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Abstract—1In this paper we present a technique for safety
analysis of self-adaptive systems with formal methods. Self-
adaptive systems are characterized by the ability to dynamically
(self-)adapt and reorganize. The aim of this approach is to make
the systems more dependable. But in general it is unclear how
big the benefit is - compared to a traditional design.

We propose a dependability analysis based on the results of
safety analysis to measure the quality of self-x capabilities of
an adaptive system with formal methods. This is important for
unbiased and evidence-based decision making in early design
phases. To illustrate the results we show the application of
the method to a case study from the domain of production
automation.

[. INTRODUCTION

Many modern systems have a very static nature. This means
they can not very well adapt to changes in the requirements
nor to failure of individual components. A possible way to
make such systems dependable and failure tolerant is to build
redundancy in many components. This can be very costly and
is often impossible due to space requirements. New approaches
like Organic Computing [1] or IBM’s autonomic computing
initiative [2] try to design systems from the beginning in such a
way, that they can dynamically self-adapt to their environment.
These systems use the “let the system go” paradigm, i.e. not
every special case is pre-programmed and the system has some
degree of freedom to make its own choices.

Open questions are how to conduct safety analysis on
these systems, how big the gain (of adaption compared to
conventional design) is and how it can be measured. Standard
methods for reliability analysis like FMEA [3], FTA [4] and
DCCA [5] are not directly applicable, because they try to find
only cause-consequence relationships between component fail-
ures and system failures. In contrast, self-healing of an adap-
tive system makes it possible, that the system autonomously
recovers from a hazardous state. But for evaluation of adaptive
systems for safety critical applications, formal methods are
crucial [6].

We show how a formal technique from the domain of safety
analysis can be extended to adaptive systems and be used to
measure the gain in dependability. We illustrate the method
on a case study from production automation. As we regard
dependability as the capability to adapt to failures we also
use the term adaptability throughout this paper for the same
purpose.

The case study is presented in Sect. II. In Sect. III we give a
brief introduction to safety analysis and explain the theory of
measuring self-x with it. Metrics for dependability are shown
in Sect. IV and Sect. VI concludes the paper.

II. CASE STUDY

The case study describes an automated production cell with
three robots, which are connected with autonomous transporta-
tion units. Every robot can accomplish three tasks: drilling
a hole in a workpiece, inserting a screw into this hole and
tightening the screw. These tasks are accomplished with three
different tools that can be switched. Every workpiece must be
processed by all three tools in the given order (drill, insert
and tighten = DIT). Workpieces are transported between the
robots by autonomous transportation units (carts). Changing
the tool of a robot requires some time. Therefore the standard
configuration of the system is that the three tasks are spread
out between the three robots and the carts transfer workpiece
accordingly. This situation is shown in fig. 1.

Fig. 1. Valid configuration of robot cell

We examine the case when one or more tools break and the
current configuration allows no more correct DIT processing
of the incoming workpieces. fig. 2 If the drill of one robot
breaks then DIT processing is no more possible, as no other
robot is configured to drill. A non-adaptive production cell
would now come to a standstill and wait for maintenance.

However, it is obvious, that this is not a real hazard as the
robots have three tools and can switch to another tool if one
breaks. So it should be possible for the adaptive system to
detect this situation and reconfigure itself in such a way, that
DIT processing becomes possible again. This implies that at
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least one other robot also has to switch its tool, so that all
three tools are available again.

This can be resolved like shown in fig. 3. For this error
resolution, not only the assignment of the tasks to the robots
must be changed, but also the routes of the carts. If only
the tools were switched, the processing of all tasks would
be possible, but not in the correct order. The reconfiguration
is triggered and executed by an external observer who then
assigns new tasks to the robots and carts.

Fig. 2. Temporary hazard (broken drill)

If an adaptive system can achieve this reconfiguration
autonomously, then it can be seen as superior to traditional
system. The interesting question is now: "How can this im-
provement be measured?” The presented example only shows
one reconfiguration for one error. What will happen if sev-
eral errors occur over time, triggering several reconfiguration
steps? It is even possible, that during processing unused tools
of the robots are repaired by maintenance. If all these effects
are taken into account it soon becomes very hard to predict,
if the system can recover again or not.

To formally analyze this system we first formulated the
correct functioning of the system as the invariant predicate
“The system can process a workpiece in DIT order”. Violation
of this invariant is detected by the observer who then restores
the invariant if possible. Using this method, one can see
reconfiguration abstractly as restoration of invariants.

A. Formal Model

The formal model was implemented as transition system in
the SMV model checker [7] which is very powerful and used

Fig. 3. Reconfigured robot cell

for analysis of adaptive systems [8]. We did not implement
a reconfiguration algorithm in the model but only specified it
in a top-down way, as restoration of the functional invariant
“the system has DIT capability and the carts are correctly
configured”, using our “restore-invariant” approach [9].

Due to space restrictions not the whole transition system
is shown for the automata. The respective transition precon-
ditions are explained in the text. Dashed lines indicate the
effect of an interrupting reconfiguration. If used it confines
reconfiguration from normal functioning.

B. Transition Systems

The production cell was implemented as product automaton
of the transition systems for the robots, the workpieces, the
reconfiguration control and the transportation carts. Due to
space restrictions only the details necessary for the next
sections are presented. A more detailed description can be
found in [9].

The Reconfigurator is modeled by the C'ontrol automaton.
It assigns tasks to the robots and the carts sequentially.
Which tasks are assigned is chosen indeterministically, the
assignments are guaranteed to be a valid configuration as
explained in Sect. II-D. After Reconfiguration, the Control
enters the EndReconf state and immediately afterwards the
None idle state that is only left if another reconfiguration is
necessary due to invariant violation.

The robot automata have states that are associated with the
task they have to fulfill. For each task there is a waiting state,
working state and a done state. The robots also have a Recon f
state so that they can have another task assigned. The carts are
modeled as product automaton of three transition systems. The
first C;O”f models the configuration of the cart (either Recon. f
or a task), Cf °% models the position of the cart in the cell and
ijte models the current state of the cart. The workpieces are
also modeled as product automaton. The position is modeled
by WP/?® and the current state by W P;*e'.

1) Control transition system: The Control does the recon-
figuration of the production cell. Its transition system is shown
in fig. 4. It waits in state Recon f until all robots and carts are
in their respective reconfiguration states. When this has hap-
pened the control enters the state Initialize. From this state
on the Control enters one of the states of the Robot1Conf
multi-state, then one of the Robot2Con f states and finally one
of the Robot3Con f states. Which one of the states is entered,
decides which task is assigned to the corresponding robot,
i.e. when the control enters state robotD in the multi-state
Robot1Conf, then robot 1 is assigned to use its drill. Which
task is assigned to which robot is chosen indeterministically.
The assignment of the routes to the carts is done analogously
in the Cart1Conf and Cart2Con f multi-states. Whether this
assignment allows correct processing of workpieces is assured
by the specification of the reconfiguration algorithm explained
in Sect. II-D.

2) Robot transition systems: For the robot we only describe
the part of the transition system responsible for the drill task.
For the two other tasks, equivalent states exist starting from
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Fig. 4. Control transition system

the initial state Reconf. This state is left when the Control
assigns a new task to the corresponding robot. The succeeding
states are either ready D, readyl or readyT for the respective
tasks.

When the robot is in readyD state it waits for a new
workpiece to arrive. When this happens it enters state busyD.
If the workpiece has already been processed with the tool
the robot uses, it enters directly donelDD, simulating passing
through of the already processed workpiece. After busylD
the doneD state is entered indicating that the workpiece
processing is complete and the robot waits for a cart that
fetches the workpiece. When this happens, the robot enters
readyD again. Whenever a new reconfiguration is initiated by
the Control, then a robot leaves its current state and reenters
Reconf.

We could add a different number of busy states for each
tool, to simulate the differing durations of each task. This is
not necessary for functional properties, but could be used for
temporal propositions, like: “A workpiece is always processed
in less than k timesteps.” This can be integrated in our model
by using the RTCTL [10] syntactic extension of CTL.

To prove functional properties about correct production of
the cell and for correct sequence of transportation, formal
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models of the autonomous carts and the workpieces are also
needed. The full model also consists of the parallel compo-
sition of automata for the position of workpieces and their
state (drilled, inserted, tightened) as well as the position, the
state (idle, loaded, heading back) and the configuration of the
autonomous carts.

C. Predicates

We use the notion A = s as abbreviation for the predicate
“automaton A is in state s”. For the formal model we define
the predicates B¢ with j € {1,2,3} and a € {d,i,t}. These
variables are true if robot j has been assigned task a by
checking whether the corresponding automaton is in one of the
states corresponding to task a. Together with the configuration
automata of the carts we define:

conf = (RIVR:VRY)A(RSVRLVRY)
A (R4VRLVRL)
A (M £ Reconf A C5™ £ Reconf)
ditCap == N\ (\/ RInC N -RY)
a€{d,it} je{1,2,3} ke{1,2,31\j
cartCap = (C £ C5°™ Y A (CF™ £ Reconf)

A (C’;‘mf # Reconf)

This means that con f holds if all robots and carts have a
task assigned.The variable ditC'ap is true if the assignment of
tasks to robots includes all three tasks. As the variables R}
are defined via the states of the robot automata, the formula
R — /\be{d’i’t}\a —|R§? always holds, i.e. every robot can
only have one task assigned.

To model broken tools as failures in the model of the pro-
duction cell we define transient failure automata as explained
in Sect. I1I-A for all tools of all robots. These failure automata
are called fails§ with j € {1,2,3} and a € {d,i,t}. Using
these automata we define additional boolean variables:

ditFailure; = \/ (R} A (fails = yes))
ac{d,it}
ditFailure = \/ dit Failure;
j€{1,2,3}
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This means that ditFailure; holds if robot j has been
assigned a task it cannot perform as the corresponding tool
is broken and

The variable ditFailure indicates that one or more robots
have been assigned a task that is impossible at the moment.
‘Whenever the external Control detects that dit F'azlure holds,
then a reconfiguration is triggered.

For proving functional properties and specifying a cor-
rect reconfiguration algorithm we also need the predicate
dit Possible that holds if a correct configuration is still theo-
retically possible. We used the disjunction of all correct robot
configurations for this. It is important to mention, that this
is not needed in the model itself but only to specify the
reconfiguration algorithm and to prove functional correctness.
That means that dift Possible may also be defined in another
way for example to model graceful degradation adaption.

D. Specification of Reconfiguration

As mentioned earlier, the reconfiguration algorithm is not
implemented directly, but specified as temporal logic formulas.
For this specification we used LTL (Linear Time Temporal
Logic) [11]. LTL is used for these specifications as SMV
allows only LTL in assumed properties. The two specifications
are as follows:

confDIT =

confCorrect :=

G (conf — ditCap A cartCap)
G ((Control = EndReconf) —
X (ditPossible — —ditFailure))

That is, conf DIT specifies that every reconfiguration re-
sults in a sensible configuration of the production cell accord-
ing to the specification that every tool must be available and
the carts have distinct routes assigned between the right robots.
The second property confCorrect specifies that whenever
Control = EndReconf, i.e. a reconfiguration has just been
finished, then in the next step ditFailure is false as long
as ditPossible is true. This means that a reconfiguration
is always successful (—ditFailure) as long as a correct
reconfiguration is still possible despite potential occurrences
of failures. All functional properties are proven under the
assumption that confDIT and confCorrect hold. These
two properties specify a reconfiguration algorithm without
explicit implementation. We call this procedure the “restore-
invariant” approach. Whenever the invariant —dit Failure is
violated, confDIT and confCorrect restore it as long as
still possible. This separates modeling of the production cell
from a reconfiguration algorithm. Any explicit reconfiguration
algorithm that fulfills these two propositions keeps the cell
functionally correct.

Assuming the properties confDIT and confCorrect it
was possible to proof the functional property of the production
cell that “workpieces that leave the cell are processed with
all tools” and that “workpieces are never processed in wrong
order”. A more detailed analysis can be found in [9].

11I. DEDUCTIVE CAUSE CONSEQUENCE ANALYSIS

Deductive Cause Consequence Analysis (DCCA) is used
to find the cause - consequence relationship between failures
and hazards, i.e. which combination of failures can be a cause
for a given hazard. The formalization of DCCA is done with
Computational Tree Logic (CTL) [11]. We use finite automata
as system models. The use of CTL and finite automata allows
to use powerful model checkers like SMV [7] to verify the
proof obligations.

In the following we assume that a list of hazards on
system level and a list of possible basic component failure
modes is given. Both data may be collected by other safety
analysis techniques like failure-sensitive specification, see [12]
or HazOp, see [13]. We assume that system hazards H and
primary failures § are described by predicate logic formulas.
This is true for many practical problems. If the system hazard
cannot be described by a predicate logic formula directly, then
often an observer automaton may be implemented such that
whenever the automaton is in an accepting state, the hazard has
occurred before [14]. We call the set of all failure predicates
A and assume there is only a finite number of failures.

A. Failure/Hazard Automata

For formal safety analysis failure modes must be explicitly
modeled. We divide the modeling into two steps. First we
model the occurrence pattern of the failure mode and second
we model the failure mode itself. By “occurrence pattern”
we understand how and when the failure mode occurs. For
example does the failure mode occur indeterministically (like
packet loss in IP traffic) or does it occur once and forever
(like a broken switch) or does it occur only during certain time
intervals (like until the next maintenance). To model this we
use failure automata. Fig. 6 shows two such failure automata.

Transient Failure

N \
)| )

Fig. 6. Failure automata for transient and persistent failures

Persistent Failure

The left automaton models a transient failure which can
indeterministically occur and disappear. The right one models
a persistent failure, which happens once and stays forever.
Failure predicates § are then defined as “failure automaton for
failure mode ¢ in state yes”. For readability the symbol § is
used for both the predicate and the automaton describing the
occurrence pattern.

The second step is to model the direct effects of failure
modes. This is usually done by adding transitions to the model
with conditions of the form ¢ A 4. This means these additional
transitions — which reflect erroneous behavior — may only be
taken, when a failure automaton is in state yes i.e. when a
failure occurs.
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A similar approach may be used to define predicates for
system hazards. If the system hazard cannot be described
by a predicate logic formula directly, then often an observer
automaton may be implemented such that whenever the au-
tomaton is in an accepting state, the hazard has occurred be-
fore [14]. This allows to describe the hazard as predicate logic
formula on the states of the observer automaton. However in
practical applications hazards may usually be described by
predicate logic formulas.

B. DCCA for Non-adaptive Systems

The next step is to define a temporal logic property which
says, whether a certain combination of failure modes may lead
to the hazard or not. This property is called criticality of a set
of failure modes.

Definition /. Critical set / minimal critical set

For a system SYS and a set of failure modes A a subset
of component failures I' C A is called critical for a system
hazard if

SYS = E(X until H) where X:=  J\ -6
S€(A\D)

We call I a minimal critical set if T is critical and no proper
subset of I is critical.

Here, E (p untily) denotes the existential CTL-UNTIL-
operator. It means there exists a path in the model, such
that ¢ holds until the property ¢/ holds. The property critical
set translates into natural language as follows: there exists a
path such that the system hazard occurs without the previous
occurrence of any failures except those which are in the
critical set. In other words this means, it is possible that the
systems fails, if only the component failures in the critical
set occur. Intuitively, criticality is not sufficient to define a
cause-consequence relationship. It is possible that a critical
set includes failure modes, which have nothing to do with the
hazard.

Therefore, the notion minimal critical set also requires that
no proper subset of it is critical. Minimal critical sets really
describe what one would expect for a cause-consequence
relationship in safety analysis to hold: the causes may - but not
necessarily - lead to the consequence and second all causes
are necessary to allow the consequence to happen. A DCCA
is called complete, if for all ' € P(A) it is decided, if T is
a minimal critical set or not. It can then be shown, that for a
complete DCCA the hazard cannot occur unless previously at
least one of the minimal cut sets has taken place [5]. Therefore
minimal critical sets generalize the notion of minimal cut sets
of FTA [4], [15].

So the goal of DCCA is to find minimal critical sets of
failure modes. Testing all sets by brute force would require an
effort exponential in the number of failure modes. However,
DCCA may be used to formally verify the results of informal
safety analysis techniques. This reduces the effort of DCCA a
lot, because the informal techniques often yield good “initial
guesses” for solutions. Note that the property critical is mono-
tone with respect to set inclusion i.e. VI'1,I's C A : 'y C
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Iy = (I is critical set = T's is critical set). This helps to
reduce proof efforts a lot.

C. Analyzing Adaptive Systems

An adaptive system cannot directly be analyzed with DCCA
(or another traditional safety analysis technique). This is
because all these methods try to find a cause-consequence
relationship between component failures and system failure.
Adaptive systems are different, because if the hazard occurs
and the reconfiguration succeeds, then the system will come
back into working mode some time later. So the occurrence of
the hazard is only “critical” if the system cannot repair itself
anymore. Intuitively the hazard is only critical, if the system
cannot repair itself with reconfiguration. In other words: if the
self-x capabilities may not compensate the failures any more.
The problem can be solved if the definition of the notion of
criticality is extended:

Definition 2: Critical set / minimal critical set for adaptive
systems

For a system SYS and a set of failure modes A a subset
of component failures I' C A is called critical for a system
hazard if

SYS = E(X until (EG ( HAN))) whereX = N\ -6
Se(A\D)

We call I' a minimal critical set if T is critical and no proper
subset of I is critical.

The formula in Def. 2 states that a set of failure modes I'
is critical if there exists a trace such that only these failure
modes can lead to permanent system failure. The last part in
the formula “A\)” is necessary, to make sure really the failures
of I are the reason for the permanent system failure. With this
extension a similar completeness theorem can be formulated.

Just like with traditional DCCA (see [5]), the criticality
property of a set of failures is also monotonic for the notion
of critical sets as in Def. 2, ie. VI, CA:T7 C Ty =
(T'y is critical set = T'y is critical set).

For the following completeness theorem of Adaptive-DCCA
we use CTL* temporal logic [11], as the proof is more
straightforward than with only CTL formulae. Nevertheless,
to use Adaptive-DCCA for safety analysis only the formula
of Def. 2 is needed which is expressible in CTL and thus
analyzable for a model checker like SMV.

Theorem I: Adaptive-DCCA completeness theorem
For a complete DCCA for a model of the system FAM, a set
of failure modes A and an hazard H the following formula
holds:

FME A(( A - A\ Fé;) - -FGH)
Femess(FM,AH) ;€D

This formula basically states, that on all those traces, where
no minimal critical set occurs, the hazard can always be
repaired by the system again.



Proof:

Assume:
FM % A(((/\Femcss(]—'M,A,H) _'/\56F F‘;) (1
— - FGH)
& there exists o = (0p,...) € FM :
‘FM70- ): (/\FEmcss(]—-M,A,H) _'/\561_‘ Fé) 2
and FM,oc = FGH 3)

Since the set A is finite, there is a state ¢; on o such that all
component failures § that will ever happen have occurred at
least once. Therefore we can choose 7 such that

VoeA: (Vj<i: FM,o; = —0) €))
—>.7:M,0'Z‘ ): G -

Let '={0eA|Tj<i:FM,0; =6} (5)
CL™ FM,o = (Tuntil EG (H AT))

& T"is critical set (Def. 2)

= dT'y €T : Iy is minimal critical set

therefore T'y € mess(FM, A, H)
5

&) FM,0 = Nser F ©6)

= fM?J):/\éeFDF(S’ as Ty CT

= ‘7:M7 g % ((/\FEmcss(fM,A,H) _'/\561_‘ Fé)

= % to (2)

IV. MEASURING DEPENDABILITY

The results from DCCA extended to adaptive systems can
be used as measurement of adaptability. As we use adaption to
failures, we see this also as a measurement of dependability.
We propose several different metrics and present the results of
applying DCCA to our case study of the adaptive production
cell.

A. DCCA and Adaptability Metrics

To analyze an adaptive system with DCCA one must inte-
grate failures into the model, by specifying the corresponding
failure automata as described in Sect. III-A. After failure
integration, the minimal critical sets of the system have to
be computed with the help of the equation in Def. 2. It is
advisable to start with small sets or guessed sets, from FMEA
for example. As criticality is monotonic (see Sect. III-C), sets
that have a proper critical subset do not have to be analyzed.
Failures are integrated into model and the minimal critical
sets are computed as described in Sect. III. This procedure is
conducted for both the conventional and the adaptive system,
i.e. we measure adaptability and dependability in relative
terms. Because of this, the hazard H to which the minimal
critical sets are computed must be the same for both systems
and for the failure modes I" of the conventional system and the
failure modes I' of the adaptive system we assume I' C TV, i.e.
the extension to self-x properties might introduce new failure
modes, but the ones from the original system may also occur.

1) Qualitative Metrics: The resulting minimal critical sets
can be used for qualitative analysis, by comparing the size of
the resulting sets as bigger sets mean better reliability. Only
when all failures in a minimal critical set occur, then it can lead
to a hazard, i.e. the bigger the set, the better the dependability
of the system. Our metrics rely on the quotient of measures
of the adaptive system and the conventional system, i.e. may
be undefined. This can only happen if a system is functionally
incorrect and therefore has an empty minimal critical set. As
we basically measure the factors of increase in dependability,
Therefore we assume functional correctness of the systems,
i.e. at least one minimal critical set of size equal to or greater
than one.

Definition 3: Qualitative minimal metric / Qualitative av-
erage metric

The Qualitative minimal metric for an adaptive system
modeled by F M qqaptive With a set of failure modes A and a
corresponding non-adaptive system modeled by F M oy, With
a set of failure modes A’ and a hazard H is defined as:

MINT emess(F M adaptive, A, H) ‘F‘

min .

)

qual -
MINT emess(FM eonv, A H) ‘F,‘
The Qualitative average metric is defined as:
da’U!] . QYFudaptive (8)

qual " avgeony

ZFemcss(.‘FMi,A,H) 1y
[mess(FM A H)|

The Qualitative minimal metric compares the sizes of the
smallest minimal critical sets of both the conventional and the
adaptive system. The size of this set is the minimal number
of failures that must be present until a hazard may occur. is
rather coarse but is helpful during development if all failures
have a very low probability of occurrence. The Qualitative
average metric determines the ratio of the average size of
the minimal critical sets of the adaptive and the conventional
model, therefore incorporating all found minimal critical sets.
This metric does not only take the size of the critical sets in
account, but also the total number of critical sets which may
be a lot higher in the adaptive model.

with avg; :=

A very desirable goal for building an adaptive system is to
make as many minimal critical sets of the conventional system
as possible non-critical for the adaptive system by adding at
least one failure mode to each. That means that at least one
additional failure must appear until the hazard H may occur.
The Qualitative inclusion metric is based on this idea.

Definition 4: Qualitative inclusion metric

The Qualitative inclusion metric for an adaptive system
modeled by F M qdaptive With a set of failure modes A and a

corresponding non-adaptive system modeled by F M oy, With
a set of failure modes A’ and a hazard H is defined as:

\ ®

g | 1 V€D eC:TCT
qual ® —1  otherwise

182



with A:={"I' CTAT" e CAT € DAT" 4T}
B:={I"lI" e C}
C = mess(FM conw, A, H)
D = mess(FMagaptive, A, H)

This metric is defined as the ratio of the number of minimal
critical sets of the conventional system that are a strict subset
of a minimal critical set of the adaptive system to the total
number of minimal critical sets of the conventional systems.
A minimal critical set of the adaptive system that is not critical
in the conventional system would be the result of introducing
new critical failures together with the adaption mechanism and
results in dé’;‘;ll = —1. It may be applied to a system whose
conventional counterpart was already certified. If the adaptive
systems has dé’;‘;ll > 0 then it is better than the conventional
version and certification could be kept.

2) Quantitative Metrics: 1f all failures are statistically in-
dependent, then the result of the DCCA can be interpreted
quantitatively using equation (10) for a single failure set and
equation 11 that gives an upper bound for the probability of
the hazard H to occur [5], [16].

() =[] P6) (10)
ser
P(H) < > P(I) (11)

Femess(FM,AH)

Based on equation (10) we define the following quantitative
metric analogous to the qualitative minimal metric.

Definition 5: Quantitative minimal metric

The Quantitative minimal metricfor an adaptive system
modeled by F M gqaptive With a corresponding non-adaptive
system modeled by F M cony for a set of failure modes A and
a hazard H is defined as:

.: MaXremess(FM conws A H) P(F) (12)

maXF’Gmcss(]—-Mudumim,A’,H) P(F,)

The Quantitative minimal metric gives the ratio of prob-
abilities of the minimal critical sets of the adaptive and the
conventional system with the highest likelihood. Unfortunately
it is not easy to define the real ratio of hazard probabilities
of the adaptive and conventional system, as equation 11 is
only an upper bound and no sharp” probability measure. To
obtain an exact quantitative measure all probabilities and the
respective conditional probabilities are required. Nevertheless
it is possible to compute and compare the probabilities that
the hazard occurs in a given time interval based given minimal
critical sets.

min
dquan

B. Results for Analysis of Case Study

We introduced transient failure automata as described in
III-A into the model described in Sect. II-A. We considered
every broken and thus unusable tool as failure. We also
analyzed a second version with an additional failure, a possibly
failing reconfiguration algorithm, i.e. wrong reconfiguration
messages are sent due to network problems.
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DCCA analyzes worst case behaviour, i.e. when a set of
failures may lead to a hazard it is seen as critical. The hazard
used in the DCCA of the model is the inability to process a
workpiece in correct DIT order, i.e. a correct configuration of
the production cell is no more possible. The hazard used for
the DCCA of the model was the following predicate:

—(Control = None A =ditFailure A ditCapable)

This predicate is the negation of the fact that the system is
not reconfigured at the moment (C'ontrol = None), there
is no broken tool assigned to a robot (ditFailure) and the
configuration is correct (ditC'apable).

For the conventional model we computed nine disjoint sets
of size one, containing each exactly one broken tool. As all
failures appear as sets with one single element, no bigger
minimal critical sets can be found due to monotonicity of
criticality.

The results for the adaptive model showed a clear im-
provement according to our measurement. We computed six
minimal critical sets of size three and 9 minimal critical sets of
size four. The sets of size three consisted of either all broken
tools of the same kind or of all broken tools of one robot. The
sets of size four consisted of two pairs of broken tools for
two robots, as the third one can only accomplish one task, no
more production is possible, although all tools are available
(but on the same robot). All bigger critical sets have critical
subsets and are not minimal.

When a possibly failing reconfiguration was also imple-
mented, modeling a failing network connection for example,
there are an additional 9 minimal critical sets of size 2 (failing
control and one failing tool).

The results from the safety analysis show that a clear
increase in dependability according to all metrics. The Qual-
itative minimal metric is rather coarse giving dgﬂll = 3,
or dyy = 2 with a possible failing control mechanism.
The weighted Qualitative average metric is more evened out,
giving dg % = 3.6 or d;,%, = 3 respectively. This may be of
course misleading, as there are minimal critical sets of size 2
despite dZZ‘Zl = 3. So, for this example the Qualitative minimal
metric may be more appropriate as the system has failures with
rather low occurrence probability in reality (the failing tools).

The Qualitative inclusion metric with dé’;‘;ll = 1 states
that all minimal critical sets have been extended due to
incorporating an adaption mechanism and there is no minimal
critical set in the adaptive system that has no proper minimal
critical subset in the conventional system. This means that
from a safety point of view the adaptive system is clearly better
and has no unforeseen failure due to the adaption mechanism.

If we assume a probability of a failing tool for one hour
per week and a failing reconfiguration due to network errors
for one hour every two weeks we get failure probabilities
of roughly 0.006 and 0.003. Using this, the Quantitative
minimal metric gives d%gn = 27777.78 and dgﬂln = 336.00
respectively.



V. RELATED WORK

For verification and validation of adaptive systems, model
checking is used by several other groups [8], [17]. Especially
the Cadence SMV model checker is very attractive due to
its high performance and usage of CTL temporal logic [8].
Quantitative analysis is possible using probabilistic model
checking which is based on probabilistic logic like PCTL [18].
These techniques can compute the probability whether a given
temporal formula holds.

Verification and Validation together with safety analysis
are seen as very important for acceptance of adaptive and
autonomous systems in [19]. The focus is more directed to
learning systems, either offline or online, and complex systems
where the additional problem of compositional verification is
mentioned.

Different aspects of evaluation of adaptive systems are given
in [6]. We addressed some of them, namely failure avoidance
(robustness) and adaptivity which are closely connected in
our view. Other aspects are mentioned, e.g. quality of service,
granularity and time needed to adapt which are very interesting
further topics. Developing formal methods for evaluation of
adaptive systems is explicitly mentioned in [6] as very impor-
tant step.

A different way to evaluate dependability of safety critical
systems is to use Generalized Stochastic Petri Nets (GSPN)
and its variants [20]. These methods focus on the quantitative
analysis of an - already existing - qualitative result (e.g. a fault
tree). The results of DCCA can be used as input data and be
converted to a GSPN [21] for further probabilistic dependabil-
ity analysis using Markov chains or Bayesian networks [20],
[22]. However directly modeling adaptive systems as petri nets
seems less practical for larger systems.

V1. CONCLUSION

Standard failure analysis like FMEA, FTA and DCCA are
not directly applicable to adaptive systems as reconfiguration
resolves many temporary hazards and restores functionality,
separating system runs in functioning and reconfiguration
phases. The DCCA approach was extended to address this
problem of safety analysis for adaptive systems. The extended
DCCA completeness theorem was proven and the CTL proof
obligation for analyzing adaptive systems given.

From this several different qualitative and one quantitative
metric for measuring dependability of adaptive systems were
derived. Using these it is possible to guarantee (or falsify) an
increase in dependability of an adaptive system in comparison
to a conventional one.

The safety analysis with Adaptive-DCCA was exemplified
with a case study of an adaptive production cell with recon-
figurable robots and the qualitative metrics were applied to
this case study. The result of this showed a clear increase of
dependability by using a reconfiguration mechanism triggered
by failing tools. Although qualitative metrics can be rather
coarse in contrast to quantitative ones, they can be a big aid
in early phases of development when the real probabilities of
failures are unknown.

The next step is to formulate DCCA for different modeling
tools not based on CTL temporal logic. An example is the
LUSTRE [23] language which is integrated in the SCADE
modeling tool. Together with a modeling technique for adap-
tive systems, this would integrate safety analysis for adaptive
systems in a well accepted tool. This may augment the
acceptance of adaptive systems in safety critical applications.
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