
                                                         
                    

                        

Phase transition to the resonating valence bond state 
M. Drzazga*, A. Kampf, E. Miiller-Hartmann, and H.A. Wischmann 
Institut ffir Theoretische Physik, Universit/it zu K61n, 
K61n, Federal Republic of Germany 

                         

A Ginzburg-Landau expansion for the free energy functional of the resonating valence 
bond state is performed for the mean field approximation (MFA) and for a functional 
integral approach (FIA) which includes correlations. Phase diagrams obtained in both 
approximations are presented. The FIA differs form the MFA in three main aspects: 
(i) Above the mean field transition temperature an instability exists towards the forma- 
tion of degenerate singlet pair states, indicating the onset of the RVB state. (ii) The 
extended s-wave phase is favoured over the extended d-wave phase. (iii) Phase fluctua- 
tions are included, destroying off-diagonal order in the absence of holes. 

I. Introduction 

Since the discovery of high T~ superconductors initiat- 
ed by Bednorz and Miiller [1] a great deal of experi- 
mental and theoretical work has been done to identify 
the mechanism of high T~ superconductivity. As one 
common feature the high T~ superconductors 
La2_x(Ba, Sr)xCuOy, YBa2Cu307_~ and the recently 
discovered Bi [2] or T1 compounds [3] possess 
C u - O  planes where the main physics is believed to 
happen. It is known as well that pure La2CuO, is 
an antiferromagnetic insulator [4]. Doping by Ba or 
Sr destroys the antiferromagnetism and leads to su- 
perconductivity. Similarly YBazCu306+~ shows anti- 
ferromagnetism [-5] for 0< 6 <0.4 and superconduc- 
tivity for an oxygen content 6 > 0.5. 

All experimental facts strongly suggest that physi- 
cally active [6] 3dx2-y2 Cu and 2px, r O electrons 
of C u - O  planes are strongly correlated and form 
a system which is close to the metal-insulator Mott 
transition. A "minimum model" appropriate for such 
systems is therefore a Hubbard model on a square 
lattice with nearest neighbour hopping integral t and 
on-site Coulomb repulsion U - the starting point of 
much theoretical work. In the strong correlation limit 
U/t~> 1 the Hubbard Hamiltonian is usually trans- 
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formed into an effective Hamiltonian, describing an 
antiferromagnetic insulator in the half filled band 
case. It has been suggested [7] that a small concentra- 
tion of holes removes the antiferromagnetic order, 
and a non-magnetic resonating valence bond state 
(RVB) is stabilized by quantum fluctuations arising 
from the holes. The preexisting singtet pairs on near- 
est neighbour sites in the RVB state can be considered 
an excellent stockpile of Cooper pairs and will lead 
to superconductivity as soon as the doping introduces 
sufficient phase coherence. 

In fact, in the half filled band case the model has 
a local U(1) gauge symmetry [8] which reflects the 
conservation of the number of electrons at each site. 
According to Elitzur's theorem [9] this local symme- 
try can not be spontaneously broken excluding any 
off diagonal order for zero doping. Doping by holes 
reduces the local gauge symmetry to a global one 
which can be spontaneously broken and which pro- 
vides a chance for having superconductivity. 

In this paper we present a Ginzburg-Landau (GL) 
free energy expansion for the RVB state. Using a path 
integral approach we compare the correlated theory 
with the mean field approximation in order to study 
the stability of various phases of different symmetry. 
The paper is organized as follows: The model to 
which we apply our method is given in Sect. II. In 
Sect. III the mean field approximation (MFA) origi- 
nally suggested by Baskaran, Zou and Anderson 
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(BZA) [10] is presented and its deficiences are dis- 
cussed. The functional integral approach (FIA) and 
the resulting GL free energy expansion obtained in 
a static approximation as well as the phase diagram 
are analyzed in Sect. IV. Contrary to MFA results 
we find: (i) An instability exists towards the forma- 
tion of a degenerate singlet pair state indicating the 
onset of the RVB state for small hole concentration 
6 and for temperatures above the mean field transi- 
tion temperature. (ii) The proper treatment of the 
electronic correlations leads to an extended s-wave 
solution for finite doping concentration, contrary to 
the d-wave solution found in MFA. In both approxi- 
mations, at low T and very small 6, a chiral phase 
is found to be stable in agreement with recent results 
of Fukuyama and Hasegawa [11]. 

II. Choice of model 

Band structure calculations [6] and standard argu- 
ments of crystal chemistry [12] tell us that copper 
3 dx2-y2 and oxygen 2px, r orbitals form an antibond- 
ing band around the Fermi energy in the 
La2_x(Sr, Ba)~CuOy and 123 compounds. It can be 
argued [13] and there is experimental evidence [14] 
that holes introduced by doping will go into the oxy- 
gen sites but we will assume here that they are copper 
3d holes [15]. Having in mind that band structure 
calculations give metallic behaviour for these systems 
we must add strong correlations between electrons 
to account for the possibility of a Mott metal-insula- 
tor phase transition. The minimum model appro- 
priate is therefore the two dimensional Hubbard mod- 
el on a square lattice. 

H = - -  t ~ (ci  + c i~  + h.c.) + U ~ n~r n i ~ (1) 
<ij>~ i 

with the nearest neighbour hopping integral t and 
the on-site Coulomb repulsion U (Hubbard U). Both, 
the metal-insulator transition and the appearance of 
antiferromagnetism find a natural explanation in this 
simple one band model with a proper choice of pa- 
rameters (say, U ~ 5 eV and t ~ 0.5 eV) which puts the 
model in the strong correlation limit. 

In this limit (U/t~> 1) and close to the half filled 
band case elimination of energetically unfavourable 
double occupancy by a canonical transformation 
leads to an effective hamiltonian [16]: 

H e f t  = Ht + Hcx, (2) 

where the hopping hamiltonian 
+ 

H t = - -  t ~. (Po + a ci~ ci~ Po + 1 + h.c.). (3) 
(ij>a 

is to be understood as restricted to singly occupied 
and unoccupied sites and the exchange hamiltonian 

Hox = J ~', P1 (Si" S i -  1/4) P1 (4) 
<i j> 

acts only on neighbouring pairs of singly occupied 
sites as indicated by the projection operator P1- 
J =4t2/U is the antiferromagnetic coupling constant 

+ between the electron spins _Si=ci~ o-~r cir and (i j )  in- 
dicates summation over nearest neighbour pairs 
(bonds) only and every bond is counted once. 

It is immediately seen from (3) that for half filling 
the effective hopping is zero (Mott insulator) and the 
system is described by the s= 1/2 antiferromagnetic 
Heisenberg model. This model has an antiferromag- 
netic ground state in three dimensions and probably 
in two dimensions as well. But doping by a small 
number of holes introduces frustration into the system 
and destabilizes the AF order. This observation and 
earlier studies of a 2D Heisenberg model on a triangu- 
lar lattice lead Anderson to suggest the resonating 
valence bond state (RVB) as an alternative ground 
state for the spin system [17]. This spin liquid state 
can be imagined approximately as a proper superpo- 
sition of states where neighbouring spins are paired 
into separate singlets. 

To emphasize the RVB type character, the ex- 
change interaction may alternatively be written as: 

HA= --J  ~, b~ b o (5) 
< i j> 

where 

b~ = 1/V2(c ~ c ~ - c ~  cf,) (6) 

is a creation operator for a singlet pair on the bond 
(i j) .  

The hamiltonian (5) is invariant under the local 
gauge transformation ci~ ~ exp (i qh) ci~ [8]. This local 
U(1) symmetry implies [9], that there is no spontane- 
ous symmetry breaking and therefore (bi j )= 0. 

Doping by holes converts the local gauge symme- 
try into a global one (see (3)), and allows (bij) to 
be nonzero. This symmetry which governs the physics 
in the weak doping regime must be included in the 
free energy expansion. This requires the order param- 
eter Aij= (bij) to be a complex number. 

III. Mean field approximation 

Using the form (5) of HA, Baskaran et at. [10] have 
suggested to apply a BCS type mean field approxima- 
tion (MFA) with a simplified trial hamiltonian: 

h = ht + h~ (7) 



where 

ha = Z (A ij b~ + h.c.) (8) 
(i j )  

and 

ht = - 6 t ~ (cl + cj~ + h.c.)- #N. (9) 
( i j )a  

As we see in (9) the projection operators P0+ a are 
crudely replaced by the hole concentration 6. In (8), 
Aij is the complex order parameter representing the 
pairing correlation. 

Assuming the translational symmetry of the 
square lattice for the hamiltonian (7) we end up with 
only two independent order parameters A~ and Ay 
for the two nearest neighbour bond orientations. The 
quasiparticle spectrum corresponding to h, is given 
by: 

E (k_) = [e z (_k) + I A (_k) lZl ~/2 (10) 

where 

e(_k)  = -26t(Cx+Cy)-#, 

A (k) = 1 /5 (4  x cx + 4 ,  c,), 

(11) 

(12) 

with c~ = cos (a k~), cy = cos (a ky). "a"  is the lattice con- 
stant. 

The spectrum (10) is formally of BCS type. Due 
to the spatially extended structure of the order param- 
eter, its Fourier transform A (k) does not necessarily 
create a gap in the excitation spectrum. Explicitly we 
have three possible phases which will be discussed 
later: 
a) Extended s-wave phase: A~=Ay=A, A(k_)=A(cx 
+ cy). In this case the energy gap vanishes only for 
#=0,  which corresponds to a half filled band. We 
then have a line of zeros in the first Brillouin zone 
of the two dimensional square lattice. 
b) d-wave phase: A ~ = - A y = A, A (_k) = A ( c , -  Cy). The 
d-wave phase has no gap in the energy spectrum, for 
zero doping as well as for any finite doping. 
c) Chiral phase, Ay=A~exp(i~o), A~,=A for 7r/2<~o 
__< re. In the chiral phase the gap vanishes only for 
# = 0 (half filled band) on 4 separate points of the 
first Brillouin zone. 

The absence of an energy gap results in a power 
law behaviour of the heat capacity at low tempera- 
ture, so the symmetry of the phase that minimizes 
the free energy manifests itself in the thermodynamics 
of the system. 
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Fig. 1. MFA phase diagram for U/t = 10. The chiral phase is found 
to be stable for small doping 8 and temperature T, whereas the 
extended d-wave phase is stable everywhere else 

The free energy of (5) in the mean field approxima- 
tion (7) is given by: 

AF= ~ '(flE2(-k) ) l E~-_k ) tann (13) 

2 ,  [cosh (flE(k)/2)]) 
fl m [ ~ j f  

A*(_k) 
U Z (cx e;, + cy c'y) 2 E (k) ~,k' 

 9 t nh( ) nh 

The equation for the chemical potential # is derived 
by fixing the number of electrons, N = ~?AF/Op, lead- 
ing to 

6 = N  ~ E~k)tanh . (14) 

The order parameter A (_k) has to satisfy the selfcon- 
sistency equations 

Ax= J ~c~ E~_k)tanh , (15a) 

, = ~  ~ %  ET_k) tanh . (15b) 

From (14) we can see that # = 0  for 6 = 0  and the 
chemical potential vanishes proportional to 6 for 
small doping concentration, #~6t2/U. In the limit 
t/U-*O, where #/6t~O, and for fixed 5U/t we have 
computed the complete phase diagram by minimizing 
the free energy (13), subject to the constraints of the 
selfconsistency equations (14) and (15) (see Fig. 1). 
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Fig. 2. Phase diagram for U/t = 10, following from the Landau ex- 
pansion of the MFA free energy. For comparison, the open circles 
and squares indicate the data for the phase boundaries of Fig. 1 

This phase diagram can be easily understood by 
inspection of the Landau expansion of AF (13) up 
to fourth order in A and to second order in 8, 

AF" T~ 0 
X ~az(IA~12+[Arl2)+a4([A21+lA~])2 

+2 a4(d x A* -F A*x dy) 2 

2 a 4 [ A x I 2 I A r l 2 + P ( A . A r + A j , )  ' (16) 
3 

where the short notation 

T -  T~o 1 
T~ o = J/4, a2 = 8 T~ o ' a4 = 64 T~ 2' 

1 [ S t ]  2 

has been used. For the order parameter (A x, At) we 
use the parametrization Ax=A cos Oexp(ig~), Ay 
= A sin 0 exp (i q~) with A > 0 and phases 0 < ~ < zc/2, 
0<(p~, qr<2rc. Denoting the relative phase by q) 
= ~0~-9r the Landau expansion (16) can be rewritten 
as:  

A F ~  Tc~ ~ ( a 2  + ~ ) A 2 + a 4  d4  

+ ~  A 4 sin 20(4 cos 2 ~o- 1) 

+pA z sin 2~ cos (r (17) 

The free energy expansion (17) is valid only for tem- 
peratures close to T~ o and for 8 ~ 1. 

As we can see from Fig. 2, the phase diagram fol- 
lowing from (17) agrees almost quantitatively with 
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Fig. 3. The phase difference ~o of the order parameters d~ and A r 
in MFA for U/t = 10 vs. doping ~ for fixed temperature T. Starting 
from q~=~/2 for 3=0, the phase difference continuously changes 
to q~ = ~ at the boundary to the d-wave phase 

the phase diagram resulting from the full M F A  free 
energy given by (13) (Fig. 1). This justifies to expect 
the Landau expansion of the free energy to be qualita- 
tively correct in the whole range of parameters. 

The first two terms in (17) are invariant with re- 
spect to spatial rotations of bonds. The third term 
favours the chiral phase while the last term favours 
the d-wave symmetry for a finite doping concentra- 
tion. It is the competition between these two terms 
which determines the structure of the phase diagram. 

For finite doping (8 > 0) and with decreasing tem- 
perature a first transition to a d-wave phase (~ = re/4, 
~o=rc) appears driven by the last term in (17) with 
a transition temperature 

Ta= T~o(1 -p ) .  (18) 

This phase has also been discussed by Cyrot [18] 
and others [19]. With further decreasing temperature 
the third term proportional to A 4 grows in weight 
and below the temperature 

T~h = T~o(1 -- 10p) (19) 

the chiral phase with ~b = ~/4, re/2 < q0 < ~ is stable and 
persists down to zero temperature. This chiral phase 
disappears for a doping fraction 8 corresponding to 
p>pc~0.1,  corresponding to 8,~t/U, and the phase 
difference cp continuously changes from q~=rc to 
(p = re/2 with decreasing 8. The phase difference (p of 
the chiral phase is plotted in Fig. 3 as a function of 
the doping 8 for different temperatures. In fact, the 
s-wave phase (~ = ~z/4, (p = 0) which was suggested in 
[10] never wins in MFA. 



Besides the expansion (13) which is based on the 
trial hamiltonian (7) we have performed a GL expan- 
sion of the free energy without any symmetry restric- 
tions on the order parameter A~j. Using the mean 
field version h~ (9) of the kinetic energy a conventional 
Hubbard-Stratonovich transformation can be em- 
ployed (see Chapt. IV). The resulting cumulant expan- 
sion of the free energy functional then reads: 

2a4 + ~ - [  2 IAijl21Aikl 2 
<ijk> 
--L_ 

+ ~ (AijAjgAklAu+h.c.)] 
(ijkl> 

+ P [  2 (AijZ*k+h.c.) 
<ij~> 

-- ~ (A~jZ*z+h.e.)]. 
(ijkl> 

I I  - 

~, IAijt 4 
<ij> 

(20) 

The indicated figures show the spatial bond orienta- 
tions to be summed over in the corresponding sum. 
In addition to quadratic and quartic single bond 
terms ([Aij[ 2 and [Aij[ 4) the r.h.s, of (20) also contains 
quartic double bond terms ([ A ij [2lAjkl2) and plaquette 
terms (AA* A A*) which are all invariant under local 
gauge transformations. The last two quadratic ~/2 
bond rotating (Ai~A*k) and bond shifting (AijA*3 
terms are due to doping and break the local gauge 
invariance. An expansion of this type was suggested 
by Anderson and coworkers [15] for vanishing dop- 
ing fraction 6 and without double bond contributions. 

After imposing translational symmetry, the expan- 
sion (20) turns into (17). Thus we realize that the pla- 
quette term is the source of the chiral phase, whereas 
the quadratic ~/2 bond rotating term is responsible 
for the d-wave phase. 

Using (20) we have tested the stability of the 
"twitch phase" proposed by Anderson et al. [20]. 
This phase has a doubled unit cell and it is described 
by a + + - - sequence of order parameter signs ob- 
tained by moving along the boundary of a plaquette. 
It is gauge equivalent to the d-wave solution which 
has signature + -  + - .  This implies that these two 
phases have the same free energy for 6 =0. But we 
know that the chiral phase wins in that case. For 
6 >0 the quadratic bond-rotating and bond-shifting 
terms in (14) disfavour the twitch phase strongly in 
comparison to the d-wave phase. Therefore within 
the MFA the twitch phase has no chance anywhere 
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in the phase diagram of the model investigated here. 
This picture has also been confirmed by Monte Carlo 
calculations on finite systems based on the expansion 
(20). 

The mean field theory discussed above has three 
major deficiencies: 
( i)  MFA gives a finite transition temperature T~ o for 
6 = 0, where the local gauge invariance suppresses any 
long range order due to Elitzur's theorem [9]. This 
is because phase fluctuations of the order parameter 
are neglected in MFA. 
(i i)  The exclusion of double occupancy of sites is 
ignored. Traces are performed over the complete Hil- 
bert space. 
(iii) The projection operator Po+ 1 in the kinetic ener- 
gy (3) is simply replaced by the hole concentration 
6 as a c-number. 

These deficiencies influence the results in an un- 
controlled way. They will now be avoided in a func- 
tional integral ansatz, which explicitly takes electronic 
correlations into account. 

IV. Functional integral approach 

There are various ways to linearize the exchange ha- 
miltonian (5) with a Hubbard-Stratonovich transfor- 
mation. Since we want to introduce complex order 
parameters as in (8) in order to incorporate the local 
gauge symmetry, we use a two field scheme starting 
from the identity: 

b, + b,j = 1/2 [b + , b~j] + 1/4(b,2 + b,+) 2 
- 1/4(b,~- b,+) 2, (21) 

where the commutator is given by 

[b, + , b,j] = 1/2 ((hi - 1) + (nj y 1))i (22) 

The partition function Z = Tr Po + 1 exp ( -  fill) can 
thus be written as: 

Z = Tr Po + a exp (-- fi [Ht + Ho]) 

 9 r exp  d z ~  ~ [(bi~(z)+b~(z)) 2 
<i j> 

- (bij(z) - b + (z))2]) (23) 

where 

Ho = (#h-- J) ~(n,-- 1)=: fia ~.(ni-- 1) (24) 
i i 

results from the commutator (22). #, is the chemical 
potential for holes. In (23) Tis the time ordering oper- 
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ator, and the imaginary time dependence of the opera- 
tors is given by: 

A (z) = e ~(n~ + uo A e-  ~(no + n0. (25) 

Tr Po + 1 means that the trace is taken only over states 
with empty or singly occupied sites. 

Applying the Hubbard-Stratonovich identity [21] 
to (23) we arrive at 

Z=~<Hj>(D2A,j(z)~-j)TrPo+le-~t"~ 

( o  9 Texp - 2  l dz[1/JIA~il2+A~J(z)b+(~) 
<i j> 

\ 
+ A*(z) bij(z)] ) (26) 

where the operators bij(z) and bi~ ('0 depend on time 
according to (25). The partition function can then 

be expressed as: 

Z = ~ <l~j> (D2 Aij(z) 5 )  e-"~t'~l (27) 

with a free energy functional 

1 AFUA] =~- ~ IA,f 
<ij> 

fi 

where 

h A = ~ (A ,j (z) b + (z) + A* (z) b,j (z)) (29) 
< i j> 

and the expectation value is evaluated with H o + H t 
only. 

If we neglect the electronic correlations arising 
from the exclusion of double occupancy, we may per- 
form the traces over the complete Hilbert space and 
simply disregard the projection operators Po + 1. Using 
the mean field version of the kinetic energy ht, a subse- 
quent cumulant expansion then leads to the static 
approximation to the free energy (20), which was dis- 
cussed in the last chapter. However, this version suf- 
fers the same deficiencies as the BZA mean field ap- 
proach. 

In order to avoid these deficiencies the projection 
operators Po+ 1 have to be explicitly taken into ac- 
count. In a leading order cumulant expansion of the 
free energy functional (28) this was achieved using 
a localized basis for the Hilbert space. In a static 
approximation the free energy can then be expanded 

up to the fourth order in A and to second order in 
the hole fugacity z=exp  (fifth)" AF then turns out to 
have the following form: 

AF. T~o =(b 2 - 3 q z  2) ~ I&jl 2 
< ij> 

- b 4 ( 1 - 3 z +  8 8  2) ~ Ihijl" 
U J> 

+b4{(a+ 88 2) ~ Ih,jl2lh~l 2 
<Ok> 

+(1 + z  2) ~ [AijA*kAk, A~+h.c.]} 
(i~kl> 

q {(6z -- lOz 2) ~, (dij A* k + h.c.) 
4 

L _  

+ ( 6 z - - l l z  2) ~, (AijA*k+h.c.) 

+4z2 Z (AijA*q+h'c')} (30) 
I t -  

where the coefficients 

b2=T--Tco[1Wz2/4] 1 [ t \2 1 
4T~o ' q = ~ T ~ o ] '  b4=96T~ 

have been introduced. 
Comparison with (20) shows that the exclusion 

of double occupancy and the proper treatment of the 
projection operators in the kinetic energy, employed 
in the derivation of (30), make two profound differ- 
ences: 
(i) The quartic single bond term has become nega- 
tive for small z. This implies that AF possesses abso- 
lute minima for nonzero isolated order parameters 
at a temperature T1 > T~o. Such degenerate singlet 
pair states may be considered an incipient RVB state. 
For small but finite doping these isolated singlets gain 
additional energy by parallel ordering due to the last 
term in (30). This illustrates the formation of phase 
coherence in the RVB state. 
(ii) The local gauge symmetry breaking terms now 
favour an extended s-wave symmetry for finite 6 (con- 
trary to the d-wave solution in MFA). This is due 
to terms linear in 6, which were absent in MFA. 

In order to study the local minima at T > T~ o high- 
er order terms are required to remove the instability 
due to the negative quartic term. It turns out that 
the single bond (sb) terms of AF can be calculated 
to all orders. They are given by: 

[ IzIjl2 - T l n  (3 +cosh (V~filZijl) AF~b= ~ [4Tco ( i  j> 

+ 4 z  cosh (filAij[/l//2)) 
z2 +cosh(V~fi[Aij[))]. (31) + T (  1 
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Fig. 4. FIA phase diagram for U/t= 10. A chiral phase is found 
to be stable for small doping 6 and low temperatures T. In contrast 
to the MFA phase diagram, the s-wave phase is stable at higher 
temperatures or larger doping. In addition, the singlet pair state 
is favoured for very small doping close to the MFA transition tem- 
perature. A phase of broken symmetry (IAA+Ia,I) is stable in an 
intermediate parameter range 

The leading order terms of this expression are already 
contained in the expansion (30). 

From (31) we immediately obtain the sixth order 
single bond term: 

b 4 [ 7 67 2'~ ~ - ~ - - Z + - ~  Z ) 2 IAijl 6 (32) 
<i j> 

which should be added to (30) to stabilize the system. 
We have calculated a "lowest free energy phase 

diagram" as shown in Fig. 4 by determining the mini- 
mum of the free energy as a function of temperature 
T and doping 6. We find that for very small z there 
is a small region where the singlet pair state is stable. 
In this singlet state the bonds are oriented in parallel 
along one of the axes of the square lattice. At a lower 
temperature a transition to the chiral phase takes 
place. This chiral phase region is the only common 
feature with the MFA phase diagram [see Fig. 2]. 
In both expansions it results from the plaquette term. 
For larger doping the extended s-wave phase is stable 
and the transition temperature T~ initially increases 
with increasing z. Finally, there is another small re- 
gion of the phase diagram where the symmetry be- 
tween x- and y-bonds is broken, i.e. [Axl and I/y] 
have different values. 

The path integral representation also allows a 
straightforward inclusion of phase fluctuations. As 
suggested by Baskaran and Anderson [8] the locally 

gauge invariant terms of the free energy functional 
(30) can be used to determine the absolute value of 
the order parameter ]Ai~l =Ao for all bonds. The pla- 
quette term can then be expressed by fluctuating 
phases only. It is locally gauge invariant as well which 
implies (Au)=0  due to Elitzur's theorem [9]. Thus, 
T~ is suppressed to zero for 6=0, when the phase 
fluctuations are properly included. A finite doping 
concentration 6 > 0 reduces the local gauge invariance 
to a global one and allows (Au) to be nonzero. The 
transition temperature will therefore grow to finite 
values with increasing z. (A detailed analysis of the 
phase fluctuations is currently in progress [23].) 

V. Conclusion 
We have calculated the Ginzburg-Landau expansion 
for the free energy in a mean field approximation 
and a functional integral approach for the RVB state, 
starting from the planar Hubbard model in its strong 
correlation limit close to the half filled band. In both 
approaches we have obtained the phase diagrams. In 
FIA, contrary to MFA, we have found an instability 
towards the formation of degenerate singlet pair 
states, indicating the onset of the RVB state for small 
hole concentration 6 and for temperatures above the 
mean field transition temperature. For finite doping 
6 we found the extended s-wave phase to be more 
stable than the d-wave solution. For low temperatures 
and very small doping 6 the chiral phase minimizes 
the free energy in both treatments. 

We are aware that numerical evidence [22] pro- 
vides arguments against the appearance of supercon- 
ductivity in the "minimum model" on which our pre- 
sentation is based, e.g. the inclusion of nearest neigh- 
bour Coulomb interactions in an extended Hubbard 
model is probably important for obtaining supercon- 
ductivity. Nevertheless, we regard the development 
of appropriate analytic methods necessary, which 
would permit an elementary understanding of the var- 
ious aspects of the problems. The work presented here 
is meant as a contribution towards this goal. Among 
the aspects which are relevant, some consequenes of 
correlations which were not found either in the MFA 
or in other work [19, 22] appeared in our treatment. 
In particular, the stabilization of the s-wave phase 
should be mentioned here again. Local gauge invar- 
iance and its being broken is also very important. 
It can be taken care of in the framework of our ap- 
proach and will be discussed further elsewhere [23]. 
One important aspect which has not been treated sys- 
tematically by any analytical approach we are aware 
of is the hole-hole correlation. As long as this aspect 
is not included in the description, the theory has to 
be considered preliminary. 
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