®
OPEN a ACCESS Universitit Augsburg
OPUS AUGSBURG w k Universititsbibliothek

Features, modularity, and variation points

Don Batory, Peter Hofner, Bernhard Mdéller, Andreas Zelend

Angaben zur Veroéffentlichung / Publication details:

Batory, Don, Peter Hofner, Bernhard Moller, and Andreas Zelend. 2013. “Features,
modularity, and variation points.” In Proceedings of the 5th International Workshop on
Feature-Oriented Software Development - FOSD ‘13, Indianapolis, Indiana, USA, October 26 -
26, 2013, edited by Andreas Classen and Norbert Siegmund, 9-16. New York, NY: ACM
Press. https://doi.org/10.1145/2528265.2528269.

Nutzungsbedingungen / Terms of use: licgercopyright
Dieses Dokument wird unter folgenden Bedingungen zur Verfiigung gestellt: / This document is made available under these conditions: 4\ >ﬁ
Deutsches Urheberrecht I %‘ | =
Weitere Informationen finden Sie unter: / For more information see:) 5
https://www.uni-augsburg.de/de/organisation/bibliothek/publizieren-zitieren-archivieren/publiz/ & ,,{ &

https://doi.org/10.1145/2528265.2528269
https://www.uni-augsburg.de/de/organisation/bibliothek/publizieren-zitieren-archivieren/publiz/

Features, Modularity, and Variation Points

Don Batory

Dept. of Computer Science
University of Texas at Austin

batory@cs.utexas.edu

Abstract

A feature interaction algebra (FIA) is an abstract model of features,
feature interactions, and their compositions. A structured document
algebra (SDA) defines modules with variation points and how such
modules compose. We present both FIA and SDA in this paper, and
homomorphisms that relate FIA expressions to SDA expressions.
This leads to mathematically precise formalizations of fundamental
concepts used in software product lines, which can be used for
improved FOSD tooling and teaching material.

Categories and Subject Descriptors D.2.10 [SoftwareEngineer-
ing]: Design; D.2.8 [Software Engineering]: Software Architec-
tures

General Terms Theory

Keywords software product lines, features, FOSD

1. Introduction

Feature Oriented Software Development (FOSD) is a paradigm that
is guided by semantic modularity, rather than structural modularity.
Structural modularity is what today’s programming languages and
component-based tools provide: object-oriented classes and pack-
ages are the basic modules of modern software system construc-
tion. Features, in contrast, are increments in program functional-
ity that arise from a collaboration or coordinated orchestration of
multiple classes or packages. Adding a new feature to a program
“cross-cuts” the contents of structural modules and thus requires
fundamentally new ways to think about program modularity and
system construction.

A distinguishing attribute of FOSD is compositionality: pro-
grams are constructed by “composing” sets of features. An end-
user simply selects features from a feature model to specify a target
program of interest. FOSD tools compose these features and trans-
late this declarative specification into the target program (source,
executable) automatically. This is FOSD’s most attractive and pow-
erful characteristic.

We are interested in algebraic models of program construc-
tion for FOSD. The reason is simple: features manipulate program
structures in very regular, well-defined ways. Mathematics offers
structures for precise definitions and calculations; it is well suited

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

FOSD ’13, October 26, 2013, Indianapolis, IN, USA.

Copyright © 2013 ACM 978-1-4503-2168-6/13/10. .. $15.00.
http://dx.doi.org/10.1145/2528265.2528269

Peter Hofner
NICTA, Australia
University of New South Wales, Australia
peter.hoefner@nicta.com.au

Bernhard Moller, Andreas Zelend

Universitdt Augsburg, Germany

{bernhard.moeller,zelend }
Qinformatik.uni-augsburg.de

for for compositional descriptions of the universe, including soft-
ware. But more pragmatically, our interests stem from a deep desire
to expose the simplicity of the foundational concepts of FOSD. A
better understanding of these concepts leads to the construction of
simpler and more powerful tools for the FOSD community, as well
as improved teaching material for community members of the fu-
ture.

In this paper, we explore two very different algebraic models
of FOSD construction and explain how they are related. The first,
called the Feature Interaction Algebra (FIA), axiomatizes the ideas
of features, feature interaction, and feature compositions. It gener-
alizes prior work [7] beyond classical feature models, and lays a
foundation for others to build upon and to critique compositional
models that are appropriate for FOSD “problem space” descrip-
tions of software product lines (SPLs). A program is defined in FIA
as a feature expression (composition); FIA is general in that it does
not specify how features are implemented.

Our second model, called the Structured Document Algebra
(SDA), is a general algebra for describing implementation tech-
niques, modules, and their compositions; hence it belongs to the
“solution space” of SPLs. SDA is based on variation points (VPs).
A VP is a location in a program where the content at that location
can vary among different members of an SPL. A fragment is as-
signed to a VP to define its content; different programs of an SPL
would assign different fragments. An SDA module is a collection of
fragments, and compositions of SDA modules construct programs.

Lastly, we show how FIA and SDA algebras are related. We
define how FIA expressions are mapped to corresponding SDA
expressions to achieve FOSD program synthesis. More generally,
when both the problem and solution space are defined by alge-
bras (one for program specification, the other for program construc-
tion), mappings between algebras, called homomorphisms, become
a foundational concept in FOSD tooling. We illustrate all of these
ideas in this paper.

2. Feature Interaction Algebra

[7] presented an axiomatization of features, compositions, and in-
teractions. The goal was to understand their fundamental rela-
tionships from an algebraic viewpoint, thereby abstracting away
specifics of underlying languages, program representations, and
hacks that originate from some implementation decision made in
particular systems. Its axioms are listed in Figure 1. The basic op-
erations are: + the feature composition operation, # the feature in-
teraction operation, and X the feature product operation.

To understand Figure 1, consider a feature model from tele-
phony, where a customer can select the features he/she wants.
Among the selectable features are call forwarding (CF) and call
waiting (CW). CF enables a customer to specify a secondary phone
number to which additional calls are forwarded when the primary
phone is busy. CW allows one call to be suspended while another

+ identity: A+ 0=A
+ commute: A+B=B-+A

+ associate: A+ (B+C)=(A+B)+C
distributivity: A#(B+C) = (A#B) + (A#C)

annihilate: A#0 =0

#commute: A#B =B#A

associate: A#(B#C) = (A#B)#C
x product: AXxB= (A#B)+ A+B

+ involution A+ A =0

involution A#A =0

Figure 1. The Axioms of [7]

call is answered. If both features are selected by a customer and
a call comes in while another is active, the phone system has to
decide whether the call should be forwarded or the user should be
notified that another call has arrived. CF and CW are said to interact.
The resolution (problem fix) is provided by another feature CW # CF.
Without a resolution, the phone system may behave unexpectedly
or terminate erroneously.

So when a user or architect selects two (or more) features, they
want their interaction resolutions to be included. This is the purpose
of the product operation:

AXxB=(A#B)+A+B.

That is, when architects want features A and B, they also want both
features to work correctly together, which requires the addition
(composition) of A and B with their interaction resolution A#B. This
scales to the product of an arbitrary number of features; the product
of 3 features may require the resolution of a 3-way interaction and
three 2-way interactions:

AXxBXC=A+B+C+ (A#B)+ (B#C)+ (A#C) + (A#B#C).

Recognize that each term of a summation is a placeholder: there
may be no two-way interaction between B and C, or there may be
no three-way interaction. In that case, these terms map to 0. The
algebra exposes all possible interactions, as it should.

2.1 Feature Replication and Self-Composition

The core axioms of [7] are unshaded in Figure 1. The shaded
axioms, + and # involution, match classical feature models where
features could either be selected or not: feature replication was not
permitted. Involution captures this constraint. It was proven in [7]
that the axioms of Figure 1 are consistent and not contradictory.

It turns out we cannot just pick and choose axioms at will: not all
combinations make sense. Consider the A # 0 axiom. There are only
two possibilities: either A# 0 = 0 (listed in Figure 1) or A#0 = A,
meaning that the resolution of A and 0 should be A. Together with
involution, the latter leads to inconsistency:

A= A#0 = A#(0+0) = A#0+A#0 = A+ A = 0.

That means that there is only one feature, the neutral element O.

Many people have raised the question: what about feature repli-
cation? It does arise. How does this effect an axiomatization? We
explored this too.

There are three possibilities for self-summation: A + A = 0
(involution of Figure 1), A + A = A (idempotence), or we say
nothing about the meaning and simplication of A + A. We explored
A+ A = 0in [7]. Now let’s consider idempotence A + A = A, as
others have done, e.g. [1]. Given this, we have three possibilities
for self-interaction: A#A = 0, A#A = A, or we can say nothing.
Suppose A#A = A. The following shows that the combination of
A+ A = Aand A#A — A leads to nonsense. Assume a feature,
which is the sum of two features A and B, then:

A+B = (A+B)#(A+B)=A#A+ A#B+B#A | B#B
= A+A#B+B=(A#B)+A+B=AXB

The above means that the sum of any two features always equals
their product, which we know is false. By enumerating all possible
cases (there aren’t many), idempotence-summation (A + A = A) is

not compatible with our other axioms as it leads to inconsistencies
or unwanted behaviour. We can rule out involution-summation A +
A = 0, as it is incompatible with feature replication. Thus, we can
say nothing about self-summation (A + A). For more details on this,
see [8].

So where does this leave us? Mathematics tells us that at a deep
level, feature replication does not make sense and the difficulties
that we are having lie elsewhere.

Here is our proposed resolution: All features are distinct. If
there are multiple replicants of A, they will be distinguished as
Ay, Ay, ... where A; # Aj when i # j. By doing so, we are able to
distinguish resolutions among different instances (i.e., A; # A, will
be distinguishable from A, # As.) Think of a replicatable feature A
as a template or generic: it can be instantiated any number of times
but with different parameters. Together a templatized feature and
its parametric instantiations leads to a distinct, unparameterized
features. This is, in fact, how feature replication was dealt with
in an early example of software product lines [5]. It is consistent
with the most recent proposal of the Common Variability Language
(CVL) [10].

CVL goes further in permitting features to be products of other
product lines. So if product line P has products Py ...Py, it is
possible in CVL for designers to select k > 1 distinct products
from P as features of a larger product line. The products that are
selected may internally use the same feature F, but again, these
replicas would be distinct and distinguishable copies of F.

2.2 Recap

[7] presented an axiomatization of features, feature interactions
and their compositions for classical feature models, where feature
replication was not permitted. A generalization of this axiomati-
zation to permit feature replication requires the removal of its self-
summation and self-interaction axioms. Further, the axiomatization
reveals that “pure” replication — where replicas are completely in-
distinguishable — is problematic. By insisting that feature replicas
are distinguishable, ambiguity can be avoided. Our axioms remain
consistent and not contradictory.

With this improvement, we now consider a rather different al-
gebra that is useful at the implementation (or solution-space) level.

3. Structured Document Algebra

A classical concept in SPL construction is the variation point (VP).
A VP is alabeled position in a program or document where contents
can differ among programs in an SPL.

We now present a formal model of VPs, modules containing
VPs, and compositions of such modules as the Structured Doc-
ument Algebra (SDA). To keep SDA language-independent, we
leave the exact nature of fragments open (e.g. text or AST) and
view it as a parameter of the algebra. We do illustrate the core of
SDA in our figures, and when we think it necessary, to explain how
SDA could be implemented.

3.1 Variation Points and Fragments

The basic ingredients of SDA are:

e aset V of VPs at which fragments may be inserted;

e aset F(V) of fragments which may, among other things, contain
VPs from V.

We use a very broad notion of VPs and fragments. Until stated
otherwise, what we present below is standard for coloring [16] and
a VP interpretation of classical modularity.

Consider Figure 2a. It shows a Java file that defines class A.
Three VPs and their associated fragments, indicated by bold left
parentheses, are shown: vpa, vpy, and vpc. vpa is a location in
a directory at which a file can appear. (Such a VP is called a
classpath). To us, this file is a fragment assigned to vpa. It is not the
only fragment/file that could be assigned to vpa.; another possibility
is the file of Figure 2b. At most one of these two files/fragments can
ever be assigned to vp, at a time. This holds for all VPs—at most
one fragment can be assigned to a VP at any one time. If there is
no assignment, there is no file. We then say that the content of vpa
is empty. Emptiness may hold for all VPs.

class A {
boolean b;
o vetd vaz0) (o e bie0 ¢
VPa| void foo() { VP V:etl;rn 4+ 5+

"
if (b) { \) }

vpe bar() ; ‘
}

} (b)
(a)

Figure 2. VPs and Fragments.

Now consider VPs vp, and vp. that are contained in the file
fragment of Figure 2a. The fragment assigned to vp, defines a
method bar. The fragment at vp. is a wrapper of the statement
that calls bar. We say fragments that are internal to a file fill a VP
and may wrap a VP [7, 16]. By wrapping we mean that a fragment
£ surrounds a VP, making £ to appear that the VP is inside it.

There is one more possibility: default fragments. In general ev-
ery VP needs a default fragment. All VPs we have seen so far had
empty defaults, which is the normal case. But default values need
not to be empty; consider vpq in Figure 2b. The fragment contain-
ing the number 6 fills vpq. But this VP has a default (not shown)
so that if the fragment 6 is removed, the empty fragment cannot
be default. Reason: the resulting code would be syntactically in-
correct. The default fragment should be a natural number, to make
the expressions semantically meaningful. Upon module composi-
tion, default fragments can be replaced by non-default fragments,
but not vice versa.

The above are standard ideas for modules with VPs. Our work
generalizes these ideas. It is typical in coloring and the SPL litera-
ture that: (1) a VP occurs only once in a SPL program and (2) the
set of fragments that can be assigned to that VP are unique to that
VP. SDA imposes no such limitations. A VP can appear in multi-
ple places in a document (or documents); when one instance is as-
signed, they are all assigned the same fragment. Similarly, a single
fragment need not be assigned to a unique VP; a fragment can be
assigned to multiple distinct VPs. Both of these possibilities should
be familiar to readers: aspects in AOP have advice (in the form of
fragments) that can be applied to different join points (VPs).

Finally, a word on our above-mentioned “VP interpretation of
classical modularity”. In classical modularity, a VP corresponds to
an interface and a fragment implements that interface. Delaware et
al. has shown that a formal (programming language) interface for
a VP can be quite sophisticated, and so, too, can the fragment(s)
that implement it [12]. And again, a VP has a default fragment
(implementation) that can be overridden once by a non-default
fragment (implementation).

3.2 SDA Basics

Modules. A module is a partial function m : V ~» F(V) such that
its domain dom(m) is finite. VP v is assigned by m if v € dom(m),
otherwise unassigned or external. Thus the domain dom(m) of a
module is the set of VPs it “knows about” or that it administers.

class Stack {
int ctr = 0;
int size() {

Py return ctr;

}

clear [vp()»-» class Stack { vp; vpy } }

String s = new String(); gray | vpie | int ctr = 0; ...

}
void push(char a) { String .. » =
VPl vpy Qetrs+; green [Wz ol P
s = String.valueOf(a)
vpy| .concat(s) ;
void pop() {

}
vps. (ctr--; vps » | ctr = 0;
}
char top() { Ging Upy o | CETHE;
return s.charAt(0);
}
) vps > | ctr--;

s = s.substring(1);
(a) (b)

Figure 3. VPs, Fragments, and Modules.

A module m can be viewed in two ways:

e as a collection of fragments that instantiate the VPs of dom(m),
i.e., a structured document;

e as filling certain VPs with contents (in term rewriting etc., it
would be called a substitution).

EXAMPLE 3.1. Figure 3a is a sample file (module) which is struc-
tured by the assignment of fragments to its VPs. Its partial function
is given in Figure 3b. Here variation points (and their correspond-
ing fragments) are also grouped. a

By using partial functions rather than relations, a VP can be filled
with at most one fragment (uniqueness).

A module should be cycle-free—no VP must depend directly
or indirectly on itself. The simplest module is the empty module 0,
i.e., the empty partial map. Since dom(0) = (), the empty module
has no VPs.

Module Addition. We want to construct larger modules step by
step by assigning more and more fragments to VPs. The central
operation for this is module addition (+). Addition fuses two mod-
ules while maintaining uniqueness (and signaling an error upon a
conflict). Desirable properties for + are commutativity and asso-
ciativity. If the modules to be combined have no VPs in common,
the partial functions characterizing the modules can be easily com-
bined. For example, gray + green (Figure 3) is the partial function

{vp1 >—>‘int ctr= 0;... ‘,vpz »—>‘String... ‘}

To make the handling of con-
flicts algebraically nicer we put
more structure into the set of

fragments that could be assigned i 2 fs

to a VP. Besides normal or non- N / |
default fragments f,fq,f,,...

we have a default fragment [J (a) (b)

and an error 4.' An error occurs
when two or more non-default
fragments are assigned to the
same VP. The arrangement of these elements is the flat lattice of

Figure 4. Lattice

' The 4 fragment has no VPs.

Figure 4a. This follows classical ideas in denotational semantics:
0 (corresponding to L) stands for absence of proper information,
whereas 4 (corresponding to T) stands for the error of overspecifi-
cation.

Note: Coloring, as currently defined in CIDE and other text
coloring tools, is less general. The lattice for them allows
only a default and non-default value, as shown in Figure 4b.
SDA deals with a generalization that would be expected for
a true modular approach to SPL development.

To prepare a convenient definition of 4+ on modules, we denote
the supremum operator in this lattice again by +:

O+x=x f+x=14
xtx=x fi+f—4 (143),

where x is an arbitrary element, i.e. x € {(J, £, 4 }. By standard
lattice theory this operation is commutative, associative and idem-
potent. Moreover, it has [J as its neutral element.

The default fragment [J is what makes our definition of modules
m possible: every assigned VP v € dom(m) has at least (even in the
lattice sense) the default fragment [J assigned to it.

Addition of modules can now be defined as the lifting of + on
fragments to partial functions:

mévg 1§ v g gomémg - gomgn%
(m+0)(v) = m(v) +n(v) if v € dom(m) N dom(n)
undefined if v ¢ dom(m) U dom(n)

If in the third case m(v) # n(v) and m(v),n(v) # O then (m +
n)(v) = 4, thus signaling an error.

By the above laws, the set of modules forms a commutative
monoid under +. Therefore, for a finite family {m;}ic: the sum
> my is well-defined. If I = () is the empty set of indices we get,
i€l
as is standard, Y m; = 0.

i€0

EXAMPLE 3.2. Figure 3b shows four modules. The clear module
contains a single fragment that is assigned to vpo. The gray mod-
ule contains a single fragment that is assigned to vpi. The green
module contains a single fragment that is assigned to vp>. And the
ging (gray in green) module contains fragments that are assigned
to vps, vps, and vps. The module summation clear + gray +
green + ging is the module of Figure 3a. O

Assembling Fragments. We now describe how to assemble a
structured document into a single fragment (while “forgetting”
the structure). To define this formally we use an auxiliary func-
tion single £il1(£f,m). It takes a fragment £ and a module m and
yields the fragment that results from £ by replacing, in parallel, all
occurrences of every w € VP(f) by the corresponding fragment
m(w) (if any). The precise definition of single £ill depends on
the special type of fragments considered; as stated in the introduc-
tion we want to keep that parametric. For an acyclic module m and
v € dom(m), the fragment frag(v,m) can be computed by iterating
the single_fill function. By acyclicity of m this always termi-
nates. To cope with the case of unassigned VPs we assume that for
every VP v there is a trivial fragment triv(v) consisting only of v,
to be used for possible later filling of v. With this, a corresponding
assembly program looks as follows:

2 This definition can be recoded in terms of total functions, which makes it easier to
see that the + operation indeed is commutative, associative and idempotent, hence
induces a lattice, too. Moreover, it has the empty module 0 as its neutral element and
satisfies dom(m + n) = dom(m) U dom(n).

fragment frag (vp v,module m){
fragment £ = triv(v);
while (VP(£) N dom(m) !=0)
f = single fill(f,m);
return f; }

Once again, there are many ways to implement the above. Nor-
mally the target of frag is the VP of an entire file. By assign-
ing a unique VP (such as vpo) for file fragments, the result of
frag(vpo,m) for a (possibly composed) module m is the text of
the entire file. A fast way to do this is to hash fragments on the
VPs to which they can be assigned. From vp, its fragment can be
found quickly, and so too can each of its VPs and their assigned
fragments, recursively. An error 4 is issued when two non-default
fragments are assigned to the same VP.

3.3 Extended Example

The expression problem is a classical example of a product line [21].
Figure 5 shows three modules base, print, eval. Module base
represents the shell of a program that can encode the sum and prod-
uct of integers as operator trees. Module print enables operator
trees to be printed and module eval enables operator trees to be
evaluated.

String print()
class Times extends Exp { vpy; © { return l.print()+
Exp 1,r; “*7” 4+ r.print();}

Times (Exp L, Exp R)
{1=L; r=R;} String print()
vp7 vps B { return l.print()+
vpg 5 "+ + r.print();
} }
class Plus extends Exp { vp; » String print();
Exp 1,r;
Plus (Exp L, Exp R) - String print()
{1=L; r=R;} VP3 { return “+v; }
VPs
v =3 VPs :
L } print
abstract class Exp {
vp; int eval()
vp2 vpg — { return l.eval()
} * r.eval(); }
class Int extends Exp { int eval()
int v; Vpg P { return l.eval()
Int(int a) { v=a; } + r.eval(); }
vp3
VPy vpy P int eval();
}
K / vp, v int eval()
{ return v; }
base

eval

Figure 5. Three Modules.

Figure 6a shows the module sum base + print, a program
that can create and print sums and products of integers. Note
that VPs vps, vpa, vps, vps have empty default fragments. VPs
vp1, VPs, VPs, vpr have been assigned their non-default fragments
(and whose VP names are not shown). Figure 6b shows the module
sum base + print + eval, a program that can create, print, and
evaluate sums and products of integers.

3.4 Other Topics

Other Operations. It is possible to define both module subtraction
and fragment deletion in SDA. We present the formal details of
these operations in Appendix A.

Module Replication. SDA does permit replicated code fragments,
as noted in Section 3.1. But replicated modules do not occur, as
module sum is idempotent (m + m = m). Again, we appeal to the
same reasoning for FIA. Modules can have parameters, like tem-
plates. Different valuations of these parameters can lead to cus-
tomized fragments (per different instantiation). Different instances
produce distinct modules. Further, modules with customizable pa-
rameters would give SDA the power of classical preprocessors [15].

class Times extends Exp { class Times extends Exp {
Exp 1,r; Exp 1,1}

3 Times (Exp L, Exp R)
Times (E: L, E: R)
{1=L; ‘:lp;;) ® {1=L; r=R;}

String print()
{ return l.print()+
“x” tr.print();}

String print()
{ return l.print()
“*7 r.print();}

} i int eval()
{ return l.eval()
* r.eval(); }
class Pius extends Exp { }
Eﬁg (é; L, Exp R) class Plus extends Exp {
{1=L; r=R;} Exp 1,r;
Plus(Exp L, Exp R)
String print() {1=L; r=R;}
VDo P { return l.print() . .
“+” r.print();} String print()
vp, ’ VPo { return l.print() +
} ¢ “+7 + r.print();}

int eval()
{ return l.eval()
+ r.eval(); }

abstract class Exp {
String print();
vp: }

} abstract class Exp {

String print();

class Int extends Exp { int eval();

int v; }
Int(int a) { v=a; } class Int extends Exp {
int v;

String print() Int(int a) { v=a; }

{ return v; }
VPs
" oy

(a) base + print

String print()
{ return v; }

int eval()
\ { return v; }
1

(b) base + print + eval

Figure 6. Different Module Summations.

4. Combining FIA and SDA: Homomorphisms

FIA and SDA are distinct algebras: FIA deals with program specifi-
cation while SDA deals with program construction. We now define
the relationship between SDA and FIA (i.e. syntax and semantics).

Our vision of this relationship is displayed in Figure 7. A user
selects features to specify a desired member of an SPL. The cross-
product of selected features is taken to produce an FIA expression
of the target program. This expression is then mapped to an SDA
module expression. Evaluating the SDA module expression con-
structs the program.

selects v = | produces ‘ maps evaluates
X X P >
features | Fi X F, X Fs o TLAtRthANL+S+ lim

FIA expression SDA expression

user target

feature model tool program

Figure 7. Feature Model Tools, FIA, and SDA.

The key to Figure 7 is the homomorphism 2 : FIA — SDA that
maps an FIA expression to an SDA expression. The simplest such
1 uses the mechanism of colouring. In the remainder of this section
we explore different versions of p for different purposes.

4.1 The Coloring Homomorphism

Coloring is a popular way to encode SPLs (e.g. [16]). Briefly, it
is the idea of painting programs with different colors: all code
belonging to the BLUE feature is painted
blue; all code belonging to the RED fea-
ture is painted red. Every fragment of code
in a program P is painted by at least one
color. Coloring also is a projection tech-
nology: if a code fragment is painted mul-
tiple colors (e.g. BLUE A RED), it appears
only when all of its colors (BLUE and RED)
are selected.

Consider the Venn diagram of Fig-
ure 8. The entire codebase of a program
P is represented by the area within the rings for colors RED, BLUE,
and GREEN. Every partition in this diagram represents the contents

Figure 8. Venn
Diagram

(code fragments) of a unique SDA module. There are seven SDA
modules total: r,g,b,r A g,g Ab,r Ab,r Ab A g. The sum of
these modules yields P:

P=r+g+b+rAg+gAb+rAb+rAbAg

Note that the token “A” in the module names on the right-hand side
is not an operator, but simply a character in a name. We return to
this point in Section 4.2.

A characteristic of coloring is that each term of a feature ex-
pression (i.e. features and feature interactions) maps directly to a
distinct SDA module. For Figure 8:

1 (RED) = T
11(GREEN) = g
w(BLUE) = b
1 (RED # GREEN) = rAg
w(RED # BLUE) = rAb
1(BLUE # GREEN) = DbAg
w(RED#BLUE#GREEN) = rAbAg

Here is the general mapping: let FS be the set of features and
FIS be the set of feature interactions. Coloring is the homomor-
phism that maps (feature) sums and interactions to sums of SDA
modules:

w(A+B) = p(A)+p(B) //forallA,Be (FSUFIS)

4.2 Interaction Homomorphism

There is one other way to relate FIA to SDA—the interaction
homomorphism:

w(A#B) = p(A) #, n(B) //forallA B e (FSUFIS)

That is, given modules p(A) and u(B), one can compute (using a
new SDA operation #,) the module 1(A #B) of their interaction.

A general algorithm for #,, does not exist; the task is not com-
putable. There is not enough information within p(A) and p(B)
to know what changes must be contained in p(A#B) to lead to
the desired program. Research on feature interactions can detect
when 4 (A #B) is non-empty (meaning that A and B interact), but
such analyses cannot always compute the resolution (contents of
(A #B)) [14]. Global information about the program is needed.

Coloring is no exception. It is impossible to compute (A #B)
from p(A) and p(B). But coloring does the next best thing, the topic
of the next section.

4.3 Virtual Modularity

VPs are implicit in coloring. At every point in a document where
coloring changes, an implicit VP is created. Figure 9a shows an
AST where the coloring of the fragment at vp,, changes to BLUE at
vpg. Figure 9b shows how this might be rendered by a colored text
editor. Figure 9c shows an explicit encoding using a preprocessor.

linel;
VP linel; #if BLUE
v vy line2; line2;
Pa | "HP\| 1ine3; line3;

line4; #endif

line4;

(a) (b) (c)
Figure 9. Coloring and VPs.

Because one colors the entire code base of a product line, it is
possible to compute the contents of SDA modules and their VPs.
This is the essence of virtual modularity [16]. Let F denote a feature
and let £ denote its SDA module. Let F denote the set of all code
fragments (ASTs) that have the F color, and F denote the set of all
code fragments (ASTs) that do not have the F color.

The contents of module f; A £, where again A is not an opera-
tion but simply a character in a composite name, are computed by
the formula:

£ At = FBnF0 () A
r#i,j
That is, the code fragments of module f; A £ are the intersection of
the ASTs of F; and Fj and the removal of all ASTs that belong to
F: where r ¢ {i, j}. This formula generalizes in the obvious way
to compute modules for individual features (u(F) = £) as well as
modules for n-way interactions (u(Fy #...#Fy) = f1 A ... A fp).

Note this does not contradict what we said in Section 4.1:
to compute £; A f; one needs much more than modules f;
and f;—one needs knowledge of the coloring of the entire
program P to determine the contents of module £; A £;.

4.4 Other Homomorphisms

FIA defines the key terms (features and feature interactions) that
are the semantic building blocks of SPLs. If colored modules are
not used as an implementation, other homomorphisms are needed
to map FIA terms to concrete representations. Here are some recent
or well-known results with non-coloring or non-SDA implementa-
tions of features:

e Apel et al [2] showed how different program representations
can be encoded as syntax-trees and feature composition maps
to syntax-tree composition. Given the grammar of a language
A and rules for composing A syntax-trees, FeatureHouse gener-
ates a tool that implements the homomorphism A:

A(A+B) = AA) +x A(B)

That is, a FeatureHouse-generated tool parses the A modules
for features A and B and composes them with the syntax-tree
composition operation + .

Siegmund et al. [22, 23] showed how to compute a performance
estimate 7 for a given workload for any program in an SPL.
Procedures were given to estimate the performance delta that
features and feature interactions contribute to a program. As-
suming performance deltas of features are arithmetically added,
their work relied on the homomorphism 7:

m(A+B) = 7(8)+7(B)

Surprisingly accurate predictions were reported using this sim-
ple approach.

The most sophisticated use to date of homomorphisms is by
Delaware et al. [12], who showed how proofs of correctness
of a program could be synthesized from its FIA expression.
The SPL contained dialects of Featherweight Java. An integral
part of any type system are the meta-theoretic proofs that show
type soundness—the guarantee that the type system statically
enforces the desired run-time behavior of a language, typically
preservation and progress.’® Four different representations of
each feature—syntax, typing rules for preservation, evaluation
rules for progress, and the proofs—were encoded as distinct
modules in the Coq proof assistant [9]. Two homomorphisms
were used: composed syntax, typing rule, and evaluation
rule modules; 1) composed proof modules. Both § and 1) were

3 Preservation says if expression e of type T evaluates to a value v then v
also has type T. Progress says expression evaluation does not get “’stuck”,
i.e. there are no expressions that cannot be evaluated.

implemented as Coq libraries:

S(A+B) = 6(A) +5 8(B)

Y(A+B) = ¥(A) +y Y(B)
Each distinct Coq module for feature syntax, feature typing
rules, etc. is certified once by Coq (this is the expensive part)

and reused as-is. Coq mechanically verifies the correctness of a
composite proof by a simple interface check.

When SDA modules permit fragment replacement, the actions
that modules perform on programs are adding, deleting, and
replacing fragments. In other words, modules become functions
(program transformations). In Appendix A.2, we show that the
homomorphism between FIA and SDA maps to the GenVoca
model.

5. Related Work

Our work is a direct outgrowth of the Coloring Algebra [7] and
differs in several important ways:

e we separate features from their implementations (i.e. the dis-
tinction of FIA and SDA),

e we use homomorphisms to map FIA expressions to (SDA)
implementations,

e SDA presents a more general model of module composition via
variation points, and

e we explored different and consistent sets of axioms to define
feature algebras, of which [7] and our FIA are among the few
reasonable possibilities.

The computation of SDA modules from coloring can be traced
to [11] where elements of UML models could be tagged with
feature predicates. Given a set of selected features, an element
is removed from a model if its predicate is false. Modularizing
elements that share the same predicate is the essence of coloring
and SDA modularization.

Our work is a descendant of [17-19]. Derivatives were the
first identified building blocks of feature modules. Unfortunately,
the mathematics of derivatives was incomplete as composition of
derivatives was not associative. This made it impossible to alge-
braically calculate the results of feature splitting (replacing T with
R x S if T is split into features R and S) and feature merging (re-
placing R x S with T). CIDE [16] showed a simple way to visual-
ize features and their interactions, resulting in the coloring algebra,
which does support splitting and merging.

Some of the ideas of our basic SDA model can also be found
in the calculus of traits presented in [13] (and in many papers
prior to that). In particular, the idea of using a flat lattice is also
employed there. However, the approach does not abstract from the
case of classes and methods and hence is less general thachPn ours.
Moreover, our definitions of the operators of module addition and
subtraction lead to simpler equational laws than theirs.

Other algebras for feature-based composition, such as [3, 20],
focus on the internal structure of color modules, rather than fea-
ture interactions. [3] is the first algebra (to our knowledge) that
dealt with feature replication. It uses distant idempotence (a form
of idempotence where adjacency of identical features is not re-
quired). Feature composition is not commutative and feature mod-
ules (called feature structure trees) have no inverses.

The Compositional Choice Calculus (CC) [24] offers an inter-
esting and alternative approach to our work. Our work and CC share
the goal to integrate classical and virtual modularity; we do so us-
ing algebras, CC does so in the context of a formal programming
language. Large-scale fragments can be placed in modules of their
own, while small-scale fragments (suitable for annotations) can be
embedded into other modules. Variation points and their contents
are expressed as choice statements. The key difference between our
work and CC is that the issues of classical and virtual modularity
are not limited to a fixed set of programming languages. The abil-
ity to map an FIA expression to different representations (modular
units of makefiles, HTML pages, performance models) other than
traditional programming languages is basic to feature-oriented de-
velopment. So too are the mappings that arise in MDE, and refac-
torings, and how they are connected to FOSD [6]. CC may be one of
many good implementation targets for mapping FIA expressions.

Delta Oriented Programming (DOP) is another interesting
language-based approach within our field of work. Delta modules
are qualified to be composed into a product when the correspond-
ing where clause is satisfied. Such a clause is a propositional for-
mula over features, namely the conjunction of feature formulas that
arise in coloring (and the coloring homomorphism of Section 4.1).
Adding feature negation and disjunction seems more general. Dis-
junction allows a single module to be reused in different contexts
(rather than requiring a module to be replicated for each context).
Negation seems to offer a more general way for defining alterna-
tives. Understanding this connection is a subject for future work.

Delta modules also have after clauses, which specify a partial
ordering in which to compose them. Here is how our work im-
plicitly encodes such ordering: When features can delete existing
structures, the order in which features are composed matters (i.e.
module summation no longer is commutative (Section A.2). The
ordering of modules is then defined by feature products (F X G =
F#G + F + G): that is, interaction modules F # G are always com-
posed after their base modules F and G. This recurses: 3rd-order
interactions always are composed after 2nd-order interactions, and
SO on.

6. Conclusions and Outlook

FOSD is based on the composition and manipulation of structures.
We want its tools and concepts to be based on formal models and
rock-solid foundations. In this paper, we have contributed toward
this goal.

FIA acts at the level of specifications to express features, feature
interactions, and their compositions. We explored and explained
how a prior algebra ([7]) could be generalized to admit feature
replication. In contrast, SDA is a general model of modules with
VPs, and how such modules can be added and subtracted. FIA deals
with the ‘semantics’ of features and SDA deals more with the ‘syn-
tax’ of modules. (Stated differently, FIA deals with the ‘problem
space’ and SDA deals with the ‘solution space’.) Projections of FIA
to SDA via homomorphisms define the relationships between these
two universes.

More generally, when both the problem and solution space are
defined by algebras (one for program specification, the other for
program construction), mappings between algebras, called homo-
morphisms, are a foundational concept in FOSD tooling. We have
illustrated these ideas in this paper.

Acknowledgments We gratefully acknowledge support for this
work by NSF grants CCF 0724979 and OCI-1148125, as well as
by DFG grant MO 690/7-2. NICTA is funded by the Australian
Government as represented by the Department of Broadband, Com-
munications and the Digital Economy and the Australian Research
Council through the ICT Centre of Excellence program.

References

[1] S. Apel, C. Lengauer, B. Moller, and C. Kistner. An algebra for
features and feature composition. In AMAST, 2008.

[2] S. Apel, C. Kastner, and C. Lengauer. Featurehouse: Language-
independent, automated software composition. In /CSE, 2009.

[3] S. Apel, C. Lengauer, B. Méller, and C. Késtner. An algebraic founda-
tion for automatic feature-based program synthesis. Science of Com-
puter Programming, pages 1022—-1047, 2010.

[4] D. Batory and S. O’Malley. The Design and Implementation of
Hierarchical Software Systems with Reusable Components. ACM
TOSEM, 1992.

[5] D. Batory, V. Singhal, M. Sirkin, and J. Thomas. Scalable software
libraries. In ACM SIGSOFT, 1993.

[6] D. Batory, M. Azanza, and J. Saraiva. The Objects and Arrows of
Computational Design. In MODELS, Oct. 2008.

[7] D. Batory, P. Hofner, and J. Kim. Feature Interactions, Products, and
Composition. In GPCE, 2011.

[8] D. Batory, P. Hofner, B. Moller, and A. Zeland. Features, Modularity,
and Variation Points. Technical Report TR-13-14, University of Texas
at Austin, Dept. of CS, April 2013.

[9] Y. Bertot and P. Castéran. Interactive Theorem Proving and Pro-
gram Development. Coq’Art: The Calculus of Inductive Construc-
tions. Springer Verlag, 2004.

[10] CVL. Common variability language. http://www.omgwiki.org/
variability/doku.php, 2013.

[11] K. Czarnecki and M. Antkiewicz. Mapping features to models: A
template approach based on superimposed variants. In GPCE, 2005.

[12] B. Delaware, W. Cook, and D. Batory. Product lines of theorems. In
OOPSLA/SPLASH, 2011.

[13] S. Ducasse, O. Nierstrasz, N. Schirli, R. Wuyts, and A. P. Black.
Traits: A mechanism for fine-grained reuse. ACM Trans. Program.
Lang. Syst., 28(2):331-388, 2006.

[14] J. D. Hay and J. M. Atlee. Composing features and resolving interac-
tions. In SIGSOFT, 2000.

[15] S. Jarzabek. Effective Software Maintenance and Evolution: Reuse-
based Approach. CRC Press Taylor and Francis, 2007.

[16] C. Kastner, S. Apel, and M. Kuhlemann. Granularity in software
product lines. In ICSE, 2008.

[17] C. H. P. Kim, C. Kistner, and D. Batory. On the modularity of feature
interactions. In GPCE, 2008.

[18] J. Liu, D. Batory, and S. Nedunuri. Modeling interactions in feature
oriented designs. In /CFI, 2005.

[19] J. Liu, D. Batory, and C. Lengauer. Feature Oriented Refactoring of
Legacy Applications. In /CSE, 2006.

[20] R. Lopez-Herrejon, D. Batory, and C. Lengauer. A Disciplined Ap-
proach to Aspect Composition. In PEPM, 2006.

[21] I. Schaefer, L. Bettini, F. Damiani, and N. Tanzarella. Delta-oriented
programming of software product lines. In SPLC, 2010.

[22] N. Siegmund, M. Rosenmiiller, C. Késtner, P. G. Giarrusso, S. Apel,
and S. S. Kolesnikov. Scalable prediction of non-functional properties
in software product lines. In SPLC, 2011.

[23] N. Siegmund, S. S. Kolesnikov, C. Kistner, S. Apel, D. S. Batory,
M. Rosenmiiller, and G. Saake. Predicting performance via automated
feature-interaction detection. In ICSE, 2012.

[24] E. Walkingshaw and M. Erwig. A calculus for modeling and imple-
menting variation. In GPCE, 2012.

A. SDA Extras

SDA has a wealth of useful capabilities beyond addition. We show
some potentials and relationships to prior work.

A.1 Other Operations on Modules

It should be noted that the operations in this section are also defin-
able for arbitrary finite maps.

Deletion and Subtraction. There are two ways of defining “in-
verses” to addition.

Variant I: We define the operation of deletion to shrink the
domain of a partial map. For a module m and a set U C V of VPs we
define the module m © U by:

. m(v) if v € (dom(m) — U)
@S U)(v) =ar { undefined otherwise

Deletion satisfies the following laws, which are shown by
straightforward calculation:

dom(moU) = dom(m)—TU

peu = 0
m+n)oU = @OU)+ el

provided Vv € dom(m) N dom(n) : m(v) = n(v)

me (UUW) = mav)ew

mos 0 = m
m © dom(m) 0

moU m

c
dom(m) CU < (moU)=0

A major drawback of this operation is its asymmetric type, i.e. ©
has arguments of different types.

Variant II: Subtraction is an operation with symmetric type.
For modules m and n we define module m — n as:

m—n =4 mO dom(n)
This spells out to:

_ m(v) if v € (dom(m) — dom(n))
(m —n)(v) =q { undefined otherwise

Note that m — n is not the set-theoretic difference of m and n
considered as sets of argument-value pairs: let £;, £, be different
fragments and u € Vbe a VP. Setm; = {(u, f1)}, i.e.,

ms (v) —af { £ ifv= u
undefined otherwise
Then the set theoretic difference of m; and m, is m;. In contrast,
m; — my = O since dom(m;) = dom(my) = {u}.
Subtraction satisfies laws analogous to deletion; they can be
found in [8]

Overriding. Ideally, modules that are composed have disjoint do-
mains. And by using subtraction or deletion, modules can be cus-
tomized. Still, object-oriented programmers are used to the notion
of overriding or replacing definitions, an operation that can be de-
fined in terms of subtraction and deletion. Module m overrides n,
written m onto n:

monton = m+ (n© dom(m)) = m+ (n —m)

This replaces all assignments in n for which m also provides a value.
It may destroy acyclicity. onto is associative and idempotent with
neutral element (), but not commutative.

EXAMPLE A.1. Figure 10 shows two modules n and m with non-
default fragments for vpi. m onto n replaces n’s fragment at vp;
with m’s fragment. a

vpy | class foo { int x; wvp; }

vpy »| int bar() {return 4;}

m [vp1 | int bar() {return x+1;}]

vpy »| class foo { int x; wp; }
monton
vpy »| int bar() {return x+1;}

Figure 10. Onto Example.

A.2 The GenVoca Homomorphism

GenVoca is a model of SPLs where features are program transfor-
mations and feature composition is function composition. Features
can add details to programs as well as override (replace) existing
details. Let m(x) denote the program transformation for feature M
and let m be its SDA module. m(x) is defined as:

m(x) = montox
If M is a base feature, m simplifies to:
m() =

GenVoca features were composed in a fixed order (see [4] for
details). Further, every feature and feature interaction was encoded
as a program transformation. Although FIA did not exist when
GenVoca was created, an FIA explanation of GenVoca is simple:
the cross-product of selected features was taken in a particular order
and the resulting FIA expression was expanded in a fixed way to
produce a sum of features and feature interactions.* Each of these
terms was then mapped to a function that implemented that term.
Again let FS be the set of features and FIS be the set of feature
interactions. GenVoca is the homomorphism ~ that maps the sum
of features and feature interactions to compositions of program
transformations, where - is function composition:

~(A+B) =~(a)-v(B) // for all A,B € (FS UFIS)
=a-b

4 By “fixed way” we mean that the FIA X and 4 operators are not commutative read
as associating to the right.

