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Abstract

As a reply to the increasing demand for fast mobile network connections, the
concept of Self-Organizing Networks (SONs) has been developed, reducing the
need for humans to execute Operation, Administration and Maintenance (OAM)
tasks for mobile networks. A SON consists of several autonomously operating
closed control loops, so-called SON functions, which can influence the behavior
of the mobile network by adapting their input parameters. With SON manage-
ment, a multitude of simultaneously operating SON functions can be configured
according to network context-specific and weighted targets for Key Performance
Indicators (KPIs), denominated as technical objectives, by using different input
models. These are the operator-defined context and objective model, and the
SON function manufacturer-provided effect model. SON management facilitates
the SON-enabled system to work optimally regarding the achievement of defined
KPI targets. Since Mobile Network Operators (MNOs) have to fulfill rising mo-
bile network performance demands while reducing costs at the same time, it is
crucial for SON management to gain an understanding of the network behavior
to allow a cost-neutral performance improvement while simultaneously reducing
the risk of network misconfiguration and service disturbance.

This thesis introduces four different SON management approaches, all using the
same type of input models and allowing to automatically configure SON func-
tions according to these input models. These approaches, namely Policy-based
SON Management (PBSM), Objective-driven SON Management (ODSM), Adap-
tive SON Management (ASM) and Cognitive SON Management (CSM), thereby
represents different stages of development, i.e., they build on one another and
each of them overcomes the disadvantages of its predecessor.

The PBSM approach is presented which first enables the management of a system
at a high level of abstraction and, at the same time, reduces manual effort. Op-
erator and SON function manufacturer knowledge is represented in a structured
and automatically processable form for the first time and an objective manager is
presented that performs a reasoning process to map this knowledge to an optimal
parameter configuration for each individual SON function.

However, the simplicity of the models in PBSM and the computational complex-
ity may limit the applicability of the concept, the reason why PBSM is further
developed to ODSM. In this approach, more expressive input models are used
and SON functions which usually influence each other, are considered as a union,
allowing for a trade-off between them.

In both approaches, the manufacturer-provided effect models are static and do
not adapt to the actual network environment. This may lead to non-optimal op-
eration of the SON system and hence to non-optimal network performance. In
ASM, the actual influence of the current combined SON function configuration
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on the network performance is determined by analyzing KPI measurements from
the network, and the effect models are enhanced in such way that the contribution
of the corresponding SON functions towards achieving the technical objectives is
improved.

In the most sophisticated approach, the CSM, ASM is equipped with machine
learning capabilities. The behavior of SON functions in the network is analyzed
using four different algorithms in the field of supervised learning in order to pre-
dict their effects under untested parameter configurations. Also, performance
data of network cells are analyzed for similarities using techniques in the field of
unsupervised learning. That is, machine learning is applied to complement the
sketchy effect models, giving the CSM system a wider range of possible configu-
rations.

The four different stages are evaluated in a realistic mobile network simulator to
show the value of SON management in general and the performance improve-
ment to previous stages of development. While these approaches provide an
increasing level of maturity from PBSM to CSM, they all are designed in a way
that the MNO has full control over the mobile network at any time and that he or
she can interrupt automated actions at any time.
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1
Introduction

With the rise of smart phones came a huge increase in demand for mobile inter-
net connections. In addition to an increasing number of data intensive services
such as mobile video streaming, the Internet of Things (IoT) is creating a whole
new category of devices demanding reliable and capable Radio Access Technol-
ogys (RATs) [HSS11]. In fact, Hämäläinen et al. estimate “that we will see a hun-
dredfold increase in network traffic in the near future” [HSS11]. This assumption
is endorsed by Cisco who estimate the global mobile data traffic to be increased
sevenfold within only six years and the number of mobile-connected devices to
be increased to 11.6 billion by 2021 [CWP17] (cf. Figure 1.1).
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Figure 1.1.: Global mobile data traffic by type and year in exabytes(EB) per month
(adapted from [CWP17])

However, prices per megabyte are actually going down due to fierce competition
among Mobile Network Operators (MNOs). This puts high pressure on MNOs
to reduce expenses in order to remain profitable. Meeting the expected demand,
MNOs are forced to invest into their infrastructure and will inevitably be faced
with high Capital Expenditures (CAPEX). Currently, the operation of a network is
still largely based on a centralized MNO approach, executed by human operators.
Therefore, the focus lies on limiting Operational Expenditures (OPEX) [Fre16]
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1. INTRODUCTION

which can be achieved by automating the time-consuming, expensive and error-
prone tasks manually executed by human MNOs [HSS11].

Today’s mobile cellular Radio Access Networks (RANs) are highly complex het-
erogeneous systems where different RATs such as Enhanced Data Rates for GSM
Evolution (EDGE), Universal Mobile Telecommunication System (UMTS), Long
Term Evolution (LTE) or WiFi are deployed together, and multiple cellular lay-
ers within each of these RATs, such as macro, micro and pico cells, are imple-
mented. The environment of these cells differs in multiple domains such as their
geographical layout or the motion profile of each user. This complexity makes
the Operation, Administration and Maintenance (OAM) of these networks a de-
manding task for the MNO since manual configuration, optimization and failure
recovery becomes increasingly difficult, not mentioning the experience an op-
erator would need to do so. For example, there may be different target values
for Key Performance Indicators (KPIs) such as the Dropped-Call Rate (DCR) or
Hand-over Success Rate (HOSR) within dedicated cells or cell groups of the net-
work. To enable a satisfactory user experience it is necessary to configure cells in
accordance to requirements posed by the environment. To achieve these targets,
different settings for Network Configuration Parameter (NCP) (e.g., increasing
the transmission power or changing the tilt of an antenna) are required which
is barely possible to achieve through a manual approach. Furthermore, certain
aspects of the environment can change over time, e.g., commuters leaving the
down town area of a city in the evening and thereby producing a multiple of traf-
fic compared to the rest of the day. This fact impedes the manual adaptation of
the RAN even further and requires a constant readjustment of the parameters,
immensely increasing the workload for an MNO. [HSS11] Based on these needs
the concept of SON was developed in 2007 by the Next Generation Mobile Net-
works (NGMN) alliance [NGM07] and 3rd Generation Partnership Project (3GPP)
[3GP18b].

SON leverages self-management methods and techniques, with the aim to au-
tomate dedicated day-to-day OAM tasks. Thereby, SON is separated into self-
configuration, self-optimization and self-healing tasks where each of these tasks
is implemented through a set of autonomously operating closed control loops,
called SON functions, that gather information from the network in terms of Per-
formance Management (PM), Configuration Management (CM) as well as Failure
Management (FM) data and compute new NCP settings which are then deployed
to the cells. By modifying the input parameters of a SON function, the so-called
SON Function Configuration Parameters (SCPs), its behavior can be influenced
regarding its impact on NCPs and in turn the network KPIs [Hah+14]. For self-
optimization SON functions which are in the focus of this thesis, such as Cover-
age and Capacity Optimization (CCO), Mobility Robustness Optimization (MRO)
and Mobility Load Balancing (MLB), usually only one single or a small set of KPIs
are improved by the NCP changes. For this reason, several independent SON
functions need to run in parallel to improve the overall network performance
and to achieve the MNO’s goals in terms of handling network complexity and

4
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Figure 1.2.: Evolution from a network not using SON (a) to a SON-enabled net-
work using default configurations (b) to a fully managed SON (c)

With the introduction of SON the problem of manual NCP adaptation depicted
in Figure 1.2 (a) has been overcome. However, in current SON-enabled systems
the input SCPs still need to be adjusted manually by human MNOs. Due to the
required effort, usually a default configuration, provided by the SON function
manufacturer, is applied to each SON function (cf. Figure 1.2 (b)). However, of-
ten only one default configuration for a SON function is used, and this default
configuration remains unchanged during network operation, i.e., the SON func-
tion instances deployed on different cells are usually uniformly configured. This
may lead to a non-optimal operation of the SON since default configurations do
not adapt to changing operational context. Furthermore, as a SON function in
general is delivered as a black-box, the determination of dedicated configura-
tions for a set of SON functions is non-trivial for an MNO since it is not possible
to accurately estimate the behavior for certain configurations.

The goal of the MNO is to run the network in such a way that it works optimally
according to dedicated technical objectives, i.e., target values that have been de-
fined for KPIs. A KPI target may furthermore be dependent on context informa-
tion such as the time of the day or a certain cell type. Changes to a KPI target
or to the context requires adjusting the configurations for the SON functions in
order to adapt their behavior in such a way that they contribute to the changed
KPI target. In case only default configurations are used, and no adjustment is
performed, the SON-enabled network may not operate optimally. If an adjust-
ment of SON function configurations shall be performed, considerable manual
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intervention by the human operator is required in today’s mobile networks. In
order to relief human MNOs from these complex manual tasks, SON manage-
ment (cf. Figure 1.2 (c)) performs an automated transformation of KPI targets
into so-called SON Function Configuration Parameter Value (SCV) sets facilitat-
ing objective-driven control of the SON functions’ behavior.

Starting with a SON management approach tackling the challenge to automate
the manual process of configuring SON functions, this thesis presents in total
four different SON management approaches where each of them enhances and
gradually improves its predecessor. All these approaches use three types of mod-
els which the transformation process is based on: An objective model specifying
KPI targets an MNO wants to achieve, a context model defining context param-
eters and values of the mobile networks’ environment and an effect model giv-
ing an indication how certain SCV sets influence network behavior. On the way
to the fourth and most sophisticated stage of development, the Cognitive SON
Management, these input models were successively refined and brought closer to
reality from manually defined models to automatically generated models using
techniques in the field of machine learning.

1.1. Problems and Challenges

This section describes concrete problems in the management of SONs. Most
of these problems are the result of discussions with the industrial project part-
ners from Nokia Bell Labs and within the European Union (EU) FP7-funded
project Self-Management for Unified Heterogeneous Radio Access Networks (SE-
MAFOUR) [SEM12]. Tackling these problems, different challenges are faced when
aiming at optimizing the process of operating a mobile network.

1.1.1. Automated Management of Self-Organizing Networks

The primary aim in the management of mobile radio networks is not the opti-
mization of dedicated single performance indicators at the cell or base station
level, but the achievement of dedicated KPI targets, i.e., target values being de-
fined for the KPIs. KPI targets may furthermore be dependent on context infor-
mation which is a set of cell parameters and environment parameters where cells
operate in. Whenever either objectives or the operational context changes, the
SON functions’ behavior needs to be adapted by adjusting their SCPs such that
they account for an optimal fulfillment of KPI targets. Since only default config-
urations are used in today’s mobile networks, the SON functions’ behavior must
be affected manually to enable an optimal network performance. This opens up
a manual gap in the automated operation of a SON-enabled mobile radio network
which is illustrated in Figure 1.3.
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SON Function Engine
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Figure 1.3.: Manual gap between operator objectives and SCV sets

Problems
The management of SONs requires a structured definition of operator objectives
and knowledge about the SON-enabled network. In addition, a description of
the behavior of SON functions deployed in the network in order to overcome the
manual gap. The manual gap is divided into three major problems for which no
solutions exist in current systems:

Automation Gap In current systems there is neither an entity available to man-
age the linking between operator objectives and SCV sets nor there are
methods available to perform this mapping in an automated way.

Dynamics Gap The SON-enabled network and thus, the operational and net-
work context, may be subject to frequent changes which requires a dynamic
adaptation of SCV sets.

Knowledge Gap SON functions are usually delivered as black-boxes by the man-
ufacturer, i.e., the MNO has no insight into the actual SON function algo-
rithm which even complicates the manual adaptation of SCPs. Further-
more, operator knowledge is completely based on experience and does not
exist in a way that it can be automatically processed.
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Challenge 1 Knowledge representation about operator objectives, network context and
SON functions in a structured way and provisioning of an entity that is able to perform
an automated transformation of KPI targets into SCV sets whenever a reconfiguration of
the network is necessary.

1.1.2. Design of Realistic Input Models

Several input models serve as a starting point to enable a mapping process be-
tween operator objectives and SCV sets. The objective model contains targets
in terms of KPIs which are defined by human MNOs. A manually constructed
context model provided also by MNOs describes cell parameters and the environ-
ment where cells operate in. Effect models are coming from the manufacturers of
SON functions and provide a description of the respective SON function given a
certain configuration. An overview of these models and their origin is depicted
in Figure 1.4. The following problems need to be tackled in order to design these
models in a realistic way.

MANUFACTURER DOMAINOPERATOR DOMAIN

Objective Model Context Model

Effect Model
SON Function XEffect Model

SON Function XEffect Model
SON Function X

define define

generate generate generate

Figure 1.4.: Overview of input models defined in different domains

Problems
Manual OAM of a mobile network is a very labor intensive and error-prone task
which requires a lot of experience. Initially provided input models are either
manually defined or provided by third parties, it is highly probable that they do
not prove true in a real network environment which may lead to an undesired
behavior.

• A mobile network consists of hundreds and thousands of base stations with
a multitude of different context parameters and values they can take on.
Capturing all these parameters and combining them leads to an exponen-
tially growing design space and consequently, an unacceptable runtime of
the optimal SCV set calculations.
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• Defining KPI targets for each state in the context space requires excessive
manual effort from a human MNO.

• Manufacturer-provided effect models are generated for each single SON
function individually as each of them aims at the optimization of a dedi-
cated single network KPI. However, in order to fulfill a set of operator ob-
jectives, different SON functions which may influence each other, have to
run concurrently.

• Effect models are generated by SON function manufacturers in a different
environment than the network where they are deployed in the end. Hence,
their validity must be questioned.

Challenge 2 Develop methods to gradually improve the manually created, unrealis-
tic input models provided by network operators and SON function manufacturers and
continuously adapt them to a real network environment.

1.1.3. Cognition in SON Management

Due to the dimension and complexity of modern cellular networks, even expe-
rienced operators and SON function manufacturers can not capture all network
properties and estimate the performance of SCV sets in a satisfactory way. This
results in sketchy input models which can not be complemented even during the
operation of the network since a trial and error testing of undocumented inputs
could lead to an unsatisfactory Quality of Service (QoS) in terms of, e.g., network
coverage, voice quality or data rates, which each MNO wants to avoid under any
circumstances. This requires for a mechanism to fill in the blanks in these mod-
els while at the same time minimizing the risk of an undesired network behavior.
Machine learning uses statistical techniques to equip a system with artificial intel-
ligence which can be used to approximate the incomplete input models to reality
and to complement them.

Problems
Since each manufacturer of a SON function derives an effect model from experi-
ments in his or her own environment, there is little guarantee that the predictions
hold true in real world applications where the SON functions might face a dif-
ferent environment and work alongside other SON functions. A situation may
occur where none of the tested SCV sets does well in achieving given operator
objectives. However, there may be untested SCV sets possibly doing better in
fulfilling KPI targets. These facts motivate the following problems:

• Predictions in the effect models are dependent on context which has been
manually defined by MNOs and which is sketchy and faulty with the ut-
most probability.
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• Mappings from SCV sets to network KPIs are inaccurate and sketchy with
the utmost probability.

• Testing all SCV sets in the real network is simply not feasible. However,
untested configurations may lead to a better objective fulfillment.

Challenge 3 Gain a better understanding of the network behavior by introducing a
method to enhance SON management models with machine learning capabilities in order
to allow a cost-neutral performance improvement while simultaneously reducing the risk
of network misconfiguration and service disturbance.

1.1.4. Trust in SON Management

During the discussions with MNOs in the SEMAFOUR project [SEM12] it ap-
peared that on the one hand a reduction of the manual effort is necessary to cope
with the increasing complexity of OAM tasks in mobile networks and the increas-
ing OPEX involved. On the other hand relieving MNOs from manual tasks does
not mean to dispossess them of control over the SON-enabled network.

Problems
The thin line between increasing the degree of automation as much as possible
and leaving the human MNO the last entity to make crucial decisions implicates
a set of problems which are listed below:

• An MNO always wants a guarantee that the network will result in an ac-
ceptable state when using machine-made models that have been inferred
automatically.

• An MNO always wants to be in a position to interrupt machine-aided and
learned actions.

Challenge 4 Even though automation is one of the key challenges in the development
of a cognitive SON management system, possibilities for the exercise of influence have to
be provided for MNOs in order to let them decide about the trustworthiness of machine-
made models.

1.2. Objectives, Approach and Contributions

This section identifies objectives to deal with the problems and challenges in the
management of SON-enabled systems, as outlined in Section 1.1. Therefore, a
high-level overview over involved domains and their models is given in Fig-
ure 1.5 where objectives are assigned to the respective domain or models. Sub-
sequently, the main contributions of this thesis with respect to the objectives are
listed.
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Objective 1: Automated Network Configuration
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Figure 1.5.: Overview of main objectives tackled in this thesis

1.2.1. Automated Management of Self-Organizing Networks

Figure 1.5 depicts the three domains which are involved into the design of a SON
management, i.e., the operator domain, manufacturer domain and the network
architect domain. In order to overcome Challenge 1 defined in Section 1.1.1, an
appropriate design of models on operator and manufacturer side as well as of
the SON management component itself is necessary.

Objective 1 Automate the process of finding optimal SCV sets and close the manual
gap between operator objectives and SCV sets.

Contributions
In order to overcome the manual gap by enabling an automated network config-
uration, the following components are developed:

• An objective manager is invented as core component of the SON management
performing an automated mapping process between models from the oper-
ator and manufacturer domain. The resulting SON management approach
is designed according to established software engineering techniques in
order to guarantee extendibility, re-usability and compatibility for further
stages of development.

• A policy system has been integrated into the SON management approach en-
abling to dynamically react on changes in the network at any time. There-
fore, the whole SON management system is designed in a form that it en-
ables the usage of policy-based techniques.

• Knowledge from the operator and manufacturer side is provided in an auto-
matically processable form. Objective model, context model as well as effect
model are designed as a set of rules such that they can be easily used by the
SON management.
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1.2.2. Design of Realistic Input Models

The second objective covers the three types of input models within the opera-
tor and manufacturer domain. In order to overcome Challenge 2 defined in Sec-
tion 1.1.2, the initially provided models generated by MNOs and SON function
manufacturers are gradually refined and improved to bring them closer to real-
ity.

Objective 2 Automatically generate realistic and complete input models which are con-
tinuously updated according to the current network state such that they optimally sup-
port the SON management system in finding the best possible network configuration.

Contributions
To enable an optimal configuration of the mobile network, initially provided in-
put models are enhanced or replaced by the following more realistic models:

• A context model is created that combines network states in which cells be-
have similarly such that the SON management only has to calculate SCV
sets for a severely reduced set of contexts.

• An objective model is created that uses context model information in order to
reduce the number of operator objectives and hence the manual effort for
an MNO.

• A comprehensive data analysis is performed for each SON function in order
to understand their behavior under certain configurations. The data analy-
sis results are used to generate a combined effect model reflecting the impact
of running several SON functions in parallel.

• Network measurements are used to generate an additional effect model over
time expressing the impact of combined SCV sets in a real network environ-
ment.

1.2.3. Cognition in SON Management

The third objective covers the context model as well as the effect model. In or-
der to overcome Challenge 3 defined in Section 1.1.3 an extensive data analysis
is performed and data mining techniques are applied to accomplish a network
performance improvement while simultaneously reducing the risk of misconfig-
uration.

Objective 3 Reliably estimate the performance of untested SCV sets dependent on au-
tomatically derived context information which has been reduced to a manageable level.

12



1.2. OBJECTIVES, APPROACH AND CONTRIBUTIONS

Contributions
To enable a better understanding of the impact of (probably untested) SCV sets,
the following models are developed:

• Supervised learning techniques are adopted to automatically create a context
model based on an analysis of the cells’ behavior in the network.

• Techniques in the field of unsupervised learning are adopted to improve esti-
mations of SCV sets.

• Different algorithms in the field of unsupervised learning are used to estimate
the performance of untested SCV sets and filling the blanks in sketchy effect
models.

1.2.4. Trust in SON Management

The fourth and last objective covers the management domain. In order to over-
come Challenge 4 defined in Section 1.1.4, the SON management system is de-
signed in a way such that the MNO can influence the usage of machine-made
models at any time.

Objective 4 Develop a fully automated SON management system which allows MNOs
to comprehend, restrict and influence automated actions at any time.

Contributions
To establish a trustworthy SON management, the whole system is developed fol-
lowing the subsequent principles:

• Metrics are defined that indicate the trustworthiness of machine-made mod-
els such that it is on the MNO’s authority to decide whether calculated mod-
els are good enough to be used by the SON management or not.

• Possibilities are provided to the MNO to decide about which models shall be
used for the calculation of optimal SCV sets.

1.2.5. Approach

The overall objective of this thesis is to develop a SON management approach
that overcomes all challenges tackled on the way to fulfill Objectives 1-4. There-
fore, a simple SON management is invented serving as a starting point which
introduces the general architecture of the whole system. This thesis then aims
at gradually refining the initial approach with manually created and unrealistic
models into a cognitive SON management that performs a very complex analysis
of the SON functions’ behavior by applying machine learning techniques to re-
liably estimate network performance. Thereby, MNOs’ requirements are always
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considered as hard side constraints while evolving different stages of SON man-
agement.

1.3. Outline

An overview of all chapters in this thesis is illustrated in Figure 1.6, whereby ar-
rows indicate dependencies between chapters. Readers which are familiar with
the concepts of SON and machine learning, may skip Chapter 2 or parts of it.
Chapter 3 represents the basic chapter for Chapter 4 - Chapter 7 and should be
read for a full understanding of the overall approach. Chapter 4 - Chapter 7 are
strongly related to each other whereby every chapter only describes the delta to
previous chapters in the main section, meaning they can not be read separately.
Chapter 8 shows the results of evaluating the main section. The thesis is summa-
rized and an outlook is provided in Chapter 9.

Main Section

Chapter 4:
Policy-based SON 

Management

Chapter 5: 
Objective-driven 

SON Management

Chapter 6: 
Adaptive SON 
Management

Chapter 7: 
Cognitive SON 
Management

Chapter 3:
Introduction to SON Management

Background
Chapter 2:

Foundations

Chapter 1:
Introduction

Results
Chapter 8:
Evaluation

Chapter 9:
Conclusion and Outlook

Figure 1.6.: Overview of chapters in this thesis
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Chapter 1 Introduction motivates the research that has been done for this the-
sis. It illustrates why SON management is an inevitable part of mobile network
automation. Problems and challenges are identified when developing a SON
management system. Based on that, the main objectives and resulting contri-
butions are listed. Finally, an overview of the chapter is given, followed by a list
of the author’s publications.

Chapter 2 Foundations describes the underlying basics that are necessary for a
full understanding of this thesis. A general introduction to the concept of SON
is followed by a description about policy-based network management. Subse-
quently, applied machine learning techniques, more precisely, supervised and
unsupervised learning methods, are presented in more detail.

Chapter 3 Introduction to SON Management gives a general overview about
the architecture of SON management as well as the operator and manufacturer
input models. This chapter serves as a basis for Chapter 4 - Chapter 7, i.e., the
presented architecture and models can generally be applied for all of these chap-
ters.

Chapter 4 Policy-based SON Management presents the first approach on SON
management. A structured description for the several input models is provided
and a method is introduced to perform a mapping process between the operator
and manufacturer domain.

Chapter 5 Objective-driven SON Management builds the second step in the
evolution of SON management. Initially provided input models are rendered
more precisely and a new methodology to transform operator objectives into
combined SCV sets is presented.

Chapter 6 Adaptive SON Management introduces an approach that uses feed-
back from the network to enhance existent input models with a more realistic
effect model. Furthermore, the calculation of optimal SCV sets is improved by a
more sophisticated method.

Chapter 7 Cognitive SON Management presents the final SON management
approach in which artificial intelligence is used to further enhance and improve
the context model and effect model. This again requires for a more complex
methodology with respect to SCV set selection.

Chapter 8 Evaluation details the realization and implementation of the pro-
posed approaches. The general setup is presented followed by an explanation of
how to derive used input models. Finally, the different SON management ap-
proaches are evaluated and compared in different ways.
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Chapter 9 Conclusion and Outlook summarizes the results by referring to ob-
jectives and contributions presented in Section 1.1. An outlook on future research
topics related to SON management complements the thesis.

1.4. Publications

Parts of this thesis have already been presented in other publications. In the fol-
lowing, a list of all of the author’s publications is provided, together with a short
summary and the relevance for this thesis. Besides scientific publications, patent
applications and project deliverables are considered as well. Concepts and re-
sults of the author that have already been published and which are applied in
this thesis are not additionally cited.

1.4.1. Scientific Publications

1. Christoph Frenzel, Simon Lohmüller and Lars Christoph Schmelz. “Dy-
namic, context-specific SON management driven by operator objectives”.
In: 2014 IEEE Network Operations and Management Symposium (NOMS) (May
2014), pp. 1-8 [FLS14a]
The author of this thesis, together with two fellow researchers, presents a
SON management approach which transforms operator objectives into SCV
sets. The ideas and concepts as well as the publication itself have been com-
pletely developed and written in cooperation with the other authors mak-
ing the whole work the intellectual property of all involved authors in equal
parts. This work is predominantly integrated into Chapter 3 and Chapter 4.

2. Lars Christoph Schmelz et al. “SON management demonstrator”. In: 2014
IEEE Network Operations and Management Symposium (NOMS) (May 2014),
pp. 1-2 [Sch+14c]
The author of this thesis, together with several fellow researchers, presents
a demonstrator based on the concepts and ideas presented in [FLS14a].
While this work is not directly integrated into this thesis, the ideas and
concepts are relevant for the development of a Policy-based SON Manage-
ment (PBSM) approach as described in Chapter 4. The author of this thesis
has been significantly involved in developing the ideas and concepts as well
as the implementation of mentioned approach.

3. Christoph Frenzel, Simon Lohmüller and Lars Christoph Schmelz. “SON
management based on weighted objectives and combined SON Function
models”. In: 2014 11th International Symposium on Wireless Communications
Systems (ISWCS) (Aug. 2014), pp. 149-153 [FLS14b]
The author of this thesis, together with two fellow researchers, presents an
enhancement of the SON management approach presented in [FLS14a]. The
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ideas and concepts as well as the publication itself have been completely
developed and written in cooperation with the other authors making the
whole work the intellectual property of all involved authors in equal parts.
This work is predominantly integrated into Chapter 5.

4. Lars Christoph Schmelz et al. “Demonstrator for objective driven SON op-
eration”. In: 2014 11th International Symposium on Wireless Communications
Systems (ISWCS) (Aug. 2014), pp. 506-507 [Sch+14a]
The author of this thesis, together with several fellow researchers, presents
a demonstrator based on the concepts and ideas presented in [FLS14b].
While this work is not directly integrated into this thesis, the ideas and
concepts are relevant for the development of a Objective-driven SON Man-
agement (ODSM) approach as described in Chapter 5. The author of this
thesis has been significantly involved in developing the ideas and concepts
as well as the implementation of mentioned approach.

5. Sören Hahn et al. “Classification of Cells Based on Mobile Network Context
Information for the Management of SON Systems”. In: 2015 IEEE 81st Vehic-
ular Technology Conference (VTC Spring) (May 2015), pp. 1-5 [Hah+15a] The
author of this thesis, together with several fellow researchers, describes dif-
ferent applications for cell classification in mobile networks. The author’s
contribution to this work comprises the definition SON management in sec-
tion I B. and the definition of context and classes in section II A. This work
is predominantly integrated into Chapter 6.

6. Simon Lohmüller et al. “Policy-Based SON Management Demonstrator”.
In: 2015 IEEE 81st Vehicular Technology Conference (VTC Spring) (May 2015),
pp. 1-2 [Loh+15]
The author of this thesis, together with several fellow researchers, presents
an extension of the demonstrator presented in [Sch+14a]. While this work
is not directly integrated into this thesis, the ideas and concepts are relevant
for the development of a ODSM approach as described in Chapter 5. The
author of this thesis has been significantly involved in developing the ideas
and concepts as well as the implementation of mentioned approach. Fur-
thermore, the author of this thesis is mainly responsible for the publication
itself.

7. Simon Lohmüller, Lars Christoph Schmelz and Sören Hahn. “Adaptive
SON management using KPI measurements”. In: NOMS 2016 - 2016 IEEE/I-
FIP Network Operations and Management Symposium (Apr. 2016), pp. 625-631
[LSH16]
The author of this thesis, together with two fellow researchers, presents an
enhancement of the SON management approach presented in [FLS14b]. All
ideas and concepts have been developed together with mentioned authors.
The publication itself and the evaluation have been accomplished by the
author of this thesis. This work is predominantly integrated into Chapter 6.
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8. Christian Mannweiler et al. “Cross-domain 5G Network Management for
Seamless Industrial Communications”. In: NOMS 2016 - 2016 IEEE/IFIP
Network Operations and Management Symposium (Apr. 2016), pp. 868-872
[Man+16]
The author of this thesis, together with several fellow researchers, presents
a concept to enable a cognitive, joint management of mobile industrial and
cellular networks. The author of this thesis has supported the other authors
by means of discussions and by reviewing the publication. This work is
only integrated into Chapter 9 of this thesis on an abstract level.

9. Lars Christoph Schmelz et al. “Demonstrator for adaptive SON manage-
ment”. In: NOMS 2016 - 2016 IEEE/IFIP Network Operations and Management
Symposium (Apr. 2016), pp. 991-992 [Sch+16]
The author of this thesis, together with several fellow researchers, presents a
demonstrator based on the concepts and ideas presented in [LSH16]. While
this work is not directly integrated into this thesis, the ideas and concepts
are relevant for the development of a Adaptive SON Management (ASM)
approach as described in Chapter 6. The author of this thesis has been sig-
nificantly involved in developing the ideas and concepts as well as the im-
plementation of mentioned approach.

10. Christoph Frenzel et al. “Demonstrator for utility-based SON management”.
In: 2016 IEEE 27th International Symposium on Personal, Indoor, and Mobile Ra-
dio Communications (PIMRC) (Sep. 2016), pp. 1-2 [Fre+16]
The author of this thesis, together with several fellow researchers, presents
an extension of the demonstrator presented in [Sch+14a]. While this work
is not directly integrated into this thesis, the ideas and concepts are relevant
for the development of a ODSM approach as described in Chapter 5. The
author of this thesis has been significantly involved in developing the ideas
and concepts as well as the implementation of mentioned approach.

11. Simon Lohmüller et al. “SON Function Performance Prediction in a Cogni-
tive SON Management System”. In: 2018 IEEE Wireless Communications and
Networking Conference Workshops (WCNCW) (Apr. 2018), pp. 13-18 [Loh+18]

The author of this thesis, together with several fellow researchers, presents
a concept to extend SON management with learning capabilities. The con-
cepts and ideas have been developed in cooperation with a master student
within the scope of a master thesis. The master student has been supervised
by the author of this thesis. The publication itself has been written by the
author of this thesis. This work is predominantly integrated into Chapter 7
and Chapter 8.

12. Andrea Fendt et al. “A Network Slice Resource Allocation Process in 5G
Mobile Networks”. In: 2018 12th International Conference on Innovative Mo-
bile and Internet Services in Ubiquitous Computing (IMIS) (Jul. 2018), pp. 695-
704 [Fen+18c]
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The author of this thesis, together with several fellow researchers, presents
a vision of an end-to-end network slice resource allocation process. The
author of this thesis has supported the other authors by means of discus-
sions and by reviewing the publication. This work is only integrated into
Chapter 9 of this thesis on an abstract level.

13. Andrea Fendt et al. “A Network Slice Resource Allocation and Optimiza-
tion Model for End-to-End Mobile Networks”. In: 2018 IEEE 1st 5G World
Forum (5GWF’18) (Jul. 2018) [Fen+18b]
The author of this thesis, together with several fellow researchers, presents
an Integer Linear Program for off-line mobile network slice embedding. The
author of this thesis has supported the other authors by means of discus-
sions and by reviewing the publication. This work is only integrated into
Chapter 9 of this thesis on an abstract level.

1.4.2. Patent Applications

1. Lars Christoph Schmelz, Christoph Frenzel and Simon Lohmüller. “Net-
work Entity and Method for Controlling a SON-Function.” WIPO Pub. No.
WO 2014/191469 A1. Dec. 2014 [SFL14]
The author of this thesis, together with two fellow researchers, presents an
approach to overcome the manual gap (cf. Section 1.1.1) by introducing a
component to combine operator objectives and SCV sets. The ideas and
concepts as well as the publication itself have been completely developed
and written in cooperation with the other authors making the whole work
the intellectual property of all involved authors in equal parts. This work is
predominantly integrated into Chapter 3 and Chapter 4.

1.4.3. Project Deliverables

The following project deliverables have been produced in the context of the SE-
MAFOUR project [SEM12].

1. Mehdi Amirijoo et al. Demonstration Scenarios (updated version). Deliverable
D3.4. SEMAFOUR Project, May 2015 [Ami+15]
The author of this thesis, together with several fellow researchers, presents
objectives and an approach for the design and implementation of a demon-
strator based on use cases within the SEMAFOUR project. While this work
is not directly integrated into this thesis, the ideas and concepts are rele-
vant for the development of a SON management approach as described in
Chapter 5 and Chapter 6. The author of this thesis has been significantly
involved in writing chapter 7 of the deliverable, developing the ideas and
concepts as well as the implementation of mentioned approaches.
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2. Sana Ben Jemaa et al. Integrated SON Management Requirements and Basic
Concept. Deliverable D5.1. SEMAFOUR Project, Dec. 2013 [Jem+13]
The author of this thesis, together with several fellow researchers, describes
the general architecture of an integrated SON management system. The
author of this thesis has been significantly involved in writing chapter 2
of the deliverable. Presented concepts and ideas are mainly based on the
authors patent application [SFL14]. This work is predominantly integrated
into Chapter 3.

3. Lars Christoph Schmelz et al. Integrated SON Management - Policy Trans-
formation and Operational SON Coordination (first results). Deliverable D5.2.
SEMAFOUR Project, Jun. 2014 [Sch+14b]
The author of this thesis, together with several fellow researchers, describes
a first approach to overcome the gap between operator objectives and SCV
sets as well as a concept to coordinate SON functions. The author of this the-
sis has been significantly involved in writing chapter 2 of the deliverable.
Presented concepts and ideas are mainly based on the authors publication
[FLS14a]. This work is predominantly integrated into Chapter 4 and Chap-
ter 5.

4. Dario Götz et al. Integrated SON Management - Policy Transformation and
Operational SON Coordination (first results). Deliverable D5.3. SEMAFOUR
Project, Feb. 2015 [Göt+15]
The author of this thesis, together with several fellow researchers, describes
different approaches to overcome the gap between operator objectives and
SCV sets as well as a concept to coordinate SON functions. The author of
this thesis has been significantly involved in writing chapter 2 of the deliv-
erable. Presented concepts and ideas are mainly based on the authors publi-
cation [FLS14b]. This work is predominantly integrated into Chapter 5 and
Chapter 6.

5. Luis Campoy et al. Integrated SON Management Implementation Recommenda-
tions. Deliverable D5.4. SEMAFOUR Project, Aug. 2015 [Cam+15]
The author of this thesis, together with several fellow researchers, describes
implementation concepts and guidelines for an integrated SON manage-
ment system. The author of this thesis has been significantly involved in
writing section 2.1 and chapter 5 of the deliverable. Presented concepts and
ideas are mainly based on the authors publications [FLS14b], [Sch+14a] and
[Loh+15]. This work is predominantly integrated into Chapter 3.

6. Sören Hahn et al. Final report on a unified self-management system for hetero-
geneous radio access networks. Deliverable D6.6. SEMAFOUR Project, Aug.
2015 [Hah+15b]
The author of this thesis, together with several fellow researchers, presents
the final outcome of the SEMAFOUR project. The author of this thesis has
been significantly involved in writing section 4.2 and subsection 5.3.5 of the
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deliverable. Presented concepts and ideas are mainly based on the authors
publications [FLS14b], [Sch+14a] and [Loh+15]. This work is predominantly
integrated into Chapter 5 and Chapter 6.
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2
Foundations

In this chapter technologies and theories will be presented playing a role for the
further chapters of this thesis. Thereby, the aim of this chapter is not to provide an
all-over summary of relevant technologies or theories but it focuses on those parts
only which are necessary for a full understanding of the following chapters. In
Section 2.1 the concept of SON in the context of mobile networks and associated
mechanisms are presented. A technique which serves as a basis for Chapter 4
- Chapter 7 is Policy-based Management (PBM) further explained in Section 2.2.
Finally, machine learning in general and a couple of supervised and unsupervised
algorithms are presented which serve as a basis for Chapter 7 and Chapter 8.

2.1. Self-Organization in Mobile Networks

Radio networks, and mobile communication systems in particular, typically con-
sist of a large number of elements interacting with one another. Their structure
and the associated communication effort lead to a high system complexity. The
goal of a mobile network is to connect User Equipments (UEs) to the internet
via RATs. Therefore, base stations are placed in the environment which are con-
nected via land-line to the bigger network. Commonly, each base station consists
of three antennas, splitting the area around it into three cells inside which UEs
can connect to. Cells are limited in physical size and the amount of UEs which
can simultaneously connect to them. UEs can switch the cells they are connected
to either because they move, or because it is within an area covered by two cells
and these agree to perform a hand-over (HO). A customer desires a high band-
width as well as no dropped calls or delays of text messages. This QoS in each cell
is measured in KPIs and used to be collected through so-called drive tests, where
sensor equipped vehicles took measurements of the network. However, nowa-
days these values are sampled directly at each UE and reported to the MNO in
intervals, the so-called Granularity Period (GP). [Fre16]

These KPIs largely depend on the UE and the environment it is operating in, as
well as the configuration of the antenna [Fre16]. Tall buildings or landscape fea-
tures can block or weaken the connection [TOH14], and UEs close to the bound-
ary between two cells might experience frequent unnecessary HOs [Fre16]. The
antennas have NCPs such as base station transmission power, HO hysteresis or
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remote electrical tilt [Fre+15]. These are the parameters which MNO personnel
used to configure during the installation of a base station. However, as mentioned
in Chapter 1, these tasks are very labor and knowledge intensive, and automating
them is the goal of SON.

As also mentioned in Chapter 1, MNOs have to reduce costs in order to remain
profitable on the contested market of mobile networks. Thereby, costs are subdi-
vided into [HSS11]:

Operational Expenditures (OPEX) This sums up all costs which arise during
the operation of a base station, e.g. expenditures for rent, electricity or main-
tenance.

Capital Expenditures (CAPEX) Expenses referring to material and equipment,
e.g., cell towers and cables, are called CAPEX.

Implementational Expenditures (IMPEX) Costs for the installation and the ini-
tial operation are covered by the term Implementational Expenditures (IM-
PEX).

The most labor intensive task in current mobile networks is the manual OAM,
which is why this area is ideal for automation and hence, ideal for a reduction of
costs, i.e., OPEX.

SON Architectures
The traditional approach in dealing with radio networks is centralized OAM. A
central OAM system is responsible for configuration and optimization of the net-
work. Usually this OAM system is semiautomated and relies heavily on human
expertise for planning and optimization, resulting in high costs, error-proneness
and slow procedures [HSS11]. The goal of SON is to shift OAM tasks from hu-
man experts to the network itself leading to lower operating costs and reduced
human errors. The network is provided with high-level guidelines and has to
be able to achieve their realization in a self-organized manner. However, the hu-
man operator must be able to understand reconfigurations made by SON and if
necessary revert them [HSS11].

As illustrated in Figure 2.1, SON architectures can be categorized into three dif-
ferent types, namely centralized, distributed and hybrid SON [ØG12].

Centralized SON In centralized SON architectures, requests, commands and pa-
rameter settings data is sent from the Network Management (NM) level to
the Network Elements (NEs). Measurements and reports are passed from
the NEs to the NM level. In the centralized approach SON algorithms oper-
ate on the NM layer, enabling them to utilize information from all the NEs.
This approach usually results in more globally optimized solutions for the
individual SON functions. Also, SON functions with conflicting objectives
tend to be less of an issue. However, a centralized SON has longer response
times, higher backbone traffic and poses a single point of failure.
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Figure 2.1.: Three types of SON architectures [ØG12]

Distributed SON The distributed SON architecture differs from the centralized
one by applying SON algorithms directly on the network nodes, which
communicate SON related messages among themselves. This results in
quicker reaction times to changed conditions and better scaling capabilities.
The main drawbacks of the distributed approach are, that optimizations
done by network nodes do not necessarily optimize global network be-
havior and that the implementations of SON algorithms are manufacturer-
specific, making third party solutions difficult. However, even in distributed
architectures the NM system tends to be able to influence the behavior of
SON functions, e.g., via the selection of optimization criteria.

Hybrid SON As the name suggests, hybrid SON architectures utilize the central-
ized and distributed approaches alike, meaning that SON algorithms run on
the NM level as well as on NEs. Hybrid architecture approaches inherit the
drawbacks of the centralized and distributed approaches alike while only
benefiting from some of their advantages.

While all types of SON architectures have their own advantages and disadvan-
tages, in this thesis only a centralized approach is relevant. This is due to the
fact that first, one of the main objectives of this thesis is to find a global optimum
in terms of SCV sets which fulfill operator objectives to the highest possible de-
gree (cf. Section 1.2.1). Secondly, the MNO should keep control over the network
which can be hardly achieved by a distributed or hybrid approach where SON
functions act on the network nodes themselves (cf. Section 1.2.4).
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2.1.1. Self-X Properties

The concept of SON can be split into three separate functional areas: self-configu-
ration, self-optimization and self-healing, covered by the term self-X properties.
All SON use cases, i.e., SON functions, are covered by and can be clearly assigned
to one of these three areas. Figure 2.2 shows these three central attributes of SON.

Incidental events of 
intentional nature

Incidental events of 
unintentional nature

Self-Configuration

Self-Healing

Self-Optimization

Radio Access Network

Measurements

Measurements

Measurements

NCPs

NCPs

NCPs

Figure 2.2.: Self-X properties in SON (adapted from [Mar+10])

Thereby, the dashed area marks the part where this thesis aims at: The optimiza-
tion of the RAN by adjusting NCPs based on measurements from the network.

2.1.1.1. Self-Configuration

Self-configuration is the process that reduces human interventions in the field of
deployment. Whenever a new NE is added to a system, it is necessary to con-
figure this element by automatic installation procedures. This process is consid-
ered an “incidental event of intentional nature” [Mar+10]. Modern mobile SONs
supporting a variety of different technologies such as EDGE, UMTS and LTE are
networks with a constantly increasing rate of NEs making its installation and
configuration an enormous factor of expense. The increasing rate is due to the
fact that the trend is to decrease the cell size. Thus, a higher number of cells is
needed [HSS11]. Therefore it is obvious that self-configuration can help to reduce
CAPEX.

When having a closer look at the process of self-configuration, it consists of three
basic phases. It starts with the auto-connectivity & security setup, establishing a
secure connection between the NE and the underlying OAM system. The next
step is auto-commissioning, consisting of the automated obtaining and testing of
the involved software and NE configuration data. Finally, dynamic radio configu-
ration builds the last step, whereat the state of the network deployment is needed
to identify relevant configuration parameters and adapt them to the current state.
[HSS11]
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Typical SON use cases in this field are, amongst others [ØG12]:

• Physical Cell ID (PCI) Configuration

• Automatic Neighbor Relationship Setup (ANR)

2.1.1.2. Self-Optimization

Even though self-configuration provides an initial configuration of NEs, a net-
work needs to be continuously improved. This is due to the fact that the traffic
behavior changes and new traffic concentrations occur. Furthermore, the imme-
diate use of new NEs after their deployment could negatively influence exist-
ing NEs since in some cases, it is not possible to integrate an NE without re-
configuring others. Therefore, self-optimization in SONs aims at autonomously
maintaining and improving network quality and performance. Monitoring and
analysis of performance data provides the basis for the optimization. Through
self-optimization, the network is able to deal with volatile traffic conditions and
thus improve the user experience.

While self-configuration and self-healing algorithms are usually waiting for a cer-
tain event as a trigger and only become active when such an event occurs, self-
optimization algorithms are running at any time, observing the network in terms
of KPI measurements and aiming for a steady improvement. NCPs are checked
according to these measurements, i.e., KPIs, and SCV sets are adapted accord-
ingly. Self-optimization algorithms thereby act in different time frames, i.e., it
depends on the use case how often the corresponding SON function needs to be
triggered.

Self-optimization use cases being identified by the 3GPP [3GP12] and by [HSS11]
are, amongst others:

• MRO

• MLB and Traffic Steering

• Energy Saving (ES)

• CCO

• Random Access Channel (RACH) Optimization

2.1.1.3. Self-Healing

The larger a system, the more often failures occur independent of the degree of
automation. A failure thereby mostly refers to the outage of a certain cell. If pos-
sible, failures should be diagnosed and handled automatically such that the net-
work is able to remain in a working state without any human interventions. This
process is called self-healing. Unlike self-configuration, self-healing is triggered
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by “incidental events of unintentional nature” [Mar+10]. Sometimes a root cause
analysis has proven to be difficult since by the majority of cases, the detection sys-
tem was damaged such that the fault detection message could not be transferred.
Hence, these so-called sleeping cells are then located by evaluating performance
data requiring for a permanent interpretation [Nak+06]. A poor network perfor-
mance would reduce the availability, reliability and QoS of a system, and, as a
result, an MNO would have to accept financial penalties [HSS11]. Hence, it is
necessary to react to failures as fast as possible which can be hardly achieved by
human operators and legitimates the existence of self-healing algorithms.

SON use cases being identified by the 3GPP in this field are [3GP18c]:

• Self-Recovery of NE Software

• Self-Healing of board faults

• Self-Healing of Cell Outage, split into Cell Outage Detection (COD) and
Cell Outage Compensation (COC)

2.1.2. Key Performance Indicators

A KPI is a measurement or a simple metric that quantifies the network perfor-
mance in terms of a certain criterion. For instance, DCR indicates the number
of calls that were not interrupted by end-users but due to a bad connection, com-
pared to the total number of calls. There are various different KPIs, but in this the-
sis only the three KPIs described subsequently are of interest. The definitions are
based on [HSS11] and [Fre16]. While Hand-over Ping-Pong Rate (PiPo) and Phys-
ical Cell Load (CL) KPIs are percentage values and hence, have a value interval of
[0, 1] by nature, Channel Quality Indicator (CQI) has a domain of 0,...,5.5547 with
15 different values according to the 64QAM modulation technique [3GP18a].

Channel Quality Indicator (CQI) CQI is a value representing the connection
quality to all of the UEs in a cell. It is influenced, among other factors, by obstacles
in the environment. A higher value indicates a better signal quality.

Hand-over Ping-Pong Rate (PiPo) PiPo describes the maximum amount of ping-
pongs between a cell and its neighbors. A ping-pong describes an unnecessary
HO where a UE repeatedly gets assigned to the neighboring cell. These HOs are
resource intensive and have detrimental effects on the overall QoS which is why
a lower value is preferred.
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Physical Cell Load (CL) CL serves as an indicator of how much workload the
cell currently has and, therefore, how much workload this cell could further han-
dle. Thus, it represents the quota of currently connected UEs in relation to the
maximum possible connected UEs. If there are too many devices, the value does
not increase past 1.0 (in contrast to another KPI, the virtual cell load, which takes
unconnected UEs into account and therefore can have higher values). A lower
value is preferred for CL.

2.1.3. SON Functions

“Self organizing networks, SON, can be defined as a set of use cases
that govern a network including the planning, set up and maintenance
activities.” [RAD18]

This definition describes, that the SON paradigm is a composition of different
use cases in the three areas self-configuration, self-optimization and self-healing.
Most of these use cases have been identified by the 3GPP, e.g., in [3GP18c] and
[3GP12], but also research projects such as the Self-Optimisation and Self-Con-
figuration in Wireless Networks (SOCRATES) project have investigated in this
topic [Scu+08]. A SON use case describes a particular functionality that should
be enabled in a SON by using self-organizational techniques. Enabling thereby
means that each use case aims at achieving a certain objective.

SCV

Radio Access Network

    SON Function

... NCPNCP NCP NCP

SCV SCV

KPIs

Figure 2.3.: Configuration of a RAN by means of SON functions

Self-optimization use cases are realized and implemented as SON functions which
can be seen as a closed-loop control system, installed on each antenna and using
feedback from the network in terms of KPIs [Sch+08]. SON functions are de-
signed to act on cell level, meaning they can be configured for every single cell
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independently and react to the cell’s needs. Thereby, each SON function instance
usually optimizes only for a single KPI, but may have an effect on a variety of
KPIs. SON functions can be implemented in different ways, however, what the
all have in common, is, that they can be configured via a set of input parameters,
the so-called SCP. A value is assigned to each of the SCPs, the so-called SCV and
hence, the sum of all parameter values for a SON function is an SCV set. The
CCO, MRO and MLB functions as used in this thesis use a threshold and a step-
size SCPs, represented through the respective SCV. At the end of each GP the
respective KPI gets reported to the SON function and once it reaches the thresh-
old, the SON function becomes active and changes an NCP based on the stepsize.
This in turn affects the connection between the antenna and the UEs, therefore
changing the KPI. The whole process is depicted in Figure 2.3.

Matching the three KPIs presented in Section 2.1.2, this thesis focuses on the three
self-optimization SON functions CCO, MRO and MLB.

2.1.3.1. Coverage and Capacity Optimization

CCO has the goal to “provide sufficient coverage and capacity in the whole net-
work area with minimal radio resources” [HSS11]. Thereby, coverage and capac-
ity are adjusted according to changing environmental conditions like rush hours
or temporary physical obstacles interfering with radio range [HSS11]. To this
end, the two predominantly affected KPIs are the CQI reflecting signal quality
and CL indicating the available capacity. CCO can be realized by tuning the
NCPs antenna tilt and throughput power [BSR11]. If the CQI misses a predefined
threshold, a higher signal quality may be achieved by changing the antenna tilt,
meaning it changes the angle of the antenna in relation to the ground. If instead
the load value exceeds a certain limit, CCO aims at activating small cells that can
take over some UEs and thus reduce the load of the original cell [Fre16].

2.1.3.2. Mobility Robustness Optimization

MRO has the goal to ensure mobile UEs switch seamlessly from one cell to an-
other whilst minimizing unnecessary ping-pongs, i.e., it aims at strengthening the
network in terms of mobility. Poor HO parameter settings may lead to bad uti-
lization of network resources which can cause various problems like HO failures,
Radio Link Failures (RLFs) or ping-pongs [ØG12]. RLFs usually cause dropped
calls, i.e., UEs loose connection, e.g., when moving out of a cells range. A HO
ping-pong is the effect of UEs getting handed over to another cell and quickly
afterwards handed back to the original cell. Hence, to accomplish a better perfor-
mance and end-user quality, the MRO function observes the KPIs PiPo as well as
DCR to monitor the cell’s current state in order to effect an optimization if the in-
dicators fall below a certain threshold. Therefore, if necessary, it adapts the NCP
Cell Individual Offset (CIO), “which controls the selection of the serving cell by
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the UE” [Fre16]. That is, the SON function tries to avoid unnecessary HOs by
changing the virtual cell borders of specific cells. Thereby, MRO takes trade-offs
with other SON functions (in particular MLB) into account. [HSS11]

2.1.3.3. Mobility Load Balancing

MLB is used to distribute traffic across the system’s radio resources, i.e, its main
goal is to push UEs from highly loaded cells to neighboring cells with more un-
used resources, provided that the UE is in reach of the neighboring antenna. It
ensures a better performance and Quality of Experience (QoE) for end-users by
balancing the load across cells in the network and thereby achieving a higher
throughput for all UEs. Moving load between cells is triggered when the KPI CL
is higher than a predefined threshold. In that case, the function tries to virtually
shrink the size of the network cell by adapting the NCP CIO. Consequently, UEs
outside of the now reduced virtual range are handed over to a neighboring cell
and thus reducing the load of the former serving cell. This, however, also has an
impact on the CL of the now serving neighboring cell. Of course this can only be
reasonably applied when neighboring cells have capacities left. [Fre16] [HSS11]
This process influences the HO performance and therefore coordination between
MLB and MRO functions is required [ØG12].

2.1.4. SON Coordination

The more SON functions are deployed in the network, the more often conflicts
between two or more SON functions may occur. Thereby, a conflict is a negative
influence on one KPI or a set of KPIs. [Ban13] identified three different types of
conflicts between SON functions:

Con�guration Con�icts are the most obvious type of conflicts happening in case
that different SON functions trigger contradictory actions in terms of NCPs,
i.e., when more than one SON function want to adapt a specific NCP but in
different ways. An increasing number of applied SON functions thereby
increases the chance of conflicts. Possible configuration conflicts between
the most common SON functions are depicted in Figure 2.4.

Measurement Con�icts describe a class of conflicts that occur when SON func-
tions use performance measurements such as KPIs as input parameters. A
situation where SON function actions influence input parameters that are
used by the monitoring part of a SON function may lead to a partially or
totally disjoint set of performance measurements.

Characteristic Con�icts appear when two SON functions both influence a spe-
cific cell characteristic, e.g., the cell size, but get different measurements
as input and adapt different NCPs. This will inevitably lead to undesired
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changes in KPIs that actually should not be touched by a certain SON func-
tion.

SON coordination tries to prevent or resolve SON function conflicts via low-level
coordination of autonomously operating SON functions. SON coordination has
to be distinguished from SON function co-design and SON function harmoniza-
tion. All approaches essentially tackle the same problem by trying to prevent
conflicts, but co-design tries to do so during design-time while harmonization
is an approach for runtime conflict resolution, i.e., when conflicts have already
appeared. Primarily, SON function co-design focuses on creating SON functions
with disjoint output NCP sets [HSS11]. Thereby, the set of KPIs that is influenced
by the SON functions should be as disjoint as possible. SON function coordi-
nation is required if conflicts occur during runtime and cannot be ruled out by
co-design. It thereby provides a centralized component acting at runtime but,
in contrast to SON function harmonization, is aiming at steering clear of con-
flicts in order to avoid a negative impact on the network performance beforehand
[Ban13].
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Figure 2.4.: Potential NCP conflicts between different SON functions (adapted
from [Ban+11])

Whenever a SON function wants to perform a configuration change, it has to be
checked first by the SON coordinator, that this will not lead to a conflict. SON co-
ordination evaluates the current network state and decides whether a SON func-
tion is allowed to perform the NCP change or not. When a conflict is detected, it is
up to the SON coordinator to approve the change request. This decision is based
on a variety of guidelines. First, an MNO can define high-level requirements that
influence the behavior of the coordinator via, e.g., thresholds for certain KPIs.
Secondly, SON functions may be prioritized such that a configuration change is
executed due to a higher priority in spite of possible conflicts. This way, SON co-
ordination has full control over all configuration changes done by SON functions
and is able to intervene at any time a conflict appears. [Ban13]
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2.2. Policy-based Management

Mobile SONs need a technology that allows them to express directives on dif-
ferent levels. A common way to design and control networks are policies. This
section first introduces the term policy in general and a special kind of policies,
so-called Event Condition Action (ECA) policies. Subsequently, PBM is charac-
terized and finally, the term policy continuum is defined in this context.

2.2.1. The Concept of Policies

Policies can be described as guidelines and constraints to system management.
Thus, it is possible to transfer a system into a new state and to change its behavior.
With these constraints, a target entity can be restricted without infringing given
directives. Every entity has a set of attributes and values that belongs to those
attributes. The constraints limit the value margin so as to leave the system in a
reasonable state.

Along with constraints to system management, policies can also represent service
requirements such as availability, response time, throughput or security. In this
context, policies can be understood as constraints to system measurements. It is
important to observe these so-called Service Level Agreements (SLAs) in order to
avoid expensive SLA breaches. [USS07]

There are different ways to describe policies. The first option is to define a
Domain-Specific Language (DSL) which is beneficial because a DSL focuses on
relevant aspects and therefore uses a specific syntax. So concerning DSLs, a spe-
cific policy language can be created that reflects the requirements needed. Source
code will then be generated out of those DSL models.

Another common way is to form policies subject to a predefined model such as
the ECA model which has the following general form:

1 ON even t IF c o n d i t i o n THEN a c t i o n

Listing 2.1: General form of an ECA rule

In that case, a policy obviously consists of three parts, the event, condition and
action part. The event part specifies the signal that triggers the invocation of a
rule. When such a signal appears, the conditions is checked. A condition is the
logical part that can be composed of different sub-conditions. It decides whether
it is essential to adapt the system behavior or not. Finally, when all sub-conditions
are satisfied, the execution, represented by actions, is started. Any action is corre-
lated to one or more parameters of an entity. By changing the parameter values,
actions are the virtual part that puts the system into a new state. [RBS11] Further-
more, it is a benefit of ECA policies that, since they are widely used, they form
the basis of most policy interpreters like Ponder2 [PON13] or [DRO18].
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2.2.2. The Management Concept

Strassner [Str03] defines policy management as “the usage of rules to accomplish
decisions”. In [Ban+04], the importance of policy based approaches is justified
by the fact that “they allow the separation of the rules that govern the behaviour
of a system from the functionality provided by that system”. Bringing together
these two statements, PBM can be seen as a management paradigm that combines
different views of abstraction in systems consisting of different layers, and that
uses policies to enforce decision making in a system. In most cases, the highest
layer is a business layer and the lowest layer is a more technical one. The number
of layers thereby depends on its complexity. For simple systems, merely a tech-
nical and a business layer might be adequate. However, for larger systems it is
necessary to have more than the two basic layers in order to represent relevant
information about a system for a multitude of different target groups [RBS11].

Using this management approach it is possible to adapt a system’s behavior at a
high-level of abstraction by defining high-level policies. By refining these poli-
cies into low-level policies a more technical view on a system is provided. Low-
level policies can then also be used to generate source code, preventing the labor-
intensive and error-prone task of code adaptation. To enable a refinement, map-
pings are used to transform high-level elements into more technical low-level ele-
ments, thereby facilitating the management of the underlying system. However,
monitoring is still necessary in order to align a system’s behavior with sought
goals. [Rom12]

The goals of policy refinement can be summarized as follows [MS93]:

• Identify resources demanded by the policy.

• Transform high-level business policies into low-level policies that can be
automatically processed.

• Ensure that after the transformation, low-level policies still fulfill require-
ments defined for high-level policies.

For the realization of a PBM system, some requirements have to be met. First of
all, a business policy language and an according policy meta model, for instance
the above described ECA model, need to be selected or specified. Furthermore,
expertise knowledge for every single layer is necessary in order to bridge the se-
mantic gap between the different layers of abstraction. Above all, completeness
is an important factor. Hence, administrators of particular layers need to have
expertise knowledge of other layers in order to avoid fragmentary or wrong re-
finement processes between neighboring layers. [Rom12] In order to avoid the
completeness problem, automatically generated mappings are a reasonable solu-
tion. Therefore, policies do only have to be specified at a high level of abstraction
and are further refined into lower layer policies via generated mappings.
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There is a variety of approaches concerned with the refinement of policies such
as a model-driven approach [Rom12], a goal-based approach [Ban+04], a classifi-
cation-based approach [USS07], an expertise knowledge-based approach [Eck07]
or an ontology-based approach [Gue+06]. How far these approaches are relevant
for this thesis, is discussed in Chapter 3. However, a characteristic that all these
approaches have in common, is the fact that they describe policies on different
layers of abstraction. Section 2.2.3 deals with the specific abstraction layers of the
refinement process as a unity according to the definition of [Str+06], the so-called
policy continuum.

2.2.3. Policy Continuum

As outlined above, different constituencies require different perspectives on a
system, more precisely, one perspective for each constituency is needed. This
demands a consistent approach to PBM in order to enable deployment at any
time. Three prerequisites must be met in order to guarantee this [Str+06]:

• A policy language must be determined for the definition of policies on all
abstraction layers.

• High-level policies are stepwise refined into lower-level ones down to the
point of automatically processable policies.

• Network nodes are configured according to policies defined on the highest
abstraction layer.

The challenge is to solve these problems as a collective in order to achieve a con-
sistent approach. The result is a paradigm, where every layer uses its own gram-
mar and terminologies to define policies at a particular abstraction layer. How-
ever, these policies can be linked with each other through model mappings. Fig-
ure 2.5 shows the layers identified by the authors of [Str+06], all together forming
the policy continuum. The highest layer represents a business view containing

Business View: SLAs, Processes, Guidelines and Goals

System View: Device- and Technology-Independent

Administrator View: Device-Independent, Technology-Specific

Device-View: Device- and Technology-Specific

Instance-View: Device-Specific MIBs, PIBs, CLI etc.

Figure 2.5.: The policy continuum (adapted from [Str+06])
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high-level SLA information, processes, general guidelines and goals. A user in-
terested in the business view does not need low-level information. Correspond-
ingly, a user focusing on an instance view is not interested in high-level SLAs.
The instance view represents the lowest layer which is more technical and closest
to the source code. Between these two layers, three other layers exist representing
policies for system, administrator and device view users.

In Chapter 3 it is investigated which layers are relevant in the course of this thesis
and the proposed solution is related to the policy continuum.

2.3. Machine Learning

In [Mur12], machine learning is defined as an “automated method for data ana-
lysis” that “detects pattern in data” and uses this information to “predict future
data or other outcomes of interest”. That means, the general goal of machine
learning is to build models of systems which allow the computer to perform tasks
it was not explicitly programmed for. To that end, data is first collected from those
systems and then analyzed. According to [Jam+13] any system can be captured
through the term:

Y = f (X) + ε (2.1)

Thereby, Y refers to the outcome or reaction of a system (the dependent variable),
produced by a function f () with an input or state vector X (the independent
variable) containing a set of features (X1, X2, ..., Xp). ε denotes the random noise
which has to be independent of X and has an average of zero. By using methods
in the field of supervised, unsupervised and reinforcement learning, predictions
can be made by building a model of the form

Ŷ = f̂ (X) (2.2)

where Ŷ represents the outcome or prediction when f̂ () is the estimate of f () and
X the given input vector. Such models can be used to predict the behavior of a
system under unseen circumstances or to gain a better understanding of a system
by finding patterns in its behavior.

In [BHH05], the authors state that:

“The most that can be expected from any model is that it can supply a
useful approximation to reality: All models are wrong; some models
are useful.”

This means that the predicted output Ŷ will never exactly match the expected
output Y for all inputs X. However, enabling a perfect prediction is not the aim
of machine learning. Instead, machine learning shall alleviate to generate models
which allow data mining to identify relations between inputs and outputs and
thereby potentially reducing unknown risks and insecurities.
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Generally, the field of machine learning is divided into three areas where each of
them faces a different problem setting [HSS11]: While supervised learning gets
annotated data as input and tries to find the best fitting model for these data,
unsupervised learning tries to find structures in unannotated data. The last type
of machine learning, reinforcement learning, learns from experience in an inter-
active environment. Subsequently, a selection of supervised and unsupervised
learning algorithms that are applied in the context of this thesis, are described
in more detail. Even though there are several approaches using reinforcement
learning techniques in SONs (cf. Section 7.4), these algorithms are not in the fo-
cus of this thesis and hence, are not described in further detail. This is due to the
fact that the management system and all its actions should remain transparent
for an MNO such that he or she can interrupt them at any time which is not able
any more when using reinforcement learning algorithms.

2.3.1. Supervised Learning

Supervised learning needs labeled data, meaning it needs to know the true output
for given inputs. Referencing back to Equation 2.2, supervised models are trained
on datasets of the form {(X1, Y1), (X2, Y2), ...}, with Xi representing the input and
Yi the associated output or label. The quality of a model built through supervised
learning can then be checked through comparing the predicted Ŷ to the actual Y
(hence supervised). Once a satisfying model is built, it can then be used to predict
the behavior of the actual system under unseen inputs. Depending on the type of
labels, there are two sub-types [Jam+13]:

Regression Learning is used for labels with continuous values where the algo-
rithm is asked to predict continuous results, such as, e.g., housing prices
depending on the amount of rooms. Hence, the quality of a model can be
measured by error metrics indicating the deviation from the actual values.

Classi�cation Learning is used for labels with discrete values (classes) where the
algorithm is asked to classify samples, such as, e.g., the contents of a picture.
Here, the quality of a model is measured by its accuracy, meaning there is
always either a wrong or a right classification.

In this thesis the focus is on regression learning since KPI values shall be pre-
dicted which are continuous values.

Quality of Fit
For a comparison of models, it is necessary to evaluate the fit of a model to the
available data [Jam+13]. There are various different metrics to accomplish this,
each with their own advantages and drawbacks. Nevertheless, it will be focused
on the most widespread practices. How well a model describes the data can
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be measured in residuals (εi), the difference between a known output yi and a
predicted output ŷi for given inputs:

εi = yi − ŷi (2.3)
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Figure 2.6.: Fitting a linear (a), a cubic (b) and a 22nd degree polynomial (c) to
noisy data and reporting the Root Mean Squared Error (RMSE) for
each model

In Figure 2.6 three different linear regression models are fit to the same dataset,
with the dotted vertical lines representing the residual for each sample. The fol-
lowing ways are the most commonly used ones to measure the overall error of a
model:

Mean Absolute Error (MAE) The simplest error measure is to average over all
differences between measurement and prediction, with the result being in
the units of the system output, and therefore interpretable [WM05].

MAE = 1
n

n
∑
i=1

(∣yi − f̂ (xi)∣) (2.4)

Mean Squared Error (MSE) Compared to the Mean Absolute Error (MAE), the
Mean Squared Error (MSE) has the advantage of penalizing bigger residu-
als more, therefore providing a better distinction between models that are
completely off and models that are fairly close. However, the value does
not have the same units as the system outputs, and therefore is less inter-
pretable by the user [WB09].

MSE = 1
n

n
∑
i=1

(yi − f̂ (xi))2 (2.5)
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Root Mean Squared Error (RMSE) Compared to the MSE, the RMSE is inter-
pretable in the actual units of the output, thus being easier to understand
while still retaining the high penalty for larger residuals [WM05].

RMSE =

¿
ÁÁÀ1

n

n
∑
i=1

(yi − f̂ (xi))2 (2.6)

After an error metric is selected, different models with different parameters and
different degrees of flexibility can be compared and tuned in order to reduce the
error, and consequently lead to a model which better captures the behavior of the
underlying system.

Nonetheless, searching for a model with zero error is not the way to generate
successful predictions, which is shown in the following section. This is due to
the fact that all measurements Y are tainted by the error ε when measured: Y =
f (X) + ε. Since ε is random, it can not be included in the model f̂ (). Hence, it is
logical to split the residuals into

∣Y − Ŷ∣ = εreducible + εirreducible (2.7)

with εreducible referring to the reducible error induced through wrong models and
εirreducible referring to errors from the random noise in the system [Jam+13].

For instance, panel (b) in Figure 2.6 actually shows the perfect RMSE for this
system. Both the model and the system are f (X) = x3 = f̂ (X), any remaining
residuals stem from the noise pollution.

Bias vs. Variance
When selecting a model, one has to balance the bias and variance it provides.
According to [Jam+13], “bias refers to the error that is introduced by approxi-
mating a real-life problem, which may be extremely complicated, by a much sim-
pler model”. Panel (a) in Figure 2.6 shows an already fairly biased model with
only two degrees of flexibility. In contrast, variance describes how much a model
changes when fit to a different dataset [Jam+13]. Panel (c) in Figure 2.6 shows a
model with a high variance, one can easily imagine how the graph would have a
very different form if it were initially fitted to another set of points sampled from
the same system. In fact, when applying the model (c) to a new set of samples,
as seen in Figure 2.7, the residuals to these new data points are very large, sig-
nificantly larger than for the other two models. This effect is called over-fitting
which is further explained in Section 2.3.1.

In summary, both a too biased model (horizontal line) and a too flexible model
(degrees of freedom = amount of samples) have shown to have flaws when trying
to build a reliable model.
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Figure 2.7.: Testing the models from Figure 2.6 on unseen data and reporting the
RMSE

Training and Testing
In the paragraphs above it is explained how a model fitting the data perfectly is
not desirable compared to a model with more bias, and how to compare mod-
els to each other based on their error metrics. Since it is impossible to know how
much of an error is due to εreducible and how much due to εirreducible without explic-
itly knowing f (), an extra step is necessary to evaluate the true performance of
any given model regarding its original goal: Predicting outputs of unseen inputs
and comparing these to the measured outputs [Jam+13].

In Figure 2.7 the models fitted in Figure 2.6 are tested on data samples which
the models had not been exposed to during fitting, therefore each model is asked
to predict the output of unseen inputs. Here is where the drawbacks of the high
polynomial model become apparent: Polynomials of high degrees are able to cap-
ture the training data very well, but show an increased amount of jitter in areas
without data points. These high variations in ŷ lead to big residuals when tested
on new data, an effect called over-fitting: The model describes the data presented
during fitting so well, that it incorporates the εirreducible in its predictions and fails
to capture the underlying f ().

But how does one detect that a model is over-fitted before actually applying the
model in production? The solution is to not fit the model on all available data
from the start. Instead, the dataset is split into training data and testing data
[Bis06]. The model is then trained by fitting it to the training data, before it is
tested against the remaining testing data. All models are then compared on the
basis of their performance on the test dataset. Over-fitted models will have small
residuals on the training data, but are too sensitive to the noise and fail on the
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testing data. This allows the user to select the best model which then can be used
in production and trained on all available data.

Resampling Methods
In order to gain information about the quality of a certain model, it has to be
consistently validated by sampling the training data. This process is called re-
sampling. The two most commonly used methods are K-fold cross-validation
and bootstrapping [Jam+13] while only K-fold cross-validation is relevant for this
thesis.

K-fold Cross-Validation Thereby, the training data is divided into K evenly sized
groups. Subsequently, the model is trained with data of K − 1 groups and
the excluded group G0 is used for the validation. Afterwards, f (x) and f̂ (x)
of every instance x ∈ Go are compared with each other and the error of the
estimation is measured. This procedure needs to be done for every group
and so, the overall error E can be calculated.

[Han+11] Leave One Out (LOO) cross-validation is a special case of cross-
validation where K equals the number of observations. That means, the
model is trained on K − 1 observations and asked to predict the value of
the Kth sample leading to K residuals. Hence, the overall error rate CVK
can be determined by averaging over the error rates of all K groups (cf.
Equation 2.8) [Jam+13].

CVK = 1
K

K
∑
i=1

Ei (2.8)

Bootstrapping “uses the computer to “resample” an original sample extensively,
inductively arriving at an estimate of a statistic’s sampling distribution”
[MD93]. That means, bootstrapping calculates statistics by repetitively draw-
ing a sample and thereby estimating the distribution of samples in a dataset.
This approach is useful to make inferences about a dataset with an un-
known distribution of the samples’ characteristics. An advantage of this
approach lies in the fact that no strong assumptions about the sample dis-
tribution in the dataset under investigation have to be made beforehand.
[MD93]

In the following, four supervised learning algorithms are presented in more de-
tail. In general, these algorithms can be separated into parametric and non-
parametric approaches. While in non-parametric models the number of parame-
ters is not fixed, meaning it grows with the amount of training data and thereby
is more flexible, parametric models have a fixed number of parameters leading
to less flexible however also computationally less complex models [Mur12]. Lin-
ear Regression (LR) can be clearly sorted in parametric methods while k-nearest
Neighbors Regression (KNN) as well as Gaussian Process Regression (GPR) are
denoted as non-parametric approaches. Artificial Neural Networks (ANNs) are
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classified somewhere in between: Usually, they are denominated as parametric,
however, there are also approaches for non-parametric neural networks available
[PC17].

2.3.1.1. Linear Regression

LR takes an input vector X with n features {x1, x2, ..., xn}. The model built by LR
then has the following form:

ŷ = β0 + β1 ∗ x1 + β2 ∗ x2 + ...+ βn ∗ xn = f̂ (X) (2.9)

Fitting a LR model equals estimating the coefficients {β0, ..., βn}. In order to do
so, there needs to be a labeled dataset with k observations of the form {(X1, Y1),
(X2, Y2), ...}, with k ≥ n, otherwise Equation 2.9 can not be solved. If k = n, then
there is precisely one solution for each β. If k > n, then it is in most cases not
possible to find βs such that each sample can be described with zero residual
[Jam+13].

To fit f̂ () to the dataset, the least squares method is employed in order to reduce
the residuals [Jam+13]. Since the model for LR f̂ () was defined in Equation 2.9,
it is now possible to merge it with Equation 2.3 into the following:

εi = yi − f̂ (Xi)
εi = yi − (β0 − β1 ∗ x1,i − β2 ∗ x2,i − ...− βn ∗ xn,i)

(2.10)

The goal is to determine the set of β0, β1, ... which have the minimal Residual Sum
of Squares (RSS) which is defined as the sum over all squares of each available
residual:

RSS = ε2
1 + ε2

2 + ...+ ε2
k (2.11)

Inserting Equation 2.10 into Equation 2.11 leads to:

RSS =
k
∑
i=1

(yi − (β0 − β1 ∗ x1,i − β2 ∗ x2,i − ...− βn ∗ xn,i))2 (2.12)

Since there are more data points k than unknown coefficients β, the equation has
more than one solution. Through derivation and some calculus the optimal set of
βs can be calculated [Jam+13].
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Increasing Flexibility
So far only linear combinations of the different features {x1, x2, ...} of X have been
considered. However, in Figure 2.6 and 2.7 (panel (b) and (c)) polynomials with
higher degrees than 1 as model have already been shown. According to [Bis06]
this is still considered to be LR, since the polynomials can just be considered
as additional features, where Xpoly now consists of {x1, x2

1, x3
1, ..., x2, x2

2, ...}. This
transformation of X enables more complicated models while still retaining the
same procedure as with classical LR.

In the same vein as adding polynomials of features, it is quite reasonable to expect
that certain inputs have synergies with each other and influence the output to
a different extent than each of them does individually. An example would be
the growth rate of a plant g based on the amounts of rain r and sunshine s. r
and s individually have measurable effects on the growth rate of a plant, but
when combined the actual growth rate of the plant can be described much more
accurately: g = β0 + β1r + β2s + β3 ∗ r × s. These so-called interaction terms (and
their polynomials) can then be used to extend the input vector X and as a result
lead to an even more flexible model [Jam+13]. Advantages and drawbacks of an
increasingly more flexible model have already been discussed in Section 2.3.1.

2.3.1.2. k-nearest Neighbors Regression

The basic idea of the KNN algorithm is that for every instance x, averaging f (y),
whereby y belongs to the k closest instances to x, approximates f (x). This al-
gorithm is an example of a non-parametric regression [Mur12]. According to
[Mit97], it is the most basic instance-based method. Hence, unlike batch learning,
the instances of the training data are considered one after another. Therefore, in
instance-based approaches, different approximations to the target function can
be constructed for every distinct instance [Mit97]. Especially, for complex tar-
get functions mapped by a collection of easier local functions, this is a huge ad-
vantage. On the other hand, these numerous computations consequently are ac-
companied by high costs. Furthermore, KNN is not robust towards unneeded
computations if a new instance is considered that is quite similar to a previous
instance [Mit97]. These facts get clearer by the explanation according to [Mit97]:

x ≡ ⟨a1(x), a2(x), ...an(x)⟩ (2.13)

x represents an instance as a vector of attributes whereas ar(x) (r, n ∈ N∧1 ≤ r ≤ n)
is the rth attribute of the instance x. Since the algorithm needs to find the closest
or rather most similar instances Yx,k out of all distinct instances I for a given
instance x, the difference d between two instances needs to be defined. There are
many ways to measure the similarity of instances. One of the most commonly
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used ones is the euclidean distance

deuc(u, v) =

¿
ÁÁÀ

n
∑
r=1

(ar(u) − ar(v))2 (2.14)

where u and v are instances and a is the value of a feature r, hence, n the number
of features.

Approximating f̂ (x) for f (x) comes along by computing Yx,k. The calculation of
d(x, xi) for every xi ∈ I determines Yx,k.

f̂ (x) =
∑y∈Yx,k

f (y)
k

(2.15)

Yx,k = {y ∈ I ∶ ∣{(a, x) ∈ I2 ∶ d(a, x) ≤ d(y, x)}∣ ≤ k} (2.16)

Furthermore, a refinement for KNN is depicted in [Mit97]: Within the distance-
weighted nearest neighbor estimator f̂dwg, also known as locally weighted regres-
sion, the distance of each of the k-nearest instances is taken into account. Thus,
instances that are closer to x have a greater impact than instances that are further
away from x:

f̂dwg(x) =
∑y∈Yx,k

f (y)w(x, y)
∑y∈Yx,k

w(x, y)
(2.17)

Thereby, the impact is included by the function w ∶ I2 →R≥0 taking the distance d
between two instances into account.

w(u, v) = 1
d(u, v)2 (2.18)

As the name of the algorithm indicates, the parameter k is a crucial factor for this
method [Han+11]. In [KNN10] the author attributes a high influence to noise if k
is a small number whereas assigning k with a larger value increases the computa-
tional cost as well as disagreeing with the basic idea of KNN due to the diminish-
ing difference to the mean value. There are several ways to determine k. A very
simple approach is to define k by the number of training instances N: k =

√
N

[KNN10]. Another one is the K-fold Cross-Validation (cf. Section 2.3.1) build-
ing the model for all the potential values of k and determining k by the minimal
global error E.
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2.3.1.3. Gaussian Process Regression

The GPR, also known as kriging, is like an interpolation of a function f ∶ Rn →Rz.
Wilson and Adams define a Gaussian process in [WA13] as “a collection of ran-
dom variables, any finite number of which have a joint Gaussian distribution”.

f (x) ∼ GP(m(x), κ(x, x′)) (2.19)

Thus, the basis of this algorithm is the assumption that functions f (x) comes
from a Gaussian process parametrized with the mean function m(x) and covari-
ance kernel κ(x, x′). Due to the usual assignment of m(x) to null that is proposed
in [RW06] any collection of function values has the following joint Gaussian dis-
tribution [WA13]:

⎡⎢⎢⎢⎢⎢⎣

f (x1)
⋮

f (xm)

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

y1
⋮

ym

⎤⎥⎥⎥⎥⎥⎦
= y ∼ N(0, K) (2.20)

This multivariate normal distribution described in Equation 2.20 is defined by
null as m-dimensional mean vector and K as m×m covariance matrix [Mur12].

K =
⎡⎢⎢⎢⎢⎢⎣

κ11 κ12 ⋯ κ1m
⋮ ⋮ ⋮ ⋮

κm1 κm2 ⋯ κmm

⎤⎥⎥⎥⎥⎥⎦
(2.21)

Therein, κij ≡ κ(xi, xj) maps a kernel function measuring the similarity of two
instances xi and xj [RW06]. The choice of the kernel function significantly influ-
ences the results predicted by the GPR and hence, is a crucial step for a good
quality of the results. There are many different kernel functions which are appli-
cable in different use cases. In this thesis, only kernel functions able to be used
for real-valued data [AY14] are relevant and presented subsequently:

Radial Basis Function Kernel One simple example is the Radial Basis Function
(RBF) kernel κRBF with the free parameter λ as bandwidth [Mur12]:

κRBF(xi, xj) = exp(−
∣∣xi − xj∣∣2

2λ
) (2.22)

Polynomial Kernel Another widely used kernel is the polynomial kernel func-
tion κpoly. When d is set to 1 in Equation 2.23, one can get the linear kernel
function. k thereby is the constant. [AY14]

κpoly(xi, xj) = (xi.xj + k)d (2.23)
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Pearson VII Universal Kernel A kernel function which is mostly used in the
area of support vector machines, is the Pearson VII Universal Kernel (PUK)
function. This functions offers a high degree of flexibility by changing pa-
rameters λ and ω. [AY14]

κPUK(xi, xj) = 1/
⎡⎢⎢⎢⎢⎣
1+

⎛
⎝

2
√

∣∣xi − xj∣∣2
√

2(1/ω) − 1

λ

⎞
⎠

2⎤⎥⎥⎥⎥⎦

ω

(2.24)

Following the principal of the Gaussian process it enables to predict f (x∗) = y∗
for a x∗ that is not in the data by assuming f (x∗) is a sample ofN(0, κ∗∗) [RW06].

[ y
y∗

] ∼ N (0, [ K Ki∗
K∗i κ∗∗

]) = N

⎛
⎜⎜⎜⎜⎜⎜
⎝

0,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K

⎡⎢⎢⎢⎢⎢⎢⎢⎣

κ1∗
κ2∗
⋮

κm∗

⎤⎥⎥⎥⎥⎥⎥⎥⎦
[κ∗1 κ∗2 ⋯ κ∗m] κ∗∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟
⎠

(2.25)

Based on this, the Cholesky theorem (cf. [Pre+07]) allows to calculate the ex-
pected value µ∗ including the confidence interval c∗ for f (x∗) = y∗ [RW06].

µ∗ = E( f (x∗)) = KT
i∗K−1y (2.26)

c∗ = κ∗∗ −KT
i∗K−1Ki∗ (2.27)

For a better understanding, Figure 2.8 illustrates GPR. Whereas Figure 2.8 (a)
only depicts a certain example for the prediction of x∗ that is between x2 and x3,
Figure 2.8 (b) is extended to a differentiable graph. Thereby, the dashed line visu-
alizes the target function’s true course only represented by four samples marked
as bullets. Additionally, the filled area illustrates the confidence interval for the
expected values of the prediction portrayed as the continuous line. Analogously,
the triangle indicator surrounded by two bows in Figure 2.8 has the same mean-
ing.

2.3.1.4. Artificial Neural Networks

According to [Aga+09], “a neural network is defined as a powerful data modeling
tool that is able to capture and represent complex input/output relationships”.
Thereby, in contrast to, e.g., LR, ANNs are a good way to model non-linear re-
lationships in a dataset. The idea of ANNs is to copy the functional principles
of biological neural nets as part of the nervous system. Biological neural nets
basically consist of linked cells processing signals and communicating with each

46



2.3. MACHINE LEARNING

Figure 2.8.: Predicting an exemplary point in (a), illustration of a GPR prediction
graph in (b)

other. While biological neurons are inferior to logic gates in terms of computa-
tion time, the human brain can still deal with problems that are unsolvable for
modern computers. This is mainly due to the massively layered networking hap-
pening in biological neural nets. Modeling this complex system as an artificial
net is exactly what ANNs are aiming for. [Roj96]

The Perceptron
The perceptron replicates the functionality of the smallest unit in biological neural
networks, the neuron. It consists of a number of input values X = {x1, x2, ..., xn}
∈ {0, 1}, weights w = {w1, w2, ..., wn} and a threshold t. It generates an output (or
activation) a ∈ {0, 1} by multiplying every input value with its respective weight
and determining whether the result is greater than the threshold value.

a =
⎧⎪⎪⎨⎪⎪⎩

1, if ∑n
j=1 wjxj > t

0, if ∑n
j=1 wjxj ≤ t

(2.28)

Using the bias b = −t and the dot product ∑j wjxj = w ⋅ x for vectors w and x, this
can also be written as:

a =
⎧⎪⎪⎨⎪⎪⎩

1, if w ⋅ x + b > 0
0, if w ⋅ x + b ≤ 0

(2.29)

Perceptrons can be used for decision making or to calculate logic operations.
However, they are limited to linear problems. Networks can be constructed by
using multiple perceptrons in different layers, taking the output values of one
layer as input values for the next one. They can be adjusted to match a desired
behavior by changing the weights of the perceptrons. This process of modifying
weights is what is considered as learning in the context of ANNs. [Nie15]
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The Sigmoid Neuron
With their input and output limited to 0 or 1, perceptrons might not be ideal
for learning a model. A small change of weights can completely flip the output.
Ideally, a slight adjustment of weights should cause an accordingly small change
of the output.

The sigmoid neuron is designed to overcome this weakness. Just like the percep-
tron, the sigmoid neuron has weights and a threshold or bias. The difference is,
that the input values can be any real value between 0 and 1. Thus, the weights
are w = {w1, w2, ..., wn}, the input values X = {x1, x2, ..., xn} ∈ [0, 1], the threshold
t, the bias b = −t and the output a ∈ [0, 1]. The output is calculated by using an
activation function. Three popular activation functions are [UFLDL]:

Sigmoid Function This activation function is defined as:

σ(z) = 1
1+ e−z (2.30)

Hyperbolic Tangent Function This activation function is defined as:

tanh(z) = ez − e−z

ez + e−z (2.31)

Recti�ed Linear Function This activation function is defined as:

f (z) = max(0, z) (2.32)

While the hyperbolic tangent and rectified linear function are not part of the sig-
moid neuron model, their resemblance to the sigmoid function gets apparent in
Figure 2.9. The hyperbolic tangent looks very similar to the sigmoid function,
however differs in range. The rectified linear activation function has proven to be
the best choice for deep architectures in the majority of cases [Aga+09].

Using the sigmoid function allows to match the desired behavior. For small
changes ∆wj and ∆b of weights and bias, a small change ∆y of the output is re-
ceived. The following approximation holds [Nie15]:

∆a ≈ ∑
j∈W

∂a
∂wj

∆wj +
∂a
∂b

∆b (2.33)

The sigmoid can be seen as an improved version of the perceptron, that generally
acts like a perceptron, but is easier to handle in terms of choosing and adjusting
weights and bias. The perceptron’s outputs can simply be treated as ’yes’ or ’no’.
Since the sigmoid does not just output a 0 or 1, results have to be dealt with in a
different way. The easiest and probably most obvious way is to create some sort
of scoring model. For instance, if the score is higher than 0.8 then output ’yes’
otherwise ’no’. In some cases the real value of the output can come in handy, for
instance when a percentage value is required, rather than a boolean [Nie15].
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z

f(z)

Figure 2.9.: The sigmoid function (dark blue), the hyperbolic function (light blue)
and the rectified linear function (gray)

Multilayer Neural Networks
Multilayer Neural Network (MNN) are made out of several layers of artificial
neurons. As shown in Figure 2.10, the first layer of neurons in an MNN is called
the input layer, accordingly the last one is named the output layer. All the layers
in between are called hidden layers. The signals are forwarded through the net-
work layer by layer until the output layer is reached. The results of the output
layer are then used to make the final prediction.

Input 
Layer

Hidden 
Layers

Output 
Layer

Figure 2.10.: An abstract exemplary MNN architecture containing three hidden
layers with four neurons each

A simple version of an MNN is the Multilayer Perceptron (MLP), that, as the
name suggests, uses perceptrons as building blocks for the network. MLPs are
designed for supervised learning, using a set of labeled training data to solve
challenging, non-linear problems. This is accomplished by using the back-prop-
agation algorithm. However, they can be used for unsupervised learning as well,
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by training them with a data set that has the same inputs and outputs. Note that
an MLP with at least three layers is needed, because the hidden layers determine
the outputs. Training an MLP in this manner is affiliated to high computational
cost and high training times [LH00].

A more formal definition of MNNs, in accordance to [Ben09], is given by the
following equations. Each layer l of an MNN computes a respective output vector
al using the output of its predecessor al−1. This sequence starts with the input
vector x = a0. The outputs for each layer are generated using the equation

al = f (bl +wlal−1) (2.34)

with an offset vector bl, a weight matrix wl and a suitable activation function f
(e.g., the sigmoid function or tangens hyperbolicus, see Section 2.3.1.4). A pre-
diction is made on the basis of the results of the output layer ak, for k being the
output layer of the network. Afterwards the output of the training set y and the
computed output are combined into a loss function L(ak, y), usually convex in
bk +wkak−1. Contrary to the other layers, the output layer might not have linear-
ity. An example for non-linearity is the softmax, a generalization of the sigmoid
function

ak
i =

ebk
i +wk

i ak−1

∑j ebk
j +wk

j ak−1
(2.35)

with wk
i as the ith row of wk, ak

i positive and ∑i ak
i = 1. In that case an approx-

imate value of P(Y = i∣x) is given by the output ak
i , meaning that Y is the class

related to the input values x. Afterwards minimization of tuples (x, y) using neg-
ative conditional log-likelihood L(ak, y) = −logP(Y = y∣x) = −logak

y is a common
approach.

However, the crucial part in configuring an MNN is to find a suitable number of
hidden layers and hidden neurons within these layers. In [Hea08], it is stated, that
“there is currently no theoretical reason to use neural networks with any more
than two hidden layers”. For determining the number of hidden neurons, several
guidelines and best practices exist, while in the end, this is still based on trial
and error for complex problems where the structure of the analyzed data is not
absolutely clear beforehand. The authors of [SD13] have made an investigation
on this topic and in [Hea08], some starting points are given:

• The size of the hidden layer should be between the size of the input and
output layer.

• The size of the hidden layer should be
2
3

the size of the input layer plus the
size of the output layer.

• The size of the hidden layer should be less then twice the size of the input
layer.
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Both, too few and too many hidden neurons entail some problems: Too few neu-
rons have meant that the model does not represent the data well leading to an
inaccurate model. On the other side, too many neurons result in an over-fitted
model and an increased computational effort. [Hea08] Hence, one has to care-
fully choose the number of hidden layers and hidden neurons.

2.3.2. Unsupervised Learning

An example for unsupervised learning is shown in Figure 2.11 where observa-
tions are clustered in two groups of observations. Having just a small dataset
with only two dimensions, i.e., features, it is easy to find meaningful clusters.
In the example it is quite obvious to split the dataset into two clusters contain-
ing {A, B, C, D, E} and {F, G, H, I} respectively. However, with each additional
feature and a larger dataset, the task of partitioning becomes increasingly more
complex and nearly impossible to be done manually demanding for a method to
understand and evaluate data automatically.
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Figure 2.11.: Clustering of a dataset (left) into two clusters (right)

In contrast to supervised learning, unsupervised learning does not need labeled
data and commonly is not applied to predict continuous values. The datasets do
not contain Yis to compare the Ŷis to (hence unsupervised), meaning an obser-
vation only consists of n features X = x1, x2, ..., xn, without any label y. The goal
of clustering algorithms is to examine the similarity of observations based on
their features, and then find groups of observations which share a high similar-
ity within the group compared to observations from outside said group [Bis06].
Therefore, a distance function needs to be defined in order to identify similarities
of observations based on their distance. Any results can not be validated through
the error metrics of Section 2.3.1 since there is no yi for each observation. To assess
the quality of a model, usually, the user needs to apply his domain knowledge in
order to verify the utility of discovered structures. [Bis06]

The clustering domain is separated into three types of algorithms [KR08]:

Centroid-based Clustering defines clusters through centroids which are virtual
data points representing the proto-element of each group. The number of
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clusters has to be defined beforehand and is fixed. In the beginning, clus-
ter centroids are defined randomly and will be shifted in the state space
iteratively until the specified distance function is minimized.

Hierarchical Clustering is a group of algorithms where the number of clusters
iteratively increases or decreases. That means, the user does not need to
predefine the number of clusters beforehand. Hierarchical clustering starts
with all observations in one cluster and stepwise divides the cluster with the
biggest distance between its data points. This process can be interrupted at
any time when a sufficient number of clusters is attained.

Density-based Clustering tries to find areas in the state space with a high den-
sity of observations and areas with a low observation density. If a fixed
number of data points is within a specified distance, a data point becomes
the center of a cluster and the distance criterion is assigned to this cluster.
Data not being centers but belonging to a cluster becomes border data. That
way data is categorized into cluster, border and noise data.

K-Means Clustering
Although there are many approaches to unsupervised learning, for this thesis
only K-means clustering, a centroid-based clustering approach, is relevant. K-
means depicted in Figure 2.12 is one of the simplest and fastest algorithms for
creating a fixed number of clusters K [Jam+13].
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Figure 2.12.: Process of K-means clustering (cf. Algorithm 1): Panel (a) depicts the
cluster centroids after the initial random classifications of each ob-
servation. Panel (b) shows the first reassignment of the observations
to their nearest centroids. In Panel (c) the state after seven iterations
can be seen.

It is important to note that the user needs to decide manually on the K when
running the algorithm, so even more domain knowledge is necessary for a suc-
cessful application of this algorithm. Furthermore, the K-means algorithm has
some other drawbacks, such as that the algorithm is not deterministic and that
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results can vary based on the initial random classification of the observations.
Additionally, certain data distributions can lead the algorithm to the production
of counter-intuitive results [SCL07]. Nevertheless, in this thesis the data appears
to not be in this specific shape and it serves only as a preliminary analysis. For
this reason the application of more sophisticated algorithms, as shown in [AV07],
is left as future work and will be part of Section 9.2.

The calculation of optimal clusters can be done in many ways and depends on a
lot of parameters. The following description of an algorithm is widely used and
based on the algorithm described in [Jam+13]. Algorithm 1 defines how the K-
means algorithm works in principle. As already mentioned, the number of clus-
ters has to be manually set by the user. In a second step, each of N observations
is randomly assigned to exactly one cluster. Then,

C1 ∪̇ C2 ∪̇ ... ∪̇ CK = {o1, o2, ..., oN} (2.36)

with Ck being a set of observations and on being an observation whereby none of
the (disjunct) clusters can be empty, hence, N ≥ K. Each observation on thereby is
a set of p features, i.e., on = {on,1, on,2, ..., on,p}.

Algorithm 1 K-means clustering

1: Define number of clusters k
2: Randomly assign each observation a class from 1 to k
3: repeat
4: Calculate Cluster Centroids: For each cluster calculate the mean of each fea-

ture from all observations in this cluster
5: Reassign Samples: For each observation reassign it to the cluster of the clo-

sest centroid
6: until No observation gets reassigned to a different cluster

Since the quality of a clustering algorithm is defined by the variance of obser-
vations within its clusters, the goal can be defined as an optimization problem

minimizeC1,...,CK

⎧⎪⎪⎨⎪⎪⎩

K
∑
k=1

W(Ck)
⎫⎪⎪⎬⎪⎪⎭

(2.37)

where W(Ck) defines the variance of observations in cluster k. In order to exe-
cute step 4 and 5 of Algorithm 1, Equation 2.37 must be solved by first defining
W(Ck). The calculation of W(Ck) strongly depends on the distance function that
is used as a measure to determine the variance within each cluster. In [Jam+13],
the squared Euclidean distance is used to define W(CK) as

W(CK) =
1

∣Ck∣
∑

i,i′∈Ck

p

∑
j=1

(xi,j − xi′,j)2 (2.38)
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with ∣Ck∣ being the number of observations in the kth cluster and p being the
number of features being observed. Simply spoken, W(CK) is constructed by
building the euclidean distance for a pairwise comparison of each observation
with each other observation in the cluster, summing up these distance measures
and building the mean of it. Inserting Equation 2.38 into Equation 2.37 leads to

minimizeC1,...,CK

⎧⎪⎪⎨⎪⎪⎩

K
∑
k=1

1
∣Ck∣

∑
i,i′∈Ck

p

∑
j=1

(si,j − si′,j)2
⎫⎪⎪⎬⎪⎪⎭

(2.39)

meaning that the sum of all averaged cluster distances needs to be minimized.
This now allows to execute step 4 of Algorithm 1. When reassigning observations
to the cluster of the closest centroid, and repeating steps 4 and 5 until the clusters
do not change any more, the algorithm will terminate at some point delivering a
local optimum.
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3
Introduction to SON Management

In this chapter, a general overview of SON management is provided. The un-
derlying architecture that all the detailed approaches in Chapter 4 - Chapter 7
have in common, is presented, together with a short description of the individ-
ual elements, i.e., models, that serve as input. The core component, the so-called
objective manager, is introduced as well as a policy system. The chapter is con-
cluded by a short overview of the further course of this thesis and a related work
section.

3.1. Motivation

The operation of a SON system is a challenging task that is getting more and
more complex for human operators. First, a SON system consists of an increasing
number of SON functions which are either operated in a non-managed manner
or where its management follows rather simple rules. Second, the SON functions
operate within or across different RATs, and across different layers within these
RATs. Third, the SON functions may come from different manufacturers, may
be designed based on different assumptions, or may aim at different targets to be
achieved.

The role of SON management is therefore to provide common means towards
the operator to tailor the SON system, i.e., the multitude of independently oper-
ating and acting multi-RAT and multi-layer SON functions according to its needs,
and to allow for building confidence into the autonomously operating SON sys-
tem. Furthermore, the aim of SON management is to significantly simplify the
operation of a SON-enabled mobile radio network and thereby contributing to a
reduction of operational efforts and expenditures.

Human operators, on the one hand, have to manually translate objectives into
SCV sets and, on the other hand, need to dynamically change configurations ac-
cording to operational context. Due to the required efforts, mobile radio networks
are currently often configured in a static and uniform way, i.e., the manufacturer
of a SON function provides one default configuration, i.e., SCV set, which is de-
ployed over the whole network. This way, the operator misses out on optimiza-
tion potential with respect to his objectives.
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Referring back to Section 1.2.1, this problem is called the manual gap and it is one
of the main objectives of this thesis to overcome this gap:

Objective 1 Automate the process of finding optimal SCV sets and close the manual
gap between operator objectives and SCV sets.

The manual gap has been subdivided into three major problems for which no
solutions exist in current systems.

Automation Gap Operator objectives cannot be interpreted directly by the SON
functions. To enable the operation of the SON-enabled mobile network
through operator objectives, an automatic transformation of operator ob-
jectives to SCV sets is necessary.

Dynamics Gap Since a mobile network is subject to frequent changes, a concept
is required to dynamically adapt the SON functions’ SCPs.

Knowledge Gap The configuration of a mobile network is only based on human
experience. In order to allow an automated configuration process, knowl-
edge on operator and manufacturer side needs to be described in a way
such that it can be automatically processed.

Closing the manual gap between operator objectives on the one side, and SCV
sets on the other side, is an important issue for enabling operator objective-driven
SON and network operation. It is necessary to link the sets with the operator
objectives in such a way that the SON functions fulfill these operator objectives,
and changes in the objectives quickly influence the network behavior.

In current systems there is neither an entity available that can manage this link
between SCV sets and operator objectives, nor are methods available to perform
this mapping in an automated way. In addition, models providing the neces-
sary information about SON functions and operator objectives, and that can be
further processed without manual interference, are currently missing. To some
extent this also applies to the interface towards SON functions, through which
the results of the mapping, the SCV sets, can be provided. Existing configuration
management barely provides sufficient capabilities, and existing 3GPP standards
for policy provisioning ([3GP12], [3GP13]) only allow a very reduced number of
SON function-specific policies.

3.2. SON Management Architecture

The goal of SON management is to overcome this manual gap with automation.
Hence, SON management needs to be designed in a way that it enables the au-
tomated configuration and dynamic reconfiguration of SON functions based on
models which provide all the necessary information in a way that allows an au-
tomatic processing.
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3.2. SON MANAGEMENT ARCHITECTURE

An overview of the general architecture that is the basis for all approaches that are
presented in the course of this thesis, is illustrated in Figure 3.1. The whole SON
management system can thereby be separated into three domains, i.e., areas with
specific knowledge relevant for the configuration of the SON-enabled network.
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Figure 3.1.: General architecture of SON management with a design-time objec-
tive manager

Operator Domain This domain covers models describing knowledge that needs
to be provided by MNOs, i.e., an objective model and a context model. The
objective characterizes what an MNO wants to achieve in the network. The
context model specifies properties of the network.

Manufacturer Domain This domain covers the effect model containing knowl-
edge about SON functions that a SON function manufacturer makes avail-
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able. The effect model thereby describes effects of certain SCV sets in the
network.

Management Domain This domain covers the actual SON management. An ob-
jective manager forms the core component that gets knowledge from the
operator and manufacturer domain as input. This knowledge is provided
via formalized and automatically processable models. The second compo-
nent is a policy system, which gets an SCV set policy as input provided by
the objective manager. This policy system is split into three elements: A
policy repository, a Policy Decision Point (PDP) and a Policy Enforcement
Point (PEP). The third and last component is the SON function engine, re-
sponsible for deploying SCV sets in the RAN by adapting NCPs.

Input models to the SON management and the SON management elements are
described in further detail in the following.

3.2.1. Context Model

Since it is not desired to configure the SON-enabled mobile network uniformly,
MNOs distinguish between different contexts for which different goals should
be achieved. To be able to differentiate between a variety of contexts, it is nec-
essary to provide information about the current mobile radio network system
deployment to the SON management system. The context model provides such
a description of network and cell properties (called context properties in the fur-
ther) that can be used to make the objective and effect model context-dependent.
More precisely, it defines the domain, i.e., possible values, of the context prop-
erties that can be used in the predicates of the condition parts of these models.
As such the context model can be seen as part of the objective model and effect
model. Context model information is typically stored in network-wide configu-
ration management and network planning systems and databases. The context
model has the following general form:

1 {
contex tPrope r ty_1 HAS DOMAIN [ p roper tyVa luesMarg in_1 ] ,

3 contex tPrope r ty_2 HAS DOMAIN [ p roper tyVa luesMarg in_2 ] ,
. . . ,

5 contex tPrope r ty_n HAS DOMAIN [ p roper tyVa luesMarg in_n ]
}

Listing 3.1: General form of a context model

Some of the information contained in a context model is listed below:

• Available RATs: EDGE, UMTS, LTE, ...

• Available layers for each RAT: macro cell, micro cell, pico cell, femto cell, ...

• Available frequency band for each RAT: 2600 MHz for LTE macro cells, ...
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• Available location types: urban, suburban, rural, ...

• Most existent user mobility types within a cell’s coverage area: static, pedes-
trian, car, highway, ...

3.2.2. Objective Model

In addition to the context model, the objective manager requires a formalized
and processable model of the technical objectives containing context-dependent
KPI targets and their precedences. Context-dependent thereby means that objec-
tives can depend on operational context, e.g., it can vary for different times of
the day, cell types and locations, or traffic patterns. Context within an objective
thereby correlates with the context properties and respective values identified in
the context model.

The objective model needs to be provided by the network operator. Besides en-
abling automation, the creation of this formal model also supports operators in
becoming aware of their technical objectives in the first place. The model is imple-
mented as a set of rules, since this is a simple and well-known approach which
can be easily understood [Str03]. Thereby, each of these objective rules deter-
mines the precedence of a KPI target in a specific context. Hence, objective rules
have the following general form:

IF con t e x t THEN KPI t a r g e t WITH p recedence

Listing 3.2: General form of an objective rule

Thus, they consist of three parts:

IF The condition part is a logical formula over predicates, which evaluates con-
text properties and thereby determines the applicability of the objective rule
in a specific context. This allows specifying under which condition, e.g.,
time periods or cell locations, a KPI target is active and which precedence it
has. Note that the condition can be empty, indicated by the logical formula
true, which leads to a general objective rule that is always applicable.

THEN The KPI target defines the KPI with the corresponding target value that
the system should optimize.

WITH The precedence represents the importance of the technical objective to
the MNO and, thus, allows to trade-off objectives against each other in case
they cannot be satisfied simultaneously.

Within SON management, technical objectives are at a low level of abstraction,
i.e., close to the technical details of the system like KPIs. In a realistic scenario, an
operator may plan and operate the network in terms of high-level goals which are
closer to the business view on the network. Hence, these high-level goals need
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to be transformed into low-level technical objectives first. However, the transfor-
mation of high-level goals into technical objectives is not part of this thesis and is
subject to future work.

3.2.3. Effect Model

The aim of SON management is to create configuration settings for the SON func-
tions in such a way that they contribute to the operator objectives. Therefore, the
system needs to be aware of the relationship between different SCV sets and their
impact on KPIs. In order to be able to determine an SCV set policy, this relation-
ship is again required in a formalized, machine-readable and processable way.
Since SON functions are usually delivered as black boxes by manufacturers, i.e.,
an operator has no or only little information about the SON function algorithm
or the corresponding mathematical utility function, the objective manager con-
cept foresees an effect model, allowing manufacturers to provide only informa-
tion about a SON function being required to implement and utilize it properly.
This knowledge can be expressed in simple mappings from SCV sets to KPI ef-
fects, and this knowledge is within the domain of the SON function manufacturer.
Such a model is required for each SON function (note that in the following, the
term effect model always denotes the sum of effect models of all particular SON
functions).

For each SON function the effect model needs to provide a default mapping
defining a configuration if no rule matches the current operational context. This
can be, e.g., a balanced configuration of the SON function which trades off differ-
ent KPI targets.

Summarized, an effect model consists of a set of rules with the following general
form:

1 IF con t e x t AND SCV s e t THEN KPI e f f e c t

Listing 3.3: General form of a rule in the effect model

Thus, a rule in the effect model comprises three parts:

IF Equal to the condition part in the objective model, the IF part is a logical for-
mula over predicates evaluating context properties to decide about the ap-
plicability of a certain rule. Also, context properties and their values must
be contained in the context model.

AND When a certain rule is applicable, the AND part specifies a certain SCV
set. Since the main goal of this thesis is to provide an approach to manage
a SON-enabled network while abstracting from technical details, SCV sets
are always described by transcription such as MLB_1.
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THEN In case, a condition is fulfilled, this part indicates the effect on KPIs under
a specific SCV set (the AND part). A SON function can thereby contribute
to a single KPI only, or a set of or even all network KPIs.

Note that the transcriptions used for the SCV sets always refer to a concrete set of
SCPs and respective values for these parameters. For instance, an MLB function
is allowed to modify the CIO, the upper CL threshold from which MLB becomes
active, the lower CL threshold from which MLB returns to inactive state, and
the load averaging time based on which the current CL is calculated. Exemplary
values for an MLB SCV set are:

• Upper CIO limit: +6dB

• Lower CIO limit: -6dB

• Stepsize: 1dB

• Upper CL threshold: 50%

• Lower CL threshold: 30%

• Load averaging time: 60 seconds

For the presentation of the objective manager in this thesis, it is assumed that
the KPIs used in the objective model and the effect model match each other, i.e.,
they have the same name and meaning. This simplifies the explanation but might
be too inflexible in practice. However, this assumption is not a limitation of the
general approach since a translation model can provide a mapping between the
KPI definitions of both models.

3.2.4. Objective Manager

By means of performing a reasoning process, the objective manager determines
the SCV set policy, or directly the appropriate SCV sets, according to the technical
objectives defined by the MNO, the current network operational context and past
experiences. To decide about the best SCV sets, some additional input to the ob-
jective manager is needed, namely, the above mentioned objective model, context
model and effect model.

The objective manager can be operated in two different modes: a design-time
option and a runtime option. Depending on the option, the reasoning process
within the objective manager and the corresponding output to the underlying
building blocks are different.

In the design-time option the objective manager creates an SCV set policy before
the instantiation of the SON functions. This policy is thereby defined as a set of
ECA rules. Each of these rules consists of an event on which it is triggered, one
or more conditions which are to be checked, and an action that is taken when the
conditions are met. For the SCV set policy within SON management, the events
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and conditions are derived from the technical operator objectives and their associ-
ated target values respectively. The action part of an ECA rule states instructions.
In the case of SON management, these instructions are the configuration values
to be deployed to the SON functions or their instantiations, respectively. Note
that there might be rules with an empty condition part, i.e., the action part of the
rule is always executed if the triggering event has taken place. Furthermore, note
that a policy does not need to explicitly state its purpose or goal.

The SCV set policy hence contains all information required to control the SON
system, i.e., the multitude of SON function instances, according to the technical
objectives of the network operator, i.e., KPI targets, KPI precedences, conditions
like time, location or network status under which KPI targets and precedences
apply, and additional restrictions that may apply. Thus, the objective manager
determines a complete set of rules describing in detail what is to be done under
every possible condition. The rules thereby have to be in line with the technical
objectives, but whether or not this is the case cannot generally be determined
from considering this rule in isolation. Therefore, the SCV set policy including
the complete set of SON-related ECA rules needs to be consistent in such a way
that all technical objectives are addressed. This implies that the resulting policy
has to be defined conflict-free, i.e., possibly conflicting operator objectives need
to be resolved when creating the SCV set policy.

Within the design-time option, the policy has to be recomputed in case KPI targets
or their precedences change, if the definitions, properties or allocation of condi-
tions and restrictions change, or if the predicted effects of SCV sets change.

In the runtime option (cf. Figure 3.2) the objective manager performs not only
the reasoning and mapping processes between the objective and effect model,
but also acts as decision point with respect to selecting appropriate SCV sets to
be deployed. With the runtime option, the output of the objective manager does
not consist of an SCV set policy, but directly of SCV sets that are deployed to,
and enforced at the SON functions. The objective manager does not always need
to perform a full mapping between all technical objectives and all effect models,
but only SON function instances affected by the changes have to be updated and
deployed.

Both options have their own advantages and drawbacks. On the one hand, the
runtime option is computationally less complex. However, the functioning of
the objective manager gets less visible to the MNO due to the lack of an SCV set
policy. Since it is one of the main objectives of this thesis to develop a SON man-
agement system that leaves the highest possible degree of control to the MNO (cf.
Section 1.2.4), the design-time option is chosen for all following approaches and
hence, a policy system is needed enforcing the output of the objective manager in
the network.
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Figure 3.2.: General architecture of SON management with a runtime objective
manager

3.2.5. Policy System

A policy system is an established approach for network management [Str+06].
Several implementations are available, e.g., JBoss Drools [DRO18]. The policy
system as it is used for SON management, evaluates the SCV set policy gener-
ated by the objective manager at runtime and dynamically configures the SON
functions. Basically, an SCV set policy is a set of condition-action policy rules
with the following general form:

1 IF con t e x t THEN SCV s e t

Listing 3.4: General form of an SCV set policy rule

Thus, a policy rule consists of two parts:

IF Like the conditions in the objective model and effect model, the IF part spec-
ifies a logical formula that can be evaluated to decide whether a rule is ap-
plicable or not. The context properties and values used in the conditions are
again in accordance with those defined in the context model. Note that the
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sum of all policy rules does not necessarily cover all possible context prop-
erty combinations and hence, it may be the case that in a certain operational
context, no rule is applicable. In such a case, default SCV sets are used.

THEN The action part reflects the objective manager’s decision with respect to
optimal SCV sets under a specific operational context. That is, it provides
the SCV sets that contribute optimally to the fulfillment of technical opera-
tor objectives.

In order to interpret the set of rules, there are commonly three components within
the policy system: A policy repository, a PDP and a PEP [Wes+01].

Policy Repository The policy repository stores the SCV set policy, i.e., the en-
tirety of all policy rules which have been generated by the objective man-
ager.

Policy Decision Point (PDP) The decision, which policy rules must be applied,
is taken by the PDP component. Therefore, it listens for trigger events and,
once such an event occurs, the current context is needed which can be di-
rectly derived from the network. Using this context, the PDP evaluates the
conditions of the rules in the SCV set policy, i.e., the IF parts, and gathers
the applicable SCV sets for the SON functions. Since the SCV set policy
is conflict-free, there is always exactly one SCV set selected for each SON
function.

Policy Enforcement Point (PEP) The PEP component is responsible for the ex-
ecution of the THEN part of the policy rules selected by the PDP. That is,
the PEP configures the SON functions with the respective SCVs. For each
SCV set, the PEP determines whether the respective SON function is al-
ready configured accordingly or otherwise, deploys a new SCV set to the
SON function.

A policy system requires an external component that triggers the execution of a
policy. This usually is a monitoring component that triggers the policy system at
fixed time intervals such as every hour or in case the daytime changes from busy
hours to low traffic hours. Also, more sophisticated trigger events are thinkable,
e.g., when an undesired behavior is detected. However, this is a non-trivial task
and is out of the scope of this thesis. An approach of a more complex monitoring
and diagnosis component has been developed during the SEMAFOUR project
and is provided in [Göt+15].

3.2.6. SON Function Engine

From the policy system or more precisely, the PEP, SON management sends the
SCVs to the SON function instances. Each SON function has a number of SCPs
and dedicated parameter values, i.e., SCVs, that can be assigned to the SON func-
tion instances. Examples for parameters are, e.g., activation thresholds, stepsize
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or limits for the output NCPs. Different values for the parameters can influence
the behavior of the SON function instance in such a way that its algorithmic be-
havior changes, thereby its influence on the configuration of the cell, network
element or the complete network changes, and finally the behavior of the net-
work changes. A dedicated set of parameter values for a SON function instance
can influence the behavior of the network in such a way that it works towards
dedicated KPI targets, and hence, operator objectives. Thus, the appropriate con-
figuration (or instrumentation) of the SON function instances being operational
in the network leads to the required network behavior according to the operator
objectives. Standard formats and interfaces are required to provide the necessary
information to SON functions from different manufacturers.

3.3. Evolution to Cognitive SON Management

As already mentioned, in this chapter a general SON management architecture
is presented without going too much into the details of the input models and
the functioning of the reasoning process of finding optimal SCV sets. Instead, it
is the primary aim of this chapter to show the points of intersection between the
different management approaches that are presented in the following chapters.

What all these approaches have in common is the type and structure of their in-
put models, the objective manager as core component mapping data provided by
MNOs and SON function manufacturers, and a policy system to enforce the ob-
jective manager’s decisions in the network. However, input models in the PBSM,
ODSM, ASM and Cognitive SON Management (CSM) approach strongly differ in
the data they provide and their derivation. That is, first of all, the successively in-
creasing amount of unstructured, heterogeneous and partially sketchy data, but
also the complexity of converting them into an automatically processable, stan-
dardized format that can be easily understood by the objective manager. Also,
the reasoning process performed by the objective manager gets more complicated
since input models consist of more and more sub-models with each further SON
management development stage. Even though the output of the objective man-
ager is always an SCV set policy with the same format over all approaches, the
policy rules have to be interpreted by the policy system in a different way.

3.3.1. Policy-based SON Management

Within PBSM, input models are described in a formalized way for the first time.
Besides this, the primary aim of this approach is to overcome the manual gap
as presented in Section 1.2.1. Hence, input models are not that sophisticated but
provide a first draft on how to describe operator and SON function manufacturer
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Table 3.1.: Variations in input models, the objective manager and policy system
from PBSM to ODSM to ASM to CSM
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knowledge. The same applies for the objective manager. An SCV set policy is
determined that calculates the best possible configuration for each SON function
individually, hence not considering KPI effects over two or more different SON
functions. Due to a relatively complex context model, the computational time of
the output SCV set policy calculation is rather high. Although this approach has
several drawbacks, it proposes a first promising method on the way to a fully
developed SON management.

3.3.2. Objective-driven SON Management

ODSM aims at overcoming the main disadvantages of PBSM which foremost
means the improvement of input models as described in Objective 2 (cf. Sec-
tion 1.2.2). Objectives can be weighted and hence, they can be compromised
against each other. Furthermore, objectives now aim at the achievement of con-
crete KPI values and so do SCV sets in the effect model. One of the biggest ad-
vantages compared to PBSM is the functioning of the objective manager. Instead
of determining optimal SCV sets for each SON function individually, cross ef-
fects between them are considered resulting in a combined SCV set. Also, the
output SCV set policy gets less complex and therefore, easier to understand for
an MNO which is a first step to gain trust for an MNO according to Objective 4
(cf. Section 1.2.4).

3.3.3. Adaptive SON Management

ASM does not provide novelties with respect to the context and objective model,
but enhances the initial effect model coming from simulations done by the SON
function manufacturer by a second sub-model. This sub-model is generated by
collecting, filtering and processing real network measurement data and hence,
making the initial effect model more realistic. Furthermore, the problem of the
relatively complex context model is concerned by partitioning the huge context
space into easily manageable context classes. Having such a context classes model
and an advanced effect model, the derivation of optimal SCV sets completely
changes. The objective manager needs to handle both types of effect models
which are generated in different environments. This leads to a more complex
but also much more realistic methodology while on the other hand, computa-
tional effort is reduced by having a simplified context model. Calculations need
to include data coming from different sources and combine them into a context
classes-based SCV set policy covering both environments’ effect models. Sum-
marized, this approach mostly addresses the objective of making the effect model
more realistic, see Objective 2 in Section 1.2.2, and, as a consequence, raises trust
for an MNO, see Objective 4 in Section 1.2.4.
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3.3.4. Cognitive SON Management

In the final development stage, the CSM, objectives described in Section 1.2.2, Sec-
tion 1.2.4 and especially Section 1.2.3 are addressed. While the objective model
stays equal compared to the two previous approaches, the context model and ef-
fect model are each enhanced by one sub-model. Both sub-models use machine
learning techniques to approximate themselves closer to reality. Cells are clas-
sified into cell clusters based on current KPI measurements for a more precise
SCV set selection. A learned effect sub-model predicts the effects of up-to-now
untested SCV sets and thereby enables the usage of a wider variety of possible
SCV sets which may lead to a better network performance in terms of KPIs. The
existence of two more sub-models also leads to an increasingly more complex
reasoning process of the objective manager. Objective definitions are dependent
on context defined by the operator while effects in the effect model depend on
the KPI-based context model. For the elicitation of SCV sets, all effect models
need to be considered at certain points in time. Thereby, having the trust objec-
tive in mind does not facilitate the development of the objective manager in the
CSM approach. The whole process which is getting more and more complex still
needs to be understandable and visible for MNOs. Finally, the output SCV set
policy differs from previous approaches in the fact that it suggests SCV sets for
cells instead of context classes.

3.4. Related Work

Currently, an approach that starts at objectives and uses them to adapt SON func-
tions, i.e., a method to overcome the gap between objectives and SCV sets, is
missing, the reason why SON functions are executed with default parameter val-
ues. Thus, also approaches are considered which do not start at objectives, but
only at a lower level of abstraction. The possibility to enable different constituen-
cies to describe policies at different layers of abstraction, is presented by [Str+06]
in a prototype implementation of the policy continuum. The necessity of having
different abstraction views and the architecture are described in principle, but an
automated approach to transform business policies, i.e., operator objectives, into
low-level policies, i.e., SCV sets, is missing.

An automated approach that deals with the automated transformation of (oper-
ator) business policies into technical policies that can be executed by SON func-
tions, is presented in [RBS11]. Even though this is a promising approach, it is
not objective-driven. The main problem that is solved in this thesis, to over-
come the manual gap between operator objectives and SCV sets, is not part of
that approach since both high-level abstract configuration policies and low-level
concrete parameter values are based on the same paradigm, the ECA-paradigm,
making transformations considerably easier.
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In [Gal+12], a policy-based framework is presented that combines the approaches
published in [RBS11] and [Str+06]. This framework defines three layers on which
policies are described at different degrees of abstraction and a refinement process
that transforms higher-layer policies into policies of the subsequent layer. How-
ever, their transformation starts with business policies and does not consider op-
erator objectives as described in Section 3.2.2.

The approach that is closest to the general SON management approach in this
chapter is the policy refinement approach described in [Ban+04]. The authors
present an approach that transforms goals into low-level policies, i.e., actions to
take in response to some event, in a two-stage process. Thereby, goals are a high-
level description of the expected system state after some event occurrence. First,
a high-level goal is manually elaborated into more detailed sub-goals. Second,
a sequence of concrete actions which achieve the goals are inferred through a
process called abduction. Disadvantages of this approach are, that a detailed
semantic description of the actions in form of pre- and postconditions is needed
in order to be able to execute transformations in an automated way and, that
operations are constant for given goals, i.e., it is not possible to define precedences
for objectives.

A similar approach is presented in [SK05]. In contrast to the previous concept, it
defines the semantics of the actions in form of forecast functions which estimate
the system state after the execution of some action. Thereby, these functions can
be learned. The disadvantage of this approach is the need for a formal, detailed
action model which requires SON function manufacturers to reveal the details of
their SON functions.

In [Kür+10], the authors present an idea which can potentially fill the manual gap
in SON management and operation. This idea describes the refinement of oper-
ator policies into SON function-specific policies in order to configure the SON
functions in a way that their behavior is aligned towards a common goal. How-
ever, it has never been described how this could be accomplished.
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4
Policy-based SON Management

In this chapter, a first approach is presented that allows to overcome the manual
gap described in Section 1.2.1. This approach is called PBSM and its architecture
is strongly related to the architecture presented in the previous chapter. How-
ever, while in Chapter 3 input models and other SON management elements are
described on a high level of abstraction, this chapter presents a first possible im-
plementation of SON management in-depth. Besides a theoretical description of
input models and a concrete specification of the functioning of the objective man-
ager, an example is provided to make the process of finding optimal SCV sets
more clear.

4.1. Motivation

In today’s mobile radio networks the technical objectives are usually well-defined
by MNOs, for example, using templates or handbooks describing how to man-
ually configure the network in order to achieve the given objective. The trans-
formation from technical objectives into SCV sets is mainly performed manually
and strongly depends on the knowledge and experience of the human operators
planning and managing the network. That’s why the focus of PBSM is on identi-
fying existing knowledge in the first place, and to develop a solution that allows
an automated instrumentation of the SON functions such that they contribute to-
wards achieving defined KPI targets. The advantage of having a high degree of
automation is, that, apart from relieving the human operator from performing
this work manually, network context and prioritization between KPI targets can
be considered, which is barely possible at the level of individual cells in case of
manual operation.

By developing the PBSM approach, mainly two objectives of this thesis are ad-
dressed. First, PBSM marks an important step towards an automated network
configuration by overcoming the manual gap. A process is defined to bridge
the gap between technical operator objectives and the adjustment of NCPs in
the RAN. By introducing a policy system, the network can adapt itself at any
time without the need of an operator action. Knowledge on operator and man-
ufacturer side is thereby made available to the SON management in the form of
models that can be automatically processed.
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Figure 4.1.: Objectives of PBSM

Figure 4.1 shows the areas where PBSM meets objectives of this thesis. Overcom-
ing the manual gap, i.e., the above characterized automation gap, dynamics gap
and knowledge gap, covers all three domains and helps to achieve Objective 1:

Objective 1 Automate the process of finding optimal SCV sets and close the manual
gap between operator objectives and SCV sets.

Besides Objective 1, a step forward towards achieving Objective 2 is made by
defining an objective model, context model and effect model for the first time.
Even though they may be not extensive, accurate and realistic enough to be trust-
worthy for an MNO, they provide the basis for further extensions of the input
models.

Objective 2 Automatically generate realistic and complete input models which are con-
tinuously updated according to the current network state such that they optimally sup-
port the SON management system in finding the best possible network configuration.

4.2. Approach

The architecture of PBSM is shown in Figure 4.2 and is thereby consistent with
the one presented in Figure 3.1 while presenting more details. The objective man-
ager acts at design-time and hence, a policy system is needed to deploy SCV sets
by means of a SON function engine in the network. Three types of models are
used to perform the mapping process within the objective manager, namely, the
objective model, context model and the effect model. The effect model is thereby
provided as a set of sub-models each coming from the respective manufacturer
of a SON function.
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Figure 4.2.: Overview of PBSM

For further formalizations, the SON-enabled mobile network needs to be formal-
ized as well. A is the set of all context attributes a ∈ A, i.e., properties that describe
the network and the cells operating in the network.

A = {a1, a2, ..., a∣A∣} (4.1)

F is the set of all SON functions, e.g., MLB, MRO, CCO.

F = { f1, f2, ..., f∣F∣} (4.2)
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For each SON function f ∈ F, a set S f is given containing different SCV sets. An
SCV set s f is a set of values vs f

1 , vs f

2 , ... for input parameters, i.e., SCPs, of a function
f .

S f = {s f
1 , s f

2 , ..., s f
∣S f ∣} (4.3)

The performance of a mobile network is monitored through a set of system KPIs
K, e.g., DCR, HOSR and CL. Thereby, it is assumed that each KPI k ∈ K may have
a different value range Dom(k) ⊆ R, e.g., Dom(DCR) = [0,1].

K = {k1, k2, ..., k∣K∣} (4.4)

In order to simplify the illustration of the PBSM concept, it is assumed that all
SON functions have a cell scope, i.e., for each single cell in the network, there is an
instance of each SON function adapting the NCPs of solely that cell. Accordingly,
technical objectives in the objective model are evaluated in the context of single
cells. This assumption allows to configure SON functions for each single cell
according to the objectives applicable in the context of that cell.

In the following, the details of mentioned models and the process of bringing
them together are explained. The explanation starts with the context model since
its content is relevant within the objective model and the effect model.

4.2.1. Context Model

In nowadays heterogeneous network topologies, different cells play different roles
in achieving the targeted network performance depending on various param-
eters such as the cell’s type, used technologies, type of the cell’s environment,
or density of the surrounding network topology to name a few. These different
roles may be expressed, for example, in terms of individual performance targets
per cell and individual parameterizations of the employed SON functions. With
thousands of cells in realistic networks, it becomes increasingly difficult to man-
ually decide upon these individual settings. For this reason, the characterization
of cells is abstracted by introducing what is called context properties describing
the nature of the cell and the context it is working in.

For instance, such context properties can be:

• The time of the day, since KPI targets and their importance may be different
during peak traffic hours and periods with low traffic, e.g., the time period
from 08:00 till 17:59, or the time periods from 18:00 till 23:59 and from 00:00
till 07:59.

• The location of the cell, since the KPI targets and their importance may be
different in, e.g., urban, suburban, and rural areas, due to user behavior,
number of users, or coverage and capacity requirements.
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• The cell type, e.g., macro cell, micro outdoor cell, or indoor cell, since the
KPI targets and their importance may be different with respect to coverage
and capacity requirements, user behavior, or the availability of cells.

• The status of the system based on performance or fault data, e.g., KPI values
or alarms.

Following the general form of a context model as presented in Listing 3.1, a con-
text model in PBSM looks as follows:

1 {
t ime HAS DOMAIN [ 0 0 : 0 0 , 2 3 : 5 9 ] ,

3 l o c a t i o n HAS DOMAIN {urban , r u r a l }
}

Listing 4.1: Exemplary context model in PBSM

So, the context model defines the value ranges, i.e., domains, of all attributes a ∈
A. When defining domains in a formalized way, one has to distinguish between
discrete and continuous context attribute domains. While discrete attributes ad

such as location and cell_type have a domain consisting of a finite set of values vi
with n possible values, i.e.,

Dom(ad) = {v1, v2, ..., vn} (4.5)

continuous attributes ac have a domain with a certain value range reaching from
a minimum value vmin to a maximum value vmax, i.e.:

Dom(ac) = [vmin, vmax] (4.6)

Summarized, the context model is a set of attributes a ∈ A containing context
properties with either a discrete or a continuous domain.

4.2.2. Objective Model

The primary aim of mobile radio network operations is not the optimization of
dedicated single performance indicators at the cell or base station level, but the
achievement of dedicated KPI targets. Different KPI targets may be competing
with each other, i.e., they are not achievable together. An MNO needs to define
the importance of KPI targets in order to trade them off against each other. This
importance can be expressed through allocating priorities to the individual KPI
targets. Note that a priority here means a ranking of KPI targets and not a weight-
ing. KPI targets and their priorities may change over time due to changing oper-
ator requirements. Furthermore, KPI targets and their priorities may depend on
operational or network context properties as defined in the context model. That
is, there may be different values assigned to the KPI targets, or a different priori-
tization between the KPI targets, depending on various context property values.
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IF con t e x t p r o p e r t i e s comb inat i on THEN KPI t a r g e t WITH p r i o r i t y

Listing 4.2: Technical objective rule in PBSM

In this thesis, a context-dependent KPI target and its associated priority is also
called a technical objective (cf. Listing 4.2).

When combining KPI targets and their priorities with context information, ded-
icated technical objectives can be derived which build the basis for network op-
eration and, hence, the SON system. Spoken in natural language, such technical
objectives are, for example:

• With a very high priority, the cell load in an urban location during peak
hours should be minimized.

• With a high priority, the dropped call rate in an urban location should be
minimized.

• With a moderately high priority, the handover success rate during peak
hours should be maximized.

• With a moderate priority, energy consumption in a rural location should be
minimized.

• With a low priority, the cell load during peak hours should be minimized.

• With a very low priority, energy consumption during periods with low traf-
fic should be maximized.

It is obvious that these technical objectives can be implemented as a set of rules
matching the form of a technical objective defined in Listing 4.2:

1 {
IF t ime i n [ 0 8 : 0 0 , 1 7 : 5 9 ] AND l o c a t i o n = urban THEN CL_MIN WITH 1

3 IF l o c a t i o n=urban THEN DCR_MIN WITH 2
IF t ime i n [ 0 8 : 0 0 , 1 7 : 5 9 ] THEN HOSR_MAX WITH 3

5 IF l o c a t i o n=r u r a l THEN EC_MIN WITH 4
IF t ime i n [ 0 8 : 0 0 , 1 7 : 5 9 ] THEN CL_MIN WITH 5

7 IF t ime i n [ 0 0 : 0 0 , 0 7 : 5 9 ] OR t ime i n [ 1 8 : 0 0 , 2 3 : 5 9 ] THEN EC_MIN
WITH 6

9 }

Listing 4.3: Exemplary objective model in PBSM

CL_MIN thereby refers to the minimization of the KPI CL, DCR_MIN to the mini-
mization of DCR, HOSR_MAX to the maximization of HOSR and EC_MIN to the
minimization of Energy Consumption (EC). The priority encodes the importance
of the KPI target to the operator. The KPI target with the highest importance is
indicated with a priority of 1, decreasing importance is indicated with priority 2,
3, 4, etc.
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Formally, the target tk on a KPI is either approximating 0 in case it should be
minimized or 1 in case it should be maximized. Both, the KPI target tk and the
priority pk, make up a (un-conditioned) technical objective ok ∈ Ok for a KPI k ∈ K.

ok = (tk, pk) (4.7)

with tk ∈ {0, 1} (depending on, if a KPI should be minimized, i.e., tk = 0 or max-
imized, i.e., tk = 1), pk ∈ N and pk ≥ 1. Since a priority must be unique, the
following must apply:

∀oki
, okj

∈ Ok ∶ pki
≠ pkj

(4.8)

For instance, the first objective in Listing 4.3 would be represented as oCL = (0, 1).
Considering the IF part, the objective model OM can be seen as a function that
maps a specific operational context χ ∈ X to a tuple of objectives for all ∣K∣ KPIs,
i.e.:

OM ∶ X ↦Ok1 ×Ok2 ⋅ ⋅ ⋅ ×Ok∣K∣ (4.9)

Note that some important points apply for this implementation of the objective
model. First, the priorities do not need to be unambiguous in some specific con-
text, i.e., it can be the case that one KPI target has two different assigned priorities.
This can happen if two objective rules with overlapping conditions and the same
KPI target are triggered. An overlap thereby means that at least one specific con-
text exists in which both conditions are true. In such cases, this conflict is resolved
by solely considering the higher priority.

Second, it should never be the case that two different KPI targets have an equal
priority in a certain situation, since this would mean that it does not make a dif-
ference to the MNO which KPI target is pursued. In such a situation, the system
cannot make a deterministic decision. Instead, the triggered KPI targets must be
in a total, strict order regarding the priorities in every context (cf. Equation 4.8).
This requirement makes the development of the objective manager more com-
plex. However, the objective manager algorithm provides support for validation
and verification of the objective model.

Third, the objective model does not need to be complete, i.e., not all KPI targets
need to be defined in all contexts, i.e., Ok = ∅ for certain k ∈ K. As presented later,
this might result in the selection of a default SCV set for some SON functions.

4.2.3. Effect Model

SON functions are usually delivered by SON function manufacturers as black
boxes, meaning the operator has no insight into the actual functioning of the al-
gorithms. Hence, an effect model is responsible for encoding a functional descrip-
tion of a specific SON function. That is, the model describes which KPI targets
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the SON function can pursue and how to configure the SON function accord-
ingly. This knowledge can be expressed in simple mappings from KPI effects to
SCV sets.

1 {
MLB Model

3 IF CL_MIN THEN MLB_1
IF EC_MIN THEN MLB_2

5 IF HOSR_MAX THEN MLB_3
IF d e f a u l t THEN MLB_3

7
CCO Model

9 IF DCR_MIN THEN CCO_1
IF CL_MIN THEN CCO_2

11 IF d e f a u l t THEN CCO_2

13 ES Model
IF EC_MIN THEN ES_1

15 IF CL_MIN THEN ES_2
IF d e f a u l t THEN ES_2

17
MRO Model

19 IF HOSR_MAX THEN MRO_1
IF DCR_MIN THEN MRO_1

21 IF CL_MIN THEN MRO_2
IF d e f a u l t THEN MRO_2

23 }

Listing 4.4: Exemplary effect model in PBSM, one function-specific effect model
for each SON function

Listing 4.4 illustrates four sub-models of an effect model, one for each of the SON
functions MLB, CCO, ES and MRO. As can be seen, a mapping in the effect model
links a KPI effect to a single SCV set. Note that the SCV set names, e.g., MLB_1,
are visual placeholders for concrete parameter values as shown in Section 3.2.3.

Formally, the function-specific model for one dedicated SON function f defines a
mapping FM f between a set of possible SCV sets S f and their effects on the KPIs
E f , i.e.

FM f ∶ S f ↦ E f (4.10)

E f = {ε
f
1, ε

f
2, ..., ε

f
∣E f ∣} (4.11)

Thus, the entire manufacturer-provided effect model EM is defined as a set of
function-specific sub-models FM f , one for each SON function:

EM = {FM f1 , FM f2 , ..., FM f∣F∣} (4.12)
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It is assumed that KPI effects in the effect model match KPI targets in the objective
model, i.e., they must have the same name and meaning. Otherwise, the objective
manager can not relate them to each other. Furthermore, an effect model must be
unambiguous, i.e., for each KPI effect there can be at most one SCV set defined.
Otherwise, the objective manager would not know which SCV set to use. Fi-
nally, each sub-model needs to provide a default mapping defining an SCV set if
no matching KPI effect is relevant to the operator. This can be, e.g., a balanced
configuration of the SON function which trades off different KPI targets.

A possible extension of the effect model is to make SCV sets context-dependent
like the objective model. This would allow to express different SCV sets for each
SON function, for example, whether the cell on which ES is active overlaps with
other cells or not, given a so-called heterogeneous networks scenario [Ame12].
However, this increases modeling complexity because it has to be ensured that
the rules of the effect model are conflict-free.

4.2.4. Methodology

Based on the three previously introduced models, the objective manager derives
the SCV set policy according to the algorithm depicted in Figure 3. In principle, it
determines the best SCV sets with respect to the technical objectives in all possible
contexts and subsequently creates policy rules from this information.

4.2.4.1. Generation of Partitioned Context State Space

In the first step, the objective manager builds a space of all possible contexts the
system could be in, referred to as state space. Therefore, it analyzes the context
model: each context property represents a dimension in the state space and the
domain refers to the scale of this dimension. As described in Section 4.2.1, a
context parameter can have a discrete or continuous scale. Since the state space
can be infinitely large, i.e., it contains an infinite number of states, the system
needs to reduce the state space. Therefore, the algorithm divides the state space
into a finite number of state space regions with respect to the technical objectives.
Specifically, a region is a set of adjacent states which have the same KPI targets
tk and priorities pk, i.e., in which the SON system should be configured equally.
The regions can be computed by analyzing the conditions of the objective rules:
for each predicate π, the dimension of the context attribute a in π is partitioned
according to the value v in π.

Formally, a predicate is defined as

π = (a, v) (4.13)

with a ∈ A and v ∈ Dom(ad) if a is a context property with a discrete scale and
v ⊆ Dom(ac) if a is a context property with a continuous scale.
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<<iterative>>

<<iterative>>
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Figure 4.3.: SCV set policy derivation algorithm in PBSM (noted in UML 2)
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For parameters with a discrete scale, such as the location, the partitioning is per-
formed as follows: Regions are defined by the values of the different predicates.
For parameters with a continuous scale, such as the time, the value of the pred-
icate is a range of possible values and hence, the dimension is split into regions
according to upper and lower limits of the range which is defined in the condi-
tion parts of the technical objectives. Consequently, a region ρi is defined as the
cross product of a set of predicates πaj , one for each context attribute aj, i.e.,

ρi = πa1 ×πa2 × ⋅ ⋅ ⋅ ×πa∣A∣ (4.14)

For instance, consider the following predicate time in [08:00, 17:59]. Here, the di-
mension for the context attribute time would be split into three partitions: [00:00,
07:59], [08:00, 17:59], and [18:00, 23:59]. After partitioning the dimensions for all
objective rules, the state space regions are defined as the elements of the cross
product of the partitions of all dimensions. For instance, one region could be
defined by the tuple (time in [18:00, 23:59], location = urban).

Note that the number of regions grows exponentially. For instance, a context
model with ten parameters and one threshold for each parameter results in 210

regions. In general, the number of regions ∣P∣ in a context space is defined as:

∣P∣ =
∣A∣
∏
i=1

∣Πai ∣ (4.15)

with Πai being the set of predicates that belong to a certain attribute ai. Conse-
quently, the partitioned context state space P is defined as a set containing all
regions:

P = {ρ1, ρ2, ..., ρ∣P∣} (4.16)

4.2.4.2. Generation of KPI Target State Space

In the second step of the algorithm, the objective manager determines KPI targets
and their priorities in each region. Since all contexts in a region trigger the same
objective rules, this can be done by picking a random state from the region and
evaluating the objective model for it. The result, after doing this for all regions, is
a KPI target state space T with a set of KPI targets τρj for each region, i.e.

T = {τρ1 , τρ2 , ..., τρ∣P∣} (4.17)

with τρj being a set of applicable KPI targets in region ρj. Applicable thereby
means that a region ρj is a subset or equal to the condition χi of the technical
objective oi, defined by the following function:

isApp(oi) = {
true if ρj ⊆ χi

f alse otherwise
(4.18)
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Consequently, τρj is defined as the union of all matching KPI targets, i.e, where
the function isApp(oi) returns true:

τρj = {oi∣1 ≤ i ≤ ∣O∣ ∧ isApp(oi) = true} (4.19)

Note that it is possible that a KPI target appears several times in a region with
different assigned priorities.

The KPI target state space is not just an intermediate product of the algorithm but
can also be used for validation and verification of the objective model. On the one
hand, the users of the system can inspect KPI targets and their priorities for all re-
gions and validate that the objective rules correctly represent their requirements.
On the other hand, the system can verify that there are no two KPI targets with
the same priority within a region, i.e., there is no confusion in the priority order
of the KPI targets.

4.2.4.3. Generation of SCV Set State Space

In the third step of the algorithm, the system determines the SCV sets for each
region based on the KPI target state space. This is an iterative mapping process
for each region ρi and each SON function f j: from the SCV sets in the function-
specific model for f j, the system selects the one whose KPI target has the highest
priority in τρi . If none of the effects in f j’s effect model matches any KPI target in

τρi , the system selects the default SCV set s
f j
default. Note that the priorities of the

technical objectives in τρi are unique as defined in Equation 4.8. This leads to the
following function selectSet(τρi , f j):

selectSet(τρi , f j) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

map(eq(tl)) if ∃pl∀(tm, pm) ∈ τρi , eq(tm) ∈ E f j , l ≠ m ∶
pl > pm

s
f j
default otherwise

(4.20)

with eq(tl) delivering the effect indicator in the effect model which is equivalent
to tl. map(eq(tl)) names a function that maps the selected highest prioritized KPI
target to the respective SCV set s ∈ S f j . Since there are no two SCV sets with the
same effect indicator, this function returns exactly one SCV set.

Since this function only selects the SCV set for one specific SON function, σρi is a
set of SCV sets, one set for each SON function f j ∈ F:

σρi = {selectSet(τρi , f1), selectSet(τρi , f2), ..., selectSet(τρi , f∣F∣)} (4.21)

Finally, the result of this process is an SCV set state space Σ which is a set of SCV
sets σρi for each region ρi, i.e.:

Σ = {σρ1 , σρ2 , ..., σρ∣P∣} (4.22)
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Based on the SCV set state space, the algorithm can finally compile the SCV set
policy. The SCV set policy is a set of IF-THEN rules, referred to as SCV set policy
rules which, based on some condition over the context, define configuration sets
for the SON functions. A simple approach to build the SCV set policy is to create a
policy rule for each region and each SON function which sets the corresponding
SCV sets. Thereby, the components of the region tuples are translated into the
conjunctive condition of the SCV set policy rule. This, of course, results in a large
number of policy rules. An approach, which overcomes this shortcoming, creates
the policy rules by combining neighboring regions with equal SCV sets. Note
that the SCV set policy is complete and conflict-free because the objective model
has a strict order of the priorities and the effect model is unambiguous. In other
words, there is always exactly one possible SCV sets for each SON function in
every context defined.

4.2.5. Policy System

As described in Section 3.2.5, the policy system in PBSM also consists of a pol-
icy repository, a PDP and a PEP. The output policy generated by the objective
manager is stored in a policy repository and consulted at any time a triggering
situation is monitored. In this case, the PDP gets the current operational context
of each network entity as input. Based on the current context, the PDP can de-
cide which policy rules are applicable. Note that there is only one applicable rule
for each SON function, since the SCV set policy is complete and conflict-free. As
a final step, the PEP determines whether the respective SON function is already
configured accordingly or, otherwise, deploys the SCV set to the SON function.

4.3. Example

In order to get a better understanding of the PBSM work flow, an example shall il-
lustrate the particular steps. Therefore, the context model depicted in Listing 4.1,
the objective model depicted in Listing 4.3 and the effect model depicted in List-
ing 4.4 serve as exemplary input models and basis for the further calculations.

4.3.1. Generation of Partitioned Context State Space

In the first step of the objective manager, context attributes and their values are
investigated. In the example there are two dimensions: the time with the continu-
ous scale [00:00, 23:59] and the location with a discrete scale over the values rural
and urban. While the discrete values for location can be easily identified from the
technical objective conditions, it is more complicated for the time since this is an
attribute with a continuous value scale. Looking into the IF parts of the objective
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rules in Listing 4.3 shows, that it has to be distinguished between three time slots:
[00:00, 07:59], [08:00, 17:59] and [18:00, 23:59]. This spans the partitioned context
state space illustrated in Figure 4.4.

time

location
rural urban

00:00 – 07:59

08:00 – 17:59

18:00 – 23:59

Figure 4.4.: Partitioned context state space for two context attributes time and lo-
cation, each rectangle forming one region in the context state space

4.3.2. Generation of KPI Target State Space

In the second step of the PBSM objective manager algorithm, the KPI target state
space is built. That is, the objective model is scanned for applicable KPI targets
and their priorities in each region. For instance, in the region (time in [18:00,
23:59], location = urban) only the second and the sixth objective rules in List-
ing 4.3 apply, thus, defining the KPI target DCR_MIN, i.e., the minimization of
the dropped call rate, with priority 2 and EC_MIN, i.e., the minimization of the
energy consumption, with priority 6. Repeating this step for all regions in the
partitioned context state space leads to the KPI target state space illustrated in
Figure 4.5.

4.3.3. Generation of SCV Set State Space

The final step of the objective manager comprises the determination of optimal
SCV sets for each SON function. In this example, four SON functions are used,
namely MLB, CCO, ES and MRO. Based on the KPI target state space, the objec-
tive manager selects the SCV set for each SON function which fulfills the highest
priority of a region. The resulting SCV set state space is shown in Figure 4.6.
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EC_MIN WITH 4
EC_MIN WITH 6

DCR_MIN WITH 2
EC_MIN WITH 6

CL_MIN WITH 1
DCR_MIN WITH 2

HOSR_MAX WITH 3
CL_MIN WITH 5

HOSR_MAX WITH 3
EC_MIN WITH 4
CL_MIN WITH 5

EC_MIN WITH 4
EC_MIN WITH 6

DCR_MIN WITH 2
EC_MIN WITH 6

time

location
rural urban

00:00 – 07:59

08:00 – 17:59

18:00 – 23:59

Figure 4.5.: KPI target state space with applicable KPI targets for each region

MLB = MLB_2
CCO = CCO_2

ES = ES_1
MRO = MRO_2

MLB = MLB_2
CCO = CCO_1

ES = ES_1
MRO = MRO_1

MLB = MLB_1
CCO = CCO_2

ES = ES_2
MRO = MRO_2

MLB = MLB_3
CCO = CCO_2

ES = ES_1
MRO = MRO_1

MLB = MLB_2
CCO = CCO_2

ES = ES_1
MRO = MRO_2

MLB = MLB_2
CCO = CCO_1

ES = ES_1
MRO = MRO_1

time

location
rural urban

00:00 – 07:59

08:00 – 17:59

18:00 – 23:59

Figure 4.6.: SCV set state space with best possible SCV sets for each region
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For instance, in the region (time in [18:00, 23:59], location = urban) the SCV set for
MLB is MLB_2 because the KPI target with the highest priority matching pro-
vided effects in the effect model is EC_MIN, the minimization of the energy con-
sumption. Similarly, the SCV set for MRO is MRO_2 because no effect in the
effect model matches the KPI targets in this region and thus, the default SCV set
is selected.

4.3.4. Policy Generation

Based on the SCV set state space, the output SCV set policy can be generated.
Thereby, neighboring regions with the same result, i.e., with the same SCV sets for
all SON functions, are combined such that the number of policy rules is reduced.
The resulting SCV set policy is depicted in Listing 4.5.

1 {
IF t ime i n [ 0 0 : 0 0 , 0 7 : 5 9 ] OR t ime i n [ 1 8 : 0 0 , 2 3 : 5 9 ]

3 THEN MLB = MLB_2
IF t ime i n [ 0 8 : 0 0 , 1 7 : 5 9 ] AND l o c a t i o n = r u r a l

5 THEN MLB = MLB_3
IF t ime i n [ 0 8 : 0 0 , 1 7 : 5 9 ] AND l o c a t i o n = urban

7 THEN MLB = MLB_1
IF ( t ime i n [ 0 0 : 0 0 , 0 7 : 5 9 ] OR t ime i n [ 1 8 : 0 0 , 2 3 : 5 9 ] )

9 AND l o c a t i o n = urban
THEN CCO = CCO_1

11 IF t ime i n [ 0 8 : 0 0 , 1 7 : 5 9 ] OR l o c a t i o n = r u r a l
THEN CCO = CCO_2

13 IF t ime i n [ 0 0 : 0 0 , 0 7 : 5 9 ] OR t ime i n [ 1 8 : 0 0 , 2 3 : 5 9 ]
OR l o c a t i o n = r u r a l

15 THEN ES = ES_1
IF t ime i n [ 0 8 : 0 0 , 1 7 : 5 9 ] AND l o c a t i o n = urban

17 THEN ES = ES_1
IF ( ( t ime i n [ 0 0 : 0 0 , 0 7 : 5 9 ] OR t ime i n [ 1 8 : 0 0 , 2 3 : 5 9 ] )

19 AND l o c a t i o n = urban ) OR ( t ime i n [ 0 8 : 0 0 , 1 7 : 5 9 ]
AND l o c a t i o n = r u r a l )

21 THEN MRO = MRO_1
IF ( ( t ime i n [ 0 0 : 0 0 , 0 7 : 5 9 ] OR t ime i n [ 1 8 : 0 0 , 2 3 : 5 9 ] )

23 AND l o c a t i o n = r u r a l ) OR ( t ime i n [ 0 8 : 0 0 , 1 7 : 5 9 ]
AND l o c a t i o n = urban )

25 THEN MRO = MRO_2
}

Listing 4.5: SCV set policy based on the SCV set state space

4.3.5. Configuration Deployment

Depending on the current operational context, SON function instances installed
on cells in a mobile network can be configured. For instance, imagine a cell in an
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urban area at 8 o’clock pm, building the operational context (time = 20:00, location
= urban), the first, fourth, sixth and eighth policy rules are applicable. The PEP
then configures that cell according to the SCV sets in Listing 4.6 in case they are
differently configured at the moment. Otherwise, no action is required since the
cell is already configured in an optimal way.

{
2 MLB = MLB_2

CCO = CCO_1
4 ES = ES_1

MRO = MRO_1
6 }

Listing 4.6: Applied SCV sets in the operational context time = 20:00, location =
urban

4.4. Related Work

Most of the prior work on goal- or objective-driven management of autonomic
systems assumes that the internal logic of the autonomic functions, i.e., the SON
functions, can be directly defined as a policy. This enables the operator to gain
full knowledge of the SON function algorithms, allows a prediction of their be-
havior and effects and facilitates their design such that they interfere as little as
possible, i.e., such that no two SON functions affect the same objective. However,
this requires the manufacturers to provide a detailed action model and reveal the
details of their SON functions.

In the context of autonomic computing research, the Self-Net project [KN10] de-
fines the policy as a set of rules describing the behavior of the system at a low
level, i.e., which NCPs should be changed in response to some problem. When
lifting this approach to a higher abstraction level, the rules describe the SCV sets
for SON functions, but it is left to the operator to define a conflict-free policy sat-
isfying the objectives. The Generic Autonomic Network Architecture (GANA)
architecture [Ari+10] can be seen as a similar approach.

Several projects working on SON touch SON management, but they mainly de-
scribe abstract ideas without providing detailed solutions regarding the problems
and objectives discussed in this chapter. SOCRATES [Kür+10] presents an idea
describing the refinement of operator policies into SON function-specific policies
such that the SON functions are configured to achieve a common goal. Univer-
Self [Tsa+13b] presents a governance component controlling Network Empower-
ment Mechanisms (NEMs) that refer to SON functions. This component trans-
lates service-level goals that are related to the objectives described in this paper
to NEM-level policies which compare to the SCV sets. This translation is based
on policy templates defined for the service-level goals, i.e., they relate to the effect
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model. The Cognitive Network Management under Uncertainty (COMMUNE)
project [Bar+13] describes a system model called GARSON containing a policy
control plane that controls the cognitive network functions, i.e., SON functions,
via “high-level goals”. Therefore, the policy plane has a set of policy rules defin-
ing the configuration parameters of the algorithms in specific situations.
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5
Objective-driven SON

Management

In Chapter 4 an approach has been presented that overcomes the manual gap and
focuses on a policy-based representation of input models and the output gener-
ated by the objective manager. Even though ODSM also applies policy-based
techniques, it describes an approach that focuses on the definition of a more pre-
cise objective model and the better fulfillment of technical objectives by means of
a more accurate effect model. Hence, this SON management approach is called
objective-driven. ODSM can be seen as an enhancement or a further expansion
stage compared to PBSM. In this chapter, especially the delta to the previous SON
management is described which means a new objective model, an enhancement
to the initial effect model and a new methodology for deriving the SCV set policy
in the first place. It starts with a motivation identifying problems of the PBSM ap-
proach. Afterwards, models and the methodology will be described in a theoret-
ical manner. The chapter is concluded with an example illustrating the approach
and a related work section.

5.1. Motivation

In Chapter 4 a concept for an objective manager is described that automatically
selects the best SCV sets for the SON functions with respect to the operator objec-
tives. It uses three types of models as input: first, an effect model for each SON
function defining the KPIs that are optimized or worsened by a specific SCV set,
second, an objective model describing the operator’s context-specific and prior-
itized KPI targets and third, a context model describing context attributes of the
network and cells operating in it. The objective manager generates an SCV set
policy whose execution deploys those SCV sets to the SON functions that op-
timize the highest prioritized KPI in the current context. Despite being an im-
portant step towards automated network management, this SON management
approach has three shortcomings.

First, the effect model can only describe the maximization or minimization of a
KPI value but not that a specific SCV set keeps the KPI value within some range.
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The same applies for the objective model. Second, the ranking of the KPI tar-
gets through operator defined priorities does not allow a trade-off between the
objectives, if not all KPI targets can be satisfied. Thus, the network will always
be optimized to only the highest ranked objective. Third, in the PBSM approach,
KPI targets used in the objective model and predicted effects in the effect model
need to exactly match each other which might be too inflexible in practice. On the
one hand, that means that they must have the same name and meaning which is
not a problem when using only standardized KPIs or using a translation model
for non-standardized KPIs. On the other hand, also the targets must match each
other which significantly delimitates an MNO when defining his or her objec-
tives.

The ODSM approach overcomes the aforementioned shortcomings of the PBSM
approach and thereby, aims mainly at one objective of this thesis (cf. Figure 5.1):

Objective 2 Automatically generate realistic and complete input models which are
continuously updated according to the current network state such that they optimally
support the SON management system in finding the best possible network configuration.

MANUFACTURER
DOMAIN

OPERATOR DOMAIN

Objective Model

Context Model Effect Model

MANAGEMENT
DOMAIN

SON Management

Objective 2: Realistic 
Input Models

Objective 2: Realistic 
Input Models

Figure 5.1.: Objectives of ODSM

Due to a new structure of the input models, the reasoning process performed by
the objective manager changes accordingly.

For the sequel of this chapter, the following formalizations of the SON-enabled
mobile network as done in the PBSM approach, also apply for ODSM:

F = { f1, f2, ..., f∣F∣} (5.1)

S f = {s f
1 , s f

2 , ..., s f
∣S f ∣} (5.2)

K = {k1, k2, ..., k∣K∣} (5.3)
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5.2. Approach

To overcome the shortcomings described in Section 5.1, this chapter presents an
improved approach. First, the expressiveness of the effect model is enhanced
such that a certain SCV set influences a KPI by maximization, minimization,
neutrality, or by keeping it within a specific interval. Furthermore, the objective
model allows to express concrete value ranges for the KPIs that the SON should
satisfy. With this differentiation, the objective manager is enabled to better adapt
the SCV sets to the operator objectives and can identify conflicts between different
SCV sets. Finally, KPI targets are weighted instead of prioritized in the objective
model allowing to select the best SCV set for a weighted satisfaction of the KPI
targets. In summary, ODSM clearly allows more complex models compared to
PBSM reflecting the requirements on KPI target setting in real systems.

Policy System

Objective Manager

SON Function Engine

SCV Set SCV SetSCV Set

SCV Set Policy

   NCP NCPNCPNCP

Radio Access Network
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Figure 5.2.: Overview of ODSM
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Figure 5.2 shows the architecture of the ODSM approach. In general, the type of
input models are the same as in the PBSM approach. The main difference are the
structure of these already known models and an extension to the effect model, the
so-called combined effect model. However, the combined effect model does not
belong to the domain of the SON function manufacturer since it is an intermediate
product of the reasoning process performed by the objective manager. While the
manufacturer-provided SON function-specific effect models are used only once
for the generation of the combined effect model, the latter is used any time the
SCV set policy needs to be recalculated, e.g., when technical objectives change.
Thus, roughly speaking, the combined effect model replaces the manufacturer-
provided effect models.

The context model as well as the policy system are equal to the ones presented in
Section 4.2.1 and Section 4.2.5 and are not explained in more detail in this chap-
ter.

5.2.1. Objective Model

The objective model defines the operator’s objectives, i.e., for each KPI a target
value together with a weight. The latter represents the importance of the objective
and thus, allows to trade-off the objectives against each other in case they cannot
be satisfied simultaneously. This is especially useful if there are conflicting KPI
targets like the minimization of the energy consumption and the minimization
of the CL. The ODSM approach is based on a weighted sum preference model
which is very common due to its simplicity [BD09]. An objective can furthermore
depend on operational context, i.e., it can vary for different context attributes such
as time of the day, cell types and locations, or traffic patterns. A concrete syntax
to express the objective model are production rules, as depicted in Listing 5.1.

IF c o n d i t i o n THEN KPI t a r g e t WITH we ight

Listing 5.1: Technical objective rule in ODSM

In Listing 5.2 an exemplary objective model is depicted with conditioned and
weighted KPI target rules. Thereby, three KPIs, namely DCR, HOSR and CL are
considered. The dots are placeholders for a set of KPI targets in the respective
operational context.

Formally, the target for a KPI is a set of acceptable values for the KPI, whereas
the weight for a KPI is a real valued number between 0 and 1. Thereby, a higher
weight represents a higher importance. Both the KPI target tk and the weight wk,
make up an objective ok ∈ Ok for a KPI k ∈ K.

ok = (tk, wk) (5.4)

Thereby, tk ⊆ Dom(k) and wk ∶ [0, 1]. For instance, the operator objective to keep
the DCR below 2% with a medium weight is represented as oDCR = ([0, 0.02], 0.5).

94



5.2. APPROACH

The objective model can be seen as a function that maps a specific operational
context χ ∈ X to a tuple of objectives for all ∣K∣ KPIs, i.e.:

OM ∶ X ↦Ok1 ×Ok2 × ⋅ ⋅ ⋅ ×Ok∣K∣ (5.5)

1 {
IF t ime i n [ 0 0 : 0 0 , 0 7 : 5 9 ] AND l o c a t i o n = urban THEN . . .

3 IF t ime i n [ 0 0 : 0 0 , 0 7 : 5 9 ] AND l o c a t i o n = r u r a l THEN . . .
IF t ime i n [ 0 8 : 0 0 , 1 7 : 5 9 ] AND l o c a t i o n = urban

5 THEN DCR ≤ 0 .02 WITH 0 .5
IF t ime i n [ 0 8 : 0 0 , 1 7 : 5 9 ] AND l o c a t i o n = urban

7 THEN HOSR ≥ 0 .95 WITH 0 .2
IF t ime i n [ 0 8 : 0 0 , 1 7 : 5 9 ] AND l o c a t i o n = urban

9 THEN CL ≤ 0 .5 WITH 0 .3
IF t ime i n [ 0 8 : 0 0 , 1 7 : 5 9 ] AND l o c a t i o n = r u r a l THEN . . .

11 IF t ime i n [ 1 8 : 0 0 , 2 3 : 5 9 ] AND l o c a t i o n = urban THEN . . .
IF t ime i n [ 1 8 : 0 0 , 2 3 : 5 9 ] AND l o c a t i o n = r u r a l THEN . . .

13 }

Listing 5.2: Exemplary objective model in ODSM

5.2.2. Effect Model

In principle, an effect model defines predicted effects on KPI values, by a specific
SCV set for a SON function, without considering other SON functions. Analo-
gous, the combined effect model makes a forecast on the effect of a combination
of SCV sets, i.e., one for each SON function.

The model for one SON function f defines a mapping FM f between a set of pos-
sible SCV sets S f and their effect indicators on the KPIs E f .

FM f ∶ S f ↦ E f (5.6)

E f = {ε
f
1, ε

f
2, ..., ε

f
∣E f ∣} (5.7)

Thus, the entire effect model EM is defined as a set of function-specific sub-
models FM f , one for each SON function:

EM = {FM f1 , FM f2 , ..., FM f∣F∣} (5.8)

The function-specific effect models are usually created by the manufacturer of the
respective SON function, but the SON functions themselves are generally pro-
vided as black boxes in order to reveal as little information as possible about
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their internal logic. The concrete value a KPI takes under some SCV set can de-
pend on the concrete mobile network, hence, the effect models need to provide
as much information as necessary for operations but as little as possible. A SON
function optimizes one or several dedicated KPIs, e.g., an MRO function opti-
mizes HOSR, and the SON function is usually configured such that it keeps the
KPI value above or below some threshold, e.g., DCR ≤ 2% and HOSR ≥ 99%.
However, a SON function might affect a KPI in less predictable ways, i.e., the
manufacturer can solely predict that the KPI value is maximized or minimized,
or a SON function might have no effect at all on a certain KPI.

Consequently, an effect indicator ε f ∈ E f is represented by a set of tuples ki, pi,
with ki ∈ K indicating the affected KPI and pi specifying the predicted value for
ki.

ε f = {(k1, p1), (k2, p2), ..., (k∣K∣, p∣K∣)} (5.9)

The predicted value pi can be defined as ≤ x, ≥ x, ↑, ↓, ↔ with x ∈ Dom(ki)
indicating the effects of keeping ki below or above some threshold x as well as the
maximization, minimization and non-influence of ki. For instance, (DCR,≤ 0.02)
describes the effect that the DCR is kept below 2%. For simplicity, it is assumed
that there is exactly one effect tuple for each KPI, i.e., ∣ε f ∣ = ∣K∣.

The formalized effect ϕs(k) of a KPI k for an SCV set s of SON function f is inter-
preted as a subset of the KPIs domain.

ϕs(k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[max(Dom(k))] if (k, ↑) ∈ FM f (s)
[min(Dom(k))] if (k, ↓) ∈ FM f (s)
[Dom(k)] if (k,↔) ∈ FM f (s)
[min(Dom(k)), x] if (k,≤ x) ∈ FM f (s)
[x, max(Dom(k))] if (k,≥ x) ∈ FM f (s)

(5.10)

For instance, (DCR,≤ 0.02) is interpreted as ϕs(DCR) = [0, 0.02].

In the first two cases of Equation 5.10, an interval containing only one value
means that ϕs(k) can only take on this specific value.

Listing 5.3 shows an exemplary effect model as it is used in ODSM, for two SON
functions MRO and MLB.

5.2.3. Methodology

The basic idea of the ODSM approach is to separate the technical knowledge
about how a SON function affects KPIs through a dedicated SCV set, from the
definition of the operator objectives. The objective manager puts the separate
function-specific effect models and the objective model together and determines

96



5.2. APPROACH

1 {
MLB Model

3 IF MLB_1 THEN DCR = ↔ AND HOSR = ↓ AND CL ≤ 0 .6
IF MLB_2 THEN DCR ≤ 0 .02 AND HOSR = ↔ AND CL ≤ 0 .5

5
MRO Model

7 IF MRO_1 THEN DCR = ↓ AND HOSR = ↔ AND CL ≤ 0 .65
IF MRO_2 THEN DCR = ↔ AND HOSR ≥ 0 .99 AND CL = ↔

9 }

Listing 5.3: Exemplary effect model in ODSM, one function-specific effect model
per SON function

the best combination of SCV sets, i.e., one SCV set per SON function per network
cell.

Figure 5.3 depicts a functional overview of the SON management system and the
configuration process which consists of two steps. First, the SON function model
combination step merges the models of all available SON functions into a com-
bined effect model, which allows the estimation of the network performance for
combinations of SCV sets. This step needs to be performed whenever an effect
model changes or a new model is added. The second step of the algorithm com-
bines the generation of context state space regions and assigning applicable KPI
targets to these regions. This process is equal to the first and second step in Sec-
tion 4.2.4 and hence, is not presented in full detail in Figure 5.3. For the details
regarding the generation of a KPI target state space see Section 4.2.4. Third, the
SCV set selection step determines the applicable objectives for the current cell
context and evaluates the network performance estimations from the combined
effect model against these objectives. Thereby, the objective manager can select
the best combined SCV set for all SON functions in every context, generates an
output SCV set policy and afterwards, the policy system deploys the changed
SCVs to the network if they differ from the current SCV set. Note that the latter
step depends on the context of the cell and is performed iteratively for each and
every cell depending on the SCV set policy. The decision for a reconfiguration of
network cells is triggered by events which are raised by entities external to the
actual SON management, e.g., a timer raising events in regular intervals, or a CM
system informing the SON management system about changes in the network
layout.

The basic idea for combining the function-specific effect models and their joint
evaluation is founded on a set-based description of the possible KPI values under
some SCV set, and the expectations of the operator regarding the KPI values.
This allows three interpretations: a pessimistic view, an optimistic view and a
function-specific view.

Optimistic View A KPI value is possible for a combined SCV set if it is possible
for a single SCV set of the combination.
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<<iterative>>

<<iterative>>

<<iterative>>

<<iterative>>

create state space 
regions

create KPI target state 
space

calculate utility for 
combined SCV set effect 

in region

state space regions

conflict-free combined effect model

effect combination

region with utilities of combined SCV sets

SCV set state space

KPI target state space

create combined 
effect model

create KPI target
state space

Scoring of 
combined SCV sets

get mappings from effect 
model

combine effects of SON 
function configurations

identify and delete 
conflicting combined 

configuration sets

mapping rules per combination

effects of all combined configuration sets

select combined SCV set 
with highest utility

combined SCV set with highest utility 

Figure 5.3.: SCV set policy derivation algorithm in ODSM (noted in UML 2)
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Pessimistic View A KPI value is possible for a combined SCV set if it is possible
for each and every single SCV set of the combination.

Function-speci�c View A KPI value is possible for a combined SCV set if it is
possible for the single SCV set whose SON function has the highest impact
on that KPI.

In all cases, an objective is satisfied if the possible KPI values are a subset of those
KPI values expected by the operator. Hence, the pessimistic view sees all SCV
set combinations which definitely meet the objectives as satisfying, whereas the
optimistic view sees all SCV set combinations which maybe meet the objectives
as satisfying. The function-specific view relies on the fact that SON functions
usually aim at the optimization of one (or mostly one) KPI. Giving an MNO the
possibility to decide about the type of combination marks a further important
step towards gaining trust in the SON management system.

5.2.3.1. Effect Model Combination

The main goal of the effect model combination is to predict the effects on KPIs if
several SON functions with some SCV set combination are concurrently active.
Thereby, the set of possible SCV set combinations is the cross product of the SCV
sets for all SON functions.

Σ ∶ S f1 × S f2 × ⋅ ⋅ ⋅ × S f∣F∣ (5.11)

In the optimistic view, the combined effect ϕ̃σ(k) of a SCV set combination σ ∈ Σ
on a KPI k is built by the intersection of the effects of the different SCV sets, i.e.:

ϕ̃σ(k) = ⋂
1≤i≤∣F∣,s=proji(σ)

ϕs(k) (5.12)

with proji(σ) being the projection on the ith element of σ.

In the pessimistic view, the combined effect ϕ̃σ(k) of a SCV set combination σ ∈ Σ
on a KPI k is built by the union of the effects of the different SCV sets, i.e.:

ϕ̃σ(k) = ⋃
1≤i≤∣F∣, s=proji(σ)

ϕs(k) (5.13)

with proji(σ) again being the projection on the ith element of σ.
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Table 5.1.: Overview of combined effects on a KPI with the domain Dom = [0, 100]
for two SCV sets, applying the optimistic combination

p ↑ ↓ ↔ ≥ 1 ≥ 3 ≤ 1 ≤ 3
ϕ [100] [0] [0, 100] [1, 100] [3, 100] [0, 1] [0, 3]

↑ [100] [100]
↓ [0] ∅ [0]
↔ [0, 100] [100] [0] [0, 100]
≥ 1 [1, 100] [100] ∅ [1, 100] [1, 100]
≥ 3 [3, 100] [100] ∅ [3, 100] [3, 100] [3, 100]
≤ 1 [0, 1] ∅ [0] [0, 1] [1] ∅ [0, 1]
≤ 3 [0, 3] ∅ [0] [0, 3] [1, 3] [3] [0, 1] [0, 3]

Table 5.2.: Overview of combined effects on a KPI with the domain Dom = [0, 100]
for two SCV sets, applying the pessimistic combination

p ↑ ↓ ↔ ≥ 1 ≥ 3 ≤ 1 ≤ 3
ϕ [100] [0] ∅ [1, 100] [3, 100] [0, 1] [0, 3]

↑ [100] [100]
↓ [0] [0]∪ [0]

[100]
↔ ∅ [100] [0] ∅
≥ 1 [1, 100] [1, 100] [0]∪ [1, 100] [1, 100]

[1, 100]
≥ 3 [3, 100] [3, 100] [0]∪ [3, 100] [1, 100] [3, 100]

[3, 100]
≤ 1 [0, 1] [0, 1]∪ [0, 1] [0, 1] [0, 100] [0, 1]∪ [0, 1]

[100] [3, 100]
≤ 3 [0, 3] [0, 3]∪ [0, 3] [0, 3] [0, 100] [0, 100] [0, 1] [0, 3]

[100]

In the function-specific view, the combined effect ϕ̃σ(k) of a SCV set combination
σ ∈ Σ on a KPI k is built by the effect of the SCV set of the SON function with the
biggest influence on that KPI, i.e.:

ϕ̃σ(k) = ϕs(k) (5.14)

with 1 ≤ i ≤ ∣F∣, s = proji(σ) being the projection on the ith element of σ and i being
the index of the SON function with the highest impact on k. The knowledge
about which SONfunction most influences a KPI, must be externally provided by
the MNO.
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Table 5.3.: Overview of combined effects on a KPI with the domain Dom = [0, 100]
for two SCV sets, applying the function-specific combination; the hor-
izontal SCV set is the one with a higher impact on the KPI

p ↑ ↓ ↔ ≥ 1 ≥ 3 ≤ 1 ≤ 3
ϕ [100] [0] [0, 100] [1, 100] [3, 100] [0, 1] [0, 3]

↑ [100] [100]
↓ [0] [100] [0]
↔ [0, 100] [100] [0] [0, 100]
≥ 1 [1, 100] [100] [0] [0, 100] [1, 100]
≥ 3 [3, 100] [100] [0] [0, 100] [1, 100] [3, 100]
≤ 1 [0, 1] [100] [0] [0, 100] [1, 100] [3, 100] [0, 1]
≤ 3 [0, 3] [100] [0] [0, 100] [1, 100] [3, 100] [0, 1] [0, 3]

As part of this combination process, conflicting SCV sets of different SON func-
tions are identified. Conflicts are SCV set combinations that might lead to an
unstable and undesired system behavior such as a constantly oscillating network
reconfiguration. A pair of SCV sets is in conflict if their possible effects on a KPI
do not overlap, i.e., they do not agree on their optimization target and optimize
against each other. In other words, the intersection (in case of the optimistic com-
bination) or the union (in case of the pessimistic combination) of the formalized
effects is empty, i.e., they have no common KPI value they both target.

isConf(si, sj) = ∃k ∈ K.ϕsi(k) ∩ ϕsj(k) = ∅ (5.15)

Consequently, an SCV set combination is conflicting if any two contained SCV
sets are in conflict. The set of conflicting SCV set combinations Γ can thus be
determined by:

Γ = {σ ∈ Σ∣∃1 ≤ i ≤ j ≤ ∣F∣.isConf(proji(σ), projj(σ))} (5.16)

Examples for combining KPI effects with an optimistic, a pessimistic and a func-
tion-specific view are given in Table 5.1, Table 5.2 and Table 5.3 respectively,
whereby conflicts are gray shaded. Note that a conflict is defined in the same way
for all types of combinations. In the function-specific view it may be not obvious
why some combinations are marked as conflicts since only the effect of the most
important SON function for a KPI is considered. However, even though some
SCV sets do not have a huge impact on specific KPIs, their combination with
other SCV sets should be sorted out in case they are possibly working against
each other. Furthermore note that in the pessimistic view, neutral effects (↔) are
interpreted as an empty range.

The combined effect model, which is the result of the first step of the objective
manager process, consists of two sets: the set of all conflict-free SCV set combina-
tions ΣΓ and the set of their combined effects Φ.

ΣΓ = Σ ∖ Γ (5.17)
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Note that the dot ⋅ in ϕ̃σ(⋅) represents the union of effects for all network KPIs.

Φ = {ϕ̃σ(⋅)∣σ ∈ ΣΓ} (5.18)

5.2.3.2. Generation of KPI Target State Space

This step summarizes the generation of a partitioned context state space based on
an evaluation of the context model and the objective model’s conditions as well
as the determination of applicable KPI targets for each region in the partitioned
context state space. Equal to the generation of the partitioned context state space
in PBSM, the result of this step is a context state space P containing the set of ∣P∣
context regions ρi.

P = {ρ1, ρ2, ..., ρ∣P∣} (5.19)

Afterwards, the objective manager determines KPI targets and associated weights
by means of a function isApp(ok) (cf. Section 4.2.4.2) resulting in the KPI target
state space:

T = {τρ1 , τρ2 , ..., τρ∣P∣} (5.20)

Formally, T looks similar to the one in PBSM, however, there are two differences.
First, τρi ∈ T consist of objectives that define precise KPI targets that are weighted
instead of prioritized minimum or maximum indications. Second, while in PBSM
a KPI target can occur several times with different assigned priorities, in ODSM
there is exactly one target defined per KPI, i.e.:

∣τρi ∣ = ∣K∣, ∀τρi ∈ T (5.21)

5.2.3.3. Scoring of Combined SCV Sets

In order to select optimal SCV sets, the objective manager iterates over all regions
in the KPI target state space T and selects the best combined SCV set for each
region based on the combined effect model and the objective model. Therefore,
it calculates the utility for each applicable (i.e, conflict-free) combined SCV set
σ ∈ ΣΓ, i.e., its degree of satisfaction of the context-dependent operator objectives,
and selects the SCV set combination with the highest utility. The following de-
scription outlines the selection process for a single network region ρi.

In order to calculate the utility for an SCV set combination σ ∈ ΣΓ, the objective
manager first gets the applicable objectives τρi for the region ρi. Subsequently, it
determines for each applicable objective ok = (tk, wk) ∈ τρi whether σ satisfies the
objective based on its possible values in the combined effect model ϕ̃σ(⋅) ∈ Φ. It
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must be ensured that all possible states of the region configured with σ satisfy the
objectives. Formally, this means that for a KPI k ∈ K, the satisfaction of the target
tk by a combined KPI value ϕ̃σ(k) is defined as:

sat(tk, ϕ̃σ(k)) = {
1 if ϕ̃σ(k) ⊆ tk

0 otherwise
(5.22)

Since the objective model is based on the weighted sum preference model, the
utility of a combined SCV set σ is, in principle, the sum of the satisfaction values
multiplied with the objective weight over all KPIs. However, it is advisable to
use normalized objective weights such that a utility of 1 means the satisfaction of
all objectives. As a result, the utility for a combined SCV set σ is calculated as:

U(σ) = ∑
k∈K

sat(tk, ϕ̃σ(k))wk
w̄

(5.23)

with w̄ = ∑
i∈K

wi.

The combined SCV set σ with the highest utility U(σ) is the one which satisfies
the operator objectives the most. Hence, it should be selected and configured for
the network region ρi. However, if U(σ) < 1, not all objectives could be satisfied
by the SCV set in this specific region. This important feedback can be additionally
provided to the operator.

In case that two or more combined SCV sets have the same utility, one of them
is chosen randomly since they both fulfill the operator objectives to the same
degree. Instead of choosing a random combined SCV set, another option would
be to calculate a distance indicating how far a combined SCV set is away from
fulfilling KPI targets. The combined SCV set with the lowest distance would then
be selected in order to deploy not only a set with the highest degree of objective
fulfillment, but also the one with the overall best possible KPI effects.

5.3. Example

In this section, the ODSM concept is exemplified with two SON functions MRO
and MLB, each with two SCV sets according to the effect model, and three KPIs,
namely DCR, HOSR, and CL. Note that all three KPIs all have the domain [0, 1].
Furthermore, the objective model in Listing 5.2 serves as input to the objective
manager while the focus will be on the fulfillment of objective rules with the
operational context time in [08:00, 17:59] AND location = urban. The context model
is equal to the one presented in Listing 4.1.
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5.3.1. Effect Model Combination

According to Figure 5.3 the first step of the objective manager is the generation
of a combined effect model. Table 5.4 depicts the result of combining the two
function-specific effect models in Listing 5.3 with an optimistic view. On the one
hand, the lines on the top and those on the left show the effect indicators as well
as the KPI effects for the two SCV sets of MRO and MLB respectively. On the
other hand, the cells in the middle show the resulting combined effects ϕ̃ for the
combination of the SCV sets indicated by the row and column.

Table 5.4.: Optimistic effect model combination for MRO and MLB

SON Function MRO

Effect Indicator εMRO
s1 = {(DCR, ↓) ,

(HOSR,↔) , (CL,≤ 0.65)}
εMRO

s2 = {(DCR,↔) ,
(HOSR,≥ 0.99) , (CL,↔)}

Effect
ϕMRO

s1 (DCR) = [0]
ϕMRO

s1 (HOSR) = [0, 1]
ϕMRO

s1 (CL) = [0, 0.65]

ϕMRO
s2 (DCR) = [0, 1]

ϕMRO
s2 (HOSR) = [0.99, 1]

ϕMRO
s2 (CL) = [0, 1]

M
LB

εM
LB

s 1
=
{(

D
C

R
,↔

),
(H

O
SR

,↓
),

(C
L,
≤

0.
6)

}

ϕ
M

LB
s 1

(D
C

R
)=

[0
,1

]
ϕ

M
LB

s 1
(H

O
SR

)=
[0

]
ϕ

M
LB

s 1
(C

L)
=
[0

,0
.6
]

ϕ̃σ11 (DCR) = [0]
ϕ̃σ11 (HOSR) = [0]
ϕ̃σ11 (CL) = [0, 0.6]

ϕ̃σ12 (DCR) = [0, 1]
ϕ̃σ12 (HOSR) = ∅

ϕ̃σ12 (CL) = [0, 0.6]

εM
LB

s 2
=
{(

D
C

R
,≤

0.
02

),
(H

O
SR

,↔
),

(C
L,
≤

0.
5)

}

ϕ
M

LB
s 2

(D
C

R
)=

[0
,0

.0
2]

ϕ
M

LB
s 2

(H
O

SR
)=

[0
,1

]
ϕ

M
LB

s 2
(C

L)
=
[0

,0
.5
]

ϕ̃σ21 (DCR) = [0]
ϕ̃σ21 (HOSR) = [0, 1]
ϕ̃σ21 (CL) = [0, 0.5]

ϕ̃σ22 (DCR) = [0, 0.02]
ϕ̃σ22 (HOSR) = [0.99, 1]

ϕ̃σ22 (CL) = [0, 0.5]

As can be seen, sMLB
1 optimizes HOSR in a way that its value will be minimized

whereas sMRO
2 optimizes against sMLB

1 since its usage would lead to a value ≥ 0.99
for HOSR. According to Equation 5.15, this is denoted as a conflict since the in-
tersection of ϕMLB

s1 (HOSR) = [0] and ϕMRO
s2 (HOSR) = [0.99, 1] results in an empty
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set. Hence, the set of conflict-free SCV set combinations is ΣΓ = {σ11, σ21, σ22}.
These results can be directly translated into a combined effect model matching
the general form of an effect model (cf. Listing 3.3) which is shown in Listing 5.4.

1 {
IF MLB_1 AND MRO_1 THEN DCR = 0 AND HOSR = 0 AND CL ≤ 0 .6

3 IF MLB_2 AND MRO_1 THEN DCR = 0 AND HOSR ≥ 0 AND CL ≤ 0 .5
IF MLB_2 AND MRO_2 THEN DCR ≤ 0 .02 AND HOSR ≥ 0 .99 AND CL ≤ 0 .5

5 }

Listing 5.4: Combined effect model in ODSM, optimistic view
1 {

IF MLB_1 AND MRO_1 THEN DCR ≤ 1 AND HOSR = 0 AND CL ≤ 0 .65
3 IF MLB_2 AND MRO_1 THEN DCR ≤ 0 .02 AND HOSR ≥ 0 AND CL ≤ 0 .65

IF MLB_2 AND MRO_2 THEN DCR ≤ 0 .02 AND HOSR ≥ 0 AND CL ≤ 0 .5
5 }

Listing 5.5: Combined effect model in ODSM, pessimistic view
1 {

IF MLB_1 AND MRO_1 THEN DCR = 0 AND HOSR ≥ 0 AND CL ≤ 0 .6
3 IF MLB_2 AND MRO_1 THEN DCR = 0 AND HOSR ≥ 0 AND CL ≤ 0 .5

IF MLB_2 AND MRO_2 THEN DCR ≤ 1 AND HOSR ≥ 0 .99 AND CL ≤ 0 .5
5 }

Listing 5.6: Combined effect model in ODSM, function-specific view
One can easily do the combination with a pessimistic or a function-specific view.
The resulting combined effect models for these views are shown in Listing 5.5
and Listing 5.6 respectively. For the function-specific view it is assumed that the
main driver for DCR and HOSR is the MRO function, while MLB has the highest
impact on the CL. For both types of combinations the combined set σ12 also results
in a conflict.

5.3.2. Generation of KPI Target State Space

In the second step of the algorithm for the derivation of an SCV set policy, the
KPI target state space is generated in order to define which objective rules apply
for which region in the context state space. Due to the same context model as
in the PBSM example, the partitioned context state space looks just as the one
depicted in Figure 4.4. The KPI target state space (cf. Figure 5.4) contains six
regions whereby only a closer look at τ(time in [08∶00, 17∶59], location=urban) is given in
this example. For this region, three objectives, one per KPI, are applicable:

• oDCR = ([0, 0.02], 0.5)

• oHOSR = ([0.95, 1], 0.2)

• oCL = ([0, 0.5], 0.3)
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DCR target WITH weight
HOSR target WITH weight

CL target WITH weight

DCR target WITH weight
HOSR target WITH weight

CL target WITH weight

DCR target WITH weight
HOSR target WITH weight

CL target WITH weight

DCR target WITH weight
HOSR target WITH weight

CL target WITH weight

DCR target WITH weight
HOSR target WITH weight

CL target WITH weight

time

location
rural urban

00:00 – 07:59

08:00 – 17:59

18:00 – 23:59

DCR   0.02 WITH 0.5
HOSR   0.95 WITH 0.2

CL   0.5 WITH 0.3

Figure 5.4.: KPI target state space with applicable KPI targets in region (time in
[08:00, 17:59], location = urban)

5.3.3. Scoring of Combined SCV Sets

Table 5.5 visualizes the scoring of the conflict-free combined SCV sets in the
SCV set selection step with an optimistic view. Thereby, the columns in the
header depict the objectives for the three KPIs DCR, HOSR and CL in the region
τ(time in [08∶00, 17∶59], location=urban) and the rows show the performed computations
for each combined SCV set. In ϕ⋅(k) and sat(⋅) the ⋅ refers to the respective com-
bined SCV set, i.e., either σ11 or σ21 or σ22. As can be seen, combined SCV set σ11
does only satisfy objective oDCR and, thus, has an overall utility of 0.5. SCV set
combination σ21 does satisfy oDCR and oCL which leads to an overall utility of 0.8.
Since the SCV set σ22 satisfies all objectives, it gets with 1.0 the highest score and,
consequently, is selected.

In contrast to the optimistic view, the results in the pessimistic view strongly dif-
fer in the calculated utilities for the particular combined SCV sets, see Table 5.6.
This is due to wider ranges of the combined SCV sets having the result that Equa-
tion 5.22 is not fulfilled. However, even though σ22 does not fulfill all objectives
in the pessimistic view, it is still the combined SCV set with the highest utility
and hence, the one to be selected for this region.

In the function-specific view, not only the utilities are varying from the previous
views, but also the resulting combined SCV set. Similar to the pessimistic view,
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none of the σs can fulfill all KPI targets. However, the one with the highest utility
is σ21 since it fulfills the objectives oDCR and oCL.

Table 5.5.: Scoring of the exemplary combined SCV sets with an optimistic view
oDCR = ([0, 0.02] , 0.5) oHOSR = ([0.95, 1] , 0.2) oCL = ([0, 0.5] , 0.3) U(⋅)

ϕ̃ ⋅
(D

C
R)

sa
t(⋅

)

w D
C

R

ϕ̃ ⋅
(H

O
SR

)

sa
t(⋅

)

w H
O

SR

ϕ̃ ⋅
(C

L)

sa
t(⋅

)

w C
L

σ11 [0] 1
0.5

[0] 0
0.2

[0, 0.6] 0
0.3

0.5
σ21 [0] 1 [0, 1] 0 [0, 0.5] 1 0.8
σ22 [0, 0.02] 1 [0.99, 1] 1 [0, 0.5] 1 1.0

Table 5.6.: Scoring of the exemplary combined SCV sets with a pessimistic view
oDCR = ([0, 0.02] , 0.5) oHOSR = ([0.95, 1] , 0.2) oCL = ([0, 0.5] , 0.3) U(⋅)

ϕ̃ ⋅
(D

C
R)

sa
t(⋅

)

w D
C

R

ϕ̃ ⋅
(H

O
SR

)

sa
t(⋅

)

w H
O

SR

ϕ̃ ⋅
(C

L)
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t(⋅

)

w C
L

σ11 [0, 1] 0
0.5

[0] 0
0.2

[0, 0.65] 0
0.3

0
σ21 [0, 0.02] 1 [0, 1] 0 [0, 0.65] 0 0.5
σ22 [0, 0.02] 1 [0, 1] 0 [0, 0.5] 1 0.8

Table 5.7.: Scoring of the exemplary combined SCV sets with a function-specific
view

oDCR = ([0, 0.02] , 0.5) oHOSR = ([0.95, 1] , 0.2) oCL = ([0, 0.5] , 0.3) U(⋅)

ϕ̃ ⋅
(D

C
R)

sa
t(⋅

)

w D
C

R

ϕ̃ ⋅
(H

O
SR

)

sa
t(⋅

)

w H
O

SR

ϕ̃ ⋅
(C

L)

sa
t(⋅

)

w C
L

σ11 [0] 1
0.5

[0, 1] 0
0.2

[0, 0.6] 0
0.3

0.5
σ21 [0] 1 [0, 1] 0 [0, 0.5] 1 0.8
σ22 [0, 1] 0 [0.99, 1] 1 [0, 0.5] 1 0.5

5.3.4. Policy Generation and SCV Set Deployment

An excerpt of the resulting policy comprising the scoring results with an opti-
mistic view is depicted in Listing 5.7. For each cell which is located in an urban
area, the MLB function is configured with an SCV set MLB_2 and the MRO func-
tion with an SCV set MRO_2 during peak traffic hours, i.e., between 8 o’clock am
and 5:59 pm.
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1 {
. . .

3 IF t ime i n [ 0 8 : 0 0 , 1 7 : 5 9 ] AND l o c a t i o n = urban
THEN MLB = MLB_2

5 IF t ime i n [ 0 8 : 0 0 , 1 7 : 5 9 ] AND l o c a t i o n = urban
THEN MRO = MRO_2

7 . . .
}

Listing 5.7: Excerpt of SCV set policy based on the scoring of the combined SCV
sets

For the pessimistic and function-specific view, the policy generation and the se-
lection of appropriate SCV sets works analogously.

5.4. Related Work

Most of the work related to the presented approach has already been presented
in Section 3.4 and Section 4.4. Several projects working on SON management
were tackled while none of them describe concrete ideas and a detailed solution
for the realization of a SON management system. Other approaches describe
ways to refine high-level business policies into technical policies, however, this
refinement process is mainly done manually or done on a more abstract level.

In this chapter, an approach has been presented that combined effect models of
different SON functions into a combines effect model, thereby enabling a design-
time coordination of SON functions by identifying SCV sets that have a conflic-
tive influence on each other. Several approaches deal with the coordination of
SON functions. The authors of [Iac+14c], [Iac+14b] and [Iac+16] present a rein-
forcement learning framework that uses function approximation to coordinate
the actions of two distributed SON functions MLB and MRO. While this SON
coordinator tries to resolve such conflicts after their appearance, i.e., at runtime,
SON management as described in this chapter tries to find non-conflicting SCV
sets beforehand that do not influence each other negatively. In contrast, the au-
thors of [Ban13], [Ban+11] and [BSR11] have already identified the existence of
a variety of conflict types. Besides configuration conflicts which are typical run-
time conflicts as described above, they have also identified design-time conflicts
called characteristic conflicts in their work. However, these conflicts appear when
two or more SON functions touch the same NCP which is a different type of con-
flict as those defined in this chapter. Also, the authors of [CAA13] describe an
approach to coordinate autonomic functionalities, i.e., SON functions, while also
focusing on conflicts after their appearance. In [Tsa+13a], a prototypical approach
is proposed to implement a SON function coordinator in a unified management
framework.
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The conflicts described in this chapter are based on manufacturer effect mod-
els and hence, describe a new reason for an undesired network behavior. In or-
der to guarantee the best results, both the pre-coordination in this management
approach as well as the post-coordination within the mentioned related work,
should run in parallel. However, the development of a SON coordinator is not in
the focus of this thesis.

The approach that is closest to the presented solution is [Fre16]. The author
presents a SON management approach that is driven by more sophisticated ob-
jectives. While objectives in the ODSM approach only have a binary degree of ful-
fillment, the author describes the degree of fulfillment by means of fuzzy ranges
(cf. [FSB13]) allowing for a more detailed objective evaluation. Since the focus in
this thesis is mainly on the generation of a more sophisticated context and effect
model, these approaches can be easily combined. A difference to this work lies in
the fact that the author does the calculation of optimal SCV sets at runtime. The
advantages and shortcomings of both approaches have already been discussed in
Section 3.2.4.
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6
Adaptive SON Management

The third SON management approach presented in this thesis is ASM. Compared
to the PBSM and ODSM approaches, ASM is the first approach to use feedback
coming from the real network and using this feedback to adapt existing input
models, hence it is called adaptive. ASM is based on the concepts and findings
of ODSM and enhances its input models, thereby overcoming shortcomings of
ODSM. The focus of this chapter is on an extension to the context model and
the effect model. Furthermore, the usage of two new sub-models accounts for a
completely new methodology of the component which brings all these models
together, the objective manager. Also the policy system, i.e., the structure of the
SCV set policy, is affected by these changes. After describing the models and
methodology in a theoretical way, the process of finding optimal SCV sets in ASM
is exemplified and related work is presented.

6.1. Motivation

The policy-based and objective-driven approaches entail some shortcomings. The
design-time computation of the SCV set policy may be computationally expen-
sive due to an exponential growth of the considered context state space. This
is due to the fact that within the objective manager, the SCV sets for each SON
function in each possible operational context needs to be calculated any time a
reconfiguration of the network is triggered. The runtime option described in Sec-
tion 3.2.4 avoids this problem by only determining optimal SON function SCV
sets for the one cell or the set of cells that require a reconfiguration. However,
this option has the disadvantage that the management of SON functions gets
more nebulous for MNOs and thereby disagrees with one of the main objectives
of this thesis: Gaining trust in SON management. Hence, a method needs to be
found to significantly reduce the exponentially growing context state space to a
manageable set of states.

A second shortcoming that both previous approaches have in common, is, that
the manufacturer-provided effect model predicts KPI effects under a certain SCV
set uniformly for all cells in the network without considering the cell’s opera-
tional context. Consequently, a possible extension of the effect model is to make
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the SCV sets context-dependent like the objective model. This allows for express-
ing different KPI effects for different combined SCV sets and hence, a more pre-
cise forecasting of network behavior. However, this increases modeling complex-
ity because it has to be ensured that the rules of the effect model are conflict-free
in order to guarantee a conflict-free SCV set policy. If the SCV set policy is not
conflict-free, the selection of SCV sets is ambiguous which could lead to errors
when reconfiguring a SON function.

In the PBSM approach, the effect model could only describe the minimization,
maximization or neutrality of of a KPI value, but not that a specific SCV set keeps
the KPI value within some range, e.g., DCR lower than 0.5%. In the ODSM ap-
proach, the effect model is extended in a way that allows the definition of value
ranges for the KPI targets. However, it is the goal to make the effect model more
precise and hence, to define concrete KPI effects instead of just giving a vague
indication about the impact of certain SCV sets in the network.

Finally, the manufacturer-provided effect model is only based on simulations
done in the manufacturer’s network environment and hence, the predicted ef-
fects in the real network could be inaccurate due to the different environments.
It is expected that the predictions do not hold true in a real network environ-
ment and therefore, feedback in terms of KPI measurements has to be taken into
account. Besides the adaptation of the initially provided effect model, such an
effect sub-model marks an important step forward towards a cognitive manage-
ment approach. Such a system would not only rely on simulated results, but in-
stead it does a simple learning by permanently enriching, analyzing and thereby
improving information required for the calculation of optimal SCV sets. Hence,
three objectives are addressed in this chapter, depicted in Figure 6.1.

MANUFACTURER
DOMAIN

OPERATOR DOMAIN

Objective Model

Context Model Effect Model

MANAGEMENT
DOMAIN

SON Management

Objective 2: Realistic 
Input Models

Objective 2: Realistic 
Input Models

Objective 4: Trust

Figure 6.1.: Objectives of ODSM

By defining two new sub-models, one for the context model and one for the effect
model, a step forward to fulfilling the subsequent objective is made:

Objective 2 Automatically generate realistic and complete input models which are con-
tinuously updated according to the current network state such that they optimally sup-
port the SON management system in finding the best possible network configuration.
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Also, having more trustful data within the effect model and making the context
model more manageable helps to fulfill Objective 4 which is defined as:

Objective 4 Develop a fully automated SON management system which allows MNOs
to comprehend, restrict and influence automated actions at any time.

6.2. Approach

Similar to previous approaches ASM also requires three different types of initial
input models: the context model and the objective model, both provided by the
MNO, and the effect model which is provided by the SON function manufac-
turer. With these input models, the central SON management entity, denomi-
nated as objective manager, generates an SCV set policy as output, i.e., a list of
rules giving an indication how to configure the SON functions to best fulfill op-
erator objectives. A policy system decides which policy rule has to be executed
and hence which SCV set is deployed to the network. To this point the approach
seems similar to the PBSM and ODSM approaches. However, the input models
strongly differ in the data they provide.

The context model is separated into two sub-models: One that describes context
attributes and possible values for these attributes, the so-called context attributes
model. Another sub-model is based on the definition of context attributes and
their values, the so-called manual context classes model which needs to be pro-
vided by the MNO. Within this model, the operator defines partitions of the con-
text state space in which he or she assumes that cells behave similar. Techni-
cal operator objectives defined in the objective model depend on these context
classes, thereby significantly reducing the number of objectives that have to be
specified by the MNO. KPI effects in the effect model are also dependent on these
classes, leading to more accurate performance prediction. Note that this applies
for all types of sub-models of the effect-model, i.e., the initially provided effect
model, the combined effect model and the real network effect model. The latter
represents a model that is derived by collecting data about how different SCV sets
effect KPIs in the real network, hence leading to a more realistic description of the
SON functions’ behavior. This model is generated by the objective manager and
continuously adapted (hence adaptive SON management) and improved during
runtime by using real network measurements in terms of FM, PM and CM data.
An overview of the general ASM approach is depicted in Figure 6.2.

By starting with a simulated effect model, i.e., the combined effect model, and,
when a sufficient number of measurements has been collected, replacing it with
a model that describes the effects in the real network, a more accurate SCV set
policy can be generated that can yield a better performance in achieving operator
objectives.

113



6. ADAPTIVE SON MANAGEMENT
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Figure 6.2.: Overview of ASM

Note that for the sequel of this chapter, the formalizations of the SON-enabled
mobile network, i.e., the definition of SON functions (cf. Equation 5.1), the SCV
sets per SON function (cf. Equation 5.2) and the KPIs (cf. Equation 5.3) as done
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in the PBSM and ODSM approach, also apply for ASM.

6.2.1. Context Model

In general, the context model in ASM is provided through the MNO and de-
scribes the network environment through cell attributes such as the geographical
area, the data traffic situation or the predominant user mobility type. By the val-
ues of these attributes the actual context of a cell can be represented. Due to dif-
ferent cell contexts the KPI target values defined by the MNO might be different,
see Figure 6.3.

KPI targets 1

KPI targets 2

KPI targets 3

KPI targets 4

Figure 6.3.: KPI targets for different cells in the network

Manual Context Classes Model
In previous approaches, the MNO had to specify operator objectives for arbitrary
combinations of these context attributes, building the condition part of the tech-
nical objectives and potentially leading to a big number of objective rules due to
the exponential growth of the context state space as described in Section 6.1. The
given set of context attributes spans a context state space consisting of all possi-
ble context attribute combinations that may exist. For each context attribute an
additional dimension is required which significantly increases the number of po-
tential context parameter combinations. In order to reduce the size of the context
state space, it shall be partitioned into disjoint classes where each class is a com-
bination of context attributes and respective values that represents a certain cell
type in the network. The specific classes are defined by the operator individually
depending on which types of cells should be considered jointly.

The definition of context classes, i.e., cells with similar context, reduces the com-
plexity for the MNO because it allows to formulate KPI target values for the
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Figure 6.4.: Exemplary partitioning of the context state space into four disjoint
context classes

relative small number of context classes instead of defining values for each at-
tribute combination. Note that not all context attribute combinations need to be
covered by the context classes. A combination that is not considered within the
classes definition means that no cell exists in the network with this operational
context. This is important since it is assumed that not all combinations of context
attributes are relevant for an operator and hence, the manual effort for defining
context classes is limited.

For instance, manual context class 3 in Figure 6.4 is defined as:

• location = {Urban}

• cell_type = {Micro, Macro}

Taking the above mentioned definition, context classes can be expressed by means
of condition-action rules where the IF part specifies the combination of context
attributes and their values, and the THEN part defines the name of the context
class:

IF con t e x t paramete r comb ina t ion THEN con t e x t c l a s s

Listing 6.1: Classes definition rule in ASM

Bringing together the general form of context classes rules and the partitioned
state space in Figure 6.4, an exemplary context classes model could look as de-
picted in Listing 6.2.

On a more formal level, the manual context classes model CM defines a mapping
from the context state space R to context classes C with ci being a single context
class.

CM ∶ R ↦ C (6.1)
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1 {
IF ( l o c a t i o n = r u r a l OR l o c a t i o n = highway ) AND ( c e l l_ t y p e = micro

3 OR c e l l_ t y p e = macro ) THEN CLASS_1
IF ( l o c a t i o n = urban AND c e l l_ t y p e = p i c o ) OR ( l o c a t i o n = suburban

5 AND ( c e l l_ t y p e = micro OR c e l l_ t y p e = p i c o ) ) THEN CLASS_2
IF l o c a t i o n = urban AND ( c e l l_ t y p e = micro OR c e l l_ t y p e = macro )

7 THEN CLASS_3
IF ( l o c a t i o n = r u r a l OR l o c a t i o n = highway ) AND c e l l_ t y p e = p i c o

9 THEN CLASS_4
}

Listing 6.2: Exemplary context classes model in ASM

C = {c1, c2, ..., c∣C∣} (6.2)

Each ci consists of an arbitrary number of context state space regions ρj ∈ R as
defined in Equation 4.16 and consequently:

ci = {ρj∣1 ≤ j ≤ ∣R∣ ∧ ∀ck ∈ C, i ≠ k ∶ ρj ∉ ck} (6.3)

Note that a region can only belong to one context class as defined above, since
otherwise the selection of appropriate SCV sets in the end would lead to a conflict
due to ambiguous policy rules.

6.2.2. Objective Model

With the objective model, the MNO can express requirements about the network
performance through KPI target values. Equal to the ODSM approach, weights
represent the importance of a KPI target and allow a trade-off between them
in case they cannot be satisfied simultaneously. In contrast to the previous ap-
proach, KPI targets are defined per manual context class. Combining this infor-
mation, a technical objective is defined as condition-action rule with the following
general form:

IF con t e x t c l a s s THEN KPI t a r g e t s WITH we ight

Listing 6.3: Technical objective rule in ASM

Following this definition, the objective model OM can be seen as a function map-
ping context classes to tuples of objectives for all ∣K∣ KPIs, i.e:

OM ∶ C ↦Ok1 ×Ok2 ×⋯×Ok∣K∣ (6.4)

with Oki
being a set of objectives oki

∈ Oki
for a KPI ki ∈ K.

An exemplary objective model with context class-dependent KPI targets for three
KPIs DCR, HOSR and CL is shown in Listing 6.4. As can be seen, the objective
model is much more clearly arranged compared to previous objective models due
to a reduced number of technical objectives rules, i.e., one per KPI and context
class.
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1 {
IF CLASS_1 THEN . . .

3 IF CLASS_2 THEN . . .
IF CLASS_3 THEN DCR ≤ 0 .02 WITH 0 .5

5 IF CLASS_3 THEN HOSR ≥ 0 .95 WITH 0 .2
IF CLASS_3 THEN CL ≤ 0 .5 WITH 0 .3

7 IF CLASS_4 THEN . . .
}

Listing 6.4: Exemplary objective model in ASM

6.2.3. Effect Model

Information about the SON functions is provided through the effect model which
shall describe the behavior of the SON functions regarding the coherence between
a dedicated SCV set and the corresponding impact on the KPIs. On the one hand,
an effect model may be provided from the manufacturer of the SON function to-
gether with the black box SON algorithm itself. Presumably, this manufacturer-
provided model is generated using simulation tools, with the shortcoming that
a simulator-generated model is unlikely to be adapted to the actual network
and SON environment the SON function is finally implemented in. Hence, this
simulator-generated model may not lead to the intended network performance
and a method must be found to take the real network into account. Therefore, an
effect model in ASM is split into two sub-models: A combined effect model gen-
erated by bringing together initially provided manufacturer effect models and a
real network effect model which is derived during operation of the network. The
latter is built based on real measurements from the MNO’s operational network.
With this approach, a new dedicated model is created based on collected and an-
alyzed network measurements. These KPI measurements are put into relation
with the respective SCV set and the current operational context, i.e., the context
class. The creation of such an adaptive effect model and the possibilities for com-
bining the real network effect model with the combined effect model are further
described in the course of this chapter.

6.2.3.1. Manufacturer Effect Model

In contrast to the definition of the initial effect model as described in the ODSM
approach, one major difference in ASM is that this model is context-dependent.
Different SCV sets may have an unequal impact on the KPIs for cells in various
operational contexts. Hence, SON function manufacturers need to provide an
effect model that describes KPI effects of possible SCV sets for manual context
classes. The context classes model has to be made available to manufacturers
by the MNOs such that KPI effect predictions can be calculated based on these
context classes. Since it is assumed that cells in the same context class have a
similar behavior in terms of network KPI, such a context-dependent effect model
describes effect predictions for cells in a more accurate way.
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Furthermore, while an effect prediction in ODSM is, amongst others, defined as
the minimization, maximization or neutrality of a KPI, in ASM an effect predic-
tion only defines a certain value range the KPI will be in when deploying the re-
spective SCV set. This also increases accuracy of the effect model which is neces-
sary for the calculation of optimal SCV sets in the ASM objective manager. These
two points mentioned above lead to the following general form of a manufacturer
effect model in ASM:

IF con t e x t c l a s s AND SCV s e t THEN KPI e f f e c t s

Listing 6.5: Effect model rule in ASM

Hence, both the name of the context class and an SCV set of a specific SON func-
tion f , make up a condition b f

i ∈ B in the effect model for f :

B f = {b f
1 , b f

2 , ..., b f
∣B f ∣} (6.5)

b f = (c, s f ) (6.6)

The sub-model for one SON function f defines a mapping between a set of pos-
sible conditions B f and their effect indicators on the KPI E f .

FM f ∶ B f ↦ E f (6.7)

with E f referring to the set of KPI indicators as defined in Equation 5.7 and the
particular effect indicators ε f ∈ E f being defined according to Equation 5.9. One
major difference to previous approaches is the definition of the formalized effect
ϕb f (k) of a KPI k for a condition b f within a SON function f which is confined to
value ranges, i.e:

ϕb f (k) =
⎧⎪⎪⎨⎪⎪⎩

[min(Dom(k)), x] if (k,≤ x) ∈ FM f (s)
[x, max(Dom(k))] if (k,≥ x) ∈ FM f (s)

(6.8)

6.2.3.2. Combined Effect Model

The generation of a combined effect model in principal works similar to the
methodology described in Section 5.2.3.1. The possibilities of combining the
value ranges of KPIs are significantly reduced due to the lack of minimization,
maximization and neutrality values. The only difference is that the initial effect
models are context-dependent which does not effect the general way of combin-
ing manufacturer effect sub-models. However, the combination has to be done
for each manual context class individually in order to not mix up the effect indi-
cations.
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The result of combining context-dependent effect sub-models is a set of conflict-
free SCV set combinations ΣΓc

c for each context class c ∈ C and Γc being the set
of conflicting SCV set combinations for that context class. Note that the set of
conflicting SCV set combinations may be different for different context classes.

ΣΓc
c = Σ ∖ Γc (6.9)

Consequently, the conditions of the generated combined effect model can be de-
scribed as tuples consisting of the context class c and the non-conflicting com-
bined SCV sets σ ∈ ΣΓc

c . The set of conditions is defined as Ψc for each context
class c and Φc as the set of combined KPI effect indicators ϕ̃c

σ.

Ψc = {(c, σ)∣σ ∈ ΣΓc
c , c ∈ C} (6.10)

Φc = {ϕ̃c
σ(⋅)∣σ ∈ ΣΓc

c , c ∈ C} (6.11)

Combining this and following the general form of an effect model rule, the com-
bined effect model can be described as a mapping function from conflict-free com-
bined SCV sets to combined KPI effect indicators, i.e.:

EMcombined ∶ Ψ ↦ Φ (6.12)

6.2.3.3. Real Network Effect Model

One of the major shortcomings of PBSM and ODSM is that the effect models
in these approaches only come from the manufacturers of a SON function and
therefore, predictions in there are inaccurate in the real network with the utmost
probability. In order to overcome this problem, a new type of effect model is in-
troduced which is called real network effect model. As the name suggests, the
model is created by taking real network measurements into account and process-
ing these data to a more accurate model reflecting the actual effects of combined
SCV sets in the network.

The processing of KPIs is divided into two steps: the selection of suitable KPI
measurements and the generation of SCV set statistics, i.e., the real network effect
model.

KPI Measurements Selection
A KPI measurement µc

σ(⋅) with a combined SCV set combination σ and a context
class c is described as a set of several KPI values µc

k, one for each of the ∣K∣ KPIs,
see Equation 6.13.

µc
σ(⋅) = {µc

k1
, µc

k2
, ..., µc

k∣K∣
} (6.13)
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Consequently, the set of all measurements MM contains all raw measurements
for all context classes and all combined SCV sets that have been applied while
measurements were taken. The set of applied SCV set combinations ΣΓc

app is a
subset of the set of conflict-free set combinations ΣΓc for the respective manual
context class c ∈ C, i.e. ΣΓc

app ⊆ ΣΓc .

MM = {µc
σ(⋅)∣σ ∈ ΣΓc

app, c ∈ C} (6.14)

Note that MM must not necessarily contain measurements of all combined SCV
sets. This depends on which SCV set combinations were already deployed in the
network.

The bulk of available KPI measurements needs to be categorized per source con-
text class and, within these context classes, per SCV set combination. The reason
for this categorization is that the SCV set combination is performed per context
class. Hence, for determining the effect of an SCV set combination on the behav-
ior of a SON function, only those KPI measurements are relevant for a context
class that stem from exactly this context class. The KPI selection has to be per-
formed separately for each combined SCV set within a context class, as they are
not comparable. This process is depicted in Figure 6.5.

      KPI Measurements
        @DATE

                        @CONFIGURATION
                     @CLASS

      KPI Measurements
        @DATE

                        @CONFIGURATION
                     @CLASS

      KPI Measurements
        @DATE

                        @CONFIGURATION
                     @CLASS

Figure 6.5.: Selection of appropriate measurements for each SCV set in a context
class

Hence, MM can be also represented as a set of measurement subsets Mc
σ, catego-

rized per context class c and SCV set combination σ.

Mc
σ = {µc

σ(⋅)1, µc
σ(⋅)2, ..., µc

σ(⋅)n} (6.15)

with Mc
σ ⊆ MM.

As can be seen in Figure 6.5, KPI measurements are also tagged with the date
at which they were taken. This is relevant for the next step, the generation of
statistics out of these measurements.
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Generation of Measurement Statistics
In this step, a statistical processing is performed on the sub-categorized KPI mea-
surement sets Mc

σ, for which a simple arithmetic mean calculation is used in the
context of this work, as shown in Equation 6.16.

µ̃c
σ(k) = ∑

n
i=1 µc

σ(⋅)i(k)
n

(6.16)

with µc
σ(⋅)k ∈ Mc

σ. Consequently, the combined effect on all KPIs µ̃c
σ(⋅) is defined

as:

µ̃c
σ(⋅) = {µ̃c

σ(k1), µ̃c
σ(k2), ..., µ̃c

σ(k∣K∣)} (6.17)

with µ̃c
σ(⋅) being in the set of calculated measurement effects M̃c, i.e., µ̃c

σ(⋅) ∈ M̃c.
Other options for the statistical processing could be, for example, standard de-
viation methods or different types of averaging such as the weighted moving
average which is presented in the further course of this chapter.

The measurement statistics then finally represent the mean over all measure-
ments that come from the same context class and the same combined SCV sets.
Note that this processing needs to be done for each context class and each com-
bined SCV set individually. Following the formalization done in Section 6.2.3.2,
the real network measurement effect model EMreal can be described as a function
mapping all applied SCV set combinations within a certain context class Ψ̃ to the
calculated KPI effects M̃, i.e.:

EMreal ∶ Ψ̃ ↦ M̃ (6.18)

with Ψ̃ being the set of Ψ̃cs and M̃ being the set of M̃cs for all context classes
c ∈ C. The set of conditions Ψ̃c and the set of aggregated KPI measurement, i.e.,
the effect indicators, are thereby defined as:

Ψ̃c = {(c, σ)∣σ ∈ ΣΓc
app, c ∈ C} (6.19)

M̃c = {µ̃c
σ(⋅)∣σ ∈ ΣΓc

app, c ∈ C} (6.20)

Note that for the real network effect model it is necessary to first have a sufficient
amount of KPI measurements available. The availability thereby depends, for
example, on the activity of the SON functions, i.e., how often a change to the
network configuration is performed through the SON algorithm (which may be,
e.g., once per second, per hour, per day, etc.), but also on the statistical relevance,
i.e., how much data for a certain SCV set within a certain context class is actually
available.

An exemplary derivation of SCV set statistics for one manual context class is
shown in Figure 6.6. Here, the KPI measurements all feature the same context
class (CLASS_1). The outcome are statistics for different SCV sets in the shape of
rules for the real network effect model.
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SET_1

      KPI Measurement
         @DATE

                        @SET_1
                     @CLASS_1

      KPI Measurement
         @DATE

                        @SET_1
                     @CLASS_1

      KPI Measurement
         @DATE

                        @SET_1
                     @CLASS_1

IF SET_1 AND CLASS_1
THEN KPI Effect

SET_2

      KPI Measurement
         @DATE

                        @SET_2
                     @CLASS_1

      KPI Measurement
         @DATE

                        @SET_2
                     @CLASS_1

IF SET_2 AND CLASS_1
THEN KPI Effect

SET_n

.

.

.

      KPI Measurement
         @DATE

                        @SET_n
                     @CLASS_1

IF SET_n AND CLASS_1
THEN KPI Effect

Figure 6.6.: Generation of a statistics for the real network effect model

6.2.4. Methodology

In general, the methodology of the objective manager, i.e., the selection of ap-
propriate SCV sets according to technical objectives, consists of two consecutive
parts. The first part performs the KPI value processing where measurements from
the network are acquired, selected, and statistically processed in relation to the
SCV sets being active in the network. In the second part, namely, the calculation
of combined SCV sets, these statistics, together with the combined manufacturer
effect model, are filtered and evaluated according to their impact on the network
performance in order to determine the best possible SCV for a set of dedicated
KPI targets. While the derivation of the real network effect model has already
been described in Section 6.2.3.3, the latter, i.e., the mapping process between ob-
jective model, context model and effect model is described in detail in the follow-
ing. This process is depicted in Figure 6.7 and, compared to the PBSM and ODSM
approaches, describes a much more complex yet more accurate methodology for
the selection of optimal combined SCV sets.

The generation of the real network effect model is divided into two steps: The
selection of relevant measurements per context class and the creation of statis-
tics out of these sorted measurements, resulting in a new sub-model of the effect
model. This model and the combined effect model serve as input to the calcu-
lation step which is subdivided into five consecutive parts, namely the delta de-
termination, the SCV set filtering, the KPI target vs. network performance comparison,
the performance indication and finally, the selection of combined SCV sets with the
highest overall utility for each manual context class.
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Figure 6.7.: SCV set policy derivation algorithm in ASM (noted in UML 2)
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Note that, in the remainder of this chapter, the real network measurement model
as well as the combined manufacturer effect model are often both together de-
noted as effect model. In so far, measurements in the context of the combined
effect model denote data coming from the initial manufacturer-provided effect
sub-models while they denote real network acquired KPI measurements in the
context of real network effect model. However, the syntax of the content of both
types of effect models is the same, describing the interrelation between context
class-specific SCV set combinations and the corresponding impact on the KPI val-
ues using condition-action rules. Furthermore, the context attribute model and
the manual context classes model both together are denoted as context model
while only the context classes model is necessary for further calculations.

6.2.4.1. SCV Set Calculation

After deriving an effect model, the SCV set calculation is the second part towards
deciding on the best possible combined SCV sets. This decision is made based
on evaluating the KPI effect predictions in the effect model which result from
the KPI processing and the combination of initial effect sub-models, and putting
them into relation with the MNO-defined objective model and the context classes
model. The outcome of this is an SCV set policy that indicates for each context
class a combination of SCV sets that can be evaluated by the policy system. The
SCV set calculation part is divided into five consecutive steps that are described
in detail in the following. Note that this process needs to be performed for both
sources of the effect model which can be easily done due to the same structure
and meaning of the contained datasets. The process is exemplified with the real
network effect model in the following, meaning that the formalizations refer to
this sub-model. However, it works analogously for the combined effect model.

Delta Determination
In this first step, a delta between the expected network performance, i.e., the KPI
effect prediction in the effect model for the currently active SCV set combination
σcurrent and all effects of other possible SCV set combinations σi in the effect model
is calculated (cf. Equation 6.21).

δc(σi, σcurrent) = µ̃c
σi
(⋅) − µ̃c

σcurrent(⋅) (6.21)

This is done for each context class individually, i.e., the expected performance of
cells in the same context class is compared to only effect predictions in the SCV
set statistics usable in the context of this class. δc(σi, σcurrent) thereby means the
resulting delta and µ̃c

σi
(⋅) means the predicted effect of an SCV set combination

coming from the SCV set statistics. Note that µ̃c
σ(⋅) refers to a set of KPI values

and this delta calculation is done for each KPI individually. The resulting delta as
well as the µ̃c

σ(⋅)s can be expressed by vectors indicating the difference for each
KPI and the KPI values respectively.
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For instance, when having three KPIs DCR, HOSR and CL (in exactly this order),
the determination of delta could look as follows:

δCLASS1(σ12, σ22) =
⎛
⎜
⎝

0.05
0.95
0.63

⎞
⎟
⎠
−
⎛
⎜
⎝

0.03
0.97
0.58

⎞
⎟
⎠
=
⎛
⎜
⎝

0.02
−0.02

0.05

⎞
⎟
⎠

(6.22)

with σ12 being the combined SCV set under investigation and σ22 being the cur-
rently active SCV set combination. With this delta, the MNO gets an impression
about the impact on the network performance when changing from the current
SCV set combination to another. In case of the presented example, this means that
DCR would increase by 0.02, HOSR would decrease by 0.02 and the CL would
increase by 0.05 when changing from the combined SCV set σ22 to σ12 for context
class CLASS_1.

By calculating such a delta, the two sources of effect models get more comparable.
It is assumed that measurements within each sub-model are consistent leading to
the same level of aggressiveness for deltas from different sources even though the
absolute values may be different. Aggressiveness here indicates the performance
impact on certain KPIs when choosing a particular SCV set combination.

The result of this step is a set ∆ of δs for each context class c ∈ C, i.e.,

∆c = {δc(σi, σcurrent)∣σi, σcurrent ∈ ΣΓc
c , c ∈ C} (6.23)

and hence, ∣∆c∣ = ∣ΣΓc
c ∣ since each possible SCV set combination, which includes

the currently active one, is compared to the expected performance of the currently
active combined SCV set.

SCV Set Filtering
In this step, the list of possible SCV sets is filtered such that SCV sets that have
a negative effect on all KPIs can be discarded. Thereby, one needs to distinguish
between two different types of KPIs: On the one hand, KPIs where an MNO aims
for the highest possible value (e.g., HOSR) and on the other hand, KPIs where
the lowest possible value is targeted (e.g., DCR). In order to make these KPIs
comparable, the δs have to be scaled first. That is, they have to be multiplied by
a scaling vector indicating whether a KPI aims for the highest or lowest possible
value. This vector needs to be defined by the MNO and provides a scaling value
for each observed KPI, i.e., size(ς) = ∣K∣. For instance, mentioning the three KPIs
from Equation 6.22, such a scaling vector ς could look as follows:

ς =
⎛
⎜
⎝

−1
+1
−1

⎞
⎟
⎠

for
⎛
⎜
⎝

DCR
HOSR

CL

⎞
⎟
⎠

(6.24)

When multiplying the δs with the scaling vector ς (note that they have the same
size due to the same number of observed KPIs), the results are vectors δ∗ where
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positive values indicate a KPI improvement and negative values indicate a wors-
ening, i.e.:

δ∗c (σi, σcurrent) = δc(σi, σcurrent) ⋅ ς (6.25)

Continuing the example in Equation 6.22, the scaled δ∗CLASS1
(σ12, σ22) would be

calculated as follows:

δ∗CLASS1
(σ12, σ22) =

⎛
⎜
⎝

0.02
−0.02

0.05

⎞
⎟
⎠
⋅
⎛
⎜
⎝

−1
+1
−1

⎞
⎟
⎠
=
⎛
⎜
⎝

−0.02
−0.02
−0.05

⎞
⎟
⎠

(6.26)

Interpreting this example, it can be said that the combined SCV set σ12 worsens
the performance of all KPIs compared to the currently deployed combined SCV
set σ22.

The normalized deltas that contain only negative values definitely lead to a worse
performance for all KPIs and hence, can be rejected for further calculations. Hence,
a function needs to be defined identifying these combined SCV sets:

filter(δ∗c (σi, σcurrent)) = {
0 if ∀ki ∈ K ∶ proji(δ∗c (σi, σcurrent)) < 0
1 otherwise

(6.27)

Thereby, proji(δ∗c (σi, σcurrent)) is a function that delivers the projection on the ith
element of the vector δ∗c (σi, σcurrent). Consequently, the set of combined SCV sets
that can be filtered out for a specific context class c ∈ C, can be defined as:

Zc = {σi∣σi ∈ ΣΓc
c ∧filter(δ∗c (σi, σcurrent)) = 0} (6.28)

Finally, the set ΣZc
c containing only combined SCV sets that have the potential to

leading to a better network performance, are described as:

ΣZc
c = ΣΓc

c ∖Zc (6.29)

and accordingly, the set ∆Zc
c only contains scaled deltas that have at least one KPI

with a positive delta value (cf. Equation 6.30).

∆Zc
c = {δ∗c (σi, σcurrent)∣σi, σcurrent ∈ ΣZc

c , c ∈ C} (6.30)

These filtered deltas ∆Zc
c serve as input for the performance indication step. How-

ever, another step needs to be executed beforehand to do this performance indi-
cation, namely, the KPI target vs. network performance comparison.
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KPI Target vs. Network Performance Comparison
After determining in the previous steps what impact certain combined SCV sets
would have on the network compared to the currently active SCV set, it has to
be identified which KPIs need an improvement in order to fulfill the technical
objectives. Therefore, the KPI target vs. network performance comparison step
takes the technical objectives into account. This requires the consideration of the
current network behavior in terms of KPIs. The KPI targets ϑc given in the ob-
jective model are subtracted from the current network performance ξc and the
result is multiplied by the scaling vector ς as defined in Equation 6.24. This step
again needs to be done for each individual context class, i.e., the current network
performance is also indicated per context class by averaging over the KPI values
of all cells in the respective context class.

λc = (ξc − ϑc) ⋅ ς (6.31)

λc represents a vector where negative values indicate that a KPI needs to be im-
proved in order to fulfill the KPI target of context class c and positive values
indicate that the current SCV set combination fulfills the respective KPI target.
ξc represents a vector containing an aggregated KPI measurement (coming from
the network) for each KPI that is monitored and ϑc represents a vector of target
values for each KPI (coming from the objective model). Consequently, the set of
λs, one for each context class ci, is defined as:

Λ = {λc1 , λc2 , ..., λc∣C∣} (6.32)

For instance, assuming a current network performance for a c = CLASS_3 of
DCR = 0.06, HOSR = 0.97 and CL = 0.43 and the KPI targets of CLASS_3 depicted
in Listing 6.4, λCLASS_3 would be calculated as follows:

λCLASS_3 =
⎛
⎜
⎝

⎛
⎜
⎝

0.06
0.97
0.43

⎞
⎟
⎠
−
⎛
⎜
⎝

0.02
0.95
0.50

⎞
⎟
⎠

⎞
⎟
⎠
⋅
⎛
⎜
⎝

−1
+1
−1

⎞
⎟
⎠
=
⎛
⎜
⎝

−0.04
0.02
0.07

⎞
⎟
⎠

(6.33)

The result indicates that only the KPI DCR needs to be improved in order to ful-
fill the technical objectives of CLASS_3 while the targets for HOSR and CL are al-
ready fulfilled. Using this information and the filtered deltas (cf. Section 6.2.4.1),
the objective manager can give an indication about the performance when chang-
ing from the current combined SCV set to another one, i.e., one that possibly does
better in fulfilling operator objectives.

Performance Indication
Based on the filtered deltas ∆Zc

c for each context class and the respective λc ∈ Λ
vector a prediction can be made about the performance of all possible combined
SCV sets, i.e., sets that can improve at least one KPI compared to the currently
active combined SCV set. This is again done for each context class individually.
Therefore, the respective λc vector is added to each δ∗c (σi, σcurrent) ∈ ∆Zc

c resulting
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in the performance indication ιc(σi, σcurrent) as shown in Equation 6.34. Note that
both, the delta vector as well as the KPI target vs. network performance compar-
ison vector are already scaled. Hence, the result of this calculation is also scaled
and can be interpreted directly.

ιc(σi, σcurrent) = δ∗c (σi, σcurrent) + λc (6.34)

Consequently, the result of doing this for all filtered deltas δ∗c (σi, σcurrent) within a
context class c ∈ C is a set of ιc(σi, σcurrent), i.e.:

Ic = {ιc(σi, σcurrent)∣σi, σcurrent ∈ ΣZc
c , c ∈ C} (6.35)

This set contains a vector for each possible combined SCV set indicating for each
KPI whether the respective target is fulfilled or not. Positive values thereby in-
dicate the fulfillment of a target while negative ones imply the violation of a KPI
target. And even further, these indicators not only give the MNO an impression
about the possible fulfillment or violation of KPI targets, they also report the de-
gree of fulfillment or violation. The more negative the indicated value, the farther
is the predicted effect away from accomplishing a KPI target and vice versa.

For instance, when interpreting the result of Equation 6.33, it can be said that the
current SCV set combination does not meet the operator objectives in terms of
DCR. Hence, if possible, a set needs to be found that fulfills DCR while at the
same time, does not worsen the other KPIs too much such that in the end, all KPI
targets can be accomplished. For the further calculation, a δ∗CLASS_3(σ31, σ22) is
assumed with a scaled delta value for DCR = 0.05, HOSR = 0.00 and CL = −0.04.

ιCLASS_3(σ31, σ22) =
⎛
⎜
⎝

0.05
0.00
−0.04

⎞
⎟
⎠
+
⎛
⎜
⎝

−0.04
0.02
0.07

⎞
⎟
⎠
=
⎛
⎜
⎝

0.01
0.02
0.03

⎞
⎟
⎠

(6.36)

As can be seen, the resulting ιCLASS_3(σ31, σ22) only contains positive values, show-
ing that all objectives can be fulfilled when applying the combined SCV set σ31.
Note that this is the case, even though this set worsens the currently active set
σ22 in terms of CL, it does not downgrade the KPI value to a degree that the KPI
target can not be met anymore.

SCV Set Selection
In the final step of the objective manager’s process, the best possible combined
SCV set is selected for each context class. By using the Ics and considering the
weights which the MNO has defined for the technical objectives, a utility for each
SCV set combination can be calculated that reaches from 0 (none of the KPI tar-
gets fulfilled) to 1 (all KPI targets fulfilled). For each context class the SCV set with
the highest utility will be chosen to be deployed to all cells in the network within
the corresponding context class. Since it is highly possible that two or more SCV
set combinations have the same (highest) utility, the MNO can decide between
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different options for the selection of the SCV set. First of all, one of the SCV sets
with the highest utility can be selected randomly. This would be a conceivable
option if the MNO does not care about constantly improving the KPIs but is per-
fectly satisfied with just fulfilling the KPI targets. Also, this method increases
the chance of deploying an up-to-now untested SCV set and hence, enhances the
measurements data pool with KPI values of a new combined SCV set.

Formally, the utility is calculated using a function that indicates whether an ob-
jective is satisfied or not, i.e.:

sat(σi, k j) =
⎧⎪⎪⎨⎪⎪⎩

1 if projj(ιc(σi, σcurrent)) ≥ 0

0 otherwise
(6.37)

That is, a set σi fulfills a KPI target if the performance indicator for a KPI k j is
greater or equal 0. The performance indicator is given by a function projj(ιc),
returning a projection on the jth element of ιc. Since the MNO defines weights in
the objective model, a weighted sum can be calculated using the sat() function in
the utility function U(σi).

U(σi) = ∑
1≤j≤∣K∣

sat(σi, k j)
wkj

w̄
(6.38)

with w̄ = ∑
i∈K

wi.

Another option is to take an additional parameter into account. In case that an
MNO wants to achieve an optimal network performance with respect to KPIs,
instead of only aiming at the fulfillment of technical objectives, not only the util-
ity, but also the distance between the expected network performance for different
SCV sets and the KPI targets is relevant. Therefore, it is necessary to normalize
the KPI ranges first, such that a distance method can be used afterwards in order
to calculate the gap between the KPI values which would be achieved by a new
combined SCV set, and the targeted KPI values.

Formally, for all combined SCV sets with the highest utility in a certain context
class, the distance is calculated using a function D(σi), i.e.:

D(σi) = (proj1(ιc(σi, σcurrent)) ⋅wk1) +⋯+ (proj∣K∣(ιc(σi, σcurrent)) ⋅wk∣K∣) (6.39)

where projj(ιc) refers to the same projection function as defined above. Hence,
this distance function determines the combined SCV set with the highest distance
value since this refers to an over-fulfillment of KPI targets. Note that weights of
the KPI targets are again consulted in order to take the operator’s preferences
with respect to the KPIs into account.

The selection of best possible SCV sets is exemplified in Section 6.3.
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6.2.5. Policy System

In general, the policy system as it is used within ASM looks similar to the one in
PBSM and ODSM. That is, it consists of a policy repository containing the policy
rules, a PDP which decides about the applicability of a rule, and the PEP which
enforces SCV sets in the network. However, due to the context classes concept
which is introduced in this chapter, the general form of a rule in the policy repos-
itory has changed. In contrast to previous approaches, the objective manager
determines the set of best possible SCV sets for each context class instead of each
region in the context state space.

1 IF con t e x t c l a s s THEN SCV s e t comb inat ion

Listing 6.6: SCV set policy rule in ASM

This reduces the size of the output SCV set policy since only one rule per SON
function and context class is needed. Also, this structure of the policy requires an
intermediate step between getting the current operational context and the deci-
sion for an applicable rule, since the operational context and the condition parts
of the rules do not match each other. Hence, when receiving the operational con-
text of a cell, it has to be checked by means of the manual context classes model
first, to which context class the cell belongs. This context class can then be pro-
vided to the PDP which selects appropriate SCV sets.

6.2.6. Adaptation Process

Since the MNO wants to keep the network performance at a certain level, but
the network is constantly affected by dynamic changes, the configuration process
described in the previous section has to run continuously. Thus, the database
containing real KPI measurements can be built up and extended every time KPI
measurements are taken in the network. However, this pool of network measure-
ments is not available from the beginning and hence, a starting point is needed
for the initial calculation of optimal SCV sets. At a later point in time, the MNO
then has to decide which of the effect sub-models is the preferable one, either the
combined effect model that is based on simulations done by the SON function
manufacturer or the real network effect model. Only the measurements coming
from the real network can accurately represent the actual performance and setup
within the MNO environment, in particular compared to the simulator-generated
predictions in the combined effect model. Hence, these real measurements are the
ones that are more promising in terms of network behavior prediction.

In general, the decision which pool is the preferable one depends on the time and
the number of measurements available in the network measurements database.
In the beginning, the MNO has to trust the manufacturer-provided model since
this is the only available source for KPI effect predictions under certain SCV sets.

131



6. ADAPTIVE SON MANAGEMENT

During this phase, as many measurements for different SCV sets and different
context classes as possible should be gathered such that a big number of mea-
surements is available after finishing the collection phase. In Section 6.2.4.1, two
different methods for the selection of the best SCV sets have been proposed, i.e.,
the utility-based and a distance-based method. Combining both methods, but
for different points in time, results in the most effective approach: During the
collection phase, it is helpful to choose SCV set combinations randomly in case
of equal utilities since it guarantees a big variety of combined SCV sets in the
real network effect model. The duration of the collection phase can be defined
by the MNO, and different options for this definition exist, e.g., a fixed number
of measurement iterations that has to be completed or a defined degree of con-
vergence has to be achieved either per SCV set or for all SCV sets. Which of the
options is the preferable one, depends on the MNO and gives the operator an-
other possibility to affect SON management actions, thereby gaining trust in the
SON management system (cf. Objective 4 in Section 1.2.4).

After the collection phase, SCV sets are usually chosen based on the predictions
in the real network effect model since this model reflects the behavior of SON
functions in the network in a more realistic way. However, network measure-
ments are still collected after finishing the collection phase. Note that the MNO
can decide to hark back to the combined effect model at any time, e.g, when he or
she recognizes a situation in the network where KPI targets for one or more con-
text classes can not be fulfilled with the currently available SCV sets in the real
network effect model. In that case, only combined SCV sets should be chosen
for being deployed in the network where no measurements exist in the real net-
work effect model yet. Therefore, the MNO could also define a lower threshold in
terms of utility that indicates how much risk he is willing to take for testing SCV
sets with expected lower utility. Doing so, combined SCV sets are taken into ac-
count whose predicted utility is lower than the predicted utility of already tested
sets. However, since their KPI predictions have been generated in a simulation
environment they may have a different (and possibly better) impact in the real
network.

It is also possible to only rely on the real network effect model which could be
the case if an MNO has trust issues regarding the simulations done by the SON
function manufacturer or if a manufacturer does not want to provide an initial
effect model. Note that the main intention of the manufacturer-provided effect
models within this concept is to have a starting point or some clues of how a
SON function might perform. The information stored in these models can be
evaluated over time and discarded if enough knowledge is acquired to feed the
SON management with a real network effect model solely. However, without
having any knowledge about the effects certain SCV sets possibly have in the
network, the objective manager has to choose SCV set combinations randomly for
the duration of the collection phase. One major disadvantage of such a procedure
is that the adaptation process is significantly slowed down and therefore should
only be an option if one of the mentioned situations occur.

132



6.3. EXAMPLE

A situation that also affects the choice of an appropriate effect model is the de-
ployment of a new SON function. In such a case, no measurements are avail-
able in the real network effect model about a combination of already deployed
SCV sets and SCV sets of the new SON function. A solution for this problem
could be to combine the knowledge of both types of effect models, i.e., taking
KPI value predictions from the real network effect model and combining them
with the predictions in the manufacturer-provided effect model of the new SON
function according to one of the options described in Section 5.2.3.1.

An enhancement to the presented methodology could be to apply an aging pro-
cess when generating or updating the real network effect model based on KPI
measurements in the network measurements database. Such an aging process
rates older measurements less strongly than newer ones. This is reasonable in two
ways: on the one hand, the amount of data gets very huge over time and there-
fore has to be reduced since it makes the configuration process slower. On the
other hand, older measurements reflect the situation in the network worse than
newer ones since the network underlies permanent changes and these changes
are not captured in too old measurements. This is also the reason why measure-
ments should be tagged with the date they were taken (as depicted in Figure 6.5).
Such an aging process using the weighted moving average could look as follows:
Arrange raw measurements µ(⋅) in descending order based on the measurement
date, such that µ1(⋅) is the newest and µN(⋅) is the oldest measurement. Note
that each measurement µ(⋅) is actually a vector containing a KPI value for each
KPI k ∈ K. Further note that, as described in Section 6.2.3.3, this aging has to be
done for each context class and, within the context class, each combined SCV set
individually. An aggregated measurement is then defined as:

µ̃aging(⋅) =
∑N

n=1
1
n

µn(⋅)

∑N
n=1

1
n

(6.40)

6.3. Example

The generation of a real network effect model as well as the methodology for the
selection of optimal SCV sets is exemplified in this section. Since the biggest dif-
ference to previous approaches is the existence of a new effect model, the method-
ology part will focus on the usage of the real network effect model, i.e., imagine
that the collection phase is already finished and that the measurements effect
model is trustworthy enough for an operator to be used. However, note that the
SCV set selection works accordingly for the combined effect model. It is further-
more assumed that an operator wants to rank measurements based on their age,
i.e., the aging process is applied as described in Equation 6.40.

The MNO delivers two models as input: First, a manual context classes model is
created by means of the context attributes model, is needed. The context classes
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model which this example is based on, is already depicted in Listing 6.2. The
objective model defines targets for each context class and each KPI in the network
and is illustrated in Listing 6.4. For this example, three KPIs, namely DCR, HOSR
and CL are observed.

During operation of the mobile network, measurements have been gathered re-
flecting the behavior of the network. An excerpt of these measurements, i.e., the
measurements for context class CLASS_3, are shown in Table 6.1. Each measure-
ment consists of a unique ID, the date it was taken, the context class to which
it belongs, the deployed SCV sets for MLB and MRO and, most important, the
values that have been measured for the three KPIs mentioned above.

The first part of the example describes the derivation of a real network effect
model based on Table 6.1.

Table 6.1.: Exemplary raw measurements for context class CLASS_3
ID DATE CLASS MLB MRO DCR HOSR CL
... ... ... ... ... ... ... ...

168 19-12-2018 07:11:19 CLASS_3 1 2 0.013 0.944 0.495
169 19-12-2018 07:24:33 CLASS_3 1 2 0.017 0.932 0.510
170 19-12-2018 07:07:26 CLASS_3 3 2 0.024 0.971 0.529
171 19-12-2018 08:03:01 CLASS_3 3 2 0.032 0.983 0.432
172 19-12-2018 07:58:45 CLASS_3 3 1 0.025 0.893 0.566
173 19-12-2018 08:01:51 CLASS_3 2 3 0.041 0.920 0.544
174 19-12-2018 07:46:18 CLASS_3 1 1 0.021 0.918 0.470
175 19-12-2018 07:15:52 CLASS_3 1 2 0.016 0.988 0.458
176 19-12-2018 07:32:12 CLASS_3 1 2 0.014 0.977 0.498
177 19-12-2018 08:00:43 CLASS_3 1 2 0.012 0.941 0.502
... ... ... ... ... ... ... ...

6.3.1. Derivation of a Real Network Effect Model

The first step of generating a real network effect model comprises the selection of
appropriate measurements for each context class and each tested SCV set combi-
nation. Thereby, the focus is on selecting SCV sets for all cells in class CLASS_3.
Since the aging process shall be applied, measurements also have to be sorted for
each of the combined SCV sets. In Table 6.1, five different sets can be identified:
σ12, σ32, σ31, σ23 and σ11 where the first number represents the applied MLB func-
tion SCV set and the second one MRO respectively. Sorting these measurements
according to their age, i.e., the DATE, leads to Table 6.2.

Note that the date is illustrated in a shortened way and each measurement is
assigned a formalized name where the lower index indicates the age of a mea-
surement compared to other measurements within the same SCV set (the lower
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the number, the newer the measurement). Following the formalization in Sec-
tion 6.2.3.3, the set of measurements for CLASS_3 is divided into five sorted
subsets, one for each SCV set: MCLASS_3

σ11
, MCLASS_3

σ12
, MCLASS_3

σ23 , MCLASS_3
σ31

and
MCLASS_3

σ32 .

Table 6.2.: Sorted raw measurements for context class CLASS_3
ID DATE CLASS MLB MRO DCR HOSR CL NAME

σ11
174 07:46:18 CLASS_3 1 1 0.021 0.918 0.470 µσ11

1 (⋅)
σ12

177 08:00:43 CLASS_3 1 2 0.012 0.941 0.502 µσ12
1 (⋅)

176 07:32:12 CLASS_3 1 2 0.014 0.977 0.498 µσ12
2 (⋅)

169 07:24:33 CLASS_3 1 2 0.017 0.932 0.510 µσ12
3 (⋅)

175 07:15:52 CLASS_3 1 2 0.016 0.988 0.458 µσ12
4 (⋅)

168 07:11:19 CLASS_3 1 2 0.013 0.944 0.495 µσ12
5 (⋅)

σ23
173 08:01:51 CLASS_3 2 3 0.041 0.920 0.544 µσ23

1 (⋅)
σ31

172 07:58:45 CLASS_3 3 1 0.025 0.893 0.566 µσ31
1 (⋅)

σ32
171 08:03:01 CLASS_3 3 2 0.032 0.983 0.432 µσ32

1 (⋅)
170 07:07:26 CLASS_3 3 2 0.024 0.971 0.529 µσ32

2 (⋅)

In the second step, statistics for the measurements can be generated applying
the aging process. For MCLASS_3

σ11
, MCLASS_3

σ23 and MCLASS_3
σ31

, this is quite obvi-
ous since these sets only contain one measurement and hence, build the statistic
for the respective combined SCV sets σ11, σ23 and σ31. For σ12 and σ32, Equa-
tion 6.40 is applied for each of the three KPIs. For instance, the aggregated value
µ̃CLASS_3

σ12
(DCR) for SCV set σ12 and KPI DCR is calculated as follows:

µ̃CLASS_3
σ12

(DCR) =
0.012+ 1

2
⋅ 0.014+ 1

3
⋅ 0.017+ 1

4
⋅ 0.016+ 1

5
⋅ 0.013

1+ 1
2
+ 1

3
+ 1

4
+ 1

5

≈ 0, 0137 (6.41)

Doing this for all SCV sets and all KPIs leads to the SCV set statistics, i.e., the real
network effect model for CLASS_3 as depicted in Listing 6.7.

6.3.2. SCV Set Calculation

When having the real network effect model, the SCV set policy can be calculated
applying the five steps described in Section 6.2.4.1. The first step is the delta de-
termination and therefor, it is assumed that the currently active combined SCV
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1 {
. . .

3 IF CLASS_3 AND MLB_1 AND MRO_1
THEN DCR = 0.021 AND HOSR = 0.918 AND CL = 0.470

5 IF CLASS_3 AND MLB_1 AND MRO_2
THEN DCR = 0.014 AND HOSR = 0.953 AND CL = 0.497

7 IF CLASS_3 AND MLB_2 AND MRO_3
THEN DCR = 0.041 AND HOSR = 0.920 AND CL = 0.544

9 IF CLASS_3 AND MLB_3 AND MRO_1
THEN DCR = 0.025 AND HOSR = 0.893 AND CL = 0.566

11 IF CLASS_3 AND MLB_3 AND MRO_2
THEN DCR = 0.029 AND HOSR = 0.979 AND CL = 0.464

13 . . .
}

Listing 6.7: Excerpt of the exemplary real network effect model for CLASS_3

set in CLASS_3 is σ32. For the illustration of KPI values within a measurement,
the representation as vector with the same order as Section 6.2.4.1 is chosen, i.e.,
the DCR value on top, the HOSR value in the middle and the CL value on the bot-
tom. Table 6.3 shows the results for the delta determination. In the first line, the
deltas between the currently active set σ32 and all other sets is shown. Note that
also δ(σ32, σ32) is calculated since otherwise, it is excluded from further computa-
tions and can not be selected even though it probably produces the best network
behavior. The table also contains the results for multiplying the deltas with the
scaling vector in the second line, i.e., the δ∗(σi, σ32). Finally, the results for apply-
ing the filter() function are represented in the bottom line.

Table 6.3.: Deltas, scaled deltas and filtered deltas for all combined SCV sets in
context class CLASS_3

σ11 σ12 σ23 σ31 σ32

δ(
σ i

,σ
32
)

⎛
⎜
⎝

−0.008
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⎟
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⎛
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⎞
⎟
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⎛
⎜
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⎞
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0.0
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σ 3
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⎜
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−0.080
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⎟
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⎝

0.0
0.0
0.0

⎞
⎟
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δ∗

(σ
i,

σ 3
2)

)

1 1 0 1 1

As can be seen in the scaled deltas δ∗, when changing from σ32 to any other SCV
set, the KPIs HOSR and CL would probably be worsened due to the negative δ∗
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values. However, the aim of ASM and SON management in general is not the
identification of the SCV set with the best KPI values, but the optimization of
operator targets. Even though two of three KPI get worse for most of the SCV
sets, they may still fulfill operator targets and hence, should not be discarded
for further calculations. The only SCV set influencing the behavior of all three
KPIs in a bad way, is combined SCV set σ23 which should be neglected accord-
ingly. This is displayed in Table 6.3 by the gray shaded cell: When applying the
filter(δ∗(σ23, σ32)) function, it returns 0 due to negative values for all observed
KPIs.

In the next step of the algorithm, the current network performance is taken into
account by comparing it with the KPI targets for context class CLASS_3. For this
calculation, it is assumed that the current performance in terms of DCR is 0.027,
for HOSR it is 0.921 and for CL it is 0.458. Hence, the KPI target vs. network
performance comparison λCLASS_3 is calculated as follows:

λCLASS_3 =
⎛
⎜
⎝

⎛
⎜
⎝

0.027
0.921
0.458

⎞
⎟
⎠
−
⎛
⎜
⎝

0.020
0.950
0.500

⎞
⎟
⎠

⎞
⎟
⎠
⋅
⎛
⎜
⎝

−1
+1
−1

⎞
⎟
⎠
=
⎛
⎜
⎝

−0.007
−0.029

0.042

⎞
⎟
⎠

(6.42)

That is, with the current SCV set combination, only KPI CL fulfills the operator
target. Also, even an SCV set combination that downgrades CL by an amount of
0.042 still fulfills the respective target which is a crucial ascertainment.

Using the λCLASS_3 and the set of filtered δ∗s, an indication about the expected
performance can be made by adding the values. Afterwards, the satisfaction of
the respective KPI target can be calculated by using the sat() function. Generating
the weighted sum for each σi by means of the KPI target weight wk delivers the
overall utilities. Note that in Table 6.4 not the whole indication vector ι(σi, σ32) is
displayed, but the projections on indication values for the respective KPIs.

Table 6.4.: Scoring of the exemplary combined SCV sets
oDCR = (0.02, 0.5) oHOSR = (0.95, , 0.2) oCL = (0.5, 0.3) U(σi)
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σ11 0.001 1

0.5

−0.090 0

0.2

0.036 1

0.3

0.8
σ12 0.008 1 −0.053 0 0.009 1 0.8
σ31 −0.003 0 −0.115 0 −0.060 0 0.0
σ32 −0.007 0 −0.029 0 0.042 1 0.3
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As can be seen in this table, none of the SCV sets can fulfill the HOSR target
which may be surprising since, according to the effect model, two of the SCV
sets, namely σ12 and σ32 actually should fulfill this target. Here, one of the major
advantages of the ASM approach (compared to PBSM and ODSM) can be seen:
By taking the current network performance into account which gives an indica-
tion about the actual network behavior of currently deployed SCV sets, estima-
tions are more accurate since they do not only rely on predictions in the effect
models.

Furthermore, two SCV set combinations, namely σ11 and σ12, achieve the same
utility U(σi) = 0.8 since they both fulfill the DCR and CL target. The fulfillment of
the CL target may be surprising the other way round: Both SCV sets worsen the
CL compared to the active SCV set σ32. However, with the currently deployed
SCV set, the target for CL is over-fulfilled and hence, a little degradation does
not affect the KPI target fulfillment. In order to make a decision for one of the
equally rated SCV sets, the preferences of the MNO come into play. One of the
two sets can be either chosen randomly or, the distance to the KPI targets can be
determined in order to find the best possible solution. This can be done using
Equation 6.39 and is exemplary shown for σ12:

D(σ12) = (0.008 ⋅ 0.5) + (−0.053 ⋅ 0.3) + (0.009 ⋅ 0.2) = −0.0039 (6.43)

D(σ11) can be determined in the same way, resulting in −0.0067. Consequently,
σ12 is the SCV set to be selected for context class CLASS_3 since D(σ12) > D(σ11).

6.3.3. Generation of SCV Set Policy

An excerpt of the final SCV set policy is depicted in Listing 6.8. According to
the exemplary context classes model, CLASS_3 is defined as (location = rural OR
location = highway) AND (cell_type = micro OR cell_type = macro). Hence, for all
cells in this operational context, the SCV sets MLB_1 and MRO_2 are applied.

{
2 . . .

IF CLASS_3 THEN MLB = MLB_1
4 IF CLASS_3 THEN MRO = MRO_2

. . .
6 }

Listing 6.8: Excerpt of SCV set policy based on the scoring of the combined SCV
sets

6.4. Related Work

Since the presented ASM approach can be seen as an enhancement to ODSM, the
related work that has been presented in Section 3.4, Section 4.4 and Section 5.4 is
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also relevant and applicable for this approach. The delta to previous approaches
is the definition of a real network effect model that takes measurements from the
real network into account, therefore creating a model with more realistic effect
predictions.

In [HK14], the authors present an approach to generate so-called SON function
performance models that can be used to estimate the SON functions’ perfor-
mance. Therefore, they also developed a mobile network simulator called Si-
MoNe [RHK16]. However, these models are only simulation based and can be
compared to the manufacturer-provided effect models whose disadvantages have
also been discussed in this chapter, leading to the presented approach.

The authors of [HSK18] have also investigated how a set of concurrently acting
SON functions impact the behavior of the network. This can be compared to the
information which is stored in the combined effect model. While this approach
reflects the real situation in mobile networks, meaning that a variety of SON func-
tions is deployed on the cells, it is still simulation based. Furthermore, none of
the approaches provides a solution for managing several SON functions and a
methodology for picking optimal SCV sets.
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Cognitive SON Management

The final stage of development is CSM. While in the ASM approach, a simple
method for learning an effect model over time based on KPI measurements from
the network has been presented, CSM uses real machine learning algorithms to
predict network behavior. Therefore, mainly two new sub-models are presented
in this chapter: A KPI-based context classes model and a learned effect model.
The focus in this chapter is on the generation of these two sub-models. Further-
more, the methodology for the selection of appropriate SCV sets is similar to the
one presented in Section 6.2.4 and hence, the focus in the methodology part is
on the interaction of different models. Consequently, the example presented in
Section 7.3 also focuses on the new models and their combination.

7.1. Motivation

The context model as presented in the previous chapter, has one significant dis-
advantage: The definitions of context classes in the manual context classes model
are based on experience and hence, may be not applicable. Thereby, one has to
distinguish between two types of application. On the one hand, these classes are
highly relevant for the partitioning of the huge context state space into manage-
able regions and the definition of technical objectives for each of these regions.
On the other hand, for context-dependent predictions in the effect model, these
context classes imply the assumption that cells within the same class have simi-
lar behavior. However, due to the complexity of modern cellular networks even
experienced operators may not capture all network details as well as the behav-
ior of cells in the network and thus, their classification may be incorrect for some
cells, leading to a big range of dispersion in matters of their behavior for certain
SCV sets. Hence, a method needs to be found which guarantees a classification of
cells into similarly behaving cell clusters such that predictions in the effect model
can be more accurate.

Furthermore, the ASM approach comprises a second problem. While the real
network effect model is a great step to reflect the actual behavior of cells under
certain SCV sets, there is still the problem that this model is incomplete and only
contains predictions for already tested SCV sets. That is, SCV sets that could
never achieve the highest utility during the operation of the network, will never
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be part of the real network effect model. This fact reduces the opportunity to run
the network in an optimal instead of just the best possible way. However, testing
all different SCV sets in the real network is simply not feasible. In addition, a
situation may occur where none of the already tested SCV sets do well in achiev-
ing given operator objectives. To overcome this problem, it would be helpful to
predict the behavior of untested sets which possibly do better in fulfilling KPIs
targets.

The above mentioned shortcomings motivate the application of machine learning
algorithms in order to further improve the input models processes by the objec-
tive manager. Hence, the objective that is mainly addressed in this chapter, is
Objective 3 which refers to the generation of a learned, i.e., KPI-based context
classes model and a learned effect model:

Objective 3 Reliably estimate the performance of untested SCV sets dependent on au-
tomatically derived context information which has been reduced to a manageable level.

MANUFACTURER
DOMAIN

OPERATOR DOMAIN

Objective Model

Context Model Effect Model

MANAGEMENT
DOMAIN

SON Management

Objective 2: Realistic 
Input Models

Objective 2: Realistic 
Input Models

Objective 4: Trust

Objective 3: Cognition Objective 3: Cognition

Figure 7.1.: Objectives of CSM

The usage of two new sub-models also marks an important step towards generat-
ing more realistic input models, making the initial manufacturer-provided effect
models and the manually operator-defined context classes model more and more
redundant.

Objective 2 Automatically generate realistic and complete input models which are con-
tinuously updated according to the current network state such that they optimally sup-
port the SON management system in finding the best possible network configuration.

Not least, also Objective 4 is important for the development of a CSM approach.
More than ever, SON management underlies highly automated activities, espe-
cially when creating learned models. Hence, techniques need to be identified to
win the confidence of MNOs with respect to these models and their application.

Objective 4 Develop a fully automated SON management system which allows MNOs
to comprehend, restrict and influence automated actions at any time.
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7.2. Approach

As for the previously introduced ASM approach, three models serve as initial in-
put to CSM. The objective model which describes targets and preferences in terms
of network KPIs, equals the one presented in Section 6.2.2 and is not described
in more detail here. Second, two types of context models are provided by the
MNO: A context attributes model that comprises network properties and their
values and a context classes model which partitions the resulting context state
space into reasonable context regions that all pursue the same KPI targets. Third,
an effect model is provided by the manufacturer of a SON function for each of
the particular SON functions describing the effects that certain SCV sets have in
the manufacturers’ simulation environment.

The initial effect models are brought together by the objective manager in order
to make predictions about the effect a combined SCV set has in the network. This
information is stored in the combined effect model. In the ASM approach real
network measurements are taken into account, building a new sub-model that
aggregates these measurements for each operator-defined context class, resulting
in the real network effect model. These models have already been presented in
detail in Chapter 6 and only the deltas to these models will be introduced in
the following. Figure 7.2 illustrates the already known models as well as the
enhancements in CSM.

What is new in the CSM approach, is a learning engine within the objective man-
ager adopting techniques in the field of machine learning for the generation of
two new models: The learned context classes model which is the result of a KPI-
based classification of network cells into cell clusters with similar behavior ac-
cording to the observed KPIs, and a learned effect model which completes the
real network effect model such that for each and every possible SCV set combi-
nation, an effect prediction is available. These two models serve as further input
to the objective manager which then selects appropriate SCV sets while consid-
ering technical objectives and the operator’s issues regarding the trustworthiness
of the externally provided and internally generated models. It is crucial for the
achievement of optimal results that the objective manager picks the models which
are most suitable for the current state of the network.

The decisions of the objective manager are summed up in an SCV set policy which
is passed to the well-known policy system that deploys SCV sets in the network.
Network measurements are conducted at any time, making the generation of
models within the management domain a permanently running adaptation and
optimization process.
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7.2.1. Structured Description of Models

The arrangement of sections in this chapter is a bit different than for the previous
chapters. Before explaining the derivation of learned input models, it is first nec-
essary to describe the structure of both the context model and effect model such
that their purpose gets intelligible. This is due to the fact that for a full under-
standing of the context model, the effect model needs to be understood and vice
versa.

7.2.1.1. Context Model

The context model in CSM is split into three sub-models. The context attributes
model is used for the definition of manual context classes, i.e., the context classes
model which is the second sub-model. The third model is a machine-generated
learned context classes model which is independent of the other context sub-
models.

Note that in this section, the learned context model is only described as a result
of its derivation process, but not the derivation process itself. This is part of
Section 7.2.3. Further note that, besides the learned context classes model, also the
other context sub-models are used in CSM. However, they do not vary from those
described in the ASM approach and hence, are not presented here in detail.

Learned Context Classes Model
In contrast to the manual context classes model, this model is not based on con-
text attributes and their values, but on the KPI effects that are measured for the
respective cells. Since network behavior is defined in terms of KPIs and their val-
ues, the learned context classes model truly reflects clusters of cells with similar
behavior. The assumption is that these groups might show a more homogeneous
behavior in regard to the relationship between SCV sets and the respective KPI.
Additionally, the resulting clusters might support an MNO in finding descriptive
features of cells and hence, configure newly deployed cells in a suitable way. On
a technical level, clustering should characterize cells based on their average KPI
under various SCV sets and group cells with similar characteristics into the same
group, allowing for more tailored KPI effect predictions per group in the effect
model.

Figure 7.3 illustrates the idea behind learning context classes by means of two
KPIs CL and DCR. Each region in the context state space is defined by a number
of predicates π consisting of a KPI k ∈ K and a subset Domsub(k) ⊆ Dom(k), i.e.:

πk = (k, Domsub(k)) (7.1)

ρi = πk1 ×πk2 ×⋯×πk∣K∣ (7.2)
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Figure 7.3.: Exemplary KPI-based classification of cells into cell clusters

R = {ρ1, ρ2, ..., ρ∣P∣} (7.3)

Using this definition of a region, a context class is the union of cells in several
regions with specific KPI properties. For instance, LEARNED_CLASS_1 in Fig-
ure 7.3 specifies cells with a high load, i.e., ≥ 0.5 and with a low DCR value, i.e.,
≤ 0.05, while LEARNED_CLASS_4 is defined by cells with a low CL, i.e., < 0.5 and
a high DCR, i.e., > 0.05.

Formally, the learned context model CMlearned defines a mapping function from
a set of cells Ω to a set of learned context classes C̃, i.e.:

CMlearned ∶ Ω ↦ C̃ (7.4)

such that

Ω = {ω1, ω2, ..., ω∣Ω∣} (7.5)

and

C̃ = {c̃1, c̃2, ..., c̃∣C̃∣} (7.6)

∣Ω∣ defines the number of cells in the network and ∣C̃∣ refers to the number of
learned context classes, i.e., the number of clusters. The definition of the number
of clusters is part of and will be described in Section 7.2.3.

Each cell cluster consists of an arbitrary number of cells ω ∈ Ω. Note that each cell
can only belong to exactly one learned context class since otherwise the objective
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manager is struggling with the selection of appropriate SCV sets for a context
class. Consequently, a learned context class cl

i is defined as follows:

c̃i = {ωj∣1 ≤ j ≤ ∣Ω∣ ∧ ∀c̃k, i ≠ k ∶ ωj ∉ c̃k} (7.7)

According to the formal definitions, the learned context model can be described
as a set of rules with the general form depicted in Listing 7.1. That is, the condi-
tion parts of the rules refer to the cell and the action parts to the respective context
class to which the cells belongs.

IF c e l l THEN l e a r n e d con t e x t c l a s s

Listing 7.1: Classes definition rule in CSM

An exemplary learned context classes model in CSM is shown in Listing 7.2.
Here, only an excerpt is shown for a network with at least 35 network cells and
at least five learned context classes. A cell thereby is defined as one of three an-
tennas of a base station, i.e., a site. For instance, site35[0] refers the first cell of a
base station, having the ID 35. Note that each of the ∣Ω∣ cells must be assigned to
a learned context class.

1 {
. . .

3 IF s i t e 3 4 [ 0 ] THEN LEARNED_CLASS_2
IF s i t e 3 4 [ 1 ] THEN LEARNED_CLASS_1

5 IF s i t e 3 4 [ 2 ] THEN LEARNED_CLASS_4
IF s i t e 3 5 [ 0 ] THEN LEARNED_CLASS_5

7 IF s i t e 3 5 [ 1 ] THEN LEARNED_CLASS_5
IF s i t e 3 5 [ 2 ] THEN LEARNED_CLASS_1

9 . . .
}

Listing 7.2: Excerpt of an exemplary learned context classes model in CSM

7.2.1.2. Effect Model

The effect model in CSM is split into four sub-models. First of all, manufacturers
provide descriptions of their SON functions in terms of mappings from possible
SCV sets to KPI effects. Out of these initial effect models, a combined effect model
can be generated (cf. Section 5.2.3.1) which is still based on the manufacturers’
simulation environments. A real network effect model (cf. Section 6.2.3.3) reflects
the actual impact of specific SCV sets in the environment where they are applied.
However, some SCV sets will never be selected by the objective manager. This
is the case if – according to the simulation-based combined effect model – they
do not fulfill technical objectives sufficiently. This is exactly the problem: Since
the combined effect model is based on an unrealistic environment, it is highly
probable that the KPI predictions made in there do not hold true in a real network
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environment. Some SCV sets that would actually perform well, are not selected,
possibly preventing the SON functions from fulfilling operator objectives. Hence,
a fourth model is needed that predicts the KPI effects of up-to-now untested SCV
set combinations based on the effects of already tested SCV set combinations, i.e.,
the learned effect model.

Analogously to the context model, the two effect sub-models mentioned first are
not described here in more detail since their structure and derivation is the same
as depicted in previous approaches. However, the real network effect model is
subject to little changes compared to the ASM approach. The structure and im-
portance of the real network effect model and the learned effect model are de-
scribed in the following, while the derivation of a learned effect model is part of
Section 7.2.2.
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e
ts

Figure 7.4.: Relationship between real network effect model and learned effect
model in CSM, gray cubes representing KPI effect indications for
tested combined SCV sets, blue cubes representing indications for
untested combined SCV sets

In contrast to the combined effect model, these two models are strongly related
to each other and hence, need to be examined together in the first place. Basi-
cally, the learned effect model fills the blanks in the real network effect model.
While the real network effect model lacks of measurements for (usually) a lot of
combined SCV sets, the learned effect model uses machine learning techniques
to predict the KPI effects of these blanks. In order to make the aim of the learned
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effect model more clear, Figure 7.4 visualizes the relationship between these two
sub-models.

In Figure 7.4, each cube represents KPI effect indications for a particular combina-
tion of SCV sets. That is, three SON functions are considered with four SCV sets
each. Note that this SCV set state space only visualizes the effects for one partic-
ular context class since the effect model in CSM is context-dependent as in ASM.
The gray and blue shaded cubes together imply having measurements for each
and every possible combined SON function combination. It has been already
mentioned that it is highly improbable that all combinations are tested during
operation and hence, optimization potential gets lost. The gray shaded cubes
represent measurements that have been already taken, i.e., that are contained in
the real network effect model, e.g., for σ321 in Figure 7.4. For SCV set combina-
tions where no measurements are available in the real network effect model, e.g.,
σ241 in Figure 7.4, the learned effect model is able to provide effect predictions
such that in the end, an effect model exists that is complete and that is entirely
based on the real network environment.

Since both the real network effect model as well as the learned effect model can
be seen as a union, they need to be based on the same context and have the same
general structure.

IF l e a r n e d con t e x t c l a s s THEN KPI e f f e c t s

Listing 7.3: Effect model rule in CSM for real network and learned effect model

As can be seen, the IF part contains a learned context class which is a difference
to the previous approach, the ASM. While this is quite obvious for the learned
effect model, it needs further explanation with respect to the real network effect
model.

Real Network Effect Model
First of all, it is worth mentioning that the real network effect model is still based
on KPI measurements coming from a database that collects network measure-
ments in terms of CM, PM and FM data. This database can be updated, e.g., at
fixed time intervals or when a reconfiguration of SON functions takes place. It
is important to know that these measurements are stored in their raw form, i.e.,
no aggregation per context class or SCV set is done within the database. This
is crucial since each measurement can be assigned the respective cell by means
of its operational context which is not possible any more when an aggregation
of measurements has been performed. This way, measurements can be reused
at any time and new aggregation methods can be applied which is necessary in
CSM.

Before a learning algorithm can be reasonably applied, enough data about the
network needs to be gathered and hence, a management approach such as ASM
is adopted first. When enough data is collected, the MNO can apply learning
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techniques, making a recalculation of the ASM’s real network effect model in-
evitable due to a different definition of context classes. From that point on, effect
predictions in the real network effect model also need to be based on the learned
context classes model.

The process of deriving a real network effect model in CSM is similar to the one
presented in Section 6.2.3.3 and is only described shortly here. In Equation 6.14,
the set of taken measurements MM is defined as the set of measurements µc

σ for
all applied conflict-free combined SCV sets σ ∈ ΣΓ

app. These measurements are
categorized per (manually defined) context class c ∈ C and per combined SCV
set σ ∈ ΣΓ

app such that they can be aggregated into one effect prediction µc
σ(⋅) per

context class and combined SCV set. This definition can be easily mapped to
learned context classes.

In general, the model can be seen as a mapping function from SCV set combina-
tions per learned context class Ψ̃c̃ ∈ Ψ̃ to aggregated measurements (per combined
SCV set and learned context class) M̃c̃ ∈ M̃ with c̃ ∈ C̃.

EMrealCSM
∶ Ψ̃ ↦ M̃ (7.8)

Thereby, Ψ̃c̃ is defined as the set of already applied combined SCV sets under a
certain learned context class and M̃c̃ is defined as the set of aggregated measure-
ments µ̃c̃

σ, i.e.:

Ψ̃c̃ = {(c̃, σ)∣σ ∈ ΣΓ
app, c̃ ∈ C̃} (7.9)

M̃c̃ = {µ̃c̃
σ(⋅)∣σ ∈ ΣΓ

app, c̃ ∈ C̃} (7.10)

Note that each mapping, i.e., (c̃, σ) ↦ µ̃c̃
σ(⋅) is exactly what is represented by the

gray cubes in Figure 7.4.

Learned Effect Model
Referring back to the illustration in Figure 7.4, the blue cubes, i.e., learned effect
indications, still need to be explained. In general, the learned effect model can be
seen as a function mapping the non-tested combined SCV sets to the set of effect
indicators that are not part of the real network effect model, i.e.:

EMlearned ∶ Ψ′ ↦ Φ′ (7.11)

Thereby, Ψ′ consists of Ψc̃′ , i.e., Ψc̃′ ∈ Ψ′ and Φc̃′ ∈ Φ′ for all c̃ ∈ C̃.

Ψc̃′ = {(c̃, σ)∣σ ∈ ΣΓ ∖ΣΓ
app, c̃ ∈ C̃} (7.12)

Φc̃′ = {ϕ̃c̃
σ(⋅)′∣σ ∈ ΣΓ ∖ΣΓ

app, c̃ ∈ C̃} (7.13)
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In other words, each blue cube defines a mapping (c̃, σ) ↦ ϕ̃c̃
σ(⋅)′ with ϕ̃c̃

σ(⋅)′ being
the prediction in terms of all observed KPIs for a certain combined SCV set σ and
a learned context class c̃.

Combining the real network effect model and the learned effect model leads to an
effect prediction for each combination of SCV sets in each learned context class,
facilitating the elicitation of the best of all possible SCV sets. While the definition
of a learned effect model is quite simple, the derivation of ϕ̃c̃

σ(⋅)′ is the actual crux,
since this is where machine learning algorithms come into play.

7.2.2. Derivation of Learned Models

For the derivation of learned input models it is essential to understand the mod-
els’ structure first which has been explained in the previous section. This is due
to the fact that the learned context classes are determined based on the effect pre-
dictions in the real network effect model as well as the learned effect model, and
the real network effect model is generated by aggregating KPI measurements for
each combined SCV set and, more important, for each learned context class. One
may think that this is a cyclic dependency, but it is crucial to know that the time
step at which the respective model has been generated, is essential.

Combined
Effect Model

Real Network 
Effect Model t+1

Learned Context
Classes Model t+1

Learned Effect 
Model t+1

Learned Effect 
Model t+2

Learned Context
Classes Model t+2

Real Network 
Effect Model t+2

Real Network 
Effect Model t

Context Classes Model

t t+1 t+2 t+3

Network 
Measurements

t+1

Network 
Measurements

t+2

Figure 7.5.: Dependencies between learned context model, real network effect
model and learned effect model in different time steps

Figure 7.5 shows the dependencies between the models for three time steps t,
t+1 and t+2 whereby a time step is a point in time where the recalculation of
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models becomes necessary. This may be at fixed time intervals or at any time
new measurements are available due to a reconfiguration of SON functions. In
this illustration, the CSM is activated at step t+1 and hence, the learned models
are generated here for the first time. It has already been said that the models in
CSM are dependent from each other. Since t+1 is the first time step with an ac-
tive CSM, no real network effect model based on learned context classes and no
learned effect model are available. Therefore, besides using measurements from
the database, the clustering of cells is done using effect predictions in the com-
bined effect model and in the real network effect model based on manual context
classes. The necessity of using the combined effect model is further described in
Section 7.2.2.1. Descriptions of effect predictions in the combined effect model are
based on the (manual) context classes model and consequently, this model also
serves as initial input to the learned context model at t+1 in order to be able to
relate KPI effects to the respective cells.

From t+1 on, the generation of models is a sequential process according to the di-
rections of the arrows in Figure 7.5. That is, based on the measurements database,
a learned context classes model is generated first, since the real network effect
model as well as the learned effect model make use of the learned context classes.
The second iteration comprises the aggregation of KPI measurements according
to these learned context classes, i.e., the generation of a real network effect model.
Finally, the learned effect model can be determined using resulting models of the
previous iterations. In t+2, the learned context classes model is then generated by
predominantly clustering cells according to measurements in the database and
in addition, effects in real network effect model t+1 and learned effect model t+1
while the second and third iteration are performed in the same way as described
above.

Given this declaration, it can be said that the clustering of cells and the KPI pre-
dictions for untested SCV set combinations are always done using the most cur-
rent models. With this background information, the details of deriving learned
models can be demonstrated.

7.2.2.1. Learned Context Classes Model

In Section 7.2.1.1 it has been described that the learned context classes model de-
scribes mappings from cells to classes in the end. This section aims at describing
the assignment to a particular context class. Therefore, the set of cells ω ∈ Ω is
split into groups of cells, i.e., clusters, with similar behavior in terms of network
KPIs. In the end, each cluster becomes what is called a learned context class and
hence, all clusters together build the learned context classes model. This is a typ-
ical problem for unsupervised learning algorithms such as K-Means clustering.
In order to not confuse the K in K-Means with the set of KPIs K, it is denoted as
kmeans in the following.
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Data Preparation
Before utilizing a clustering algorithm, the available data needs to be prepared
first. Since the clustering shall be done based on KPI values, the effect predictions
for all combined SCV sets are required. This opens up two problems: First, the
measurements database is not complete usually, i.e., not all combined SCV sets
have already been tested in the network yet. Second, since cells are assigned
to different context classes, the set of applied combined SCV sets Σci

app (or Σc̃i
app

respectively) is usually different for all manual context classes ci ∈ C (or learned
context classes c̃i ∈ C̃).
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Figure 7.6.: Exemplary illustration of available data for two cells in different con-
text classes

In Figure 7.6, this problem is exemplary illustrated by means of two cells site34[1]
and site35[2] which are assigned to different context classes, and two SON func-
tions MLB and MRO. Blue squares represent already tested combined SCV sets,
i.e., where measurements are available, whereas gray squares represent untested
SCV sets. One can see that there is only an overlap of two SCV sets, namely
(MLB_2, MRO_4) and (MLB_3, MRO_2). It is obvious that this overlap gets
smaller with an increasing amount of network cells and context classes. As a
consequence, the data basis for each of the cells diverges immensely making the
application of a clustering algorithm impossible.

This is where the real network effect model and (depending on the time step, cf.
Figure 7.5) either the combined effect model or the learned effect model comes
into play. In Figure 7.4 it could be seen that the real network effect model in
combination with the learned effect model builds a complete effect model with
predictions for all possible combined SCV sets. The same applies for the real net-
work effect model in combination with the combined effect model. However, in
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the second case, only those predictions are taken from the combined effect model
(note that it is already complete itself) where no measurements are available in
the real network effect model. The result is a complete set of effect predictions for
each cell in the network which serves as input for the application of the K-Means
algorithm.

In order to make this more clear, the data set M̃ω for each cell ω can be rep-
resented as a mapping from a multi-dimensional matrix of combined SCV sets
σ ∈ ΣΓ to KPI effects µ̃ω

σ . For two SON function, i.e., two dimensions, this matrix
looks as follows:

M̃ω =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

σ1j σ2j ⋯ σij
⋮ ⋮ ⋰ ⋮

σ12 σ22 ⋯ σi2
σ11 σ21 ⋯ σi1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

↦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

µ̃ω
σ1j

(⋅) µ̃ω
σ2j

(⋅) ⋯ µ̃ω
σij

(⋅)
⋮ ⋮ ⋰ ⋮

µ̃ω
σ12

(⋅) µ̃ω
σ22(⋅) ⋯ µ̃ω

σ2j
(⋅)

µ̃ω
σ11

(⋅) µ̃ω
σ21

(⋅) ⋯ µ̃ω
σ1j

(⋅)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7.14)

Thereby, i is the number of possible SCV sets for the first SON function and j the
number of SCV sets for the second SON function. Consequently, the whole set of
measurements for all cells can be described as:

M̃M
Ω = {M̃ω ∣ω ∈ Ω} (7.15)

Clustering of Cells
Now that a common data base is available for all cells, they can be clustered
into similarly behaving cells. Therefore, the kmeans needs to be chosen first. In
Section 2.3.2, it has been said that the kmeans needs to be determined manually,
which, in case of CSM, is the MNO. Since there are ∣Ω∣ cells in the network, the
maximum value is kmeans = ∣Ω∣. Both, choosing kmeans too low and too high, has
several advantages and disadvantages: The lower the kmeans value, the more cell
effects are aggregated which may lead to a very inaccurate effect prediction in
the effect model and thus, to a quite uniform configuration of SON function in-
stances in the network. On the other side, the computational effort is quite low
since only combined SCV sets for a small number of context classes need to be
calculated. Vice versa, the higher the kmeans value, the more accurate are effect
predictions since they are done more cell-based. It is obvious that the disadvan-
tage of a higher kmeans value is the increasing computational effort. Hence, one
has to balance the kmeans in a meaningful way which is discussed in Chapter 8.

Having chosen the kmeans, the data set M̃M
Ω

can be fed into a K-Means algorithm
such as the one presented in Algorithm 1. Note that each combined SCV set
thereby represents an own feature, resulting in a multi-dimensional state space
to be clustered. At this point, it becomes clear that it is impossible for a human
operator to capture the behavior of all cells in the network under each and every
SCV set, resulting in an erroneous manual context classes model with the utmost
probability and making the automated generation of a learned context classes
model inevitable. Based on the features and the related values for these features,
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the algorithm tries to find kmeans clusters where cells behave similar. That is, tak-
ing all combined SCV sets into account, cells in one cluster show a more homo-
geneous behavior in terms of KPI effects than all cells outside of this cluster. This
learned context model then serves as input for the generation of a real network
effect model in CSM, i.e., measurements are aggregated within each learned cell
cluster. Both models are used for the generation of a learned effect model which
is explained in the following.

7.2.2.2. Learned Effect Model

The learned effect model mainly has the purpose to fill the blanks in the real
network effect model as described in Section 7.2.1.2. That is, KPI effects should be
reliably estimated for combined SCV sets where no measurements are available
in the real network effect model. However, for a variety of combined SCV sets,
measurements exist in the real network effect model. Since this is labeled data,
i.e., the true output for a given input is known, this is a problem for supervised
learning algorithms such as LR, GPR, KNN or ANN.

Data Preparation
Before beginning with the creation of machine learning models, the data need to
be in a certain shape such that a learning algorithm can be applied in a mean-
ingful way. Therefore, the KPI measurements database and the learned context
classes model serve as input for the creation of a real network effect model which
makes up the data basis for training and testing.

Table 7.1.: Exemplary raw measurements in KPI measurements database in CSM
ID DATE CELL MLB MRO DCR HOSR CL
... ... ... ... ... ... ... ...

345 19-12-2018 07:11:19 site34[1] 1 2 0.013 0.944 0.495
346 19-12-2018 07:24:33 site07[0] 1 2 0.017 0.932 0.510
347 19-12-2018 07:07:26 site14[1] 3 2 0.024 0.971 0.529
348 19-12-2018 08:03:01 site28[2] 3 2 0.032 0.983 0.432
349 19-12-2018 07:58:45 site34[1] 3 1 0.025 0.893 0.566
... ... ... ... ... ... ... ...

In general, measurements in the database consist of a set of attributes as depicted
in Table 7.1. The DATE at which they were measured is important to apply an
aging process as explained in the ASM approach. By means of the CELL, mea-
surements can be assigned to a learned context class and aggregated within this
class. The table further contains one column for each SON function, storing the
SCV set number at the moment of taking the measurement. Measurements are
aggregated for each single combination of these SCV sets, i.e., the KPI values
stored in the last three columns are averaged according to a certain metric (e.g.,
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the aging process). Note that an arbitrary number of KPIs can be observed and an
arbitrary number of SON functions can be deployed in the network. Further note
that the SCV set numbers represent placeholders for a set of actual SCP values.

It may be not obvious why it is necessary to average the measurements within the
learned context classes and, within each class, for each combined SCV set. This
has mainly two reasons: First of all, the computational effort for doing cell-based
predictions would be fairly high. Imagining a network with hundreds and thou-
sands of cells, the calculations would last too long for SON functions acting in
short time scales, i.e., a few minutes or even seconds, such as, e.g., MLB. Hence,
the learned context classes model reduces this complexity by defining a manage-
able number of context classes. However, note that the number of learned classes
can be set by the operator itself, meaning it can also be defined kmeans = ∣Ω∣ in case
the MNO does not want to average over more than one cell. The second reason
is that the KPI values for a single cell may differ substantially, i.e., they have a
large variance within single combined SCV sets. Due to a possibly wide interval
of measured KPI values, the irreducible error would always be very large, there-
fore making accurate predictions for a single cell hard. However, it is not the goal
of the learned effect model to predict the exact values for a certain point in time,
but to estimate the overall, i.e., the average performance of up-to-now untested
combined SCV sets.

Construction of a Regression Model
After dealing with the data preparation in terms of KPI measurements in the
previous paragraph, the goal now is to model and describe the causal relationship
between the SCV sets and the observed KPIs. That is, the input (or features)
of the model consists of a set of SCVs for each deployed SON function. The
output variables are the observed KPIs. One model needs to be constructed for
each particular KPI since the algorithms that are in the focus of this thesis can
only predict one output variable and optimal solutions may differ for different
KPIs. However, there are several multivariate regression approaches being able
to predict outputs for more than one variable. Note that in this paragraph, the
general approach how to construct a regression model is described, applicable for
all types of regression algorithms. Four algorithms are undertaken a closer look,
namely LR, GPR, KNN and ANN. Their possibilities with respect to the learned
effect model are described in this paragraph while the selection of an appropriate
algorithm is part of Chapter 8.

Before building the actual model it is worth investigating the premises defined
by the SON management approach, in order to avoid common pitfalls and mis-
interpretations of the results [Lee15]. A fundamental premise is the assumption
of correlation implying causality. As a mobile network is a controlled environment
and the only factors changed are the independent variables of the combined SCV
sets, an actual causal relationship between SCV sets and observed average KPIs
can be assumed. The next pitfall is presented through over-fitting. To avoid over-
fitting, the data samples, i.e., the combined SCV sets with related KPI effects in
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Figure 7.7.: Exemplary LOO cross validation on eight different combined SCV
sets

the real network effect model, are split into a train and a test set with a relation
of 2 ∶ 1 for each learned context class, thereby ensuring that the model selection
happens on a different set of data than the model evaluation. In order to answer
the question how well the performance of untested SCV sets can be predicted, it
is necessary to split the larger group of combined SCV sets into a training and a
validation set. Therefore, LOO cross validation is employed which is illustrated
in Figure 7.7.

Let n be the amount of combined SCV sets (i.e, n = 8 in Figure 7.7). Then, the
model is trained on n − 1 SCV sets (the gray cubes in Figure 7.7) and asked to
predict the respective KPI of the nth SCV set (the blue cubes in Figure 7.7). This
step is repeated for each combined SCV set, therefore leading to n slightly differ-
ent models and n residuals. On these residuals the error metrics, e.g., RMSE, can
be calculated describing how well one type of model is able to predict the KPI
of unseen SCV sets. Note that LOO cross validation is only reasonably applica-
ble when having a relatively small dataset, i.e., when having only a few tested
distinct SCV sets. Assuming a larger dataset, a method such as k-fold cross vali-
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dation with a lower k is more meaningful. The advantages and disadvantages of
different resampling methods have already been discussed in Section 2.3.1.

Comparing the error values of the different resulting models, the model with
the lowest error can be selected since this is the one which best represents the
behavior of the network over all applied SCV sets and hence, is likely the best
to predict the effects of untested combined SCV set combinations. While this
error value is important for the selection of a regression model, it is also valuable
feedback for an MNO. Based on this value, which perfectly represents the quality
of the calculated model, an MNO can decide whether the resulting learned effect
model is trustworthy enough to be applied in the real network or not.

For the four algorithms mentioned above, the construction of a regression model
is presented in the following. Thereby, it starts with LR which is investigated in
case the SCV sets and their effects show a linear relation. GPR and KNN have
been selected in case that the KPI values follow a more chaotic pattern. Finally,
ANNs are investigated due to their wide scope of application.

Linear Regression The general form of an LR model has been shown in Equa-
tion 2.9. As explained in Section 2.3.1.1, the LR model can be made in-
creasingly more flexible by extending the input vector with polynomials
and combinations of the existing features. The potential drawbacks of an
overly flexible model are illustrated in Section 2.3.1. The SON functions can
then be fitted with different models mapping an s f to the respective KPI.
The flexibility can be stepwise increased from a simple linear model up to
a more flexible model with higher polynomials. For instance, Equation 7.16
shows a linear model for estimating the value for a KPI DCR kDCR based
on the SCV sets of two SON functions MLB and MRO. In contrast, Equa-
tion 7.17 shows a cubic model with cubic interaction terms.

kDCR = β0 + β1 ∗ sMLB + β2 ∗ sMRO (7.16)

kDCR = β0 + β1 ∗ sMLB + β2 ∗ sMRO + β3 ∗ sMLB ∗ sMRO

+ β4 ∗ (sMLB)2 + β5 ∗ (sMRO)2 + β6 ∗ (sMLB ∗ sMRO)2

+ β7 ∗ (sMLB)3 + β8 ∗ (sMRO)3 + β9 ∗ (sMLB ∗ sMRO)3

(7.17)

Gaussian Process Regression Within this method, the crux lies in choosing the
kernel function that measures the similarity between two instances xi and
xj. Only kernel functions that can be used to predict real-valued data are
relevant in this thesis since each KPI takes on a real value. Hence, the RBF
kernel, the polynomial kernel and the PUK kernel are further investigated.
For instance, measuring the similarity between two combined SCV sets in
the RBF kernel is calculated as follows for two SON functions, their com-
bined SCV set number represented by i and j:

κRBF(σi, σj) = exp(−
∣∣σi − σj∣∣2

2λ
) (7.18)
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with σi and σj being vectors of SCV sets, one value for each SON function.

k-nearest Neighbors Regression In the KNN algorithm, the crucial part is the
choice of an appropriate k, i.e., the k closest instances to a given instance
inst approximate the output for inst as defined in Equation 2.15. Therefore,
the similarity is calculated using a distance measure such as the euclidean
distance. Thereby, the difference between two distances is defined by com-
paring the different features, i.e., the particular SCV sets, with each other.
Equation 7.19 shows the distance calculation for two combined SCV sets σij
and σmn, the first variable (i, m) representing the MLB set and the second
one (j, n) the MRO set:

deuc(σij, σmn) =
√

(sMLB
i − sMLB

m )
2
+ (sMRO

j − sMRO
n )

2
(7.19)

with sMLB
i , sMLB

m , sMRO
j and sMRO

n representing the respective SCV set num-
ber.

Arti�cal Neural Networks In neural networks, choosing the number of hidden
layers and the number of neurons per layer is the crucial part. In Sec-
tion 2.3.1.4, some guidelines are presented how to decide about these two
points without confronting the problems of under- or over-fitting. Since it is
proposed to never choose the number of hidden layers > 2, a suitable model
should have one or two hidden layers. For the number of hidden neurons,
one should have a look at the features (= number of neurons on the input
layer) and the values to be predicted (= number of neurons on the output
layer). Since each SCP of each SON function f ∈ F marks a feature, the num-
ber of hidden neurons on each layer should be ≤ 2∗∑ f ∈F ∣parf∣ following the
third rule in Section 2.3.1.4 that determines the highest number of neurons.
Since the prediction is done for each KPI individually, there is always one
parameter to be predicted, i.e., one neuron on the output layer. Following
the first rule in Section 2.3.1.4, each hidden layer must have at least two
hidden neurons then. Summarized, the number of hidden neurons n for
the presented problem should be 2 ≤ n ≤ 2 ∗∑ f ∈F ∣parf∣. For instance, hav-
ing three SON functions deployed in the network with two SCPs each, the
number of hidden neurons on each hidden layer should be between 2 and
12.

Prediction of KPI Effects
The crucial part in the process of deriving a learned effect model is the construc-
tion of a regression model that reflects the SON functions’ behavior good enough
to be satisfactory for the estimation of KPI effects of untested SCV sets. This step
has been described in the previous paragraph. Possibilities of determining a suit-
able model for four algorithms are presented. The selected model then represents
the analyzed data in the best possible way and can be used for the prediction of
unseen, i.e., untested combined SCV sets. Therefore, the set of untested combined
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SCV sets needs to be determined first which is defined as all combinations that
do not lead to a conflict and that have never been applied in the real network, i.e.:

Σuntested = ΣΓ ∖ΣΓ
app (7.20)

For each σ ∈ Σuntested, the respective regression model is applied for each of the
observed KPIs. Note that thereby, the selected model may be different for dif-
ferent KPIs. Further note that this is done for each of the learned context classes
individually. Hence, a mapping is defined for each combined SCV set under a
certain learned context class to a value for a KPI k ∈ K, i.e., (c̃, σ) ↦ ϕc̃

σ(k)′.

Referring back to Section 7.2.1.2, the goal was to define the (c̃, σ) ↦ ϕc̃
σ(⋅)′ which

then can be easily achieved by combining the (c̃, σ) ↦ ϕc̃
σ(k)′s for all k ∈ K. The set

of all these mappings for all learned context classes and all combined SCV sets
then results in the learned effect model EMlearned.

7.2.3. Methodology

Before beginning with an explanation of details of the developed methodology,
an overview is provided about all models that are relevant for a CSM system.
The relationship between these models and their usage in CSM is explained after-
wards. This overview does not only include input models which are externally
provided, i.e., by an operator or SON function manufacturers, but also models
that are internally generated by the objective manager.

Objective Model In this model, an MNO expresses his or her targets in terms
of network KPIs. A KPI target is a concrete value that should be achieved
and a weight is assigned to each target such that it is able to trade them off
against each other. Together, they form an objective which is context-depen-
dent, meaning there needs to be an objective for each KPI in each (manually
defined) context class.

Context Attributes Model The cells and the environment where the cells oper-
ate in, is described by context properties. These context properties, together
with their possible value range, are stored in the context attributes model
and serve as input for the definition of manual context classes.

Manual Context Classes Model This model is manually defined by the opera-
tor of a mobile network for the purpose of reducing the huge context state
space to manageable context classes. That is, a context class summarizes
context states where it is assumed that cells have a similar behavior and
hence, there is exactly one objective per KPI per manual context class in the
objective model.

160



7.2. APPROACH

Manufacturer E�ect Model SON functions are usually delivered as black boxes
by the manufacturers and hence, a description of their behavior needs to be
provided in the first place. The manufacturer effect model maps a set of SCV
sets for a SON function to KPI effects, i.e., concrete KPI values, expected to
be achieved in the network.

Combined E�ect Model Manufacturer effect models are delivered per SON func-
tion and hence, do not indicate the effect of having a variety of SON func-
tions concurrently being active in the network. The objective manager per-
forms a reasoning process to combine the KPI effect prediction provided by
different SON function manufacturers. The result is an effect model that
maps a combined SCV set to the expected effects on all observed KPIs.

Real Network E�ect Model Both, the manufacturer and the combined effect mo-
del, are based on simulations done in the network environment of the SON
function manufacturer. When deploying SON functions in the real network,
their behavior usually differs from what is predicted in these models. There-
fore, measurements are taken and aggregated to generate a real network ef-
fect model that better reflects the actual SON function behavior. While these
measurements are always cell-based, the aggregated effects in the model are
based on either manual or learned context classes.

Learned Context Classes Model Since the classification of cells in the manual
context classes model is done by the operator on inspection, it is highly
probable that some of the cells are wrongly classified. The learned context
classes model clusters cells based on their behavior, i.e., based on the KPI
values they produce under certain SCV sets, resulting in mappings from
cells to learned context classes.

Learned E�ect Model It is very unlikely that all available SCV set combinations
can be tested in the real network since the objective manager always selects
combinations with a promising expected utility. However, effect predic-
tions in the effect models may be inaccurate and hence, some untested com-
binations of SCV sets may lead to an unexpectedly well performance. Ef-
fect predictions in the learned effect model complete the real network effect
model by using machine learning techniques to estimate the performance
of untested SCV set combinations based on the real network effect model.

Three models have been explained in more detail in this chapter: The learned con-
text classes model, the real network effect model based on learned context classes
and the learned effect model. However, these models can only be generated when
enough knowledge about the network in terms of KPI measurements is gathered
and as a consequence, all of these models are necessary for an effective CSM ap-
proach. More precisely, when enabling SON management for the first time in a
mobile network, the ODSM approach serves as a starting point. Within this con-
figuration testing phase, as much different combined SCV sets as possible should
be tested. In the second phase, i.e, the data collection phase, the ASM approach is
applied. Hereby, measurements are continuously taken to gain knowledge about
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Figure 7.8.: Overview of CSM phases and models used in them

already tested SCV sets. In the third and last phase, the optimum in terms of
KPI target fulfillment can be achieved by using the CSM approach. This learn-
ing phase helps to understand the behavior of all possible SCV set combinations,
even the undocumented ones. An overview of these three phases, the used SON
management approach and used models is depicted in Figure 7.8 and will be fur-
ther explained in the following, thereby focusing on the learning phase and the
methodology of the CSM approach.

Externally provided models are shaded in light gray, models generated by the
objective manager are shaded in dark gray. Note that the real network effect
model is based on different context classes in the ASM and CSM approach.
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7.2.3.1. Configuration Testing Phase

It is not the goal of this thesis to describe a SON management approach that is
already installed in the mobile network for a while, but also give an idea how
SON management could deal with initial network conditions. That is, no mea-
surements or any other knowledge about the network is existent when deploy-
ing a SON management system for the first time. The only available knowl-
edge is the description of technical objectives, the network’s attributes and the
manufacturer-provided effect models. ODSM uses this knowledge to first com-
bine the effect models for the different SON functions into a combined effect
model. Afterwards, the combined SCV set with the highest overall utility is se-
lected and deployed in the network. Various SCV set combinations usually pro-
vide the same (optimal) utility such that they should be chosen randomly to test
as much SCV sets as possible. In doing so, information about several SCV set
combinations can be gathered. One may think that the random choice of SCV
sets might be problematic for an MNO. However, all these combined SCV sets
provide the same utility, i.e., it is expected that they all fulfill operator objectives
to the same degree. The selection of SCV sets according to the ODSM approach
has already been described in Chapter 5 and is not illustrated in further detail
here.

It remains the operator’s decision to stop the configuration testing phase and
to turn into the data collection phase. This may have two reasons: First, the
number of tested SCV sets is sufficient for an operator and for each situation there
is an SCV set where KPI targets are sufficiently fulfilled. However, this is highly
unrealistic due to the fact that all calculations are based on unrealistic input effect
models. Hence, a second reason may be that some of the SCV sets do not achieve
the expected results and hence, the network is jumping between good and bad
SCV sets.

7.2.3.2. Data Collection Phase

To overcome the above mentioned problem, ASM collects data about the network
in terms of KPI measurements and builds a real network effect model that better
reflects the actual behavior of SCV sets in the network. This is done by perma-
nently integrating the most current KPI measurements in the existing real net-
work effect model and weighting newer measurements higher than older ones.
This way, the effect model gets closer to reality step by step. For the selection
of optimal SCV sets it is now meaningful to not only choose the combination
with the highest utility, but the one which provides the best absolute KPI target
fulfillment. This can be achieved by measuring the distance as described in Sec-
tion 6.2.4.1. In general, the selection of combined SCV sets works as presented in
Chapter 6 and is not further explained here.
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It is again the operator’s decision to stop the data collection phase and turn into
the learning phase. This may have two reasons: First, enough data has been
collected such that the real network effect model perfectly describes the SON
functions’ behavior and, as a consequence, applying machine learning techniques
becomes meaningful. Second, the network may be in a state where none of the
already tested SCV sets achieves the operator’s objectives. This can be the case
when the effect predictions in manufacturer-provided effect models do not prove
true at all in the real network.

Note that it is also possible to switch back to the configuration testing phase at
any time in case that more SCV sets should be tested in the real network.

7.2.3.3. Learning Phase

In the learning phase, CSM is activated, meaning that a complete effect model is
available at any time. The learning process is initiated every time new measure-
ments are taken such that the learned effect model calculations are always based
on the most current information about the mobile network, i.e., the real network
effect model is permanently adapted. Both, the real network effect model as well
as the learned effect model, are thereby dependent on learned context classes.
This is a difference to the ASM approach where the effect model depends on the
manually defined context classes. However, the learned context classes describe
similarities between cells in a better way since the clustering is done based on
the actual KPI values produced by the cells. The manual context classes model
is still used for the definition of operator objectives since the MNO best knows
what goals should be achieved in the network. The general CSM methodology
for selecting appropriate SCV sets is still based on the ASM approach with slight
changes in the different calculation steps which is presented in the following.

Figure 7.9 shows the algorithm for deriving an SCV set policy in CSM. The first
step includes the generation of a learned context classes model which has been
already described in Section 7.2.2.1. The second step is the generation of a real
network effect model based on the learned context classes. The details of creating
this model can be found in Section 7.2.1.2. Based on these two models, the learned
effect model can be generated which is explained in detail in Section 7.2.2.2. The
selection of suitable SCV sets is based on these three models as well as the objec-
tive model and the manual context classes model.

SCV Set Calculation
The calculation of suitable combined SCV sets is similar to the approach pre-
sented in the ASM chapter. Five consecutive steps need to be executed, namely
the delta determination, the SCV set filtering, the KPI target vs. network performance
comparison, the performance indication and finally, the SCV set selection. One of the
main differences to ASM is that this is done for each cell (instead of manual con-
text class) in the network which has mainly two reasons: First of all, this allows
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Figure 7.9.: SCV set policy derivation algorithm in CSM (noted in UML 2)
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for a more precise and tailored configuration of the SON function instances de-
ployed on each cell. Second, since the KPI targets are defined per manual context
class and the effect models are dependent on learned context classes, a mapping
between these two types of context models would be too complex and erroneous.
Note that the cell-based configuration does not have a tremendous impact on the
computational effort. The calculations done in here are simple arithmetic opera-
tions such that even a thousandfold number of them does not have a noticeable
effect with respect to calculation time. The five steps as they appear in CSM are
one by one described in the following while focusing on the differences to ASM.

Delta Determination In this step, the delta δ̃ω between the expected network
performance, i.e., the effect prediction for the currently active SCV set com-
bination σcurrent, and all other effect predictions in the real network effect
model EMreal as well as learned effect model EMlearned, is calculated. This
is done for each cell ω ∈ Ω individually. Note that σcurrent is definitely in
EMreal since this SCV set combination has been already deployed in the real
network.

δ̃ω(σi, σcurrent) = µ̃c̃
σi
(⋅) − µ̃c̃

σcurrent(⋅) (7.21)

with c̃ ∈ C̃ and (ω ↦ c̃) ∈ CMlearned. Thereby, σi ∈ Σapp ∪Σuntested, meaning
the effect prediction is either in the real network or learned effect model. By
calculating this delta, the objective manager gets an impression about the
impact in the network when changing from the current combined SCV set
to every other possible SCV set combination. Hence, the result of this step
is a set ∆̃ of δ̃s for each cell ω ∈ Ω, i.e.:

∆̃c̃ = {δ̃ω(σi, σcurrent)∣σcurrent ∈ ΣΓ
app, σi ∈ ΣΓ

app ∪ΣΓ
untested, c̃ ∈ C̃} (7.22)

with ∣∆̃c̃∣ = ∣ΣΓ
app ∪ΣΓ

untested∣.

SCV Set Filtering The second step of the objective manager’s algorithm is very
similar to the one in ASM. That is, the list of possible SCV sets and hence,
the set of δs is filtered for SCV sets that could have a better effect on the
KPIs of a cell than the currently deployed SCV set. Therefore, the δ̃ωs are
multiplied with a scaling vector as defined in Equation 6.24, i.e.:

δ̃∗ω(σi, σcurrent) = δ̃ω(σi, σcurrent) ⋅ ς (7.23)

The δ̃∗ωs that contain negative normalized delta values for all KPIs, can be
discarded since they would definitely worsen the performance of that cell.
One can easily translate the function defined in Equation 6.27 into a function
filter(δ∗ω(σi, σcurrent)) that filters the cell-specific normalized deltas. Using
this function, the combined SCV sets with an overall negative effect can be
defined as:

Z̃ω = {σi∣σi ∈ ΣΓ
app ∪ΣΓ

untested ∧filter(δ̃∗ω(σi, σcurrent)) = 0} (7.24)
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Accordingly, the set of filtered deltas ∆̃Z̃
ω for a cell ω ∈ Ω is defined as:

∆̃Z̃
ω = {δ̃∗ω(σi, σcurrent)∣σi, σcurrent ∈ ΣZ̃

ω, c̃ ∈ C̃} (7.25)

with ΣZ̃
ω = (ΣΓ

app ∪ ΣΓ
untested) ∖ Z̃ω. These filtered deltas and the results of

comparing the KPI targets with the current network performance can be
used to indicate the performance of possible SCV set combinations. The
latter is explained in the next step.

KPI Target vs. Network Performance Comparison The result of this step indi-
cates how far a KPI is away from fulfilling its target with the current com-
bined SCV set. Technical objectives are taken into account and the respec-
tive targets are compared with the current performance of the KPIs. Again,
this step needs to be performed for each individual cell.

λ̃ω = (ξω − ϑc) ⋅ ς (7.26)

The difference is calculated by subtracting the vector of target values ϑc
from the vector containing the current KPI values ξω and multiplying the
result with the scaling vector ς. Note that the KPI targets depend on a man-
ual context class c ∈ C with the operational context of the cell being in c, i.e.,
χω ∈ c. Further note that manual context classes are unambiguous, i.e., each
cell can be clearly assigned to exactly one manual context class. In the end,
the set of comparison vectors Λ̃ is defined as

Λ̃ = {λ̃ω1 , λ̃ω2 , ..., λ̃ω∣Ω∣} (7.27)

These λ̃ω ∈ Λ̃ are combined with the respective set of filtered deltas ∆̃Z̃
ω in

the next step.

Performance Indication For each of the SCV sets where a delta exists in ∆̃Z̃
ω, a

prediction is calculated indicating the effect when changing from the cur-
rently active SCV set combination to this set. This is done for each indi-
vidual cell by adding the afore-calculated difference between the cell’s KPI
targets and current KPI performance to the respective delta values.

ι̃ω(σi, σcurrent) = δ̃∗ω(σi, σcurrent) + λ̃ω (7.28)

Doing this for all remaining SCV sets σi in δ̃∗ω(σi, σcurrent) for a given cell ω,
the result is a set Ĩω of ι̃ω(σi, σcurrent)s, i.e.:

Ĩω = {ι̃ω(σi, σcurrent)∣σi, σcurrent ∈ ΣZ̃
ω, ω ∈ Ω} (7.29)

Note that the ι̃ω(σi, σcurrent)s are again vectors containing one value for each
of the observed KPIs, a negative value indicating that a KPI target can not
be fulfilled and a positive value representing a KPI fulfillment. Here, a big
advantage compared to ASM can be seen: Instead of having this indication
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per manual context class, it is available for each individual cell, meaning
that cells can be differently configured while still being in the same manual
context class. In a final step, the most suitable SCV set combination, i.e., the
one which best fulfills the KPI targets, can be selected.

SCV Set Selection With the results of the previous step, it is easy to calculate
a utility for each possible SCV set combination. Remember that a positive
value in the indication vector represents the fulfillment of a KPI target and
vice versa. Thus, a function is needed similar to Equation 6.37, returning
either 1 or 0 depending on a positive or negative value, i.e.:

sat(σi, k j) =
⎧⎪⎪⎨⎪⎪⎩

1 if projj(ι̃ω(σi, σcurrent)) ≥ 0

0 otherwise
(7.30)

with σi ∈ ΣZ̃
ω, k j ∈ K and projj(ι̃ω(σi, σcurrent) being a projection on the jth ele-

ment in the vector ι̃ω(σi, σcurrent). For the calculation of utilities, the weights
wkj

of the KPI targets come into play such that a weighted sum can be de-
termined for each SCV set combination and each cell, i.e.:

U(σi) = ∑
1≤j≤∣K∣

sat(σi, k j)
wkj

w̄
(7.31)

with w̄ = ∑
i∈K

wi. Equal to the ASM process, the distance to the KPI targets

can be additionally determined in order to not only find the SCV set with
the best utility, but the SCV set with the overall best performance in terms
of KPIs. This distance is calculated as follows:

D(σi) = (proj1(ι̃ω(σi, σcurrent) ⋅wk1)+⋯+(proj∣K∣(ι̃ω(σi, σcurrent) ⋅wk∣K∣) (7.32)

where projj(ι̃ω) refers to the same projection function as defined above. The
KPIs’ weights are again considered to best reflect the operator’s require-
ments in terms of KPIs. The combined SCV set with the biggest (positive)
distance then does best in fulfilling the targets and hence, is the one to be
selected for the examined cell.

7.2.4. Policy System

The policy system in CSM possesses one main difference to the policy systems
in previous approaches: Since all calculations in the objective manager are done
per cell, one rule is generated for each of them and hence, the policy repository
contains ∣Ω∣ rules.

Thus, the number of rules has significantly increased compared to the ASM ap-
proach, in which one rule exists per manually defined context class in the end.
However, the number of rules is still manageable, even when the mobile network
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1 IF c e l l THEN SCV s e t comb inat ion

Listing 7.4: SCV set policy rule in CSM

consists of hundreds or a few thousand cells. Also, the rules are less complex
as in the PBSM and ODSM approaches where conditions were based on context
attributes and there values, laboriously combined in the end. Furthermore, the
decision process in the PDP is less complex: Instead of mapping operational con-
text to the definition of classes in the manual context classes model, the only thing
that is needed as input is the ID of the cell. A rule can then be unambiguously re-
lated to that cell and the action can be executed, i.e., the SCV sets can be deployed
to the SON function instances installed on the cell.

7.3. Example

The CSM approach as it is used in the learning phase, is exemplified in this sec-
tion. Therefore, this section is divided into three subsections: First, the deriva-
tion of a learned context classes model is shown. Second, this learned context
classes model and a real network effect model are used to generate a learned ef-
fect model. And finally, SCV sets can be selected according to the real network
and learned effect model. However, before starting with the calculations, some
premises in terms of the network and the required models must be constituted.

Since doing calculations manually becomes very complex with an increasing size
of the mobile network, for this example a very simple network is assumed with
three cells and two SON functions operating in the network, namely MLB and
MRO. Each of these SON functions has two possible SCV sets whereby an SCV
set only consists of one single SCV, i.e., the SON functions only have one SCP
that can be adapted. Two KPIs are observed in the network, namely DCR and
CL. Summarized, the following assumptions apply for the presented mobile net-
work.

The set of cells Ω is defined as follows:

Ω = {site01[0], site01[1], site01[2]} (7.33)

The set of SON functions F is defined as follows:

F = {MLB, MRO} (7.34)

The set of KPIs K is defined as follows:

K = {DCR, CL} (7.35)

The set of SCV sets for MLB SMLB is defined as follows:

SMLB = {MLB_1, MLB_2} (7.36)
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The set of SCV sets for MRO SMLB is defined as follows:

SMRO = {MRO_1, MRO_2} (7.37)

It is further assumed that all SCV set combinations are non-conflicting, i.e.:

ΣΓ = {σ11, σ12, σ21, σ22} (7.38)

with the first number representing the MLB set number and the second one rep-
resenting the MRO set number.

A few models are needed as input for further calculations which are depicted
below.

1. An Objective Model containing the targets to be achieved for manual con-
text classes.

1 {
IF CLASS_1 THEN DCR ≤ 0 .03 WITH 0 .7

3 IF CLASS_1 THEN CL ≤ 0 .5 WITH 0 .3
IF CLASS_2 THEN DCR ≤ 0 .02 WITH 0 .4

5 IF CLASS_2 THEN CL ≤ 0 .6 WITH 0 .6
}

Listing 7.5: Exemplary objective model for two manual context classes in CSM

2. A Manual Context Classes Model such that these targets can be assigned
to the respective cells. The operational context of site01[0] and site01[2] is
assumed to be χsite01[0] = χsite01[2] = {location = urban} whereas for site01[1]
it is χsite01[1] = {location = suburban}. Consequently, site01[0], site01[2] ∈
CLASS_1 and site01[1] ∈ CLASS_2.

{
2 IF l o c a t i o n = urban THEN CLASS_1

IF l o c a t i o n = suburban THEN CLASS_2
4 }

Listing 7.6: Exemplary manual context classes model in CSM

3. A Learned Context Classes Model defining clusters of cells where cells
have a similar behavior in terms of KPI values. Thereby, kmeans = 2, i.e., two
learned clusters of cells exist. As can be seen in Listing 7.7, cells are assigned
to different classes as in the manual context classes model, i.e., site01[0] ∈
LEARNED_CLASS_1 and site01[1], site01[2] ∈ LEARNED_CLASS_2.

4. A Real Network Effect Model reflecting the actual impact of combined SCV
sets in the network. Thereby, for LEARNED_CLASS_1 effect predictions
exist for σ11 and σ12, i.e., these combinations have already been applied in
the real network. For LEARNED_CLASS_2, SCV set combinations σ12, σ21
and σ22 have already been applied.
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{
2 IF s i t e 0 1 [ 0 ] THEN LEARNED_CLASS_1

IF s i t e 0 1 [ 1 ] THEN LEARNED_CLASS_2
4 IF s i t e 0 1 [ 2 ] THEN LEARNED_CLASS_2
}

Listing 7.7: Exemplary learned context classes model in CSM

1 {
IF LEARNED_CLASS_1 AND σ11 THEN DCR = 0.013 AND CL = 0.495

3 IF LEARNED_CLASS_1 AND σ12 THEN DCR = 0.032 AND CL = 0.432
IF LEARNED_CLASS_2 AND σ12 THEN DCR = 0.041 AND CL = 0.644

5 IF LEARNED_CLASS_2 AND σ21 THEN DCR = 0.024 AND CL = 0.629
IF LEARNED_CLASS_2 AND σ22 THEN DCR = 0.022 AND CL = 0.577

7 }

Listing 7.8: Exemplary real network effect model in CSM

5. A Learned Effect Model complementing the real network effect model with
effect predictions for untested SCV set combinations. This model contains
up-to-now untested, i.e., not applied combinations of SCV sets, i.e., σ21 and
σ22 for LEARNED_CLASS_1 and σ11 for LEARNED_CLASS_2.

1 {
IF LEARNED_CLASS_1 AND σ21 THEN DCR = 0.027 AND CL = 0.515

3 IF LEARNED_CLASS_1 AND σ22 THEN DCR = 0.024 AND CL = 0.489
IF LEARNED_CLASS_2 AND σ11 THEN DCR = 0.015 AND CL = 0.573

5 }

Listing 7.9: Exemplary learned effect model in CSM

Note that it is assumed that CSM is already running since a few time steps (cf.
Figure 7.5), meaning that the combined effect model is not needed anymore and
the real network effect model, the learned effect model and the learned context
classes model represent the most current version of these models. It is assumed
that these models have been generated at 8 o’clock am. In the following, these
models are recalculated and adapted according to new measurements that have
been taken at 9 o’clock am. The respective measurements database is shown in
Table 7.2.

7.3.1. Derivation of Learned Context Classes Model

For the clustering of the cells, it is first necessary that a common data basis is
given, i.e., the same SCV set effects need to be existent for all the cells. When an-
alyzing the measurements database, it can be seen that the set of already applied
combinations strongly differs for all three cells. This is illustrated in Figure 7.10
where blue squares denote existing measurements and gray ones are referring to
missing measurements.
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Table 7.2.: Exemplary raw measurements for all cells in the network
ID DATE CELL MLB MRO DCR CL
1 19-12-2018 07:00:00 site01[0] 1 1 0.013 0.495
2 19-12-2018 07:00:00 site01[1] 2 2 0.017 0.598
3 19-12-2018 07:00:00 site01[2] 2 1 0.024 0.629
4 19-12-2018 08:00:00 site01[0] 1 2 0.032 0.432
5 19-12-2018 08:00:00 site01[1] 2 2 0.025 0.566
6 19-12-2018 08:00:00 site01[2] 1 2 0.041 0.644
7 19-12-2018 09:00:00 site01[0] 2 2 0.021 0.470
8 19-12-2018 09:00:00 site01[1] 1 1 0.016 0.558
9 19-12-2018 09:00:00 site01[2] 2 2 0.014 0.607
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Figure 7.10.: Existing measurements for all three cells in the network according to
measurements database

These blanks need to be filled in order to enable a meaningful clustering of the
cells. According to the most current learned context classes model, site01[0] is
assigned to LEARNED_CLASS_1 and hence, the rule in the real network effect
model or the learned effect model needs to be found where the condition part
exists of LEARNED_CLASS_1 and the missing SCV set combination σ21. Since
this combined SCV set obviously has not been applied yet for none of the cells
in LEARNED_CLASS_1, this rule is part of the learned effect model. For cell
site01[1], a measurement is missing for σ12 resulting in a gap that can be filled
by the real network effect model where the effect for LEARNED_CLASS_2 in
combination with σ12 is predicted. Doing this for all gray squares in Figure 7.10
results in the following table that serves as input to the clustering algorithm.

Since having eight values for each of the cells, i.e., two KPI values for each of
the four possible SCV set combinations, this spans up an eight-dimensional state
space which can be hardly illustrated. Hence, it is worth having a closer look to
the data table. While all cells provide a fairly low DCR, more precisely, 0.013 ≤
DCR ≤ 0.041, this value does not say a lot about the affiliation of cells to cer-
tain clusters. However, it can be seen that in three of the four cases, site01[1]
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Table 7.3.: Completed set of measurements for all cells in the network

CELL σ11 σ12 σ21 σ22
DCR CL DCR CL DCR CL DCR CL

site01[0] 0.013 0.495 0.032 0.432 0.027 0.515 0.021 0.470
site01[1] 0.016 0.558 0.041 0.644 0.024 0.629 0.025 0.566
site01[2] 0.015 0.573 0.041 0.644 0.024 0.629 0.014 0.607

and site01[2] have a very similar DCR probably qualifying them for being in the
same cluster. When having a look at the CL, this impression is confirmed. For
these two cells, the CL value is noticeably higher for all of the four SCV set com-
binations compared to site01[0] and hence, these two cells should be in the same
cluster while site01[0] builds the other cluster. This is exactly what is already ex-
pressed in the previous learned context classes model and hence, the model does
not change in this time step.

7.3.2. Derivation of Learned Effect Model

This learned context classes model is then used for the derivation of a learned
effect model. In addition, a real network effect model is needed that aggregates
measurements in the database (i.e., Table 7.2) according to learned context classes
in Listing 7.7. The latter has been already elaborated and exemplified in full detail
in Chapter 6 and will not be explained step by step here. Hence, the real network
effect model depicted in Listing 7.10 is assumed for further calculations.

1 {
IF LEARNED_CLASS_1 AND σ11 THEN DCR = 0.013 AND CL = 0.495

3 IF LEARNED_CLASS_1 AND σ12 THEN DCR = 0.032 AND CL = 0.432
IF LEARNED_CLASS_1 AND σ22 THEN DCR = 0.021 AND CL = 0.470

5 IF LEARNED_CLASS_2 AND σ11 THEN DCR = 0.016 AND CL = 0.558
IF LEARNED_CLASS_2 AND σ12 THEN DCR = 0.041 AND CL = 0.644

7 IF LEARNED_CLASS_2 AND σ21 THEN DCR = 0.024 AND CL = 0.629
IF LEARNED_CLASS_2 AND σ22 THEN DCR = 0.018 AND CL = 0.592

9 }

Listing 7.10: Exemplary real network effect model in CSM

Based on this real network effect model, the effects of untested σs can be calcu-
lated. Have in mind that this needs to be separately done for each learned context
class. The real network effect model already contains predictions for all possible
σs for LEARNED_CLASS_2 and hence, nothing needs to be learned for this class.
However, in case of LEARNED_CLASS_1, a prediction for σ21 is missing and a
learning algorithm can be applied to estimate the performance when applying
this combined SCV set on all cells within LEARNED_CLASS_1 in the network.

When estimating the effect of a combined SCV set, the actual SCVs of the sets
need to be taken into account. For the sake of simplicity, it is assumed that both
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SON functions only have one SCP, called parMLB and parMRO in the following.
For both SCPs, a domain [0, 1] is assumed and in addition, the unrealistic as-
sumption is made that each KPI is only influenced by one SON function, i.e., DCR
by MRO and CL by MLB. This is an assumption that generally argues against one
of the main benefits of CSM: Finding optimal combined SCV sets for all cells in the
network. However, this significantly facilitates further explanations.

The following table shows the respective SCP values for the four combined SCV
sets.

Table 7.4.: SCPs and respective SCVs for all combined SCV sets
parMLB parMRO

σ11 0.2 0.7
σ12 0.8 0.1
σ21 0.6 0.3
σ22 0.4 0.5

Having these values, a graph can be drawn for each of the KPIs showing the
relationship between the SON function’s input parameter and the resulting KPI
value. These two graphs are depicted in Figure 7.11a and Figure 7.11b. When ap-
plying learning algorithms to these datasets, the selected regression model could
look as illustrated by the dotted lines, i.e., a simple linear relation between the
SCPs and the respective KPI values exists. Using this linear model, the effects on
the KPIs are predicted as indicated by the arrows, i.e., parMLB maps to CL = 0, 451
and parMRO maps to DCR = 0, 026.
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This information is then stored in the learned effect model, the result can be seen
in Listing 7.11.

Note that the derivation of an effect model is exemplified in a very simplified
form for demonstration purposes such that it gets easily understandable.
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1 {
IF LEARNED_CLASS_1 AND σ21 THEN DCR = 0.026 AND CL = 0.451

3 }

Listing 7.11: Resulting learned effect model

7.3.3. Selection of Combined SCV Sets

Now that all models are available, optimal SCV sets can be calculated and an SCV
set policy can be generated. Therefore, the five steps mentioned in Section 7.2.3.3
are executed consecutively. First, the delta between the currently deployed SCV
set combination and all other possible combinations is defined for each cell in the
network. Looking at Table 7.2 it can be seen that σ

site01[0]
current = σ22, σ

site01[1]
current = σ11 and

σ
site01[2]
current = σ22. By means of the learned context class that is assigned to each of

the cells, the expected performance can be read out from the real network effect
model. For instance, since site01[0] is in context class LEARNED_CLASS_1, the
expected performance of the currently deployed SCV set is DCR = 0.021 and
CL = 0.470. These values are then subtracted from the effect predictions of all
other combinations resulting in the deltas.

In a second step, the delta vectors are multiplied with a scaling vector ς, thereby
enabling a filtering of the SCV set combinations. In this example, ς for the two
observed KPIs is defined as follows:

ς = ( −1
−1 ) for ( DCR

CL ) (7.39)

In doing so, SCV sets with a negative effect on all KPIs can be discarded.

Table 7.5 shows the results in terms of deltas δ̃, scaled deltas δ̃∗ and the result
of filtering the scaled deltas. As can be seen, for site01[0], none of the combined
SCV sets could be filtered out, meaning that they all have the potential to fulfill
respective operator objectives in the best possible way. For site01[1], changing
from the current SCV set combination to any other combination would definitely
worsen the KPI fulfillment and hence, the selection is easy: σ11 still provides the
best KPI effect. In case of site01[2], one more combination besides the currently
deployed σ22 can possibly lead to a better KPI effect. Having a closer look, one
can see that both observed KPIs are improved by σ11 due to the positive values.
That is, while both options σ11 and σ22 possibly provide the same utility, σ11 will
definitely be selected independent of the cell’s targets, when applying a distance
function, which is recommended in the learning phase.

As a consequence, due to the obvious results for site01[1] and site01[2], only
site01[0] will be viewed in detail in the following.

In the next step of the objective manager, the current network performance is
taken into account and compared with the targets that belong to the manual con-
text class of site01[0]. The current network performance of site01[0] can again be
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Table 7.5.: Deltas, scaled deltas and filtered deltas for all cells and all combined
SCV sets

σ11 σ12 σ21 σ22

site01[0]

δ̃site01[0](σi, σ22) ( −0.008
0.025 ) ( 0.011

−0.038 ) ( 0.005
−0.019 ) ( 0.0

0.0 )

δ̃∗site01[0](σi, σ22) ( 0.008
−0.025 ) ( −0.011

0.038 ) ( −0.005
0.019 ) ( 0.0

0.0 )

filter(δ̃∗site01[0](σi, σ22)) 1 1 1 1

site01[1]

δ̃site01[1](σi, σ11) ( 0.0
0.0 ) ( 0.025

0.086 ) ( 0.008
0.071 ) ( 0.002

0.034 )

δ̃∗site01[1](σi, σ11) ( 0.0
0.0 ) ( −0.025

−0.086 ) ( −0.008
−0.071 ) ( −0.002

−0.034 )

filter(δ̃∗site01[1](σi, σ11)) 1 0 0 0

site01[2]

δ̃site01[2](σi, σ22) ( −0.002
−0.034 ) ( 0.023

0.052 ) ( 0.006
0.037 ) ( 0.0

0.0 )

δ̃∗site01[2](σi, σ22) ( 0.002
0.034 ) ( −0.023

−0.052 ) ( −0.006
−0.037 ) ( 0.0

0.0 )

filter(δ̃∗site01[2](σi, σ22)) 1 0 0 1

read from Table 7.2 which is DCR = 0.021 and CL = 0.470. Subtracting the target
vector from the current performance vector and multiplying it with the scaling
vector delivers the current distance to the KPI targets, positive values represent-
ing a fulfillment and vice versa.

λ̃site01[0] = ( ( 0.021
0.470 )− ( 0.03

0.50 ) ) ⋅ ( −1
−1 ) = ( 0.009

0.030 ) (7.40)

It can be seen in Equation 7.40 that the SON functions currently perform well for
cell site01[0]. However, it is still possible that there is a better SCV set combina-
tion than the currently active one.

This can be found out in the next two steps where first, the performance indica-
tion is calculated for each of the four SCV set combinations based on the result
of Equation 7.40 and the filtered deltas. Based on these indication vectors, the
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utility as well as the distance can be calculated leading to a clear result which
combination performs best for site01[0]. This is illustrated in Table 7.6.

Table 7.6.: Scoring of the exemplary combined SCV sets
oDCR = (0.03, 0.7) oCL = (0.5, 0.3) D(σi) U(σi)
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σ11 0.017 1

0.7

0.005 1

0.3

0.0134 1.0
σ12 −0.002 0 0.068 1 0.0190 0.3
σ21 0.004 1 0.049 1 0.0175 1.0
σ22 0.009 1 0.030 1 0.0153 1.0

Table 7.6 shows that the three combined SCV sets σ11, σ21 and σ22 fulfill all KPI
targets, indicated by a utility of 1.0. Hence, the decision for one of the sets is taken
by considering the distance. Here, an interesting fact can be detected: While σ12
provides the highest, i.e., the best distance, it is the only one that does not fulfill
the target for DCR. This is due to the fact that it only falls slightly below the DCR
target but on the other side, provides by far the best performance for CL. Since it
is the most important requirement of an operator to fulfill objectives at all, σ21 is
selected because D(σ21) ≥ D(σ22) ≥ D(σ11).

7.3.4. Generation of SCV Set Policy

One main difference to the ASM approach is that in CSM, the resulting policy
does not depend on manual context classes, but cells instead. Following the pre-
sented results, a policy for the example looks as depicted in Listing 7.12.

1 {
IF s i t e 0 1 [ 0 ] THEN MLB = MLB_2 AND MRO = MRO_1

3 IF s i t e 0 1 [ 1 ] THEN MLB = MLB_1 AND MRO = MRO_1
IF s i t e 0 1 [ 2 ] THEN MLB = MLB_1 AND MRO = MRO_1

5 }

Listing 7.12: Resulting cell-based SCV set policy

Note that cells site01[1] and site01[2] belong to the same learned context class
while site01[0] and site01[2] belong to the same manual context class. Since
site01[1] and site01[2] are equally configured, the similar behavior of these two
cells is confirmed. One of the main advantages of CSM can be seen here: Cells
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within the same manual context class, i.e., cells where the same operator objec-
tives apply, can still be configured differently, leading to an overall better network
performance.

7.4. Related Work

Applying techniques in the field of machine learning currently is a hot topic in
mobile network optimization. Several reinforcement learning approaches exist
to learn optimal parameters for specific single SON functions. In [MM13a] and
[MM13b], an approach is presented which adapts the CIO values of a cell’s MLB
function instance and the instances of all its neighbors by using Q-Learning de-
pending on the current load values of these cells. In [Qin+13], an algorithm is pre-
sented optimizing the HO parameters of an MRO function through Q-Learning.
For the CCO function, a lot of approaches exist dealing with the optimization of
the function’s parameters. Most of them also use reinforcement learning, e.g.,
[IM12b] and [IM12a] propose an approach for the initial configuration and op-
timization during operation of the vertical antenna tilt using fuzzy Q-Learning.
Furthermore, the authors of [SBG15] present a solution to learn the optimal range
of macro and pico cells in a small cell network, thereby improving the UEs’ av-
erage throughput. In contrast, deep learning is used in [Yan+18] to find an opti-
mal trade-off between coverage and capacity in massive multiple-input multiple-
output (MIMO) wireless systems. [Gaz+18] aims at improving KPIs such as av-
erage throughput, fairness and coverage probability by adopting unsupervised
learning techniques. However, what all these approaches have in common is,
that they only investigate one single SON function. Conflicts between SON func-
tions are not considered and they all assume that SON functions only influence
one single or a limited set of KPIs. In addition, some of them only take specific
cell types into account. However, mobile networks are strongly heterogeneous,
i.e., a lot of SON functions are running concurrently and influencing a variety of
KPIs in a multi-RAT network. Thereby, it is often not obvious which KPIs are
affected by which SON functions. CSM is able to abstract from these restrictions
and overcome these shortcomings by taking all type of cells and all SON func-
tions into account and learning the joint effect of combined SCV sets on a set of
KPIs.

An approach that coordinates a set of SON functions, is presented in [Iac+14a],
[Iac+14b], [Iac+14c] and [Iac+16]. Reinforcement learning is used to coordinate
actions of concurrently running and possibly conflicting SON functions. Also, the
authors of [DK13] use a reinforcement learning algorithm, i.e., fuzzy Q-Learning,
to solve conflicts between a handover optimization SON function and a load bal-
ancing function. While conflicts can be avoided this way, no optimal configura-
tion can be found that fulfills operator objectives in the best possible way.
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The approaches that are closest to the CSM approach in this chapter, are [MSM18]
and [MSM16] as well as [DJD17a], [DJD17b], [DJD18a] and [DJD18b]. The au-
thors of the first two publications have developed a Q-Learning framework for
cognitive cellular networks where SON function instances independently act as
reinforcement learning agents in the network with the goal to optimally configure
the SON functions. The authors of the latter approaches also adopt different re-
inforcement learning algorithms such as LinUCB and a multi-armed bandit algo-
rithm to learn an SCV set policy with combinations of SCV sets. While [MSM18]
and [MSM16] are not policy-based, the other approaches are based on the general
SON management approach developed by the author of this thesis and presented
in Chapter 3, Chapter 4 and Chapter 5, and hence, come closest to the approach
presented in this chapter. Even though all of them aim at the same objective, i.e.,
finding an optimal configuration for all cells in the network, they do not allow the
network to be controlled by the MNO any more. SON functions act completely
autonomously, always aiming at optimizing specific KPIs without considering
operator objectives and the joint fulfillment of them. In doing so, it is hard to
gain the trust of an MNO which is one of the main objectives of this thesis. In
CSM, important actions must be always authorized by the MNO first while still
providing a high degree of automation.
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Evaluation and Conclusion
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8
Evaluation

Several approaches on SON management have been described in detail in the
previous chapters. In this chapter, these approaches are evaluated and the ben-
efit of SON management in general as well as the improvement from the first to
the fourth solution should be evaluated. Therefore, an LTE mobile network simu-
lator is introduced utilized for all kind of simulations. This includes the simulator
itself, the implementation of the SON functions, the SON management and the
simulation scenarios that are used. This section is followed by a description of
the input models and their derivation as they are employed by SON manage-
ment. In the end, a comprehensive analysis of each SON management approach
is performed and the results are amplified in detail before finishing the chapter
with a discussion about the achieved results.

8.1. Simulation Setup

In order to implement the SON management approaches and to generate the nec-
essary data for running it, an LTE network simulator is needed for the evaluation
of the elaborated concepts. In 2009, the former Nokia Siemens Networks pub-
lished a white paper about their first simulator of a SON, namely System Ex-
perience of Advanced SON (SEASON) [SON09]. In cooperation with NOMOR
research GmbH, the present Nokia Bell Labs has further developed the initial
SEASON simulator to the current version SEASON II on which this evaluation is
based on. On top of SEASON II a SON function engine is installed developed by
Nokia Bell Labs and its predecessors which enables to run several SON functions
concurrently in SEASON II. Furthermore, a SON management component has
been developed by the author of this thesis using the SON functions provided by
the SON function engine for the configuration of the SEASON II-provided LTE
network.

8.1.1. LTE Network Simulator

SEASON II is a mobile network simulator developed in C++. Figure 8.1 provides
a brief overview of the functional components being active in SEASON II and
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the relationship between them. This figure and the corresponding description is
based on the SEASON II user manual [Buc+18].

Figure 8.1.: Overview of SEASON II with its functional components and relation-
ships between them [Buc+18]

The main components of SEASON II are briefly presented in the following:

Simulation Core This is the central component which runs the actual simulation
and coordinates all other components. Furthermore, the simulation core is
responsible for instantiating, for instance, sites and UEs.

Sites Each site consists of several cells. Each cell has a transceiver with the cell’s
properties such as the type of RAT or the list of neighbors. A site has a
unique ID such as “site05” and each cell is identified by a unique ID within
its site, such that a cell can be clearly identified by, e.g., “site05[2]”. KPIs are
measured and aggregated per cell.

UEs A UE can be described as one user within the mobile network simulator,
demanding a connection to a specific cell, thereby producing traffic and in-
fluencing the behavior of a cell in terms of KPIs. Each UE can have multiple
transceivers, one for each deployed RAT. UEs are moving according to cer-
tain mobility models, hence they are also changing their affiliation to certain
cells.

Propagation Model SEASON II supports different types of radio propagation
models. The one which is used for the simulations in this chapter, is Win-
ner+ [Mei+10]. Winner+ simulates a realistic radio propagation and is usu-
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ally used for large urban and suburban scenarios. It uses raytracing to real-
istically model the effect of buildings on radio waves.

Mobility Model Different mobility models are supported by SEASON II: A street-
graph model enables that UEs move on streets with a realistic speed. This
data is coming from OpenStreetMap XML files and mapped to nodes and
edges with associated speed limits. Another type of mobility model is used
for further simulations, namely the circle mobility model. As the name sug-
gests, UEs are moving within a defined circle with a defined speed ran-
domly.

Central Data Bank All information about the scenario, the configuration of the
mobile network and the produced KPIs is stored in this data base. Hence,
it has a data relationship to most of the other components. The central data
bank serves as interface to the outside world providing it with data about
the running simulation.

Interfaces The JavaScript Object Notation (JSON) format [JSON] is used for con-
figuration files. Within these files, one can define, e.g., the desired propa-
gation model, sites and their properties, UEs groups and their properties,
different types of mobility models for different UE groups, or the KPIs that
should be observed just to name a few.

GUI A 2D Graphical User Interface (GUI) is attached to the simulation always
representing the current state of the network. That is, amongst others, it
shows buildings in the observed area, the position of sites, the movement
of UEs, and offers the possibility to visualize a set of KPIs.

Another key feature of SEASON II is that it allows to dynamically reconfigure
the network in terms of, e.g., the cells’ configuration parameters, and that it also
enables to dynamically change the deployed scenario in terms of, e.g., the num-
ber of UEs which is essential for the presented evaluation. Note that only the
key features and those relevant for this chapter are presented here. However,
SEASON II offers much more functionality such as other propagation models,
mobility models or the ability to support network slicing.

8.1.2. SON Function Engine

A SON function engine has been developed by Nokia Bell Labs which imple-
ments the algorithmic details of different SON functions. By connecting the SON
function engine with the SEASON II simulator, cells’ properties, i.e., NCPs, can
be changed which affects the network behavior and hence, the observed KPIs.
Using a SON function engine makes the SEASON II simulator a SON-enabled
mobile network simulator.

Several SON functions are implemented in the SON function engine, the relevant
ones are presented in the following.
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Coverage and Capacity Optimization (CCO) has the goal to find a balance be-
tween coverage and capacity, i.e., the capacity per UE should be improved
while at the same time coverage holes should be avoided. This is achieved
by changing the remote electrical tilt of the cell’s antenna. Hence, CCO aims
at improving the CQI value and can be configured by the following SCPs:

• active: Indicates whether the CCO function is active or not.

• cqi_threshold: Indicates the threshold for becoming active based on
the current CQI value.

• tilt_stepsize: Indicates how to change the remote electrical tilt of the
cell’s antenna. Negative values indicate a decreasing tilt value and vice
versa.

Mobility Load Balancing (MLB) has the goal to reduce the load within a cell
by shifting UEs to neighboring cells. This is achieved by adapting the CIO
value to all neighboring cells. Hence, MLB aims at improving the CL value
and can be configured by the following SCPs:

• active: Indicates whether the MLB function is active or not.

• load_threshold: Indicates the threshold for becoming active based on
the current CL value.

• cio_stepsize: Indicates how to change the CIO value, i.e., the virtual
cell border. Negative values indicate a decreasing CIO value and vice
versa.

Mobility Robustness Optimization (MRO) has the goal to reduce unnecessary
HOs to neighboring cells. This is achieved by adapting the Time to Trigger
(TTT) to a specific neighboring cell. Hence, MRO aims at improving the
PiPo value and can be configured by the following SCPs:

• active: Indicates whether the MRO function is active or not.

• pipo_threshold: Indicates the threshold for becoming active based on
the current PiPo value.

• ttt_stepsize: Indicates how to change the TTT value, i.e., the time for
fulfilling the conditions for a HO. Negative values indicate a decreas-
ing TTT value and vice versa.

8.1.3. SON Management

The LTE network simulator and the SON function engine are required as a basis
for the implementation of a SON management system. The SON management is
implemented in Java and indirectly uses the SON function engine for the adap-
tation of NCPs in SEASON II. That is, SON management implements a policy
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system that deploys certain SCV sets on the SON function instances which then
adapt the NCPs accordingly.
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Figure 8.2.: Overview of implemented SON management parts and dependencies
between them

In general, the SON management system consists of six parts whose dependen-
cies are depicted in Figure 8.2 and which are described below:

Objective Manager The core component of SON management, responsible for
calculating optimal SCV sets. The underlying methodology varies depend-
ing on the selected approach, i.e., PBSM, ODSM, ASM or CSM.

SON Management Data Base Input models, i.e., the context model(s), the ob-
jective model and effect model(s) are stored in a database in a way that is
readable for SON management. Also, KPI measurements are written into
the database by the SEASON II interface.

Database Interface An interface to the SON management database for receiving
stored input models and SEASON II measurements, and for storing models
that have been adapted by the objective manager.

SEASON II Interface An interface to the LTE network simulator in order to pro-
vide the SON management system with CM and PM data such as KPI val-
ues, and to reconfigure the network scenario deployed in SEASON II.
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SON Function Engine Interface An interface to the SON function engine as part
of the policy system in order to send SCV set change requests. These con-
figuration changes are then sent to SEASON II by the SON function engine
in terms of NCP changes.

Policy System Configuration change requests are given to the SON function en-
gine via the respective interface. That is, the policy system is responsible for
choosing the suitable SCV sets for each cell out of the SCV set policy that
has been generated by the objective manager.

In addition to the four presented approaches, the objective manager is imple-
mented in a further way. In current SON-enabled mobile networks, SON func-
tions usually run with default SCV sets only. The implementation of this default
configuration case serves as baseline for a comparison with the particular SON
management approaches. Note that in case of CSM, also a learning engine is
implemented within the objective manager.

8.1.4. Scenarios

For the following studies two different scenarios are necessary. Referring back
to Chapter 6, a manufacturer-generated model has the major shortcoming that it
has been generated in a different environment than the one where it is applied
in the end. It is one of the main goals of this thesis to develop a SON manage-
ment approach that comes as close to reality as possible and hence, this situa-
tion needs to be simulated. Therefore, SEASON II is configured in two different
ways, meaning that two completely different scenarios are created. The first sce-
nario simulates the environment of a SON function manufacturer and hence, is
used for the generation of manufacturer-provided effect models. This scenario
is called Helsinki scenario and is described in detail in Section 8.1.4.1. The second
scenario simulates the real network environment, i.e., the mobile network where
the manufacturer-provided effect models should be applied and that should be
optimized according to operator objectives. This scenario is called Hamburg sce-
nario and is described in detail in Section 8.1.4.2.

8.1.4.1. Helsinki Scenario

The Helsinki scenario covers an area of around 50km2 in the city center of Helsin-
ki. 35 cells are installed in this scenario, 32 of them macro and 3 micro cells. The
exact (initial) configurations of the cells, the radio parameters and the users in the
scenario can be seen in Table 8.1.
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Table 8.1.: Initial parameter settings in the Helsinki scenario
Category Parameter Value
Radio Radio technology LTE

Carrier frequency 2 GHz
Carrier bandwidth 20 MHz
Radio propagation model Winner+

Network Type Urban HetNet
Area 50km2

Granularity Period 5400 s
Macro cells

Number of cells 32
Height 25 m
Antenna gain 14 dB
Transmission Power 55 dB
Azimuth 65°
Elevation 9°

Micro cells
Number of cells 3
Height 8 m
Antenna gain 5 dB
Transmission Power 0 dB/35 dB
Azimuth 360°
Elevation 15°

Users Data rate per user 1.2 mbps
Speed of streetgraph model users according to speed limit
Speed of highway users 120 km/h
Speed of city center users 6 km/h
Speed of hot spot users 6 km/h

High traffic scenario users
Number of streetgraph model users 600
Number of highway users 20
Number of city center users 100
Number of hot spot users 75

Low traffic scenario users
Number of streetgraph model users 400
Number of highway users 13
Number of city center users 66

The data rate per user is set to 1.2 mbps which is fairly high, but instead the
number of users is quite low making it a realistically loaded mobile network. The
Helsinki scenario is further subdivided into two scenarios: While the network
itself and the radio parameter configuration is the same in both, the number of
users differs, thereby simulating a scenario with high traffic and one with low

189



8. EVALUATION

traffic. In the high traffic scenario there are three hot spot groups with 75 users in
total, each 25 of them within the area of one micro cell. In the low traffic scenario,
these micro cells are deactivated (indicated by a transmission power of 0 dB) and
consequently, there are also no additional users within the scope of these cells.
The number of streetgraph users is reduced from 600 to 400 in the low traffic
scenario and also highway and city center users are reduced by 1/3.

Figure 8.3.: Screenshot of the Helsinki scenario, colored regions represent the re-
spective coverage area, numbers represent the unique ID of a cell

An overview of the resulting network scenario can be seen in Figure 8.3 where
the numbers indicate the unique cell IDs. Micro cells have the IDs 33, 34 and 35
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and are placed close to the main station since this is a typical hot spot area at high
traffic times. It can be seen that most of the macro sites consist of three cells while
only two sites have one sector, namely those with cell 25 and 26. The white parts
represent buildings while the colors indicate the propagation of the radio waves.
Since a realistic propagation model is used, the buildings have a shadowing effect
on cells, meaning that areas behind a building partially can not be reached by all
of the antennas.

8.1.4.2. Hamburg Scenario

The Hamburg scenario covers an area of around 60 km2 in the city center of Ham-
burg with 61 installed cells. Table 8.2 shows the initial configuration of the sce-
nario.

Table 8.2.: Initial parameter settings in the Hamburg scenario
Category Parameter Value

Network Area 60km2

Macro cells
Number of cells 54
Height 32 m
Transmission Power 55 dB

Micro cells
Number of cells 7
Height 8 m
Transmission Power 0 dB/40 dB

Users Speed of streetgraph model users according to speed limit
Speed of highway users 120 km/h
Speed of city center users 6 km/h
Speed of hot spot users 6 km/h
Speed of boat users 22 km/h

High traffic scenario users
Number of streetgraph model users 700
Number of highway users 30
Number of city center users 100
Number of hot spot users 155
Number of boat users 50

Low traffic scenario users
Number of streetgraph model users 466
Number of highway users 20
Number of city center users 67
Number of boat users 34

Note that Table 8.2 only depicts the parameters which are different to the Helsinki
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scenario. That is, the radio parameters and most of the cells’ parameters are
equivalent to Table 8.1.

The Hamburg scenario, compared to the Helsinki scenario, is larger and contains
more cells, i.e., 54 macro and 7 micro cells. Thereby, the micro cells are again
placed in hot spot areas, i.e., three of them around the main station area, three on
the Reeperbahn and one at the Elbphilharmonie. 20-25 users are moving slowly
or, in case of the Elbphilharmonie, are static within a predefined circle. Addition-
ally, 100 users are moving randomly at a low speed within the city center and 50
users are moving with 22 km/h on boats within the harbor area. Together with
the streetgraph users, the scenario sums up to over 1000 users, each demanding
a data rate of 1.2 mbps. Similar to the Helsinki scenario, the Hamburg scenario is
configured in two different ways, one simulating high traffic times and one sim-
ulating a low traffic situation. In the low traffic scenario, the number of users is
again reduced by 1/3 compared to the high traffic scenario and micro cells and
the corresponding users within them are deactivated. A screenshot from SEA-
SON II depicting the Hamburg scenario can be seen in Figure 8.4, the numbers
again indicating the unique cell IDs.

8.2. Input Models

In this section, the derivation of all input models necessary for the execution of
the SON management approaches, are described in detail. Thereby, these mod-
els are all generated under realistic conditions, i.e., as they would be generated
within the respective domains. It starts with the manual context classes model
which is created by inspection of the network. The derivation of the learned
context classes model has already been shown in Section 7.2.2.1 and since this
is an automated and continuously running process, the derivation can hardly be
demonstrated. Based on the manual context classes, an operator can define tech-
nical objectives with respect to KPIs for each of the classes. For the effect model,
two things need to be evaluated: First, a manufacturer-provided effect model
needs to be created in the Helsinki scenario in a realistic way and the results need
to be provided to SON management in a reasonable form. Second, for the gen-
eration of a learned effect model, an appropriate learning algorithm needs to be
selected that performs best in the real network. The data generation in the Ham-
burg scenario, the data preparation and the evaluation of the results is shown in
Section 8.2.3.2.

8.2.1. Manual Context Classes Model

The manual context classes model mainly has two purposes: First, it serves as
a basis for the definition of technical objectives and second, it is provided to the
manufacturers of the SON functions, such that a context-dependent initial effect
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Figure 8.4.: Screenshot of the Hamburg scenario, colored regions represent the
respective coverage area, numbers represent the unique ID of a cell
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model can be created for each of the functions. Hence, context classes need to be
specified for the real network, i.e., the Hamburg scenario. Therefore, an MNO in-
spects the network to find relevant network and cell attributes to be classified into
a context class. The following network properties and behavior can be identified
when looking at the Hamburg scenario:

• All cells in the network use LTE as RAT.

• There are macro and micro cells in the network.

• The scenario is separated into a densely populated area in the north, an in-
dustrial area in the middle and the southwestern part and a more suburban
area in the southeastern part.

• Micro cells are only located in densely populated areas.

• There is a highway with fast moving users in the western part of the ob-
served network.

• Users in the city center predominantly do not move a lot.

• Users in the industrial harbor area are mainly slowly moving.

• Users in the hot spot areas are mainly slowly moving.

• Users in the suburban area predominantly demand for a connection while
being in the car with a moderate speed.

• There is a big difference in traffic between daytime and nighttime.

• Micro cells are deactivated at nighttime.

Bringing together all these detections, the context attributes model looks as fol-
lows:

1 {
t e chno l ogy HAS DOMAIN {LTE} ,

3 l o c a t i o n HAS DOMAIN {urban , suburban , i n d u s t r i a l } ,
c e l l_ t y p e HAS DOMAIN {macro , micro } ,

5 mob i l i t y_type HAS DOMAIN { s t a t i c , p e d e s t r i a n , car , h ighway } ,
t ime HAS DOMAIN {day , n i g h t }

7 }

Listing 8.1: Context attributes model for the Hamburg scenario

Building the cross product over all attributes and their values for this small set of
attributes would already lead to 1 ∗ 3 ∗ 2 ∗ 4 ∗ 2 = 48 regions in the context state
space which is too much to be handled manually in a reasonable way. Hence,
only relevant context attribute combinations should be taken into account, each
combination defining one manual context class. Therefore, the listed conditions
need to be reasonably combined. For instance, since each cell is an LTE cell, micro
cells are only placed in urban areas and micro cell users are predominantly slowly
moving, this combination builds a reasonable context class occurring in that form
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in the network. Since micro cells are deactivated at nighttime, this context class
only plays a role at daytime. Doing this for all listed facts, the following manual
context classes model arises where above mentioned example is comprised by
the last rule.

1 {
IF t ime = day AND t e chno l ogy = LTE AND l o c a t i o n = urban

3 AND c e l l_ t y p e = macro AND mob i l i t y_type = s t a t i c
THEN CLASS_1_HIGH

5 IF t ime = n i gh t AND t e chno l ogy = LTE AND l o c a t i o n = urban
AND c e l l_ t y p e = macro AND mob i l i t y_type = s t a t i c

7 THEN CLASS_1_LOW
IF t ime = day AND t e chno l ogy = LTE AND l o c a t i o n = i n d u s t r i a l

9 AND c e l l_ t y p e = macro AND mob i l i t y_type = p e d e s t r i a n
THEN CLASS_2_HIGH

11 IF t ime = n i gh t AND t e chno l ogy = LTE AND l o c a t i o n = i n d u s t r i a l
AND c e l l_ t y p e = macro AND mob i l i t y_type = p e d e s t r i a n

13 THEN CLASS_2_LOW
IF t ime = day AND t e chno l ogy = LTE AND l o c a t i o n = i n d u s t r i a l

15 AND c e l l_ t y p e = macro AND mob i l i t y_type = highway
THEN CLASS_3_HIGH

17 IF t ime = n i gh t AND t e chno l ogy = LTE AND l o c a t i o n = i n d u s t r i a l
AND c e l l_ t y p e = macro AND mob i l i t y_type = highway

19 THEN CLASS_3_LOW
IF t ime = day AND t e chno l ogy = LTE AND l o c a t i o n = suburban

21 AND c e l l_ t y p e = macro AND mob i l i t y_type = ca r
THEN CLASS_4_HIGH

23 IF t ime = n i gh t AND t e chno l ogy = LTE AND l o c a t i o n = suburban
AND c e l l_ t y p e = macro AND mob i l i t y_type = ca r

25 THEN CLASS_4_LOW
IF t ime = day AND t e chno l ogy = LTE AND l o c a t i o n = urban

27 AND c e l l_ t y p e = micro AND mob i l i t y_type = p e d e s t r i a n
THEN CLASS_5_HIGH

29 }

Listing 8.2: Manual context classes model of the Hamburg scenario

Note that this manual context classes model applies for both scenarios. While it
has been defined based on the Hamburg scenario, it is provided to SON func-
tion manufacturers to make available an effect model with KPI effect predictions
dependent on these classes. However, what is different for the two scenarios, is
the assignment of cells to the respective context class. Note that time thereby is
the only dynamic parameter while all other attributes are static, i.e., their values
always remain constant for each cell. Consequently, except for micro cells, there
are always two rules comprising the cells’ properties, but only one is applicable
depending on the current time of the day.

The assignments of cells to the respective manual context classes for the Hamburg
scenario is shown in Listing 8.3 where the names of the cells are in accordance
with Figure 8.4: site01[0] refers to the cell with ID 1.0, site01[1] to the cell with ID
2.0 and so on.
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1 {
CLASS_1 = { s i t e 0 1 [ 1 ] , s i t e 0 2 [ 0 ] , s i t e 0 2 [ 1 ] , s i t e 0 3 [ 0 ] , s i t e 0 3 [ 1 ] ,

3 s i t e 0 3 [ 2 ] , s i t e 0 4 [ 1 ] , s i t e 0 4 [ 2 ] , s i t e 0 5 [ 1 ] , s i t e 0 5 [ 2 ] , s i t e 0 6 [ 1 ] ,
s i t e 0 6 [ 2 ] , s i t e 0 7 [ 0 ] , s i t e 0 7 [ 1 ] , s i t e 0 7 [ 2 ] , s i t e 0 8 [ 1 ] , s i t e 0 8 [ 2 ] ,

5 s i t e 0 9 [ 1 ] , s i t e 0 9 [ 2 ] , s i t e 1 0 [ 0 ] , s i t e 1 0 [ 1 ] , s i t e 1 0 [ 2 ] , s i t e 1 1 [ 0 ] ,
s i t e 1 1 [ 2 ] }

7 CLASS_2 = { s i t e 0 1 [ 0 ] , s i t e 0 1 [ 2 ] , s i t e 0 2 [ 2 ] , s i t e 0 4 [ 0 ] , s i t e 0 5 [ 0 ] ,
s i t e 0 6 [ 0 ] , s i t e 0 8 [ 0 ] , s i t e 0 9 [ 0 ] , s i t e 1 1 [ 1 ] , s i t e 1 4 [ 1 ] , s i t e 1 5 [ 1 ] ,

9 s i t e 1 7 [ 0 ] , s i t e 1 7 [ 1 ] , s i t e 1 8 [ 0 ] , s i t e 1 8 [ 1 ] , s i t e 1 8 [ 2 ] }
CLASS_3 = { s i t e 1 2 [ 0 ] , s i t e 1 2 [ 1 ] , s i t e 1 2 [ 2 ] , s i t e 1 3 [ 2 ] }

11 CLASS_4 = { s i t e 1 3 [ 0 ] , s i t e 1 3 [ 1 ] , s i t e 1 4 [ 0 ] , s i t e 1 4 [ 2 ] , s i t e 1 5 [ 0 ] ,
s i t e 1 5 [ 2 ] , s i t e 1 6 [ 0 ] , s i t e 1 6 [ 1 ] , s i t e 1 6 [ 2 ] , s i t e 1 7 [ 2 ] }

13 CLASS_5 = { s i t e 1 9 [ 0 ] , s i t e 2 0 [ 0 ] , s i t e 2 1 [ 0 ] , s i t e 2 2 [ 0 ] , s i t e 2 3 [ 0 ] ,
s i t e 2 4 [ 0 ] , s i t e 2 5 [ 0 ] }

15 }

Listing 8.3: Assignment of cells to manual context classes in the Hamburg sce-
nario

8.2.2. Objective Model

For each of the nine context classes in Listing 8.2, an objective needs to be defined
by the network operator. The KPIs that are observed in this evaluation, according
to the three SON functions that mainly influence them, are: CQI, PiPo and CL.
Hence, a target and a weight needs to be defined for each of them with the target
between 0 and 1 and the weights summing up to 1.

The objective model as it is used for the evaluation of SON management in Sec-
tion 8.3, is shown in Listing 8.4. The defined targets and weights shall only be ex-
emplary explained. For instance, the CL target for micro cells is fairly high, since
the purpose of these cells is to unload macro cells. However, the load should not
exceed 90% since otherwise, the CQI decreases and neighboring cells do not han-
dover UEs to the micro cells any more. Hence, CL is the highest ranked KPI with
0.6. What can also be seen, is that the CL target is always lower during night-
time which is due to the reduced number of UEs in this time. Furthermore, the
CQI targets for urban cells are usually higher than for suburban or industrial cells
since in these densely populated areas an MNO wants to achieve a high degree
of customer satisfaction which is strongly related to CQI. Since UEs are moving
quite fast at the highway, cells declared as highway cells usually have a higher
PiPo rate and hence, SON management should aim at keeping the PiPo at least
within an acceptable range with a high weight.

Note that in the PBSM and ODSM approaches, the objective model usually looks
different than in ASM and CSM. In order to get comparable results for the evalu-
ation of the approaches, the same objective model is assumed in each case, mean-
ing that the concept of context classes is also applied for PBSM and ODSM. Fur-
thermore, PBSM can not read an objective model as presented in Listing 8.4. Ob-
jectives in PBSM are prioritized instead of weighted and the target is a minimize
or maximize indication. However, this model can be easily transformed into an
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objective model understandable for PBSM: Each manual context class has three
targets which are always the same: MAXIMIZE_CQI, MINIMIZE_PiPo and MIN-
IMIZE_CL. The difference between the classes lies in the priorities assigned to
each target. Therefore, the highest weighted target gets the highest priority, the
second highest weighted one the second highest priority and so on. In the end,
the real KPI targets are taken into account also for PBSM to ensure comparable
results in terms of objective fulfillment.

1 {
IF CLASS_1_HIGH THEN CQI ≥ 0 .6 WITH 0 .6

3 IF CLASS_1_HIGH THEN PiPo ≤ 0 .02 WITH 0 .1
IF CLASS_1_HIGH THEN CL ≤ 0 .7 WITH 0 .3

5 IF CLASS_1_LOW THEN CQI ≥ 0 .55 WITH 0 .5
IF CLASS_1_LOW THEN PiPo ≤ 0 .02 WITH 0 .2

7 IF CLASS_1_LOW THEN CL ≤ 0 .4 WITH 0 .3
IF CLASS_2_HIGH THEN CQI ≥ 0 .55 WITH 0 .5

9 IF CLASS_2_HIGH THEN PiPo ≤ 0 .01 WITH 0 .2
IF CLASS_2_HIGH THEN CL ≤ 0 .55 WITH 0 .3

11 IF CLASS_2_LOW THEN CQI ≥ 0 .5 WITH 0 .4
IF CLASS_2_LOW THEN PiPo ≤ 0 .01 WITH 0 .2

13 IF CLASS_2_LOW THEN CL ≤ 0 .3 WITH 0 .4
IF CLASS_3_HIGH THEN CQI ≥ 0 .45 WITH 0 .3

15 IF CLASS_3_HIGH THEN PiPo ≤ 0 .1 WITH 0 .6
IF CLASS_3_HIGH THEN CL ≤ 0 .5 WITH 0 .1

17 IF CLASS_3_LOW THEN CQI ≥ 0 .45 WITH 0 .2
IF CLASS_3_LOW THEN PiPo ≤ 0 .08 WITH 0 .6

19 IF CLASS_3_LOW THEN CL ≤ 0 .3 WITH 0 .2
IF CLASS_4_HIGH THEN CQI ≥ 0 .55 WITH 0 .6

21 IF CLASS_4_HIGH THEN PiPo ≤ 0 .02 WITH 0 .1
IF CLASS_4_HIGH THEN CL ≤ 0 .15 WITH 0 .3

23 IF CLASS_4_LOW THEN CQI ≥ 0 .55 WITH 0 .4
IF CLASS_4_LOW THEN PiPo ≤ 0 .01 WITH 0 .1

25 IF CLASS_4_LOW THEN CL ≤ 0 .1 WITH 0 .5
IF CLASS_5_HIGH THEN CQI ≥ 0 .65 WITH 0 .2

27 IF CLASS_5_HIGH THEN PiPo ≤ 0 .04 WITH 0 .2
IF CLASS_5_HIGH THEN CL ≤ 0 .9 WITH 0 .6

29 }

Listing 8.4: Objective model for manual context classes in the Hamburg scenario

8.2.3. Effect Models

For the effect model, two tasks have to be accomplished: First, manufacturer-
provided effect models need to be created in the simulation environment of the
SON function manufacturers. Second, an appropriate learning algorithm needs
to be selected for each KPI which can then be applied for CSM in the real net-
work. Note that the generation of a combined effect model, real network effect
model and learned effect model are not part of this chapter. This has already
been demonstrated in Chapter 5, Chapter 6 and Chapter 7.
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8.2.3.1. Manufacturer Effect Model

In order to generate a manufacturer effect model for each of the three SON func-
tions CCO, MLB and MRO, a variety of SCV sets have been tested per function
and in the end, the most relevant ones have been selected, building the respective
effect model. Before explaining the results of the simulations, some premises of
the experiment need to be clarified which is shown in Table 8.3.

Table 8.3.: Parameter settings for the generation of manufacturer effect models
Category Parameter Value(s)
Simulation Scenario Helsinki

Granularity periods 25-100
Skipped GPs 20-80

SON function CCO
cqi_threshold 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0
tilt_stepsize -10. -5, -2, -1, -0.5, -0.2, -0.1, 0. 0.1, 0.2,

0.5, 1, 2, 5, 10
MLB

load_threshold 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0
cio_stepsize -10. -5, -2, -1, -0.5, -0.2, -0.1, 0. 0.1, 0.2,

0.5, 1, 2, 5, 10
MRO

load_threshold 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07,
0.08, 0.09, 0.1

cio_stepsize -10. -5, -2, -1, -0.5, -0.2, -0.1, 0. 0.1, 0.2,
0.5, 1, 2, 5, 10

The simulations have been performed using the Helsinki scenario which simu-
lates the manufacturers’ testing environment. For each SON functions, ten differ-
ent SCVs for parameter threshold, combined with each of the 15 stepsize SCVs,
have been tested, i.e., 150 possible SCV sets per SON function in total. Since the
stepsize parameter significantly influences the convergence time, i.e., the time
that is needed until the measured KPI values under a certain SCV set do not
change any more, the simulated GPs differ dependent on the stepsize. The larger
the stepsize (no matter, if negative or positive), the shorter is the convergence time
and consequently, the lower is the number of simulated GPs. Since it takes some
time until measured KPIs do not change significantly any more, the measure-
ments in the beginning are discarded. The number of discarded measurements
again depends on the stepsize. For larger stepsizes, only the measurements of the
first 20 GPs are sorted out while for smaller stepsizes the measurements of up to
80 GPs are rejected.

The SCPs of the SON functions are chosen very similar for each of them. On the
one hand, for the stepsizes, the same SCVs were tested since this is a normalized
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parameter with a value range from -10 to 10. On the other hand, the thresholds
for CQI and CL were increased in 0.1 steps from 0.1 to 1.0, all of them offering a
meaningful value. For PiPo, the tests started with 0.01 and ended with 0.1. This
is due to the fact that everything above 0.1 is a PiPo value that is not desirable,
i.e., an operator would never set the target higher than this value.

For each of the tested SCV sets within each SON function, the relevant measure-
ments, i.e., those which were not sorted out, were averaged per KPI, building
the effect prediction for this specific set. This has been done for each manual
context class individually, i.e., the measurements of cells within each class were
aggregated. Therefore, it is first necessary to assign cells to context classes in the
Helsinki scenario, as it has been already done for the Hamburg scenario. While
this will not be explained in detail here, a meaningful classification is shown in
Listing 8.5. This classification is again done by inspection of the network, i.e., the
SON function manufacturer divides the set of cells in the manufacturer’s simu-
lation environment into reasonable groups where it is assumed that cells have a
similar behavior. The only difference to the classification in the Hamburg sce-
nario is that the context classes definitions are already given by the MNO of the
real network.

1 {
CLASS_1 = { s i t e 0 1 [ 0 ] , s i t e 0 1 [ 1 ] , s i t e 0 1 [ 2 ] , s i t e 0 2 [ 2 ] , s i t e 0 5 [ 2 ] ,

3 s i t e 0 6 [ 0 ] , s i t e 0 6 [ 1 ] , s i t e 0 7 [ 0 ] , s i t e 0 7 [ 2 ] , s i t e 0 8 [ 0 ] , s i t e 0 8 [ 1 ] ,
s i t e 0 9 [ 0 ] , s i t e 1 1 [ 2 ] , s i t e 1 2 [ 1 ] }

5 CLASS_2 = { s i t e 0 3 [ 1 ] , s i t e 0 3 [ 2 ] , s i t e 0 5 [ 0 ] , s i t e 0 5 [ 1 ] , s i t e 0 6 [ 2 ] ,
s i t e 0 7 [ 1 ] , s i t e 0 8 [ 2 ] , s i t e 1 0 [ 0 ] , s i t e 1 2 [ 0 ] , s i t e 1 2 [ 2 ] }

7 CLASS_3 = { s i t e 0 3 [ 0 ] , s i t e 0 4 [ 0 ] , s i t e 0 4 [ 2 ] }
CLASS_4 = { s i t e 0 2 [ 0 ] , s i t e 0 2 [ 1 ] , s i t e 0 4 [ 1 ] , s i t e 1 1 [ 0 ] , s i t e 1 1 [ 1 ] }

9 CLASS_5 = { s i t e 1 3 [ 0 ] , s i t e 1 4 [ 0 ] , s i t e 1 5 [ 0 ] }
}

Listing 8.5: Assignment of cells to manual context classes in the Helsinki scenario

The results of these extensive simulations and the selection of SCV sets for the
generation of an effect model is shown in the following. Thereby, the focus always
is on the KPI that is mainly influenced by the respective SON function, i.e., CQI
for CCO, CL for MLB and PiPo for MRO. Note that the resulting initial effect
models are not depicted in this section due to its extent. The interested reader
can find the detailed results for all context classes in the annex in Table A.1 -
Table A.5.

CCO Results
The first thing that can be seen when looking at the simulation data, is that there
is nearly no difference at all in all KPIs for different cqi_threshold SCVs. That
is, this parameter obviously does not have an effect on the KPI values. The little
difference that can be observed, can be treated as random noise. However, the
tilt_stepsize has a significant impact on the CQI in both the high traffic and low
traffic scenario which is illustrated in Figure 8.5a and Figure 8.5b. Thereby, the
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cqi_threshold is always set to 0.3 while another threshold would have shown the
same results.

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

-10 -5 0 5 10

C
Q

I v
al

u
e

tilt_stepsize

CQI high traffic scenario

CLASS_1 CLASS_2 CLASS_3 CLASS_4 CLASS_5

(a) Results for CCO SCV sets in a high traffic
scenario
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(b) Results for CCO SCV sets in a low traffic
scenario

In the high traffic scenario, all macro cells, i.e., CLASS_1, CLASS_2, CLASS_3
and CLASS_4 show a very similar behavior. Only CLASS_5 is far above the CQI
values of the context classes containing macro cells. Even though the scale in
the y-axis is different in the low traffic scenario, CCO shows a different behavior
here: The CQI of micro cells is close to zero which is due to the transmission
power set to 0 dB. In contrast to the high traffic scenario, significant differences
can be also seen for the macro cell context classes while they all show a similar
behavior across the SCV sets.

Another detection is that CCO obviously performs better for negative and very
small positive stepsizes which limits the selection of SCV sets to these values.
For each SON function, the three best performing SCV sets are chosen, and the
results for CCO are depicted in Table 8.4. Since the cqi_threshold does not have
a significant impact on the CQI, it can be chosen randomly or, simply the best
performing sets when looking at the thousandth . Thereby, CCO_0 denotes the
default SCV set which is relevant for further simulations.

Table 8.4.: Selected SCV sets for CCO
ID cqi_threshold tilt_stepsize

CCO_0 0.6 0.1
CCO_1 0.8 0.1
CCO_2 0.8 -0.5

MLB Results
The results for testing different SCV sets in the MLB function are depicted in
Figure 8.6a and Figure 8.6b for the high traffic and the low traffic scenario. The
underlying load_threshold in both cases is set to 0.3 while, similar to the CCO
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function, the effect of this SCP is nearly not noticeable and hence, can be ignored.
In contrast to CCO, the effect of MLB on the CL seems quite small. However,
MLB always affects only a few UEs and hence, the effect will never be as obvious
as in the CCO case where all UEs are affected at the same time by a tilt change.

An obvious detection is the fact, that for small stepsizes, even negative or posi-
tive, the load behavior strongly fluctuates and that the behavior is symmetrical
for the respective negative and positive value. This applies for both scenarios.
Note that in the low traffic scenario, micro cells, i.e., CLASS_5, are again deacti-
vated, resulting in a CL of 0 for all SCV sets.
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(b) Results for MLB SCV sets in a low traffic
scenario

Another detection is that the CL is lower for all context classes in the low traffic
scenario. This is not surprising since the number off UEs is reduced by more
than 1/3. Thereby, note that the scale of the y-axis is again different for both
scenarios.

For MLB, the selection of SCV sets is harder than for CCO. This is due to the fact
that different context classes show a different behavior for equal stepsizes. For
instance, CLASS_4 in the high traffic scenario increases CL for smaller stepsizes
and offers a better behavior for larger stepsizes while it is vice versa for CLASS_2.
Hence, a balance needs to be found where MLB performs well for, at least, most
of the cells. The resulting selection of SCV sets is shown in Table 8.5.

Table 8.5.: Selected SCV sets for MLB
ID load_threshold cio_stepsize

MLB_0 0.3 -1
MLB_1 0.3 -0.5
MLB_2 0.3 -2
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MRO Results
Finally, MRO is investigated, the results of the simulations can be seen in Fig-
ure 8.7a and Figure 8.7b. At first sight, it can be seen that MRO behaves similar to
MLB. That is, it is oscillating for smaller stepsizes while being quite constant for
larger ones. Again, the pipo_threshold does not have an impact on the PiPo.
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(a) Results for MRO SCV sets in a high traffic
scenario
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(b) Results for MRO SCV sets in a low traffic
scenario

In both scenarios, only three of the five context classes actually have ping-pongs.
This is an interesting fact for the selection of appropriate SCV sets in the end.
Therefor, these two context classes, namely CLASS_4 and CLASS_5, do not to
be considered for the selection. Furthermore, both scenarios show a very similar
SCV set behavior in terms of the measured PiPo. In the low traffic scenario, the
PiPo is nearly as high or low as in the high traffic scenario. This is probably
the case since PiPo is a KPI that describes a rate, i.e., it is not influenced by the
number of UEs such as CQI and CL.

Since three SCV sets are selected for MRO, the best performing stepsize for each
of the three relevant classes can be chosen. For CLASS_1, this is -10. for CLASS_2
it is -2 and -0.2 for CLASS_3. This is shown in Table 8.4, combined with a pipo_-
threshold of 0.01 which provides the slighty best performance when comparing
the threshold SCVs.

Table 8.6.: Selected SCV sets for MRO
ID pipo_threshold ttt_stepsize

MRO_0 0.01 -10
MRO_1 0.01 -2
MRO_2 0.01 -0.2

The results of Section 8.2.3.1, Section 8.2.3.1 and Section 8.2.3.1 can then be used
for the generation of a combined effect model which serves as a basis for the real
network effect model and hence, also for the learned effect model. Since there
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are three possible SCV sets for each SON function and also a deactivated SON
function shall be taken into account as a fourth possibility, there are in total 43 = 64
possible combined SCV sets. Note that these combinations have a different effect
within each manual context class and hence, the resulting combined effect model
consists of 64 ∗ 9 = 576 rules. Hence, the combined effect model is not part of the
annex, but can be easily calculated according to the methodology presented in
Section 5.2.3.1.

8.2.3.2. Learned Effect Model

Before beginning with the creation of models and the selection of the best model
for learning an effect model, it is worth examining the requirements and premises
of the experiment. First of all, it is the goal of the learned effect model to reliably
estimate the effect of up-to-now untested combined SCV sets. That is, for the ex-
periment it is assumed that some of the 64 possible SCV set combinations have
already been applied in the real network and some have not been tested yet. Sec-
ond, the effect model shall be learned in the real network, based on real network
measurements and hence, the simulations and evaluation is done using the Ham-
burg scenario. Third, three KPIs are under investigation while it is probable that
the different learning algorithms provide different results for them, i.e., the best
model is selected for each of the KPIs individually.

Dataset Description
In this paragraph it is explained how the data for learning an effect model are
generated and how the raw data look like. Before starting with the gathering of
data, one important parameter to determine is the amount of consecutive GPs
necessary to be run in order to measure KPIs actually representing the behavior
of the SON functions under given SCV sets. In other words: How many GPs are
necessary for the SON function to settle?

To start out, the default amount of GPs was set to 100 as a conservative baseline,
especially since the SON functions in the experiment were tasked to cope with
changing environments within one continuous run of the simulations, therefore
having to undergo multiple settling processes. The simulations were run with dif-
ferent combinations of SCV sets and their behavior qualitatively analyzed based
on the graphs plotting the KPIs over the whole simulation and based on the mea-
surement database. Generally, the following behavior could be observed: If any
settling happens, it does so within the first around 20 rounds of the simulation,
and from that point on each cell shows a fairly constant behavior. In certain cases
with more aggressive SCV sets, some KPIs never settle at all and instead show a
high amount of jitter. In these instances, the SON functions are taking action after
each GP, but due to large stepsizes rectify each time, leading to a high variance in
the respective KPI. As a consequence, a simulation usually lasted for 50 GPs.
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Each of the possible SCV set combinations is then simulated in the Hamburg sce-
nario over these 50 GPs. This has been done for both the low traffic and the high
traffic scenario. Thereby, the measurements of the first 30 GPs were sorted out
since this is assumed as the time where the SON functions settle. The results are
stored in the SON management data base for further calculations. In summary,
around 154.000 measurements were gathered where each measurement consists
of the values for each of the columns depicted in Table 8.7. The SCV set numbers
again refer to the actual SCPs and their values where set number -1 indicates a
deactivated SON function. Since each SCV set consists of two SCPs, there are in
total six parameters, i.e., features, serving as input for the learning. The KPIs all
have a value range of [0, 1.0] whereat a higher CQI and a lower PiPo and CL are
preferred.

Table 8.7.: An excerpt of the raw dataframe, each row representing the measure-
ments of a single cell in one GP

CQI PiPo CL CCO MLB MRO
GP Cell Name

31 site01[0] 0.589 0.0115 0.366 0 0 -1
site01[1] 0.346 0.0129 0.483 0 0 -1
site01[2] 0.617 0.0333 0.566 0 0 -1
... ... ... ... ... ... ...

32 ... ... ... ... ... ... ...
... ... ... ... ... ... ...

... ... ... ... ... ... ... ...

When looking at the raw data, a few points can be discovered:

Stability over Time The CQI changes over time, when looking at a particular
SCV set, are very low. As shown in Table 8.8 and Table 8.9, for the 20 GPs
stored in the database the variance reaches a maximum of 0.0025 for one
cell under a specific SCV set in the high traffic scenario while even being
less in the low traffic scenario. In most of the cases the variance is even
closer to zero. This is expected behavior since the first 30 rounds were used
for the SON function to turn into a stable state, i.e., the SON function can
not optimize the KPI any more.

For PiPo, the situation is a bit different. Here, it has to be distinguished
between three cases: A cell can have no no ping-pongs at all, hence, the
PiPo is always 0 and so is the variance. For cells with a low PiPo rate, the
interval of PiPos within each SCV set is also quite small, leading to a very
low variance. Some cells have a very high PiPo rate > 0.2 and here, the
variance can be fairly high, especially in the low traffic scenario. The reason
for this has already been described above: Some very aggressive SCV sets
with a high stepsize lead to a high amount of jitter. However, this is only
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the case for a handful of SCV sets. Over 99% of the SCV set combinations
have a quite stable effect on the PiPo with a variance < 0.005.

CL is probably the KPI which fluctuates the most. The difference between
minimal and maximal value within one cell between GP 31 and GP 50 can
be fairly large, leading to a high variance in both scenarios. This is some-
how expected because UEs are permanently moving, thus leaving or join-
ing cells, and hence, the CL permanently changes. Furthermore, even one
single UE with a bad Signal to Interference plus Noise Ratio (SINR) value
can increase the CL significantly in a certain GP. Since there are also some
chronically overloaded cells, the variance sometimes is 0. Referring back to
Section 2.3.1, the fit of a model is measured based on the predicted output
of ŷ compared to the actual output of a sample y. However, any model will
only predict a single value ŷ based on the input, which in this case would be
the combined SCV set. Due to the wide interval of measured ŷs for a single
combined SCV set the irreducible error will always be very large, therefore
making accurate predictions for the CL of a single cell hard.

Di�erence across SCV Set Combinations This is one of the most crucial detec-
tions of investigating the raw data. Since the behavior of untested SCV sets
should be predicted in the end, a different behavior of the SON functions
under different SCV sets must be presumed. An investigation of the raw
data shows that the intervals for all of the KPIs are quite large for the vari-
ous SCV sets. If this assumption would not have applied, this would have
been a show-stopper for the further experiment.

Outliers While for CQI, the number of outliers is quite low, it is in contrast quite
high for PiPo and CL. The reasons for this, in case of PiPo, is that there are
only a few cells where the PiPo rate is extremely high since only a few UEs
determine the KPI value. Similarly, there are some strongly overloaded cells
which may have two reasons. First of all, the cell is chronically overloaded
due to a very high number of UEs or second, one or a few UEs have an
extremely bad SINR value, causing the cell to be overloaded even though
the number of UEs is relatively low.

As a consequence, the values for CQI are widely spread without being able
to clearly identify outliers. The values for PiPo are clustered between 0 and
0.1 while having a few outliers between 0.1 and 0.5. Finally, the values for
CL are widely spread between 0.1 and 0.9 while clearly having a cluster at
1.0.

To sum up the findings to far: Changing SCV set combinations does appear to
have a sufficient effect on the performance of the KPIs. Additionally, the mea-
sured values show a large variance for each combined SCV set for the KPIs PiPo
and CL, making it hard to postulate statements as “under combined SCV set X
the cell will have KPI Y”. However, reliably estimating the average performance
of a set of KPIs is sufficient since it is the goal of SON management to find the
SCV sets for the SON functions that optimally fulfill operator objectives, not to
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Table 8.8.: Variances and mean values for simulated SCV sets in the high traffic
scenario

Max. Variance Min. Variance Max. Mean Min. Mean Difference
CQI 0.0025 0.0000005 0.966 0.109 0.857
PiPo 0.0204 0.0 0.338 0.0 0.338
CL 0.1233 0.0 1.0 0.005 0.995

Table 8.9.: Variances and mean values for simulated SCV sets in the low traffic
scenario

Max. Variance Min. Variance Max. Mean Min. Mean Difference
CQI 0.0009 0.0 0.959 0.121 0.838
PiPo 0.0592 0.0 1.0 0.0 1.0
CL 0.1370 0.0 0.919 0.0 0.919

predict the exact KPI value under a certain SCV set for a certain GP. Hence, the
raw data will be condensed into average KPIs per combined SCV set which is
explained in the next paragraph.

Data Preparation
It was shown above that the irreducible error would be fairly large when predict-
ing the performance of a single cell in a single round, leading to bad models due
to the large amount of noise. To combat that noise, the high level of detail (KPIs
per cell per GP per SCV set) of the data is forgone, and solely the average KPIs
per SCV set are aggregated.

Additionally, the learned context model is taken into account. The value of such
a model has already been explained in Section 7.2.2.1, i.e., most of all, the reduced
computational effort. Instead of calculating a learned effect model on a cell basis,
effects are estimated per learned context class. Therefore, the set of cells is clus-
tered into kmeans clusters where cells behave similar. The kmeans value thereby can
be defined by the MNO. However, for the evaluation of the learned effect model,
a variety of possible values shall be investigated. More precisely, all values from
kmeans = 1, i.e., all cells belong to one cluster, to kmeans = 61, i.e., each cell belongs
to its own cluster, are tested.

In Section 7.2.2.2, the generation of a learned effect model has been already de-
scribed and the premises have been discussed. Accordingly, the set of combined
SCV sets is divided into a training and a testing set with a relation of 2 ∶ 1. Within
the training set, the KPI values are averaged per SCV set combination and per
learned context class. In contrast, in the testing set, KPI values are only averaged
per SCV set combination and per cell. The latter may look strange at first sight,
however becomes meaningful considering the methodology of CSM. In CSM, op-
timal SCV set combinations are chosen on a cell level, i.e., the effect predictions
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must optimally reflect the cells’ behavior instead of the behavior of the learned
context classes.

Table 8.10 illustrates the averaged data frames and their structure as they are used
for the training set, assuming kmeans = 10. The sample count thereby indicates the
number of samples that have been averaged, i.e., 20 (the number of GPs) per cell
in a learned context class. For instance, seven cells are assigned to CLASS_1,
hence, the sample count is 140.

Table 8.10.: An excerpt of the averaged data frame, each row representing the
averaged measurement of a learned context class under a certain SCV
set

Learned Class Sample Count CCO MLB MRO CQI PiPo CL

CLASS_1 140 -1 -1 -1 0.543 0 0.975
140 -1 -1 1 0.483 0.032 0.943
140 -1 0 -1 0.327 0.014 0.963
140 ... ... ... ... ... ...
140 2 2 1 0.517 0.022 0.983

CLASS_2 80 ... ... ... ... ... ...
... ... ... ... ... ... ... ...
CLASS_10 120 ... ... ... ... ... ...

In the testing set, there are always 20 samples per SCV set, one measurement
per GP. These measurements are averaged building the CQI, PiPo and CL values
in Table 8.11. Note that the combined SCV sets are split randomly in a relation
of 2 ∶ 1 and the testing set contains those SCV set combinations which are not
available in the training set.

Table 8.11.: An excerpt of the averaged data frame, each row representing the
averaged measurement of a cell under a certain SCV set

Testing Cell Sample Count CCO MLB MRO CQI PiPo CL

site01[0] 20 -1 -1 0 0.453 0.035 0.841
20 -1 -1 2 0.683 0.033 0.790
20 -1 0 0 0.581 0.002 0.822
20 ... ... ... ... ... ...
20 2 2 2 0.444 0.046 0.753

site01[1] 20 ... ... ... ... ... ...
... ... ... ... ... ... ... ...
site25[0] 20 ... ... ... ... ... ...

For the application of learning algorithms, Weka [WEK19] is used which is an
open source collection of machine learning algorithms. In Weka, data is provided
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in the Attribute-Relation File Format (ARFF) format consisting of a header which
contains the attributes of the data, i.e., the SCPs and the KPI value to be predicted,
and the data, i.e., the actual SCVs and their values of the observed KPI. Thus, a
huge set of ARFF files is generated, one training and one testing file for each
learned context class, each kmeans between 1 and 61 and for each single KPI. Four
different learning algorithms with several configurations are then trained on each
of the training files and the resulting models tested on the testing files. Finally,
the models can be evaluated in terms of the RMSE in order to find the one which
best fits the testing set.

Therefore, each learned context class was fitted with different models of different
learning algorithms, mapping the SCVs to the respective KPI. Each model was
trained on the training data averages, and its performance measured against the
training labels, following the LOO cross validation protocol. RMSE is used as
error metric to compare the performances of different models against each other.
Based on these findings the best performing model for each case, i.e, each learned
context class, each kmeans and each KPI can be selected.

In the following, the results for these algorithms, i.e., LR, GPR, KNN and ANN
are presented. Thereby, the focus will be on evaluating the KPI CQI in both the
high and low traffic scenario. The results for the KPIs PiPo and CL will also be
described in the following, however, due to their amount and size, the graphs are
part of the annex.

Linear Regression Results
As explained in Section 2.3.1.1, the LR model can be made increasingly more
flexible by extending the input vector with polynomials and combinations of the
already existing features. The potential drawbacks of an overly flexible model
were illustrated in Section 2.3.1. The flexibility was increased step by step from
a linear model up to a cubic model with cubic interaction terms, such that nine
different models were created for each of the kmeans learned context classes. Fig-
ure 8.8 shows how the different models behave with increasing levels of flexibility
for CQI in a high traffic scenario and Figure 8.9 shows the respective behavior in
the low traffic scenario. Thereby, the RMSE of each kmeans indicates the average
RMSE over all learned context classes. That is, the overall RMSE is calculated by
building the weighted average over the RMSEs of the particular learned context
classes, taking the number of cells within each learned context class into account.

First of all, it can be detected that the high traffic and the low traffic scenario be-
have quite similar, i.e., a model that is performing well in the high traffic scenario,
also does so in the low traffic scenario, and analogously for bad performing mod-
els. This applies for all of the three KPIs. Second, the RMSE decreases more or
less constantly for higher kmeanss which is expected since for kmeans = 1, i.e., all
cells are classified into one cluster, and hence, the difference in their CQI values
is fairly large. In contrast, the higher the kmeans, the more similar are cells within
each cluster with respect to their KPI behavior and consequently, the irreducible
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Figure 8.8.: LR: Results in terms of RMSE for KPI CQI in a high traffic scenario

error becomes lower and, accordingly, the average RMSE. Even though it pro-
vides the best results, choosing the kmeans as high as possible is not the right way.
The disadvantages with respect to computational effort have already been dis-
cussed and hence, a balance needs to be found where both the resulting RMSE
and the computational effort are in an acceptable range.
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Figure 8.9.: LR: Results in terms of RMSE for KPI CQI in a high traffic scenario

When comparing the different models with each other, it can be detected that
the quadratic model with interaction squared is the best performing LR model. It
is important to remember that a more flexible model with higher polynomials
of the input vector does not necessarily provide better results. As a matter of
fact, Figure 8.8 and Figure 8.9 show that the more flexible models partially have
worse performance on the training data, which is due to the bias-variance trade-
off explained in Section 2.3.1. Finally, it is interesting to see that in general, PiPo
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and CL show a similar behavior as CQI, with the difference that the cubed model
with interaction squared performs best for both KPIs.

Gaussian Process Regression Results
In GPR, the performance of the model can be influenced by using different kernel
functions. Three kernel functions have been tested, more precisely, the ones that
have been presented in Section 2.3.1.3, i.e., a polynomial kernel function, an RBF
and a PUK function. The RMSE is thereby calculated in the same way as for the
LR models. The result of this process is shown in Figure 8.10 for the high traffic
scenario and in Figure 8.11 for the low traffic scenario.
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Figure 8.10.: GPR: Results in terms of RMSE for KPI CQI in a high traffic scenario
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Figure 8.11.: GPR: Results in terms of RMSE for KPI CQI in a low traffic scenario

The first detection is that the PUK function obviously performs best in both scenar-
ios while the difference to the polynomial kernel function and the RBF is slightly
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smaller in the low traffic scenario. It is also quite clear that the RMSE successively
decreases for higher kmeanss, the reasons for that have already been explained in
the previous paragraph. Having a very low kmeans makes the models unusable
for a reliable estimation of KPI effects under untested SCV sets. A meaningful
value for kmeans is discussed in Section 8.2.3.2 where the RMSEs are compared
with the differences between the SCV sets, thereby assessing the quality of the
models.

For PiPo, the different models perform similar as for CQI, however, the difference
between the kernel functions just gets apparent from kmeans = 9 on, i.e., for lower
kmeanss, the models have a nearly equal performance. For CL, the huge discrep-
ancy between lower and higher kmeanss is remarkable. This may be caused by the
unsteady behavior of the CL which is disproportionately stronger when cells are
thrown together in a small number of clusters.

k-Nearest Neighbors Results
The next algorithm to be evaluated is KNN. Thereby, the crucial part is the se-
lection of an appropriate knearest which is not to be confused with the number of
clusters kmeans. In general, a guideline for choosing the right knearest is setting it
to the square root of the number of training samples which is 2/3 of all possible
SCV set combinations, i.e., 42. Consequently, setting knearest ∼ 6 is a good starting
point. Since this only serves as a guideline, an interval of knearest ∈ [4, 8] is tested.
The results of doing this can be seen in Figure 8.12 for the high traffic scenario
and in Figure 8.13 for the low traffic scenario.
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Figure 8.12.: KNN: Results in terms of RMSE for KPI CQI in a high traffic scenario

Interpreting the graphs, the nearly parallel structure of the curves becomes ap-
parent as well as, again, the significant differences between lower and higher
kmeanss. This is the case for both scenarios and all three KPIs. It can be seen that
knearest = 7 performs best and that the performance worsens, the more far away
the knearest is from 7. It is also interesting to see that the performance for PiPo and
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CL in the low traffic scenario is very similar up to a fairly high kmeans. However,
the selection of knearest = 7 is obvious, because this is the best performing model
in all observed cases.
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Figure 8.13.: KNN: Results in terms of RMSE for KPI CQI in a low traffic scenario

Artificial Neural Network Results
Finally, different ANN models were evaluated. As explained in Section 2.3.1.4,
the crucial part thereby is the choice of the number of hidden layers and the num-
ber of hidden neurons on each layer. It has been said that the number of hidden
layers usually should not exceed two. Choosing the number of hidden neurons
is more complex, since several guidelines exist for that. One of them which is
widely used, is to choose the number of neurons on a hidden layer between the
size of its input and output layer. Following these rules, the configurations which
are depicted in the explanation of Figure 8.14, were tested. Each number thereby
represents a hidden layer and the number itself defines the number of hidden
neurons on that layer.

The results for the nine tested models are illustrated in Figure 8.14 and Figure 8.15
for the two well-known scenarios. A few things can be seen at first sight: First of
all, the results are significantly worse for just one hidden layer, no matter what
the number of neurons on this layer is. Second, the performance for models with
two hidden layers is more or less the same for all cases. Basically, no difference
can be seen at all when looking at the charts for CQI and also CL. A slight differ-
ence can be detected for PiPo in the low traffic scenario, making the model with
two hidden layers, five hidden neurons on the first and two on the second layer
respectively, the one to be preferred.

Selection of Best Algorithm
In this paragraph, the best performing models for each algorithm are compared
in order to select the one for each KPI which best reflects the behavior of the

212



8.2. INPUT MODELS

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

0 5 10 15 20 25 30 35 40 45 50 55 60

R
M
SE

k(-Means)

ANN(2)

ANN(3)

ANN(4)

ANN(5)

ANN(4,2)

ANN(4,3)

ANN(5,2)

ANN(5,3)

ANN(5,4)

Figure 8.14.: ANN: Results in terms of RMSE for KPI CQI in a high traffic scenario
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Figure 8.15.: ANN: Results in terms of RMSE for KPI CQI in a low traffic scenario

SON functions. These models are then applied within CSM. Since all algorithms
provide the same results for the high traffic scenario and the low traffic one re-
spectively, i.e., the selected model is always the same in both cases, only the high
traffic scenario will be considered in the following. The respective graphs of the
low traffic scenario can be found in the annex in Figure A.17, Figure A.19 and
Figure A.18.

The overall results for CQI are illustrated in Figure 8.16. Thereby, the results of
the ANN model and the KNN model look promising while those of GPR and
LR provide a fairly high error rate. The decision for one of the models is taken
based on the results of higher kmeanss: Here, the ANN model clearly performs
better while only being worse than the KNN model for kmeans = 23. Consequently,
the ANN model with two hidden layers, having five and two hidden neurons
respectively, is the preferable one for KPI CQI.
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Figure 8.16.: Overall results in terms of RMSE for KPI CQI in a high traffic sce-
nario

The overall results for PiPo are illustrated in Figure 8.17. Here, it is harder to come
to a decision. While for kmeans ≥ 11, the ANN model is again the best performing
one, for lower kmeanss the KNN model better estimates the PiPo effects while
loosing against the ANN model and the GPR model for higher kmeanss. Thus, the
decision for one the two models must be taken based on the choice of the kmeans.
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Figure 8.17.: Overall results in terms of RMSE for KPI PiPo in a high traffic sce-
nario

The overall results for CL are illustrated in Figure 8.18. While providing more or
less the same results for kmeans ≤ 6, it has to be differentiated for higher kmeanss:
For 7 ≤ kmeans ≤ 28, the KNN model is the one to be chosen. From kmeans = 28 to
kmeans = 42, the KNN model and the ANN model have the same RMSEs while
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afterwards, i.e., kmeans ≥ 43, ANN is clearly the winning model. Consequently,
the decision is again reached by taking the chosen kmeans into account.
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Figure 8.18.: Overall results in terms of RMSE for KPI CL in a high traffic scenario

What all these results have in common, is that LR is the worst performing algo-
rithm in basically every case, i.e., for each kmeans and every KPI. This implies that
the underlying relationship between the thresholds and stepsizes of the different
SON functions are by no means a linear combination and instead, follow a more
chaotic pattern. This is the reason why non-parametric regression methods such
as GPR, KNN and ANN are able to provide a better performance.

Discussion of Results
In the previous paragraphs, the model (or models respectively) for each KPI has
been selected that is best in predicting the effects on a specific KPI, i.e., which
has the lowest RMSE. However, no investigation has been made, in how far the
quality of these models is sufficient, i.e.: Is the prediction of KPI effects under
a certain SCV set combination reliable enough to be used in the real network?
Furthermore, what is a meaningful choice for kmeans? It could be seen that the
RMSE decreases with a higher kmeans. However, a trade-off must be found be-
tween computational effort and resulting RMSE. These questions are investigated
in this paragraph. Therefore, the RMSEs values are compared with the overall
differences in the respective KPIs in order to be able to estimate the size of the
error.

CQI In both scenarios, CQI has a fairly wide range of measured values, the min-
imum close to the worst possible value and the maximum close to the best
possible one, resulting in a big difference for different cells under different
SCV set combinations. Additionally, the values are distributed quite uni-
formly over the whole interval, i.e., there are basically no outliers. When
looking at the overall results in Figure 8.16 and Figure A.17, it can be seen
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that the results improve significantly from kmeans = 1 to kmeans = 20 and the
difference between following kmeanss gets constantly lower. In both cases,
the RMSE value is a bit over 0.04 whereby the KNN and ANN model both
provide the same performance. This corresponds to an error rate of ≈ 5%
which is in an acceptable range. At the same time, this means that the com-
putational effort for the prediction of KPIs of untested SCV sets is reduced
by ≈ 2/3 compared to a cell-based calculation.

PiPo For PiPo, the situation is quite different. While the difference in the high
traffic scenario is fairly low, i.e., 0.338, it reaches the maximum in the low
traffic scenario, i.e., 1.0. However, only a handful of cells under a few SCV
sets reach values ≥ 0.25. The rest can be seen as outliers and hence, for the
decision for a kmeans, a maximum difference of ≈ 0.25 is assumed. Regard-
ing the high traffic scenario, the RMSE values significantly decrease until
kmeans = 33 while being quite stable for larger kmeanss. In the low traffic sce-
nario, the same applies for kmeans = 40, the reason why these two kmeanss
should be chosen for the respective scenario. In both scenarios, the ANN
model provides the best performance, an error rate of ≈ 0.007 in the high
traffic scenario and ≈ 0.008 in the low traffic scenario. This corresponds to
a ratio of around 2% and 3% respectively which is perfectly satisfying. Ac-
cordingly, the computational effort can be reduced by 1/2 in the high traffic
and 1/3 in the low traffic scenario respectively compared to a cell-based
calculation.

CL The KPI CL features the biggest range of the values it can take on. At the
same time, no outliers can be clearly identified and hence, the differences
as illustrated in Table 8.8 and Table 8.9 are assumed for further calculations.
For the high traffic scenario, the RMSE values are ≤ 0.05 and hence, are in
an acceptable area for kmeans ≥ 25. Consequently, this refers to an error rate
of ≤ 5%. Assuming 5% as satisfactory, the same applies for the low traffic
scenario for kmeans ≥ 14. The computational effort thereby can be reduced
by ≈ 40% and ≈ 75% respectively. In both cases, the selected KNN and ANN
model perform similarly.

The discussion in the previous paragraph only demonstrates how an appropriate
kmeans could be selected. However, in the end, the decision for a specific kmeans
is taken by the MNO and can also be changed during operation of the network
at any time. Thereby, the selection of a certain kmeans and the definition of what
is seen as an acceptable error rate strongly depends on the MNO’s preferences
and the goals to be achieved in the network. For the presented Hamburg sce-
nario – taking all KPIs into account – a kmeans between 20 and 30 seems to be a
good trade-off between providing satisfactory effect predictions and keeping the
computational effort in an acceptable range. For the following evaluation of the
different SON management approaches, kmeans is set to 25 and the ANN model is
selected for all KPIs in the CSM case.
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8.3. Results of SON Management Approaches

The previous sections dealt with the generation and derivation of the SON man-
agement’s input models and the selection of appropriate learning algorithms.
What is still missing, is the proof that SON management actually helps to ful-
fill operator objectives and that in particular CSM achieves meaningful results.
Therefore, above mentioned input models are used as input to SON management
and a simulation is run for each of the presented SON management approaches,
i.e., PBSM, ODSM, ASM and CSM. For all cases, the real network scenario, i.e.,
the Hamburg scenario, is used and, in order to guarantee comparability of the
results, the same objective model (cf. Listing 8.4), manual context classes model
(cf. Listing 8.3) and initial effect model (cf. Table A.1 - Table A.5) are applied. In
addition to the approaches presented in this thesis, a default SON case serves as
a baseline which reflects the current situation in mobile networks: The uniform,
network-wide configuration of SON functions with default SCV sets. It is the
minimum requirement that SON management is able to outperform the results
of this simulation. The default SCV sets have been determined in Section 8.2.3.1
and are summarized in Table 8.12.

Table 8.12.: Default SCV sets for three deployed SON functions
ID threshold stepsize

CCO_0 0.6 0.1
MLB_0 0.3 -1
MRO_0 0.01 -10

All simulations have the same length, more precisely 600 GPs. They all start with
the high traffic scenario and switch to the low traffic scenario after exactly 100
GPs. After additional 100 GPs it switches back to the high traffic scenario and so
on, such that in the end, 300 GPs have been simulated in both the high and low
traffic scenario.

Since it is one of the main objectives of this thesis to develop a SON management
system that is not just theoretically working but also usable in practice, the focus
in the evaluation is on the comparison of the fulfillment of operator objectives
and the improvement of KPI values. During the discussions in the SEMAFOUR
project it became apparent that operators are usually paid according to the ful-
fillment of their goals and hence, usable in this context means that the degree of
fulfillment should increase from the baseline, i.e., the current situation, to CSM.
Thereby, it is meaningful to evaluate the results for the particular manual context
classes since the objective definitions are based on them. In the following, the
results are presented for each of the five manual context classes, and thereby, two
metrics are chosen for the evaluation:

Average Utility This metric indicates the average of all cells’ utilities in the re-
spective manual context class. That is, the weights for all KPIs that a cell
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fulfills, are summed up and the arithmetic mean is built over all cells in the
context class. Consequently, this value must be between 0 (none of the cells
fulfills any KPI target) and 1 (all cells have achieved all KPI targets).

Percentage Target Ful�llment Since the average utility is based on a binary ful-
fillment of the KPI targets, an additional metric is taken into account, the
percentage target fulfillment. Usually, not all cells fulfill all targets and
hence, this metric gives an indication if the respective SON management
approach was able to, at least, come closer to fulfilling the targets. There-
fore, the KPI weights are multiplied with the degree of fulfillment (0 for the
lowest possible KPI value and 1, if the KPI value is equal or better than the
KPI target) and summed up for all KPIs. Afterwards, the arithmetic mean
for all cells within the respective manual context class is built.

While the average utility represents the actual objective fulfillment, the percent-
age target fulfillment gives a more precise indication whether SON management
has an effect on the KPIs or not. Note that the graphs of these two metrics may
look fairly different: It may be the case that the percentage target fulfillment in-
creases significantly from one GP to another while on the other hand, the average
utility remains constant or even decreases. For instance, when having a very bad
CQI value and a PiPo value that just fulfills the target in one GP, the utility in this
round equals the weight of the PiPo target. In the next GP, imagine a CQI and a
PiPo value, that both come very close to their KPI targets but do not fulfill them.
Then, the utility is 0 while the percentage target fulfillment is close to 1.

While the baseline configures the network uniformly with default SCV sets over
the whole simulation time, the PBSM case uses the approach as presented in
Chapter 4 and the ODSM case the approach as presented in Chapter 5 over the
whole simulation time. In contrast, ASM uses the ODSM approach during the
first 200 GPs and switches to the ASM approach for the last 400 GPs. Finally,
CSM uses ODSM for the first 200 GPs, ASM for GP 201 to 400 and the CSM ap-
proach for GP 401 to 600. These facts are summarized in the following table and
apply for the evaluation of all context classes.

Table 8.13.: Applied approaches over the simulation time
Case GP 1 - GP 200 GP 201 - GP 400 GP 401 - GP 600

Baseline Default Default Default
PBSM PBSM PBSM PBSM
ODSM ODSM ODSM ODSM
ASM ODSM ASM ASM
CSM ODSM ASM CSM

When switching from one scenario to the other one, the number of users as well
as any other changes of parameters in the scenario, happen instantly. Thereby,
it can be easily investigated how many GPs the particular SON management ap-
proaches need to settle down in terms of the measured KPI values.
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8.3.1. Results for City Center Macro Cells

The first context class under investigation is CLASS_1 which refers to macro cells
in the Hamburg city center. In matters of this context class, none of the SON man-
agement approaches can achieve a higher average utility than around 0.35. This
is due to the fact that none of the cells can fulfill the CQI target which has a weight
of 0.6 in the high traffic scenario and 0.5 in the low traffic scenario respectively.
The second observation is that all five cases more or less reach the same average
utility within the first 200 GPs while the percentage target fulfillment offers that
there is already a little difference. However, this difference can be justified by a
random better selection of SCV sets since, e.g., ASM and CSM are both using the
ODSM approach in this time frame and hence, the same combined effect model.
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Figure 8.19.: Average utilities for manual context class CLASS_1
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Figure 8.20.: Percentage target fulfillment for manual context class CLASS_1

The difference between the different stages of SON management becomes appar-
ent in the further GPs. First of all, there is a significant difference in the average
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objective fulfillment. While the baseline remains more or less constant over the
whole simulation time, ASM and CSM easily outperform the baseline, but also
ODSM and, most of the time, also PBSM. The outcome of these two cases is very
similar between GP 201 and 500. For the last 100 GPs, i.e., in the low traffic sce-
nario, CSM is able to find an up-to-now untested SCV set that performs even
better than ASM such that both the average utility and the percentage target ful-
fillment increase.

8.3.2. Results for Industrial Area Macro Cells

The second context class, i.e., CLASS_2, refers to cells in the industrial Hamburg
harbor area. In general, the same observations as for CLASS_1 can be made also
for this context class: The baseline results remain more or less constant over the
whole simulation time which is quite obvious due to the same SCV set deployed
at any time. The same applies for the PBSM approach, meaning that it was not
able to find optimal SCV sets that perform better than the default sets. This may
have several reasons: First of all, PBSM does not consider combined SCV sets and
second, it is only based on the quite unrealistic manufacturer effect model which
may provide erroneous effect predictions.
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Figure 8.21.: Average utilities for manual context class CLASS_2

Starting from GP 301, ASM and CSM behave quite similar which can be justified
by the fact that they work similar in case that the learned effects of the untested
SCV sets do not lead to an optimal target fulfillment. However, in the last low
traffic period, more precisely at GP 570, the average utility suddenly increases
clearly. Here, CSM could identify an untested combined SCV set that indeed does
better in fulfilling the operator objectives and also increases the percentage target
fulfillment. It may be not obvious why this happens at such a late GP. In fact,
CSM gathers data over the whole simulation and continuously adapts the real
network effect model which serves as a basis for predicting effects in the learned
effect model. These changes in the real network effect model also influence the
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predicted fulfillment of operator objectives and hence, it may take some time until
an untested SCV set combination can be identified as optimal.
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Figure 8.22.: Percentage target fulfillment for manual context class CLASS_2

An interesting fact that applies for all five cases under investigation is that the
percentage target fulfillment is fairly high compared to the average utility. It has
been already stated in Section 8.3 that this may occur when a lot of cells are close
to fulfilling one or more of their targets which, in case of CLASS_2, is again the
CQI target with a weight of 0.5 and 0.4 respectively. The high CQI weights also
cause the sudden increase for the last 30 GPs in the CSM case: CSM was able to
find an SCV set where at least a few of the 16 cells in CLASS_2 fulfill the CQI
target.

8.3.3. Results for Highway Macro Cells

CLASS_3 covers macro cells which are located close to the highway. At first sight,
it can be seen that both, the average utility as well as the percentage target fulfill-
ment, are very high compared to CLASS_1 and CLASS_2. This is due to the fact
that PiPo has a high importance in both scenarios and all of the four cells fulfill
the PiPo target at any time.

The ODSM, ASM and CSM all calculate the same optimal combined SCV set
within the first 30 GPs, however, they do this at different points in time. Here,
one of the main advantages of the ODSM approach becomes apparent: Usually,
more than one SCV set combinations provide the same best utility (according to
the objective manager’s calculations) such that the objective manager selects one
of these SCV set combinations randomly, leading to a big diversity of tested com-
binations. Even though it may take some time until the optimal configuration has
been found, this variety of SCV sets is useful at a later point in time for the ASM
and CSM calculations since a lot of data is available in the real network effect
model and hence, also for the generation of the learned effect model.
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Figure 8.23.: Average utilities for manual context class CLASS_3
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Figure 8.24.: Percentage target fulfillment for manual context class CLASS_3

In contrast to previously described context classes, ASM can clearly outperform
CSM except for GP 440 to GP 500, even though both cases use the ASM approach
for most of the time. While for the indicated time frame, CSM managed to find
not only the best possible, but nearly the optimal SCV set combination (average
utility and percentage target fulfillment close to 1), this may be curious for the
other GPs. However, this can again be justified by the random selection of SCV
sets within the first 200 GPs in case of equal utilities. This leads to a different set
of available SCV sets in the two cases and consequently, different real network
effect models.

8.3.4. Results for Suburban Macro Cells

The next cells under investigation are suburban cells, covered by CLASS_4. In
contrast to CLASS_1 - CLASS_3, the differences between the five cases are not as
huge. For the first 200 GPs, the performance can be denominated as equal. After
GP 200, there is clearly a little plus for the ASM and CSM case while both of them
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perform similarly. It seems that none of the untested SCV set combinations could
provide a better performance than one of the already tested sets such that no such
peak as for the previously investigated classes can be detected.
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Figure 8.25.: Average utilities for manual context class CLASS_4

In summary, the baseline again remains fairly constant over the whole simulation
time. Additionally, PBSM and ODSM are not able to satisfactorily improve the
results of a uniformly deployed default SCV set. Only ASM and CSM achieve
satisfactory results while both are still not able to fulfill CLASS_4’s CQI target,
resulting in an average utility which is under 0.5 most of the time due to the
relatively high CQI weights.
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Figure 8.26.: Percentage target fulfillment for manual context class CLASS_4

8.3.5. Results for City Center Micro Cells

Finally, the results for the seven micro cells are analyzed. Note that these cells
are deactivated in the low traffic scenario, leading to zero values for one half of
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the simulated GPs. First of all, it can be seen, that the average utilities as well
as the percentage target fulfillment values are extremely high for all cases and at
the same time, the differences between them are fairly low. The most significant
difference can be seen during the first 100 GPs: The various approaches need a
different number of GPs until they converge at a certain average utility, around
0.95. The reason, why this value can not be exceeded, is, that there are always
two cells in all cases which can not fulfill the CQI target. With a weight of 0.2, this
target is not of great importance and hence, leads to only this small gap to the
highest possible average utility. Since only at a few GPs, the PiPo and CL targets
can not be fulfilled as well, the graph shows some troughs at later points in time.
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Figure 8.27.: Average utilities for manual context class CLASS_5

Furthermore, CLASS_5 is the only context class where CSM does not perform
best. During the first 100 GPs, ODSM does a better job than any of the other
approaches. In the further periods, ASM achieves the best results, followed by
ODSM and PBSM.
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Figure 8.28.: Percentage target fulfillment for manual context class CLASS_5
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8.3. RESULTS OF SON MANAGEMENT APPROACHES

8.3.6. Discussion

In this section, the value of SON management, considering the results presented
in the previous sections, shall be discussed and summarized.

Constant Results of Baseline
In all cases, the results of applying default SCV sets remain constant over the
whole simulation time. While this is more or less expected behavior, it is impor-
tant to have this confirmed. Since at the same time, the baseline is far away from
fulfilling KPI targets in a satisfactory way, there is still a lot of potential for im-
provement for the four presented SON management approaches. This also shows
that it is not sufficient to run a uniform, network-wide configuration without con-
sidering the continuously changing environment. A SON management system is
needed that permanently reacts to these changes and adapts the network accord-
ingly.

Effect of Random SCV Set Selection in ODSM
During the first 200 GPs, three cases use the ODSM approach: ODSM, ASM and
CSM. One may have expected that within this time frame, these approaches pro-
vide the same or at least similar results. However, except for CLASS_3, utilities
as well as percentage target fulfillment are often fairly different. The reason for
that has already been explained: There is a random component within ODSM
that selects arbitrary SCV sets in case of equal (highest) utilities. After seeing the
results, one may see this as a critical point. Nevertheless, this is an important
factor especially in the ASM and CSM case. Without this random selection, i.e.,
when assuming a selection based on a distance calculation, the objective manager
would probably choose the same SCV set combination every time, since no real
network measurements are taken into account that could influence the reasoning
process. As a consequence, there would be only a few SCV sets where measure-
ments are available in the real network effect model, leading always to similar
results in the ASM case and making the prediction of untested SCV sets in the
CSM case nearly impossible due to the lack of data. Roughly spoken, it can be
said that the promising results in terms of ASM and CSM would not be possible
without this random selection.

Relationship between Percentage Target Fulfillment and Average Utility
There is a big difference between optimizing a network towards objective fulfill-
ment or trying to improve the KPI values itself. This can be seen when comparing
the curves of the average utility and percentage target fulfillment graphs. It be-
comes obvious at first sight that the curves often look fairly different. Also, the
percentage target fulfillment can be close to 100% while at the same time, having
a really bad utility. SON management, as it is described in this thesis, aims at op-
timizing operator objectives since this is what operators are paid for. Accordingly,
this confirms the importance of Objective 4 of this thesis: The SON management
needs to be designed in a way that it is trustworthy for an MNO. Most of the
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work which can be found related to SON management, aims at optimizing the
KPI values without considering operator objectives, which is clearly against the
actual goals of MNOs.

Influence of Machine Learning
For three out of the five manual context classes, CSM could identify an untested
SCV set that significantly performs better than those tested before. Furthermore,
CSM never deployed an untested SCV set combination that decreased one of the
two metrics significantly. This in turn means that the effect prediction works quite
well since CSM was either using the real network effect model or only untested
combined SCV sets that provide at least an equally positive effect as each of the
tested SCV set combinations.

Difference between Cases over Simulation Time
Except for CLASS_5, the gap between the worst and best performing case became
larger with increasing simulation time. During the first 200 GPs, all cases often
yielded the same results. After that, the baseline remained constant while PBSM
and ODSM usually needed more time to settle down. ASM and CSM often re-
ceived a significant boost after using the real network effect model for the first
time. Since the adaptation of the real network effect model is a continuous pro-
cess, this lasted until the final GP for some of the context classes, e.g., CLASS_1
and CLASS_2 in the high traffic scenario. The peaks in CSM often intensify this
observation and further increase the gap. Due to this finding, it would be inter-
esting to see how the behavior of the different SON management would change
with an increasing simulation time. Will the results converge, if they do at all?
Will the learned effect model be consulted more often? However, a more pow-
erful computer is needed for longer simulations, since the SEASON II simulator
requires a lot of resources and hence, this is subject to future work.

The Benefit of SON Management
The most important question is probably: After seeing the results of the simula-
tions, how well is SON management performing in fulfilling the operator objec-
tives? It can be clearly said that SON management has a considerable effect on
the fulfillment of operator objectives. Moreover, the effect gets more significant
with later stages of development. That is, using an initial effect model instead of
default SCV sets brings the first little boost. Upgrading this to a combined effect
model and the usage of a real network effect model results in a further improve-
ment, and using machine learning even outperforms these results. When looking
at the concrete values, i.e., the average utilities of the particular context classes,
there is still a lot of potential for further improvement while an optimal target
fulfillment, i.e., all cells have a utility of 1, can probably never be achieved. Fur-
thermore, note that the KPI targets in these simulations are based on experience
and could look rather different in practice.
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In the previous chapters several approaches have been presented that deal with
the development of a SON management system. These approaches have been
evaluated against each other and compared to the current situation in mobile net-
works in order to show their advantages and the benefit of SON management. In
this chapter, this thesis and the results are shortly summarized and the achieve-
ments are related to the objectives defined in Chapter 1. Finally, a few ideas are
presented how SON management can be used in the future and how to further
extend the most sophisticated CSM approach.

9.1. Summary

In this thesis, four approaches on SON management, namely PBSM, ODSM, ASM
and CSM have been introduced. These approaches have been consecutively de-
veloped, whereby each management approach aims at improving the previous
one and at overcoming its predecessors’ shortcomings. Thereby, each of these ap-
proaches can solve one or more of this thesis’ objectives, defined in Section 1.2:

Objective 1 Automate the process of finding optimal SCV sets and close the manual
gap between operator objectives and SCV sets.

Objective 2 Automatically generate realistic and complete input models which are
continuously updated according to the current network state such that they optimally
support the SON management system in finding the best possible network configuration.

Objective 3 Reliably estimate the performance of untested SCV sets dependent on au-
tomatically derived context information which has been reduced to a manageable level.

Objective 4 Develop a fully automated SON management system which allows MNOs
to comprehend, restrict and influence automated actions at any time.

In general, all four SON management approaches aim at the same goal: Relieve
the human MNO from manual tasks, thereby reducing OPEX and facilitating op-
erators to remain profitable. However, the different solutions each represent one
stage on the way to develop a sophisticated SON management system, each of
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them having their own advantages and drawbacks. Thus, in the following, the
SON management approaches are shortly summarized and it is shown how far
the particular approaches contribute to solving these objectives.

9.1.1. Policy-based SON Management

In Chapter 4, an approach has been presented that allows to overcome the man-
ual gap between network operator-defined technical objectives for the operation
and management of a SON-enabled mobile radio network, and the configuration
of SON functions that aim at optimizing NCPs in order to fulfill these technical
objectives. The manual gap comprises, first of all, the missing availability of an
automated transformation between technical objectives and SCV sets (automa-
tion gap), furthermore, the lacking capabilities to dynamically adapt the SCPs of
a SON function to a changing operational and network context (dynamics gap)
and finally, the lack of operator and SON function manufacturer knowledge in a
form that can be processed automatically (knowledge gap).

Several models have been introduced that allow the standardized description of
the information required to operate a SON-enabled mobile radio network. The
objective model, provided by the network operator, describes the KPI targets,
priorities associated with the KPI targets, and the conditions under which these
KPI targets and priorities shall apply. The effect model, provided by the SON
function manufacturer, describes which KPI targets the SON function can pursue
and the according SCV sets to configure the SON function. The context model
provides a description of the properties of operational and network status context
information. PBSM is the first SON management approach that uses these types
of automatically processable models and thereby closes the knowledge gap.

An objective manager has been introduced that creates an SCV set policy using
the information provided in the three models. This SCV set policy maps specific
context regions to an SCV set per SON function configuring the SON function
to pursue the technical objectives. In this way, the objective manager closes the
automation gap by performing an automated reasoning process. Furthermore, a
policy system has been proposed which evaluates the SCV set policy according to
a specific context and configures the SON accordingly. This allows to dynamically
react on changing network and operational conditions, thus closing the dynamics
gap.

The presented approach represents an important step towards automated net-
work operation, by shifting the responsibility of the human network operator
from the repetitive configuration and operation of individual SON functions to-
wards the definition of technical objectives according to which the mobile net-
work shall operate. The approach thereby represents a means for an objective-
driven control of a SON-enabled mobile radio network. By overcoming the man-
ual gap, PBSM provides a first solution for Objective 1 and at the same time, an
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approach that does not violate Objective 4. The usage of a design-time approach
which generates an SCV set policy first before deploying new configurations in
the network, enables the MNO to always interrupt an automated reconfiguration
if necessary.

9.1.2. Objective-driven SON Management

In Chapter 5, an ODSM approach has been presented as an extension of the ini-
tially introduced PBSM approach which dynamically configures a SON-enabled
mobile network according to context-specific operator objectives and a combined
effect model. This is achieved by an objective manager component which com-
bines several specific manufacturer-provided effect models into a combined effect
model, thereby identifying SCV set conflicts, and evaluating this combination
against a context-dependent objective model. In contrast to the former approach,
the presented concept is put on a mathematical foundation for both the descrip-
tion of the promised system performance for a SCV set in the effect model as
well as the definition of the desired system performance by the operator. This en-
ables more expressive effect models and objectives which allows the definition of
thresholds for KPIs in addition to minimization or maximization targets. Further-
more, it is possible to determine the best SCV set over a set of weighted objectives
instead of ranked objectives which allows to find better trade-offs between their
satisfaction.

Furthermore, the manufacturer-provided effect models and as a consequence,
the combined effect model in this approach on SON management are context-
dependent. This extension accounts for the need to express that an SCV set for a
SON function can produce diverse system behavior in different operational con-
texts.

Since ODSM can be seen as an extension to PBSM, this management approach
also solves Objective 1 while using a different type of reasoning process in the
objective manager due to different and more complex input models. Having
a more expressive objective model, but especially a more precise effect model,
marks an important step towards solving Objective 2, the generation of realistic
input models. Considering combinations of SCV sets is important since in real-
ity, usually more than one SON function is deployed in the network. However,
the combined effect model in this approach is still based on simulations done by
the SON function manufacturer such that Objective 2 can not be seen as solved
by adopting ODSM. Similar to PBSM, ODSM is also designed in a way that it
provides possibilities for an MNO to intervene and influence automated actions
at any time, thereby gaining trust in the system and partially solving Objective 4.
These possibilities include the generation of an SCV set policy by which the MNO
always has an overview of SON management results and the different types of
combining manufacturer effect models depending on his or her level of trust.
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9.1.3. Adaptive SON Management

In Chapter 6, an ASM approach has been presented that complements static SON
manufacturer-provided effect models with real network KPI values that are based
on measurements from the dynamic network environment. By acquiring and
analyzing measured network data, and mapping it with the currently active SCV
sets, a real network effect model is created. Using this real network effect model,
the SCV set policy and thereby the SON functions’ SCV sets, are updated such
that the SON functions contribute better towards achieving KPI targets. Thereby,
SON management is no longer dependent on externally provided and simulation
based effect models, but is turned into a closed control loop which permanently
improves itself.

In the ASM approach, another major shortcoming of the PBSM and ODSM ap-
proaches has been overcome: The reduction of the huge context state space to
a manageable number of context classes. Cells where a similar behavior is as-
sumed, are combined to a context class such that in the end, an MNO only has
to define objectives for the small number of classes instead of a huge number of
context states. In the end, this also affects the SCV set policy in terms of clearness
and manageability.

In Chapter 8, it has been shown that ASM results in the biggest increase of all SON
management approaches when comparing them to the respective previous stage
of development. This is mainly due to the fact that ASM takes real measured
KPI values into account and performs a much more complex yet more realistic
reasoning process. However, one of the disadvantages of ASM is the fact that it
still can only react on changes but not act in a predictive manner. That is, it can
only use SCV sets where the effect is already known and contained in the real
network effect model.

It is obvious that also ASM solves Objective 1 by automatically configuring the
network according to operator defined objectives. Furthermore, ASM has a big
stake in solving Objective 2, since it is the first approach to introduce a real net-
work effect model and a manual context classes model. The real network effect
model is a product of permanently gathering network data and thereby, perfectly
reflects the behavior of the system where SON management is actually applied.
The manual context classes model is created by inspection of the real network
and hence, only contains network attribute combinations in the shape of con-
text classes that really exist in the network. With the more complex ASM ap-
proach, further possibilities of influencing the functioning of SON management
come along. The MNO can decide about the trustworthiness of the real network
effect model and the point in time when it shall be applied.
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9.1.4. Cognitive SON Management

In Chapter 7, a CSM approach has been presented that extends the existing ASM
approach with machine learning capabilities. More precisely, supervised learning
techniques are used to predict the effects of up-to-now untested SCV sets, result-
ing in a complete effect model, and unsupervised learning techniques are used
to automatically cluster the set of cells into classes of cells with similar behavior
according to the achieved KPI values. Additionally, the usage of different types
of cell classifications requires the objective manager to calculate optimal SCV sets
for each cell individually, resulting in a more precise SCV set policy.

In Chapter 8, four different algorithms in the field of supervised learning have
been extensively evaluated with various different regression models in order to
find the best performing model for predicting effects of untested SCV sets. These
models were trained on data from all possible number of cell clusters such that
in the end, the error rates in terms of RMSE could be compared for all models
and every number of clusters. ANN thereby delivered the best results with a
promising error rate for a higher number of clusters. The best performing ANN
model has been implemented in the overall CSM approach and the CSM results
were compared to previous stages of development. In most evaluated cases, CSM
was able to identify an untested SCV set combination that could significantly
increase the cells’ utilities and the average KPI values. At the same time, the
values never decreased compared to the ASM approach which proves that the
used ANN model worked well in terms of KPI effect predictions.

CSM can be seen as an ASM approach equipped with machine learning capabil-
ities and hence, it also solves Objective 1. While it is nearly impossible to make
perfectly accurate predictions, the evidence was produced in the evaluation part,
that the learned effect model delivers appropriate results. Thus, the learned ef-
fect model also fulfills Objective 2, since it sufficiently reflects the real measured
effects. The same applies for Objective 3, for the same reason. It has been shown
that machine learning can reliably estimate the effect of untested SCV sets and, as
a consequence, can help to improve the fulfillment of operator objectives. Finally,
the usage of newly generated, learned models is also in accordance with Objec-
tive 4. The operator can decide about the point in time at which a learned effect
model shall be initially used. Furthermore, after each GP, the RMSE is reported to
the MNO such that a current image of the underlying learning process is always
reflected.

9.2. Future Work

Even though CSM is the most sophisticated approach in this thesis, there are still
some points that can be improved and where CSM can be extended. Some of
these points that go beyond the scope of this thesis are presented in this section.
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It starts with suggestions how the results of the learning process can be further
improved. Afterwards, possible extensions that could be combined with the here
presented SON management approaches, are described in more detail. Finally,
an idea is presented how SON management could be integrated with network
slicing.

9.2.1. Machine Learning

Hämäläinen et al. already mentioned the concept of Cognitive Radio Network
(CRN) in [HSS11] as a necessary future extension of SON:

“[Future network scenarios] are highly dynamic and induce frequent
changes of the operational context. Therefore, the SON concept is re-
garded as not fully meeting the challenges imposed by these new sce-
narios. In consequence, SON has to evolve [...]. [These extensions]
lead to the concept of CRN.”

A CRN is considered to be capable of reasoning and remembering, capabilities
already implemented to a high degree by the aforementioned CSM framework.
However, in order to achieve a CRN system as described by [HSS11], the pre-
sented CSM system needs to be extended. Even though the achieved results in
terms of RMSE are promising, there is still room for further improvements: A log-
ical next step would be the test of other learning algorithms and evaluating their
results against those illustrated in Chapter 8 of this thesis. Additionally, it might
be worth looking into more domains to base the process of learning the effects
of untested SCV sets on. Values such as antenna height, distance and amount of
neighboring cells and others might enable a more accurate effect prediction. Fur-
thermore, the regression models should be tested using data from different (more
heterogeneous) scenarios, data generated by different simulation engines or even
data collected from real networks.

In the course of mobile networks getting more and more complex with an increas-
ing amount of base stations due to the increasing amount of mobile device users,
the big data issue is of growing importance. While the focus of this thesis is on
showing that SON management is theoretically as well as practically working at
all, the runtime of presented approaches and of the learning process in particular
has not been investigated. However, in a real network with thousands of cells
and the multiple of data that has been produced in this thesis’ simulations, this
point can not be neglected, especially when also taking additional parameters
into account.
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9.2.2. Extensions to SON Management

Each of the SON management approaches that have been presented in this thesis
can operate as a standalone component what has been proven in the evaluation
part. However, there are some meaningful extensions, whose implementation
and combination with SON management could be worth being evaluated. First
of all, [Fre16] presents a more complex objective model: Instead of a binary KPI
target fulfillment, the range of a KPI target is separated into an optimal, an ac-
ceptable and an unacceptable range, allowing for a more complex evaluation of
the objectives. This approach can be easily combined with the ODSM, ASM or
CSM approach since the differences in the objective models only influence the
utility calculations when selecting an optimal SCV set combination.

In Chapter 5, a method has been presented to perform a design-time SON coor-
dination when combining the manufacturer-provided effect models of different
SON functions. Thereby, the respective KPI effects are compared with each other
and SCV sets whose combination leads to a contrary effect on one of the KPIs,
are not considered for further calculations. In Section 5.4, it has already been
said, that this pre-coordination is not what is actually understood by SON coor-
dination in the literature. SON coordination usually works as an additional com-
ponent during runtime, observing which SCPs are touched by the various SON
functions and intervening in case a conflict occurs. While the pre-coordination
in ODSM, ASM and CSM is still useful for detecting possible conflicts before-
hand, it can be simply extended with a runtime SON coordination component:
Before deploying a new SCV set combination on a cell, SON coordination can be
interconnected and consulted, showing whether a projected SON function recon-
figuration causes a conflict or not.

9.2.3. SON Management for Network Slicing

Network slicing is currently one of the hot topics in the field of mobile networks
and hence, ideas are presented how SON management and network slicing can be
combined. Furthermore, problems are depicted occurring when combining these
two domains. First of all, a definition of network slicing shall be given according
to Fendt et al. [Fen+18a]:

“Network slicing is one of the key features of 5G mobile networks
to cope with the diverging network requirements introduced by new
use cases, like the IoT, autonomous driving and the Industry of the
Future. Network slices are isolated, virtualized, end-to-end networks
optimized for specific use cases. But still they share a common physi-
cal network infrastructure.”

That is, several use cases claim resources of the shared physical network. For each
of these use cases, a virtual network is created with its own goals and objectives.
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Here, SON management comes into play: It may seem the easiest way to deploy
a SON management system for each of the network slices individually. However,
note that the same physical network is at the basis of all the different network
slices and hence, the objectives of the particular use cases are conflicting with the
utmost probability, requiring for a component that manages and coordinates the
sets of network slice-specific objectives and combines them into a universal set for
the underlying physical network. Several approaches are thinkable for this com-
bination: For instance, objectives could be joined for each KPI to the one which
has the hardest target to achieve. In doing so, SON management is prevented
from stopping to optimize a certain KPI before having fulfilled the hardest one.
However, this approach does not work for the objective weights. An approach to
solve this problem could be to build the arithmetic mean of the weights, having
the disadvantage that an increasing number of slices would probably cause an
equal distribution of the weights, making them needless in the end such that a
more sophisticates solution must be found here.
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A
Evaluation

A.1. Manufacturer Effect Model

Table A.1.: Manufacturer effect model for CLASS_1
Traffic CCO Set MRO Set MLB Set CQI Effect PiPo Effect CL Effect
high -1 0 -1 0.27 0.07 0.86
high -1 -1 2 0.36 0.11 0.81
high 1 -1 -1 0.35 0.03 0.89
high -1 -1 1 0.35 0.12 0.81
high 0 -1 -1 0.35 0.03 0.89
high -1 2 -1 0.36 0.11 0.81
high 2 -1 -1 0.28 0.03 0.85
high -1 -1 0 0.36 0.11 0.81
high -1 1 -1 0.36 0.11 0.81
low -1 0 -1 0.36 0.06 0.64
low -1 -1 2 0.51 0.09 0.6
low 1 -1 -1 0.52 0.04 0.63
low -1 -1 1 0.5 0.1 0.58
low 0 -1 -1 0.51 0.04 0.63
low -1 2 -1 0.51 0.09 0.61
low 2 -1 -1 0.39 0.03 0.59
low -1 -1 0 0.51 0.09 0.56
low -1 1 -1 0.51 0.09 0.6
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Table A.2.: Manufacturer effect model for CLASS_2
Traffic CCO Set MRO Set MLB Set CQI Effect PiPo Effect CL Effect
high -1 0 -1 0.26 0.07 0.69
high -1 -1 2 0.35 0.05 0.61
high 1 -1 -1 0.36 0.08 0.69
high -1 -1 1 0.35 0.05 0.6
high 0 -1 -1 0.36 0.08 0.69
high -1 2 -1 0.36 0.05 0.6
high 2 -1 -1 0.27 0.05 0.65
high -1 -1 0 0.36 0.05 0.55
high -1 1 -1 0.35 0.05 0.61
low -1 0 -1 0.35 0.07 0.42
low -1 -1 2 0.49 0.04 0.34
low 1 -1 -1 0.51 0.08 0.43
low -1 -1 1 0.48 0.05 0.34
low 0 -1 -1 0.51 0.08 0.43
low -1 2 -1 0.49 0.05 0.34
low 2 -1 -1 0.37 0.04 0.38
low -1 -1 0 0.49 0.05 0.31
low -1 1 -1 0.49 0.04 0.34

Table A.3.: Manufacturer effect model for CLASS_3
Traffic CCO Set MRO Set MLB Set CQI Effect PiPo Effect CL Effect
high -1 0 -1 0.21 0.03 0.97
high -1 -1 2 0.26 0.03 0.97
high 1 -1 -1 0.21 0.02 1.0
high -1 -1 1 0.27 0.02 0.95
high 0 -1 -1 0.21 0.02 1.0
high -1 2 -1 0.26 0.02 0.99
high 2 -1 -1 0.25 0.0 0.88
high -1 -1 0 0.26 0.03 0.97
high -1 1 -1 0.26 0.03 0.97
low -1 0 -1 0.24 0.02 0.84
low -1 -1 2 0.3 0.03 0.8
low 1 -1 -1 0.25 0.02 0.99
low -1 -1 1 0.31 0.03 0.83
low 0 -1 -1 0.25 0.02 0.99
low -1 2 -1 0.31 0.02 0.81
low 2 -1 -1 0.29 0.0 0.8
low -1 -1 0 0.31 0.03 0.83
low -1 1 -1 0.3 0.03 0.8
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A.1. MANUFACTURER EFFECT MODEL

Table A.4.: Manufacturer effect model for CLASS_4
Traffic CCO Set MRO Set MLB Set CQI Effect PiPo Effect CL Effect
high -1 0 -1 0.25 0.0 0.29
high -1 -1 2 0.35 0.0 0.2
high 1 -1 -1 0.38 0.0 0.31
high -1 -1 1 0.37 0.0 0.27
high 0 -1 -1 0.38 0.0 0.31
high -1 2 -1 0.36 0.0 0.22
high 2 -1 -1 0.27 0.0 0.29
high -1 -1 0 0.36 0.0 0.24
high -1 1 -1 0.35 0.0 0.2
low -1 0 -1 0.33 0.0 0.16
low -1 -1 2 0.48 0.0 0.11
low 1 -1 -1 0.53 0.0 0.16
low -1 -1 1 0.5 0.0 0.15
low 0 -1 -1 0.53 0.0 0.16
low -1 2 -1 0.5 0.0 0.13
low 2 -1 -1 0.37 0.0 0.16
low -1 -1 0 0.5 0.0 0.13
low -1 1 -1 0.48 0.0 0.11

Table A.5.: Manufacturer effect model for CLASS_5
Traffic CCO Set MRO Set MLB Set CQI Effect PiPo Effect CL Effect
high -1 0 -1 0.58 0.0 0.72
high -1 -1 2 0.62 0.0 0.87
high 1 -1 -1 0.21 0.0 0.58
high -1 -1 1 0.62 0.0 0.87
high 0 -1 -1 0.21 0.0 0.58
high -1 2 -1 0.62 0.0 0.83
high 2 -1 -1 0.95 0.0 0.44
high -1 -1 0 0.62 0.0 0.86
high -1 1 -1 0.62 0.0 0.87
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A.2. Learned Effect Model Results

A.2.1. Linear Regression
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Figure A.1.: LR: Results in terms of RMSE for KPI CL in a high traffic scenario
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Figure A.2.: LR: Results in terms of RMSE for KPI PiPo in a high traffic scenario
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Figure A.3.: LR: Results in terms of RMSE for KPI CL in a low traffic scenario
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Figure A.4.: LR: Results in terms of RMSE for KPI PiPo in a low traffic scenario
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A.2.2. Gaussian Process Regression
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Figure A.5.: GPR: Results in terms of RMSE for KPI CL in a high traffic scenario
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Figure A.6.: GPR: Results in terms of RMSE for KPI PiPo in a high traffic scenario
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Figure A.7.: GPR: Results in terms of RMSE for KPI CL in a low traffic scenario
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Figure A.8.: GPR: Results in terms of RMSE for KPI PiPo in a low traffic scenario

265



APPENDIX A. EVALUATION

A.2.3. k-Nearest Neighbors Regression
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Figure A.9.: KNN: Results in terms of RMSE for KPI CL in a high traffic scenario
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Figure A.10.: KNN: Results in terms of RMSE for KPI PiPo in a high traffic sce-
nario
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Figure A.11.: KNN: Results in terms of RMSE for KPI CL in a low traffic scenario
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Figure A.12.: KNN: Results in terms of RMSE for KPI PiPo in a low traffic scenario
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A.2.4. Artificial Neural Network
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Figure A.13.: ANN: Results in terms of RMSE for KPI CL in a high traffic scenario
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Figure A.14.: ANN: Results in terms of RMSE for KPI PiPo in a high traffic sce-
nario
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Figure A.15.: ANN: Results in terms of RMSE for KPI CL in a low traffic scenario
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Figure A.16.: ANN: Results in terms of RMSE for KPI PiPo in a low traffic scenario
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Figure A.17.: Overall results in terms of RMSE for KPI CQI in a low traffic sce-
nario
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Figure A.18.: Overall results in terms of RMSE for KPI CL in a low traffic scenario
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