f. The relational transformation also gives a unique extension of
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the term model M, by a relation F', which is the graph of f. For a finite subterm-
closed model My we get a unique function Fy using the translated axiom for f
too.

The critical question now is: does Fy in M, satisfy the same theorems as
F in My? We will give a positive answer below for a class of formulas with
universal and bounded existential quantification similar to [12]. The answer has
the precondition, that function F, when restricted to the model My (written
F | My in the following) is equal to Fy. In all the examples that we have checked
we found that F' | My C Fpy, and it remains as an open question whether this
holds in general. In most examples even F' | My = Fy holds, APP being one
positive example. Nevertheless, we found examples, where F' | My is a proper
subset of Fj. REV is one instance of the problem:

Ezample 1. Consider the subterm-closed model My with Ly = {[], [a], [¢], [b, ],
[b,a], [a,b,c], [¢,b,a]}. In this model the atoms [a, b, ¢] and [c, b, a] are not con-
nected by the relation REV), even though in the infinite model REV ([a, b, c],
[c, b, a]) holds. The reason is that the intermediate result of reversing [b, ¢, the
list [c, ] (stored as z in axiom (6)) is not in Lg.

The general problem is that subterm-closedness does not guarantee, that the
model is closed against chains of results computed by recursive invocations of
the defined function. In the example, this chain of results for [a, b, ¢ is: rev([]),
rev([c]), rev([b, c]), rev([a, b, c]), since rev([a, b, c]) calls rev([b, c]) etc.. There is
no problem if all results of this chain beyond a certain point are not in the finite
model, the problem appears only, if the result of one call (here: rev([b,c]) is
not in the model, but the result of the next (here: rev([a,b,c])) is again in the
model. Therefore we have to find a constraint, that rules out such models. We
must make sure that with the result of rev([a, b, ¢]) = [¢, b, a] being in the model,
the previous result rev([b, c]) = [, b] is in the model too.
A constraint that guarantees this, is that the model is prefix-closed:

Yy ::list.y € NIL V 3zs, 24, 25 :: list. z4 € NIL A (a, 24, 25) € CONS
A (Z37Z5ay) € APP
It seems that this constraint can be derived for surjective functions in general,
where we know that any element of the model is a result of the function. The

constraint then says that each y (a result of f) must be computable from the
results z1, ...z, of recursive calls. For a recursive definition of F of the form

F(L y) A W(F(th ul)a F(tQa u2)7 s 7F(tn7 un), z, y)
the constraint for constructing a result from the previous call therefore is
Yy, x. 321, ... 2. V(U = 21,U2 = 22, ..., Uy = Zp, T)

The constraint works for reverse and gives the constraint (7) after simplifica-
tion. The definition of append function gives the trivial constraint of subterm-
closedness which is fortunately already satisfied by SUA models. For functions
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which are not surjective, the constraint would have to quantify only over all y
in the image of f, but this is not possible, since the only way to characterize the
image is again via the recursion. An example which shows the problem is

Ezample 2. Consider the non-surjective function palindrome with axioms

pal([]) =[], pal(a+z)=a+ (pal(z) + (a +[]))

Obviously not all atoms are results of pal. The solution above states that any
atom being the result of f can be deconstructed according to the axiomatization
of f. But in case of pal function for some atoms there are no such deconstruction,
Alloy would not be able generate any model. The fundamental problem about
this is that we don’t know (cannot formulate in the “deconstruction”-axiom)
ahead whether some atom is an image of f or not.

Assuming that for all F' the equation F|p, = Fp holds, we can get a similar
result as in [12], using the following class of formulas:

Definition 3 (Bounded quantifiers and UBE formulas). A bounded ez-
istential quantifier is of the form Jv 1 s. v < t — 1, where t is an arbitrary
term and < is a subterm order®. An UBE formula uses universal and bounded
ezistential quantifiers.

[12] defines EBU formulas, since they are interested in satisfiability, while we
define their negation, since we are interested in counterexamples. Their bounded
quantification allows v € S with an arbitrary set S instead of v < ¢, which at
first glance looks much more liberal. In fact it is not, since the symbols available
to describe a set S are selectors and nothing else. Since selectors can describe
subterms of existing terms only, subterm-closedness is then enough to ensure
the existence of witnesses. As soon as we allow other functions, the more general
form fails to work in the following theorem.

Theorem 2 (Finite refutation). Let ¢ be an UBE formula in KIV, 7(p) its
transformation to Alloy and My, the term algebra for the KIV theory translated
to use relations. Let My be a finite subterm-closed substructure of My, which

also preserves all relations F' from My, i.e. F|p, = Fo. Further, let Mo ¥ (o).
Then Moo ¥ ().

The proof of this theorem is exactly like Kuncak’s proof by induction over the
structure of a formula. It allows to find counter examples for UBE formulas,
by incrementally constructing finite models. To be complete, we would have to
increase the bound indefinitely, but for practical purposes the search can be
stopped as soon as it either finds a counter example or takes too long.

6 Experimental Results

We applied our technique to most representative examples in KIV. As an au-
tomatic translator to Alloy input language is not yet implemented, we used
manually compiled Alloy models.

3 Always provided for free data types in KIV.
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pp [iviistiNil]
7
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nat/Succ

nat/Succ0

| natiSuce2 [+~

($n)

nat’Zero

Fig. 6. Counter example generated by Alloy

6.1 Example: Lists of Intervals

As a nice nontrivial example we considered an implementation of sets of nat-
ural numbers by intervallists, that was used in [17] to demonstrate algebraic
refinement via modules in KIV. The example has also been analyzed previously
using KIV’s own counter example generation mechanism described in [18]. We
first describe the example, the results we got with Alloy and then give a short
comparison of the results with KIV.

Sets of natural numbers can be implemented as lists of intervals, where an
interval is simply a pair of numbers. For example the set {0,1,2,4,5,7} can
be represented by the list of intervals [(0,2),(4,5),(7,7)] in a unique way. A
typical application is the list of free blocks of dynamically allocated memory. A
predicate R defines well-formed lists, e.g. R([(0,2)]) = true, R([(2,0)]) = false,
R([(0,1),(1,2)]) = false. Further, an insert function is specified, which adds a
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number into a list of intervals. A correct specification of insert operation must
satisfy following invariant:

Y ivly,ivls € intervallist, n € nat. R(ivly) N ivly = insert(ivly,n) — R(ivly)

The original specification contained a bug in the definition of insert function:
it failed to merge [ ,n] and [n + 1, | into one interval when n + 1 was inserted.
As Table 1 shows, using our technique Alloy was able to identify the smallest
counter example at the scope? of 4 in 2 seconds.

Table 1. Benchmark (berkmin SAT solver, 2.4 GHz Dual Core)

scope (model size) counter example clauses time
1 no 2000 0.1s
2 no 5000 0.3s
3 no 13252 0.7 s
4 yes 83302 2s

The invariant was violated for ivly = [(0,0), (2,3)], ivl2 = [(0,1),(2,3)] and
n = 1. This instantiation can be read off from the model generated by Alloy,
that is shown in Figure 6. It depicts a finite structure My = (Io, Lo, No,7)
with atoms of sorts interval, list and nat together with corresponding relations
between them. Alloy labels with marks $ivl, $ivl’, $n those atoms which violate
invariant, i.e. Consl, Cons2 and Succ2. By tracing back constructor relations
we rebuild corresponding terms and therewith identify values of ivly, ivly and n.

The same example was tried using KIV’s counter example generation. This
roughly works as follows: first a proof attempt for (7) is done. Using heuristics
KIV automatically creates a proof tree in 4 seconds, ending in an open goal.
The user then has to analyze this goal and to decide, either that it is unprovable
or which proof step to be apply next. In this case, the user will suspect rather
soon, that it is unprovable and invoke counter example generation. This proof
strategy exploits the fact, that constructing a counter example basically means
to instantiate all variables x in the goal by constructor terms. Therefore it does
a systematic search by instantiating all variables with all constructor terms and
by applying rewrite rules. For the goal at hand the search stops after two seconds
with an empty sequent, which is definitely unprovable (in unsuccessful cases the
search does not terminate, and the user has to abort manually). KIV will then
compute a counter example for the original goal, by examining the proof tree
(the effort for doing this is negligible). For our goal the counter example will
be ivly = [(0,1), (1, m)] with arbitrary m. The successful application critically
depends on heuristics and that suitable rewrite rules have been designed. In
summary, the 2 seconds that Alloy needs are a clear improvement compared to
the 6 seconds + user analysis of a goal.

4 Defines maximal number of atoms for each sort. The smallest counter example which
is presented here needs at least 4 atoms of the list sort, i.e. [|, [(2,3)], [(0,0), (2, 3)]
and [(0, 1), (2,3)].
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7 Conclusion

We have presented an automatic method which can be applied to a wide class
of first-order logic formulas. We aim to integrate it into the theorem prover
KIV. The method is restricted to universal-bounded existential sentences. The
question whether a formula is amenable to the analysis can be answered by a
simple syntactic check. This limitation is not a big drawback in our opinion as
from our own experience non-UBE formulas are rather rare.

This work was our first experiment with Alloy tool and we achieved very
promising results. Naturally, there are open issues. The main open question that
remains is: when does the relation Fy agree with F' |5z, ? It seems that in a large
number of cases it does, but we have not found a syntactic characterization
of this class yet. Another assumption, that is too strong is that all functions
are defined recursively. In practice it is also common to specify functions non-
recursively using quantified formulas: e.g. a predicate € : elem x list can be
specified as a € ¢ < Jy,z. y+a+ z = x.

The translation to Alloy language was done manually and we have to automate
it. A new more powerful tool based on Alloy called Kodkod [22] has become
available recently. It is implemented as an API rather than as a standalone
application and can easily be incorporated as a backend of another tool. We
plan to use it for more seamless integration in KIV’s graphical user interface
and better proof visualization. We also intend to investigate an extension of the
method to non-freely generated data types (like arrays or sets).
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