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Quantum effects and the dissipation by quasiparticle tunneling in arrays of Josephson junctions
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We investigate the inAuence of dissipative quasiparticle tunneling currents on quantum eAects and
phase transitions in d-dimensional arrays of Josephson junctions. We show how the dissipative phase
transition, which is known from single junctions at zero temperature, is modified due to the multidi-
mensional coupling. The transition depends on the strength of the dissipation but also on the ratio of
Josephson coupling energy to the capacitive charging energy e /2C. It separates an ordered (super-
conducting) regime from a disordered (resistive) regime where fluctuations prevent phase coherence.
In arrays with small capacitance junctions and weak dissipation, the disordered phase persists down
to zero temperature. Finite temperatures modify the phase diagram significantly. A reentrant transi-
tion between a resistive and a superconducting state is found for weak dissipation. We also make
contact with the familiar phase transitions of d-dimensional XY' models and show how the charging
energy and dissipation in Josepkson-junction arrays infiuence these transitions. The results are of
relevance for granular superconductors.

I. INTRODUCTION

Arrays of Josephson junctions are known to exhibit
different phase transitions depending on the dimensionali-
ty of the network. Quantum fluctuations associated with
the charging energy inhibit the short- and long-range or-
der. They also provide the possibility for a fluctuation-
driven phase transition at very low temperatures. On the
other hand, the dissipation due to the flow of normal
currents tends to suppress quantum fluctuations. It is the
purpose of this paper to analyze the influence of the dissi-
pation by quasiparticle tunneling on the phase transitions
in arrays of quantum-mechanical Josephson junctions.

Recently, several experiments demonstrated that single
Josephson junctions behave as macroscopic quantum-
mechanical systems. The charge Q on the junction elec-
trodes and the difference of the phases P of the supercon-
ducting order parameters in the electrodes are quantum-
mechanical conjugate variables, satisfying an uncertainty
relation 5Q 6(~/2e) ) fi/2 Macroscopi. c quantum tun-
neling and discrete energy eigenstates have been ob-
served. ' These quantum effects are most pronounced in
junctions with small capacitance C at low temperatures.
Vr'ith increasing size of the junctions, the behavior gradu-
ally changes from strongly quantum mechanical to essen-
tially classical.

These observations revive the interest in a conjecture
put forward quite a few years ago by Anderson and
Abeles. They argued that the charging energy and the
associated quantum fluctuations in Josephson-junction ar-
rays would reduce or even destroy the long-range phase
coherence. These quantum effects are strong if the ele-
mentary charging energy of a single electron, E, =e /2C,
is larger or comparable to the Josephson coupling energy
EJ——AI, /2e. More recently, it was shown " that in ar-

rays of junctions a phase transition occurs depending on
the temperature and the ratio EJ/E, . It separates a re-
gime (large T or small values of EJ/E, ) where fiuctua-
tions (thermal or quantum) prevent long-range order from
a more ordered regime. In the former the resistance of
the whole network remains finite, even at zero tempera-
ture. In the latter the array is truly superconducting.

In the limit of very large capacitance, charging effects
can be ignored and the transition depends only on the
temperature (measured in units of EJ/ktt). In three di-
mensions a ferromagnetic transition, and in two dimen-
sions the Kosterlitz-Thouless-Berezinskii' (KTB), tran-
sition takes place. No transition is found in a one-
dimensional (1D) chain at finite T. On the other hand,
at zero temperature a transition can occur in any dimen-
sion. (Formally, the time dependence adds an extra di-
mension to the system. Therefore, at T =0 a transition
can exist even in a one-dimensional chain. ) The transi-
tion depends on the ratio EJ/E, . The critical value of
this parameter is of order 1.

None of the above-mentioned papers took into account
that in Josephson-junction arrays normal currents are
flowing as well. They are due to quasiparticle tunneling
and/or shunt resistors. Their flow gives rise to dissipa-
tion, which is known to influence the quantum effects in
single junctions in an important way. For example, the
rate of macroscopic quantum tunneling is reduced. '

Moreover, in the periodic potential —EJcostb of an un-
biased Josephson junction a phase transition occurs, if the
dissipation exceeds a critical strength. ' ' If the dissipa-
tion is due to an Ohmic shunt resistor with resistance R,
its strength is characterized by the parameter
a =h /(4e2R), and the critical value is a, = 1, independent
of EJ/E, . For weak dissipation the mobility of the phase
is finite and the junction has nonzero resistance. Howev-
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er, if the strength of the dissipation exceeds the critical
value, the phase is localized in one of the equivalent po-
tential minima. Quantum fiuctuations are "frozen" and
the junction behaves essentially as a classical Josephson
junction. A similar transition occurs if the dissipation is
due to quasiparticle tunneling. ' In this case the relevant
parameter is a=h/(4e Rq~), where I/Rz~ is the subgap
conductance for small voltages V«26/e. The critical
value a, now depends on the ratio EJ/E, . It is a, =~ /4
for large EJ /E, and approaches infinity for vanishing
EJ/E, . The transition is between a state where an im-
posed current induces a finite voltage (though related non-
linearly to the current) and a state with zero voltage. '" It
is to be expected that this dissipative phase transition will
also show up in d-dimensional arrays of Josephson junc-
tions.

A Josephson junction array with Ohmic dissipation,
describing, for example, a network with shunt resistors,
has recently been analyzed by Chakravarty et al. ' by
means of a variational calculation. We will describe here
the equivalent analysis for a network with oxide barriers
where the dissipation is due to quasiparticle tunneling. In
both cases a phase transition is found at critical values of
the ratio of energies EJ/E„ the dissipation a, and the
temperature T. The parameters differ quantitatively for
the two models. We also employ a variational calcula-
tion; however, we use two variational parameters. Joseph-
son arrays with quasiparticle dissipation were recently an-
alyzed also by Simanek and Brown' in an approximate
version of a variational calculation. In our approach no
further approximations are made beyond the use of the
variational principle. The results obtained can be checked
against various rigorous limits. They are unsatisfactory
for single junctions, where both the dissipation due to
Ohmic shunt resistors' as well as to quasiparticle tunnel-
ing' have been analyzed by scaling methods. We expect,
however, that the results are better in higher dimensions.
In fact, they agree at least qualitatively with rigorous pre-
dictions of a phase transition where these can be made.
This applies both for the zero-temperature transitions
where the quantum fluctuations are most important as
well as for the finite-temperature transitions of the mul-
tidimensional array.

II. THE MODEL

We consider a perfect d-dimensional array of supercon-
ducting islands, which are separated by oxide barriers.
Cooper-pair tunneling results in a Josephson coupling en-
ergy between nearest neighbors,

U= g Eq(1—cosP;~),
&jI&

where P;~ =P;—P~ is the difference of the phases of the or-
der parameter in the islands i and j. The energy scale
EJ——Al, /2e is proportional to the critical current I, and
depends on the conductivity of the oxide and the tempera-

ture. ' Charges may accumulate on the islands. In a
sufficient approximation their Coulomb interaction is de-
scribed by the total charges Q; on the islands and the in-
verse capacitance matrix (C '),i. It is

H0 ———,
' g Q;(C ');,Q, . (2)

The quantum-mechanical treatment of the junctions
shows that the charge QJ on an island and the phase QJ
are noncommuting variables,

[Q, , AP) /2e] =—i A .

The diagonal elements of the capacitance matrix (C ');~
describe, e.g. , interactions of charges with their image
charges in the ground plane. This may be dominant in
planar structures. ' ' The corresponding limit —the self-
charging model —is considered in the main part of this
paper. Off-diagonal elements refer to interactions of
charges on different islands. They are certainly important
in a three-dimensional array. A corresponding limit —the
nearest-neighbor model —is considered in the Appendix.

Apart from Cooper pairs, also normal electrons —more
precisely, the quasiparticles in the superconducting
electrodes —can tunnel across the oxide barriers. This
gives rise to a current which involves dissipation. The
properties of the classical quasiparticle tunneling current
are well known. In an ideal Bardeen-Cooper-Schrieffer
(BCS) tunnel junction at zero temperature, where a con-
stant voltage is applied, no quasiparticle current is flowing
as long as the voltage is small V & 2A/e, whereas at larger
voltages the quasiparticle conductance is close to the con-
ductance of the equivalent normal junction. At finite
temperatures the conductivity is nonzero for all voltages,
but, in general, it differs for small and large voltages.
These properties rely on the ideal form of the BCS density
of states, which is strictly zero for energies smaller than
the energy gap. On the other hand, any smearing of the
density of states results in a nonzero conductance for
small voltages even at T =0. The smearing may be due
to inelastic collisions, scattering from paramagnetic impur-
ities, or a spatial variation of the order parameter. " In
the latter case the pair-breaking parameter is I
=D(V 6, )/25. Whereas large junctions can show a
current-voltage characteristic which is close to the ideal
form, it seems to be the rule that very small junctions al-
ways show a finite subgap conductance.

Dissipation by quasiparticle tunneling can be included
in a fully quantum-mechanical way. The essential step
is to reduce a complete description of the system, con-
taining all the microscopic electronic degrees of freedom,
to one which contains only the important macroscopic
degrees of freedom. In Josephson junctions, away from
T, , the most important (i.e., the most strongly fiuctuat-
ing) degrees of freedom are the phase differences and the
charges. Quantum-statistical properties of the system
are characterized by an effective action in imaginary
times 0(r(AP,
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For example, the partition function

Z = Q f DPJ exp( —S[P]/A'), (S)

or expectation values, can be expressed by Feynman path
integrals, weighted by exp( —S[P]/A'). Here we consider
the self-charging limit of a perfect array; for example, we
assume that (C ');J =5;~/C and also the Josephson cou-
pling energy and the strength of the dissipation are the
same for all the junctions.

The dissipation by quasiparticle tunneling is expressed
by the nonlocal interaction term in the action. The tri-
gonometric dependence on the phase diff'erences reflects
the discreteness of the elementary process leading to dissi-
pation. It describes the tunneling of single electrons. '
The form of the kernel a„„(r)depends on the spectrum of
the quasiparticles and differs qualitatively, depending on
whether or not the spectrum has a well-defined energy
gap.

After analytic continuation to real times and Fourier
transformation, aq~(co) reflects the characteristic proper-
ties of the quasiparticle current-voltage characteristic. If
we consider an ideal BCS tunnel junction at low tempera-
ture, the Fourier transform (with respect to imaginary
times) of the kernel for small frequencies R

~

cp
~

&&2A
21,26

aq„(rp, , )=—(3~/32)(fi/2e'Rz )Acp'/b, . (6)

In an ideal array of junctions a similar expansion may be
sufficient. Here, the quasiparticle tunneling produces a
nearest-neighbor element of the capacitance matrix. The
quantitative eff'ect of this additional coupling to the phase
transition in Josephson arrays has recently been discussed
by Chakravarty et al.

On the other hand, if the subgap conductance is
nonzero, the kernel a(cp ) acquires a contribution linear in

~

cp
~

also at small frequencies,

aqua(~ )=—(A'/2e Rqp) ~

cp,,
~

=—(ap/w) (8)

Here, 1/Rqp is the subgap conductance for small voltages
V~O. In order to describe both the ideal energy-gap-

For higher frequencies (and therefore always higher tem-
peratures) the kernel approaches the "Ohmic" form
aq„(cp~)= —(A'/2e R~)

~

cp, Here, R~ is the normal-
state resistance of the junction. If the dynamics of the
problem involves only small frequencies Ace «2A, the ex-
pansion (6) is sufficient. Under these circumstances in an
ideal single junction at zero temperature the effect of the
quasiparticle tunneling can be described as an effective in-
crease of the capacitance,

5C= 3vrhl(326, R~ ) .

dependent nonlinear conductance and the nonideal
subgap conductance of the quasiparticle current, we have
to add the kernel (8) to the ideal form mentioned above.
As long as the subgap conductance is not too small, it has
the more drastic effect. It gives rise to infrared singulari-
ties and can induce phase transitions by itself. In con-
trast, the quadratic low-frequency form (6) yields only
quantitative corrections to existing transitions. We, there-
fore, concentrate in this paper on a kernel of the form (8),
although the extension including (6) would be straightfor-
ward.

Ohmic dissipation, due to shunt resistors between the
islands, is described by a similar model. ' In this case the
trigonometric function in the dissipative term of the action
(4) is replaced by its quadratic expansion and the kernel is
of the form of Eq. (8) with Rqz replaced by the shunt
resistance R.

The coupling energies determine the form of the action
(4), but do not yet specify the boundaries of the path in-
tegrals, e.g. , for the partition function (S). The question
arises whether phases which differ by multiples of 2~ are
distinguishable or not. This apparent ambiguity had
raised some confusion. Its answer depends on the physi-
cal property to be described. [We remind the reader that
also in other problems in quantum mechanics the Hamil-
tonian (plus the set of other commuting variables) do not
yet specify the system. In addition, the Hilbert space of
the allowed states has to be chosen. This choice has to be
consistent with the Hamiltonian, but, in general, is not
unique. ] The boundary conditions of the path integral are
related to the set of allowed states. This relation can be
easily studied if we assume that both the Josephson cou-
pling and the quasiparticle tunneling are weak, in which
case the Hamiltonian is dominated by Hp=g Q~ l2C.
We can now consider different cases (for simplicity, we do
not always write the indices referring to the different is-
lands).

(i) In an idealized case the superconducting islands are
only coupled by weak Cooper-pair tunneling. In this case
a reasonable choice of states is one where each island
has a charge which is an integer multiple of 2e, i.e. ,
(g) =q2e with q =0,+1,+2, . . . . The eigenstates are
2n-periodic wave functions (equivalent to a particle on a
ring) Pq(P)=exp(iqP). This means the phase values
and /+2' are completely equivalent. Obviously, the par-
tition function of the simple limit is

Zp = g exp[ —(q2e) /2Cks T] .
q

In the path-integral representation of the partition func-
tion, the boundaries have to be chosen as
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&& exp( —S [~))] /R) .

Since Po~ and rtio~+2n are equivalent, the trace in the par-
tition function includes a summation over all winding
numbers n~ =0,+1,+2, . . . . It is trivial to show that this
expression for Z reduces to Zo in the appropriate limit.

(ii) If we allow single-electron tunneling, we also have
to include states with charges which are integer multiples
of e, i.e., ( Q ) =qe, with q =0,+1,+2, . . . . This corre-
sponds to including 4~-periodic wave functions g~(P)
=exp(iqP/2). In this case P and P+4w are still
equivalent and the partition function (9) has to be
modified accordingly.

(iii) We can also consider junctions which contain an
"external charge" Q, , which takes arbitrary continuous
values, but which on a short-time scale can be changed
only by discrete units of e or of 2e due to single-electron
or Cooper-pair tunneling. The corresponding modifica-
tion of the partition function is discussed in Ref. 13. In
the sum over the winding numbers in the path integrals,
each term is multiplied by a phase factor exp(iQ 2vrn /e).
Changing Q adiabatically leads to the quantum effect of
"Bloch oscillations. "

(iv) If a (even small) leakage current is ffowing between
the islands or to the substrate, we should allow for states
with arbitrary charge ( Q ). This corresponds to including
all wave functions i(r~(~t )=exp(iqP), where q can take any
real number. In the simple limit the partition function is

Zo= f dq exp[ —(q2e) /2Ck&T] .

Although the choices (i)—(iii) correspond to well-defined
mathematical models, the long-time properties of the ar-
ray are sensitive to even small leakage currents and, there-
fore, are described by choice (iv). On the other hand, for
high-frequency applications the external charge Q„can be
sufficiently well conserved such that the choice (iii) can be
valid. ' In the remainder of this paper we will use the
boundary conditions as given in (10). Without loss of
generality, we can further restrict $0~ of each island to the
regime —ir & go~ &ir and set the phase of the first island
equal to Poi =0.

We should also mention that Ohmic dissipation, by
definition, allows continuous changes of the charge.
Therefore, a restriction to integer charge states —or,
equivalently, the identification of difterent values of the
phase (e.g. , r() and /+2~)—is inconsistent with the Ham-
iltonian of the system. The formal attempt of combining
nonzero winding numbers and Ohmic dissipation present-
ed in Ref. 29 indeed was found to be inconsistent.

III. VARIATIONAL PROCEDURE

Within the path-integral formalism the evaluation of
the partition function 'corresponding to the action given in
(4) is not possible without further approximations. We
therefore employ a variational method for the evaluation
of the free energy, similar to the treatment presented in
Ref. 15 for Ohmic damping. The Gibbs-Bogoliubov in-
equality yields an upper bound F to the true free energy
F: F (F*,where F* is given by

F*=F„„+ fDg exp( S„,[P]/fi)—(S [~I)]—S„„[P]).1

Z var

No two values of the phase are equivalent. The trace in
the partition function no longer includes a summation
over winding numbers. Hence,

Here,

exp( /3F„„)=Z„„—= f DP exp( S„,„[P]/fi) . — (12)
Z= Q f dPo, f 'DP, (r)exp( —S[rt]/ih) .

oj
(10)

It is interesting to notice that summing over all values of
the external charge Q„ in the situation discussed in (iii)
reduces that case also to the form (10).

The form of the trial action S„„canbe chosen arbitrarily.
In general, it depends on free parameters. By varying
these parameters a best upper bound F' for a given form
S„,can be obtained. We choose

2

fred + C R rldro, 2 2e B~

2

$ re j(r)+ —,
' $ f dr f dr'aqua(r r')—

which is similar in structure to the true action (4); the tri-
gonometric functions are replaced by their quadratic ex-
pansions. The junction parameter ao=h /(4e Rqz) de-
scribes the strength of the quasiparticle tunneling as
defined in Eq. (8). We allow for two variational parame-
ters o.' and m. Their values will be chosen to make F* a
global minimum for a given temperature and junction pa-
rameters ao and EJ/E, . After Fourier transformation
with respect to imaginary times, S„,reads

S„,„= g QK(k, ~„)
~
P(k, co„)

~

with a kernel

K(k, co„)=(fun„) /8F. , + ih'
~
co„~ +m (z —yk) .

2w

(14)
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Here, E, =e /2C and ~„=2vrp/lip are the Matsubara
frequencies and the quantity

Z

z —y'i, = g [1—cos(k.e;a)]
i=]

is the usual dispersion for nearest-neighbor couplings on a
lattice with coordination number z and lattice spacing a.
In the following we consider a simple-cubic lattice where
z =2d.

Superconductivity in the array of junctions requires
phase coherence. Thus (cosP;, ) is a proper order param-
eter. Since

1 Z[1+Gk(0)/2w]'
(18)

It depends on the quantity

f g dpp~e p —g po, /4 X
J J

which can be transformed into an equivalent restriction of
the Fourier components Pi, (0). There remain only Gauss-
ian integrals to be performed. For the variational parti-
tion function, we obtain

=0 for m =0,
&0 for m &0, (17)

Gi, (0)=—g I/K(k, oi„) .
1 (19)

we identify the array to be in a superconducting or resis-
tive state, depending on whether the global minimum of
F* appears for m )0 or m =0, respectively. While there
is no doubt that for m =0 the phases are uncorrelated, it
is not clear whether (cosP;, )&0 implies an ordered state.
Our criterion, therefore, will overestimate the tendency to
ordering. Furthermore, it should be kept in mind that we
are discussing properties of the upper bound F' rather
than the true free energy. This is a mean-field —type ap-
proximation and likely to further overestimate the ordered
regime.

For the evaluation of the upper bound I'* for the free
energy, we replace the sharp restriction for the initial
values —vr & P~ (0) & vr by a smooth cuto(f

The quantity Z is the variational partition function of
the system with unrestricted initial values—ao (P, (0) & co,

128~PE,
E(k, co„)/F-,

C

1/2

(20)

We have to introduce a high-frequency cutoff Ace„, , which
we assume to be much larger than the charging energy
E, . Its magnitude is irrelevant here, since it enters the
free energy only as an additive constant. The quantity
Z„, nevertheless, diverges at nonzero temperatures for
m =0. In contrast, Z„„is well defined.

The upper bound to the free energy becomes

F"=——ln(Z„„)+EJ(Nz/2)[1 —(cos(P;, ))„,]— (P;, )„„var 4

d& &qp & ij 0 ij & var+ d& Qqp & 1 cos
var

(21)

Here, P;~ denotes the phase diIference of an arbitrary pair of nearest-neighbor islands. The expectation values, evaluated
with the variational free energy, involve averages over initial values of the type

=Z- exp[ —
~
Pk(0)

~ ][—,'m+ —,'Gi, (0)]f™rIdl&. (0)l~Z var [2vrGi, (0)]'~

With this notation the correlation functions are

1 p/'2 1 Gk(r)(cosy„ )„„=—f dwexp — g(z —yk) G~(0)—
p —pn ¹ Gi, (0)

1 Gi, (r)cos —g ~ 4ko ~
[1—cos(k R)] Gk(0)

2 z —1 q I I kqo I

'
¹

~ P¹~ It'(q ) G, (0) G, (0)t

(22)

(23)

P ,& (0) P;,(~)—cos =exp
2 var

1 1 [Gk(0)—Gg(r)]' 1

22Vz g (z —yk)[Gi, (0)—Gi, (r)] exp g (z —yk)4' Gi, (0)

1 Gk(~)
cos — ko (z —yk 1—

2&N Gi, (0)
(24)
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In the above formulas R denotes an arbitrary lattice vec-
tor between two neighboring islands on the simple-cubic
lattice. The (imaginary) time-dependent quantity Gi, (r) is
defined by

Ej/E d-dimensional array of Josephson junctions
I I I

cos( ci)pr )
Gk(r) =—$

/3 „K(k, co„)
(25)

At T =0, F*(m,a) is well defined even for unrestricted
PJ(0) and we can evaluate F* using Z only. Thus we
have

2A
Xz

(z —yk)cos(co~ r)'
2ir K(k, co) 0.5

P;, (0) P;, (r—)cos
2

= exp I
—[G (0)—G(r)] /4 I

(cosg,j ) =exp[ —G(0)/2], (26)

0.5 3 2 1.0
I

15 l ot

It is interesting to note that F' as a function of m does
not show the usual Ginzburg-Landau —type behavior. In-
stead, the small-m expansion shows a nonanalytic behav-

1/d a

We evaluated F*(m,a) numerically in order to find its
global minimum as a function of m and n for different
material parameters EJ/E, and o.o and different tempera-
tures. In one, two, and three dimensions we determine
the phase diagram of the arrays using the criterion (17).

IV. RESULTS

A. Phase diagram

The zero-temperature phase diagram is shown in Fig. 1

for d = 1, 2, and 3, the superconducting state lying above
and the resistive state below the curves. The phase transi-
tion is continuous across the vertical part of the phase
boundary, while it is of first order across the slanted part.
Here we distinguish between first and continuous accord-
ing to whether a global minimum ofF' for m &0 evolves
continuously or discontinuously by changing EJ /E,
and/or o.o. For comparison, both the results for quasipar-
ticle and Ohmic damping are shown. The latter was dis-
cussed in Ref. 17. Within the variational treatment, there
is only a quantitative difference between both damping
mechanisms. Ohmic damping is more efficient in reduc-
ing the quantum fluctuations of the phases than the
damping by quasiparticle (qp) tunneling (at the same value
of the resistance, Rqz ——R). The difference arises since the
quadratic form of the action describing Ohmic dissipation
is unrestricted, in contrast to the 4~-periodic form of the
qp dissipation. As a result, Ohmic damping leads to a
larger superconducting region. For Ohmic damping the
global minimum of F* always appears at a=a.'0. There-
fore, it is sufficient to use only one variational parameter
m. It should be noted that the positions of the phase
boundaries are sensitive to approximations to the k sum-
mations. In the T =0 phase diagram of Fig. 1, an exact
summation over the Brillouin zone of the simple-cubic lat-
tice was performed. In contrast, the phase diagram in

FIG. 1. Zero-temperature phase diagram. The phase bound-
ary separates a superconducting state above from a resistive one
below the line. Here, E,=e /2C is the charging energy and
crp=h /(4e R~~). The k sums are evaluated exactly correspond-
ing to a simple-cubic lattice. The critical strengths of the dissi-
pation are given by a& ——1.62, o.&=0.84, and F3=0.58.

Fig. 2 was obtained assuming a linear dispersion [i.e. , set-
ting (z —yk)' =ak] and replacing the Brillouin zone by
a Debye sphere. Notice the quantitative difference of
about 20%%uo of the two T =0 phase boundaries for d =2 in
both results. (The numerical errors in the evaluation of
F*, e.g. , in the frequency summation or in some expres-
sions involving correlation functions are estimated to be
less than 3%.)

Figures 2(a) and 2(b) display the phase diagram of a
two-dimensional array with qp damping at finite tempera-
tures. Remarkably, even at low temperatures the vertical
drop of the zero-temperature phase diagram vanishes; and
the phase boundary is always first order. The intersecting
phase boundaries [visible in Fig. 2(a)] at small values of ao
represent a reentrant behavior. This becomes more obvi-
ous in the following figures.

Figure 3(a) shows the transition temperature ks T, /EJ
as a function of EJ /E, for difterent strengths of the dis-
sipation. Because of their importance we show here the
results for two-dimensional arrays. For large values of
EJ /E, we recover the Kosterlitz-Thouless-Berezinskii'
transition of the XY model, where charging effects and
normal currents are not included. Our variational pro-
cedure yields a remarkably good value for the transition
temperature. For comparison, a Monte Carlo analysis
gives k&T, /EJ =0.93 in this limit. Charging effects and
the associated dynamics become important, if E, is
large. The quantum fluctuations reduce the transition
temperature. In fact, for very large E, (and weak dissi-
pation) the disordered phase persists down to zero tern-
perature. This effect was discussed by various au-
thors. " The dissipation, on the other hand, reduces
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the strength of the quantum fluctuations again. It shifts

of E
the transition to higher temperatures and smaller valva ues
o J/E, . For strong dissipation, at zero temperature
th e system is always in the ordered phase (as displayed
in Fig. 1). For weak dissipation we find a reentrant tran-
sition. Reentrance —though much stronger —was also
found in the treatments of Refs. 3, 11, and 18. With in-
creasing strength of the dissipation, the reentrant behav-
ior gradually disappears (see also Ref. 18).

In Fig. 3(b) we plot the same phase diagram' however
and E, are expressed in units of 5, the energy -aap

of the superconducting islands. Here we used the
Ambegaokar-Baratoff' relation,

EJ——— b.( T)tanh[b, ( T) l2kq T]
qp

FICx. 2. ((a) Phase diagram for a two-dimensional array with
qp dissipation at different temperatures. The k sums are evalu-
ated in a Debye approximation. (b) Same plot as in (a). The
charging energy and the temperature are measured in units of
the energy gap 6 of the superconducting islands.

= —,
' aob ( T)tanh[h( T) l2ks T], (27)

for T=O. Compared to the plot in Fig. 3(a), there is no
longer an implicit ao dependence in the energy scales.
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B. Correlation functions

1=exp ——g [1—cos(k„an)]Gq(0)X (28)

For simplicity, the two islands 0 and n are assumed to lie
on the same lattice axis (the x axis). Performing the k
sum exactly, we obtain, e.g. , for the two-dimensional ar-
ray at finite temperatures,

zo 1 ~ 1 1—cos(nx)
2~ o /3E, „, [a'(x,p. )—b'(p)]' '

where
(29)

and

b (p)=(a
~ p ~

IP+m)/4E,

a (x,p, )= (~p/4PE, ) + [2—,cos(x) ]b (p, ) .

The correlation function (29) for large n decays algebrai-
cally

~ 2D( T 0 ~

—2/a/3m (30a)

At zero temperature the two-dimensional array effectively
represents a three-dimensional system. The correlation
function asymptotically approaches a constant value (de-
pending on m IE, and a) indicating long-range order in
the phases. Long-range order is also achieved in three-
dimensional arrays at low temperatures. In the one-
dimensional chain of junctions the correlation function
decays algebraically at T =0,

—(2E / ) /~1 /2
(30b)

At finite temperatures it decays exponentially

K„' (T )0)—exp( n/2j3m) —. (30c)

The exponents in (30a)—(30c) depend implicitly on ao and
EJ/E, [through the dependence of m(ao, EJ/E, ))]. As a

Correlation functions can be evaluated with the varia-
tional partition function (18). They depend explicitly on
the variational parameters a and m (m measured in units
of the charging energy E, ). . These parameters have to be
chosen such that they make F' a global minimum and
hence depend on the true junction parameters o,p and
EJ/E, It turns out that the value of o. is always close to
(xp. The parameter m /E, increases monotonously with
EJ/E, and typically takes values between 0. 1 and 0.5
times EJ /E, .

As a measure for the phase order, we may calculate the
equal-time correlation function IC„= (cos(Po—P„))„,„ for
the phases on different islands with a distance of na. Ac-
cording to (17), the nearest-neighbor correlation function
vanishes in the disordered phase. Consequently, all the
correlation functions K„(n & 1) vanish in the disordered
phase. In the ordered phase, for large values of m/E,
and/or at T =0, we may neglect corrections due to the
restriction of the initial phases P;(0) and write

K„=( cos(go —P„))„„

result, the correlation functions K„generally increase (in
all dimensions) with increasing strength of the dissipation
o.p. In any case, the listed behavior of the correlation
functions is consistent with rigorous results and the
Mermin-Wagner theorem.

V. DISCUSSION AND CONCLUSION

We analyzed the phase diagram of regular arrays of
Josephson junctions including the charging energy and
the dissipative quasiparticle tunneling current. Above, we
considered the self-charging limit. The opposite limit, the
nearest-neighbor charging limit, is discussed in the Ap-
pendix. The differences between both limits are only
quantitative in our approximation. (We should mention,
however, that Bradley and Doniach found in their treat-
ment that in one-dimensional chains at zero temperature
without dissipation the nearest-neighbor charging model
exhibits no phase transition. )

The effect of the charging energy on the phase transi-
tions in arrays of Josephson junctions has also been inves-
tigated in Refs. 3—11. Beyond that, we analyze the effect
of the qp tunneling current. In this paper we concentrate
on the dissipation associated with a finite subgap conduc-
tance. It is described by a long-range interaction in time
direction which produces infrared divergences. Even in a
single junction (i.e., in a zero-dimensional system) it gives
rise to a zero-temperature phase transition depending on
the strength of the dissipation. ' In multidimensional ar-
rays of junctions (including a one-dimensional chain at
T =0) it shifts the known transitions to higher critical
temperature and/or smaller critical values of the ratio
EJ/E, . The finite subgap conductance arises in nonideal
junctions if the density of states is smeared out due to
inelastic scattering and pair-breaking effects. Although
quantitative differences exist, our results are similar to
those obtained by Chakravarty et al. ' for a model, where
the dissipation is assumed to be due to Ohmic currents
flowing through resistors shunting the islands. The zero-
temperature phase diagrams for both models are corn-
pared in Fig. 1. (Quantitative differences to the results re-
ported in Ref. 17 for the Ohmic case arise since we evalu-
ated F* with no further approximations. )

In an array of ideal BCS-type junctions, where the
subgap conductance vanishes at T =0, the quasiparticle
current at voltages above 26/e is described by a short-
range interaction in time. This does not give rise to in-
frared divergences. In this case the quasiparticle tunnel-
ing can only modify the existing transitions of the multidi-
mensional arrays in a quantitative way. This case has re-
cently been analyzed in Ref. 28. In general, both parts
should be combined.

In order to analyze the model for the junction array,
we used a variational calculation. For the Ohmic case, a
similar, though simpler, procedure was employed in Ref.
17. Simanek and Brown' analyzed the same model as
we did and also used a (different) variational method.
However, in the course of their analysis they use further
approximations. This may be the reason for the
significant quantitative differences between their and our
results. The variational calculations are of a similar quali-
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ty as in mean-field approximations. Our method tends to
overestimate the tendency to ordering. For example, we
find a fake phase transition also in a single junction at
finite temperature. On the other hand, whenever we
know from more rigorous treatments that a phase transi-
tion exists, our results agree reasonably well with those
results. The agreement becomes better in higher-
dimensional systems. In some cases the quantitative
agreement is even surprisingly good.

The zero-temperature phase diagrams in any dimen-
sion and for both models of dissipation show a vertical
drop, i.e., the transition depends only on the magnitude
of ap. It has been suggested' that this property may ex-
plain recent experimental results of Orr et al. They
analyzed films of superconducting material and find that
the whole film only attains zero resistance at low tem-
peratures, if the sheet resistance in the normal state lies
below a value of the order of 5—7 kA. This corresponds
to 0.9&a;p(1.3. It may be reasonable to describe the
films studied in the experiments by an array of supercon-
ducting islands. Moreover, the parameters of the film
may correspond to small values of the ratio EJ /E, .
This suggests that the phase transition discussed above
has been observed in these experiments.

However, the description of the experiments is compli-
cated by various problems. As a consequence, it is not
clear whether our model for an ideal array can really be
applied.

(a) The films are strongly disordered and the parame-
ters may have a large spread. In fact, it has been suggest-
ed ' that the transport through the film is to be described
by percolation theory, and that the transition of the whole
film is governed by the properties of a single junction.
However, the phase transition is a collective phenomenon
and depends sensitively on a multidimensional coupling.

(b) The quasiparticle resistance is temperature depen-
dent. Therefore, we cannot easily extract from the nor-
mal resistance the strength of the dissipation at low tern-
peratures, which is relevant for the transition of the whole
array.

(c) Our analysis shows that at finite temperatures the
vertical drop rapidly vanishes. In the experiments the
transition was observed at temperatures T-1 K or larger.
The capacitance may be as small as C = 10 ' F. This
means that k~ T/E, is larger than 0.1 and that the curves
shown in Fig. 2(a) are representative.

In spite of these complications, there appears a reason-
able quantitative agreement. Typical values of 5/E, are
in the range 0. 1 & b /E, & 1.0. The lowest temperatures
reached in the experiments correspond to k~T/5-0. 05.
From Fig. 2(b) we see that the corresponding critical
strength of the dissipation varies between 0.92 & ap & 1.6;
hence, the critical Rqp is bounded by 4 &Rq„& 7 kA. The
experimentally observed critical strength of the dissipation
lies well within this window. However, we find no
universal threshold, in contrast to earlier speculations.

We feel that our most important result is the phase dia-
gram shown in Fig. 3(a) or 3(b). It shows how the KTB
phase transition is affected by charging effects and dissipa-
tion if EJ/E, is of order 1 or smaller and if (xp is not
much larger than 1. It appears feasible to produce regular

arrays of Josephson junctions with parameters in this
range in a controlled manner. This will remove the am-
biguities remaining in the comparison.
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APPENDIX

E, lE,
d =1 Ohmic damping

4.0

2.0

1.0

0.5 1.0
FIG. 4. Zero-temperature phase diagram for the one-

dimensional chain with Ohmic damping for the self-charging
(SC) and the nearest-neighbor (NN) model.

In the main part of this paper we used the self-charging
(SC) limit for the Coulomb energies of the charged is-
lands. In this limit only the diagonal elements of the in-
verse capacitance matrix in Eq. (2) are considered. In the
opposite limit —the nearest-neighbor (NN) model —only
off-diagonal elements referring to interactions of charges
on neighboring islands are considered. In this case, for
perfect arrays the charging energy takes the form
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(g;—Q, )'
0

(, . ) 2CNN
(A 1)

The Fourier transform (for all dimensions) of the
charging-energy contributions to the effective action is
(nearest neighbor)

aO; aO,IIo ~g ~ C(q ~
(A2)

This means that the inverse capacitance matrix of Eq. (2)
has to be inverted. This is, of course, trivially done for
the SC model since (Csc');1 =Csc'5;~. But, for the NN
model the matrix inversion leads to long-range couplings
between the "voltages" t)P/()r on diff'erent islands. For
example, for a one-dimensional chain with NN coupling
the charging energy is found to be (nearest neighbor)

@'c a a
8e

(A3)

The relevant capacitances of both limits Csc and C~~, in
general, are different. ' ' Using Heisenberg's equation of
motion and the commutator relation (3), the general form
of the charging energy (2) can be rewritten as

So

[It can easily be verified that no complications arise from
the formal infrared divergence due to the Fourier trans-
formation of (A3) for d (2.] Our variational analysis can
immediately be repeated for the NN model. We find only
quantitative differences between the SC and the NN mod-
els. As an illustration, we compare in Fig. 4 the zero-
temperature phase diagrams of a one-dimensional chain of
junctions with Ohmic dissipation for both charging mod-
els (with Csc =C~~). We expect similar, merely quantita-
tive differences in higher dimensions and in systems with
quasiparticle dissipation. It should be mentioned here
that Bradley and Doniach find that a one-dimensional
chain at T =0, without dissipation, has no phase transi-
tion in the NN limit. If this is correct, it implies a
shortcoming of our method in a way which is consistent
with its mean-field character.
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