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Abstract. Separation logic (SL) is an extension of Hoare logic by oper-
ations and formulas that not only talk about program variables, but also
about heap portions. Its general purpose is to enable more flexible reason-
ing about linked object/record structures. In the present paper we give
an algebraic extension of SL at the data structure level. We define oper-
ations that additionally to heap separation make assumptions about the
linking structure. Phenomena to be treated comprise reachability anal-
ysis, (absence of) sharing, cycle detection, preservation of substructures
under destructive assignments. We demonstrate the practicality of this
approach with the examples of in-place list-reversal and tree rotation.
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1 Introduction

Separation logic (SL) as an extension of Hoare logic includes spatial operations
and formulas that do not only talk about single program variables, but also
about heap portions (heaplets). The original purpose of SL was to enable more
flexible reasoning about linked object/record structures in a sequential version.
This has also been extended to concurrent contexts [18]. The central connective
of this logic is the separating conjunction P1∗P2 of formulas P1, P2. It guarantees
that the set of resources characterised by the Pi are disjoint. This allows under
some circumstances e.g. that an assignment to a resource of P1 does not change
any value of resources in P2. Consider the following concrete example:

From the variables x and y two singly linked lists can be accessed. If we would
run, e.g., an in-place list reversal algorithm on the list accessible from x, this
would at the same time change the contents of the list accessible from y. This
is because the lists show the phenomenon of sharing . Note that separating con-
junction ∗ in the above situation alone would only guarantee that the cells with
contents 1, . . . , 5 have different addresses than the ones with contents 7, 8.



The purpose of the present paper is to define in an abstract fashion con-
nectives stronger than ∗ that ensure the absence of sharing as depicted above.
With this, we also hope to facilitate reachability analysis within SL as, e.g.,
needed in garbage collection algorithms, or the detection and exclusion of cycles
to guarantee termination in such algorithms. Moreover, we provide a collection
of predicates that characterise structural properties of linked structures and
prove inference rules for them that express preservation of substructures under
destructive assignments. Finally, we include abstraction functions into the pro-
gram logic which allows very concise and readable reasoning. The approach is
illustrated with two examples, namely in-situ list reversal and tree rotation.

2 Basics and Definitions

Following [4, 10] we define abstract separation algebras that are used to represent
the abstract structure of the underlying considered sets of resources.

Definition 2.1 A separation algebra is a partial commutative monoid (H, •, u).
We call the elements of H states. The operation • denotes state combination
and the empty state u is its unit. A partial commutative monoid is given by
a partial binary operation satisfying the unity, commutativity and associativity
laws w.r.t. the equality that holds for two terms iff both are defined and equal
or both are undefined. The induced combinability or disjointness relation # is
defined, for h1, h2 ∈ H by h0#h1 ⇔df h0 • h1 is defined.

As a concrete example we could instantiate states with heaplets, i.e., parts
of the global heap in memory. Heaplets are modelled as partial functions H =df

IN ; IN, i.e., from naturals to naturals for simplicity. The • operation then
corresponds to union of partial functions and u denotes the empty set or the
everywhere undefined function. The original disjointness relation for heaplets
reads h0#h1 ⇔df ph0 ∩ ph1 = ∅ for heaps h0, h1, where ph is the domain of h.
For more concrete examples we refer to [2].

Definition 2.2 Let (H, •, u) be a separation algebra. Predicates P,Q, . . . over
H are elements of the powerset P(H). On predicates the separating conjunction
is defined by pointwise lifting:

P ∗Q =df {h1 • h2 : h1 ∈ P , h1 ∈ Q ,h1#h2} , emp =df {u}.

We now abstract from the above definition of heaplets by replacing them
by elements of a modal Kleene algebra [6], our main algebraic structure. We
will introduce its constituents in several steps. The basic layer is an idempotent
semiring (S,+, ·, 0, 1), where (S,+, 0) forms an idempotent commutative monoid
and (S, ·, 1) a plain monoid.

A concrete example of an idempotent semiring is the set of relations. The
natural order coincides with inclusion ⊆ , while + abstracts ∪ and · abstracts
relational composition ; . The element 0 represents the empty relation while 1
denotes the identity relation.

2



To express reachability in this algebra we need to represent sets of nodes.
Relationally, this can be done using subsets of the identity relation. In general
semirings this can be mimicked by sub-identity elements p ≤ 1, called tests [14,
13]. These elements are requested to have a complement relative to 1, i.e., an
element ¬p that satisfies p + ¬p = 1 and p · ¬p = 0 = ¬p · p. Thus tests have
to form a Boolean subalgebra. By this, + coincides with the binary supremum
t and · with binary infimum u on tests. Every semiring contains at least the
greatest test 1 and the least test 0.

The product p · a means restriction of the domain of a relation a to starting
nodes in p while multiplication a · p from the right restricts the range of a.
By this, we can now axiomatise domain p and codomain q tests, following [6].
Note that, according to the general idea of tests, in the relation semiring these
operations will yield sub-identity relations in one-to-one correspondence with the
usual domain and range. For arbitrary element a and test p we have the axioms

a ≤ pa · a , p(p · a) ≤ p , p(a · b) = p(a · pb) ,
a ≤ a · aq , (a · p)q ≤ p , (a · b)q = (aq · b)q .

These imply additivity and isotony, among others, see [6]. Based on domain, we
now define the diamond operation that plays a central role in our reachability
analyses: 〈〈a|| p =df (p · a)q. Since this is an abstract version of the diamond
operator from modal logic, an idempotent semiring with it is called modal .

The diamond 〈〈a|| p calculates all immediate successor nodes under a starting
from the set of nodes p, i.e., all nodes that are reachable within one a-step, aka
the image of p under a. This operation distributes through union and is strict
and isotone in both arguments.

Finally, to be able to calculate reachability within arbitrarily many steps, we
extend the algebraic structure to a modal Kleene algebra [12] by an iteration
operator ∗. It can be axiomatised by the following unfold and induction laws:

1 + x · x∗ ≤ x∗ , x · y + z ≤ y ⇒ x∗ · z ≤ y ,
1 + x∗ · x ≤ x∗ , y · x+ z ≤ y ⇒ z · x∗ ≤ y .

This implies that a∗ is the least fixed-point µf of f(x) = 1 + a · x.

Next, we define the reachability function reach by

reach(p, a) =df 〈〈a∗|| p.
Among other properties, reach distributes through + in its first argument and
is isotone in both arguments. Moreover we have the induction rule

reach(p, a) ≤ q ⇐ p ≤ q ∧ 〈〈a|| q ≤ q.

3 A Stronger Notion of Separation

As we have described in Section 1 the standard separating conjunction ∗ alone
often does not describe sufficient disjointness needed for program verification.
Simple sharing patterns in data structures can not be excluded from the only
use of ∗ as can be seen in the following examples: For addresses x1, x2, x3 with
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h1 and h2 satisfy the disjointness property since ph1∩ph2 = ∅. But still h = h1 ∪h2
does not appear very separated from the viewpoint of reachable cells since in the
left example both subheaps refer to the same address and in the right they form
a simple cycle. This can be an undesired behaviour since acyclicity of the data
structure is a main correctness property needed for many algorithms working,
e.g., on linked lists or tree structures. In many cases the separation expressed by
ph1 ∩ ph2 = ∅ is too weak. We want to find a stronger disjointness condition that
takes such phenomena into account.

First, to simplify the description, for our new disjointness condition, we ab-
stract from non-pointer attributes of objects, since they do not play a role for
reachability questions. One can always view the non-pointer attributes of an ob-
ject as combined with its address into a “super-address”. Therefore we give all
definitions in the following only on the relevant part of a state that affects the
reachability observations.

Moreover, in reachability analysis we are only interested in the existence
of paths and not in path labels etc. Hence, multiple, differently labelled links
from one object to another are projected into a single non-labelled link. Such a
projection function on labels can, e.g., be found in [7], which gives an algebraic
approach for representing labelled graphs, based on fuzzy relations.

With this abstraction, a linked object structure can be represented by an
access relation between object addresses. Again, we pass to the more abstract
algebraic view by using elements from a modal Kleene algebra to stand for
concrete access relations; hence we call them access elements. In the following
we will denote access elements by a, b, . . . .

Extending [8, 17] we give a stronger separation relation©# on access elements.

Definition 3.1 For access elements a1, a2, we define the strong disjointness re-
lation ©# by setting a = a1 + a2 in

a1©# a2 ⇔df reach(pa1, a) · reach(pa2, a) = 0.

Intuitively, a is strongly separated into a1 and a2 if each address reachable
from a1 is unreachable from a2 w.r.t. a, and vice versa. Note that since all results
of the reach operation are tests, · coincides with their meet, i.e., intersection in
the concrete algebra of relations.

This stronger condition rules out the above examples.
Clearly, ©# is commutative. Moreover, since we have for all p, b that p ≤

reach(p, b), the new separation condition indeed implies the analogue of the old
one, i.e., both parts are disjoint: a1©# a2 ⇒ pa1 ·pa2 = 0. Finally,©# is downward
closed by isotony of reach: a1©# a2 ∧ b1 ≤ a1 ∧ b2 ≤ a2 ⇒ b1©# b2.

It turns out that©# can be characterised in a much simpler way. To formulate
it, we define an auxiliary notion.

Definition 3.2 The nodes a of an access element a are given by a =df pa+aq.

From the definitions it is clear that a+ b = a + b and 0 = 0.
We show two further properties that link the nodes operator with reachability.
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Lemma 3.3 For an access element a we have

1. a ≤ reach(pa, a),

2. a · b = 0 ⇒ reach(pa, a+ b) = a ,
3. a = reach(pa, a).

Proof.

1. First, pa ≤ reach(pa, a) by the reach induction rule from Section 2.
Second, by a domain property, aq = (pa · a)q = 〈〈a|| pa ≤ reach(pa, a).

2. For (≤) we know by diamond star induction:

reach(pa, a+ b) ≤ a ⇐ pa ≤ a ∧ 〈〈(a+ b)|| a ≤ a .

pa ≤ a holds by definition of , while 〈〈(a + b)|| a ≤ a resolves by dia-
mond distributivity to 〈〈a|| a ≤ a ∧ 〈〈b|| a ≤ a . This is equivalent to

(a ·a)q ≤ a ∧ (a ·pb · b)q ≤ a by definition and a property of domain. Finally,

the claim holds by (a ·a)q ≤ aq and a ·pb = 0 by the assumption a · b = 0.
The direction (≥) follows from Part 1, a ≤ a+ b and isotony of reach.

3. This follows by setting b = 0 in Part 2. ut
Trivially, the first and last law state that all nodes in the domain and range

of an access element a are reachable from pa, while the second law denotes a
locality condition. If the domain as well as the range of a second access element
b are disjoint from both components of a then b does not affect reachability via
a. Using these theorems we can give a simpler equivalent characterisation of ©# .

Lemma 3.4 a©# b ⇔ a · b = 0.

Proof. (⇒) From Lemma 3.3.1 and isotony of reach we infer a ≤ reach(pa, a) ≤
reach(pa, a+ b). Likewise, b ≤ reach(pb, a+ b). Now the claim is immediate.

(⇐) Lemma 3.3.2 tells us reach(pa, a + b) · reach(pb, a + b) = a · b , from which
the claim is again immediate. ut

Corollary 3.5 For an access element a we always have 0©# a ⇔ a©# 0 ⇔ true.

By the use of Lemma 3.4, it is not difficult to derive the following result that
will give us the possibility to characterise the interplay of the new separation
operation with standard separating conjunction.

Lemma 3.6 The relation ©# is bilinear, i.e., it satisfies

(a+ b)©# c ⇔ a©# c ∧ b©# c and a©# (b+ c) ⇔ a©# b ∧ a©# c.

As in standard SL, strong separation can be lifted to predicates.

Definition 3.7 For predicates P1 and P2, we define the strongly separating
conjunction by P1 ©∗ P2 =df {a+ b : a ∈ P1 , b ∈ P2 , a©# b }.

Recall that emp = {0}. We have the following result.

Lemma 3.8 Let S denote the set of predicates. Then (S,©∗ , 0) is a separation
algebra, i.e., ©∗ is commutative and associative and P ©∗ emp = emp©∗ P = P .
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Proof. Commutativity is immediate from the definition. Neutrality of emp fol-
lows from Corollary 3.5 and by neutrality of 0 w.r.t. +.

For associativity, assume a ∈ (P1 ©∗ P2) ©∗ P3, say a = a12 + a3 with
a12©# a3 and a12 ∈ P1 ©∗ P2 and a3 ∈ P3. Then there are a1, a2 with a1©# a2
and a12 = a1 + a2 and ai ∈ Pi. From Lemma 3.4 we obtain therefore a12 · a3 =
0 ∧ a1 · a2 = 0. Moreover, by Lemma 3.6 the first conjunct is equivalent to
a1 · a3 = 0 ∧ a2 · a3 = 0. Therefore we also have a ∈ P1 ©∗ (P2 ©∗ P3).

Hence we have shown that (P1 ©∗ P2) ©∗ P3 ⊆ P1 ©∗ (P2 ©∗ P3). The
reverse inequation follows analogously. ut

4 Relating Strong Separation With Standard SL

A central question that may arise while reading this paper is: why does classical
SL get along with the weaker notion of separation rather than the stronger one?

We will see that some aspects of our stronger notion of separation are in
SL implicitly welded into recursive data type predicates. To explain this, we
first concentrate on singly linked lists. In [19] the predicate list(x) states that
the heaplet under consideration consists of the cells of a singly linked list with
starting address x. Its validity in a heaplet h is defined by the following clauses:

h |= list(nil) ⇔df h = ∅ ,
x 6= nil ⇒ (h |= list(x) ⇔df ∃ y : h |= [x 7→ y] ∗ list(y)) .

Hence h has to be an empty list when x = nil, and a list with least one cell at
its beginning when x 6= nil, namely [x 7→ y].

First, note that using ©∗ instead of ∗ would not work, because the heaplets
used are obviously not strongly separate: their heaplets are connected by forward
pointers to their successor heaplets.

To make our model more realistic, we now define the concept of closed rela-
tions and a special element that represents the improper reference nil.

Definition 4.1 A test p is called atomic iff p 6= 0 and q ≤ p ⇒ q = 0 ∨ q = p
for any other test q. We assume a special atomic test 2 that characterises the
nil object. Then an access element a is called proper iff 2 · pa = 0 and closed iff
aq ≤ pa+ 2.

Proper access elements do not link from the pseudo-reference 2 to another
one. By closedness, there exist no dangling references in the access element a.

We summarise a few consequences of this.

Corollary 4.2 If a1 and a2 are proper/closed then a1+a2 is also proper/closed.

Lemma 4.3 For an access element a the following properties are equivalent:

1. a is proper, 2. 2 · a = 0, 3. a = ¬2 · a .

Proof. 1. implies 2. immediately by the definition of domain. To see that 2.
implies 3. we calculate a = 2 · a + ¬2 · a = ¬2 · a . Finally, 3 . implies 1. by
2 · pa = 2 · p(¬2 · a) ≤ 2 · ¬2 = 0 since 2 is a test. ut
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Lemma 4.4 An access element a is closed iff aq − pa ≤ 2.

Proof. As tests form a Boolean subalgebra we immediately conclude aq − pa ≤ 2

⇔ aq · ¬pa ≤ 2 ⇔ aq ≤ pa+ 2. ut

To include the special test 2 for later treatments we redefine the strong
disjointness relation into a weaker version. Since nil is frequently used as a ter-
minator reference in data structures, it should still be reachable.

Definition 4.5 For access elements a, a1, a2 and a = a1 + a2, we define the
stronger disjointness relation ©# w.r.t 2 by

a1©# a2 ⇔df a1 · a2 ≤ 2.

Lemma 3.8 is not affected by this redefinition, i.e., ©∗ is still commutative
and associative when based on this new version of ©# .

Lemma 4.6 For proper and closed a1, a2 with pa1 · pa2 = 0 we have a1©# a2.

Proof. By distributivity and order theory we know

a1 · a2 ≤ 2 ⇔ pa1 · pa2 ≤ 2 ∧ pa1 · a2q ≤ 2 ∧ a1q · pa2 ≤ 2 ∧ a1q · a2q ≤ 2.
The first conjunct holds by the assumption and isotony. For the second and
analogously for the third we calculate pa1 ·a2q ≤ pa1 · (pa2 +2) = pa1 ·pa2 +pa1 ·2 =
0 ≤ 2. The last conjunct again reduces by distributivity and the assumptions to
2 · 2 ≤ 2 which is trivial since 2 is a test. ut

Domain-disjointness of access elements is also ensured by the standard sep-
arating conjunction. Moreover, it can be shown by induction on the structure
of the list predicate that all access elements characterised by its analogue are
closed, so that the lemma applies. This is why for a large part of SL the standard
disjointness property suffices.

5 An Algebra of Linked Structures

According to [20], generally recursive predicate definitions, such as the list pred-
icate, are semantically not well defined in classical SL. Formally, their definitions
require the inclusion of fixpoint operators and additional syntactic sugar. This
often makes the used assertions more complicated; e.g., by expressing reachabil-
ity via existentially quantified variables, formulas often become very complex.
The direction we will take in the following is rather trying to hide such addi-
tional information by defining operations and predicates that implicitly include
necessary correctness properties like the exclusion of sharing and reachability.

First, following precursor work in [16, 17, 7, 8], we give some definitions to
describe the shape of linked object structures, in particular of tree-like ones. We
start by a characterisation of acyclicity.

Definition 5.1 Call an access element a acyclic iff for all atomic tests p 6= 2

we have p · 〈〈a+|| p = 0, where a+ = a · a∗ .
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Concretely, for an access relation a, each entry (x, y) in a+ denotes the exis-
tence of a path from x to y within a. Atomicity is needed to represent a single
node; the definition would not work for arbitrary sets of nodes.

A simpler characterisation can be given as follows.

Lemma 5.2 a is acyclic iff for all atomic tests p 6= 2 we have p · a+ · p = 0 .

Proof. p · 〈〈a+|| p = 0 ⇔ (p · a+)q · p = 0 ⇔ (p · a+ · p)q = 0 ⇔ p · a+ · p = 0 . ut

Next, since certain access operations are deterministic, we need an algebraic
characterisation of determinacy. We borrow it from [5]:

Definition 5.3 An access element a is deterministic iff ∀ p : 〈〈a|| ||a〉〉 p ≤ p, where
the dual diamond is defined by ||a〉〉 p = p(a · p) .

A relational characterisation of determinacy of a is ă · a ≤ 1, where ˘ is the
converse operator. Since our basic structure are semirings, in which no general
converse operation is available, we have to express the respective properties
in another way. We have chosen to use the well established notion of modal
operators. This way our algebra works also for other structures than relations.
The roles of the expressions ă and a are now played by 〈〈a|| and ||a〉〉 , respectively.

Now we define our model of linked object structures.

Definition 5.4 We assume a finite set L of selector names, left or right in binary
trees, and a modal Kleene algebra S.

1. A linked structure is a family a = (al)l∈L of proper and deterministic access
elements al ∈ S. This reflects that access along each particular selector is
deterministic. The overall access element associated with a is then Σl∈L al,
by slight abuse of notation again denoted by a; the context will disambiguate.

2. a is a forest if a is acyclic and has maximal in-degree 1. Algebraically this is
expressed by the dual of the formula for determinacy, namely ∀ p : ||a〉〉 〈〈a|| p ≤
p. A forest is called a tree if a = 〈〈a∗|| r for some atomic test r; in this case
r is called the root of the tree and denoted by root(a).

Note that 2 is a tree, while 0 is not a tree, since it has no root. But at least,
0 is a forest. It can be shown that the root of a tree is uniquely defined, namely

root(a) =

{
2 if a = 2

pa− aq otherwise .

Singly linked lists arise as the special case where we have only one selector next .
In this case we call a tree a chain.

We now want to define programming constructs and assertions that deal with
linked structures. We start with expressions.

Definition 5.5 A store is a mapping from program identifiers to atomic tests.
A state is a pair σ = (s, a) consisting of a store s and an access element a. For
an identifier i and a selector name l, the semantics of the expression i.l w.r.t. a
state (s, a) with a being a linked structure is defined as

[[i.l]](s,a) =df 〈〈al|| (s(i)).
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Program commands are modelled as relations between states. The semantics of
plain assignment is as usual: For identifier i and expression e we set

i := e =df { ((s, a), (s[i← p], a)) : p = [[e]](s,a) is an atomic test } .

We will show below how to model assignments of the form i.l := e.
As already mentioned in Section 2, one can encode subsets or predicates as

sub-identity relations. This way we can view state predicates S as commands
of the form {(σ, σ) : σ ∈ S }. We will not distinguish predicates and their
corresponding relations notationally. Following [13, 4] we encode Hoare triples
with state predicates S, T and command C as

{S} C {T} ⇔df S ; C ⊆ C ; T ⇔ S ; C ⊆ U ; T ,

where U is the universal relation on states.
To treat assignments i.l := e, we add another ingredient to our algebra. Its

purpose is to describe updates of access elements by adding or changing links.

Definition 5.6 Assuming atomic tests with p · q = 0 ∧ p · 2 = 0, we define a
twig by p 7→ q =df p ·> ·q where > denotes the greatest element of the algebra.
The corresponding update is (p 7→ q) | a =df p 7→ q + ¬p · a.

Note, that by p, q 6= 0 also p 7→ q 6= 0. Intuitively, in (p 7→ q) | a, the single
node of p is connected to the single node in q, while a is restricted to links that
start from ¬p only.

Now we can define the semantics of selective assignments.

Definition 5.7 For identifiers i, j and selector name l we set

i.l := j =df { ((s, a), ((s, s(i) 7→ s(j)) | a) : s(i) 6= 2, s(i) ≤ pa } .

In general such an assignment does not preserve treeness. We provide suffi-
cient conditions for that in the form of Hoare triples in the next section.

6 Expressing Structural Properties of Linked Structures

Definition 6.1 The set terms(a) of terminal nodes of a tree a is terms(a) =df

aq − pa, while the set of linkable nodes of the tree is links(a) =df terms(a)− 2.
A binary tree b is linkable iff links(a) 6= 0.

Assuming the Tarski rule, i.e., ∀ a : a 6= 0 ⇒ > · a · > = >, we can easily
infer for a twig (p 7→ q)q = q and p(p 7→ q) = p.

Lemma 6.2 p 7→ q = p+ q and terms(p 7→ q) = q and root(p 7→ q) = p.

Proof. The first result is trivial. terms(p 7→ q) = (p 7→ q)q ·¬p(p 7→ q) = q ·¬p =
q since p · q = 0 ⇔ q ≤ ¬p. The proof for root is analogous. ut

Definition 6.3 For an atomic test p and a predicate P we define the subpred-
icate P (p) and its validity in a state (s, a) with a tree a by

P (p) =df {a : a ∈ P, root(a) = p} , (s, a) |= P (i) ⇔ a ∈ P (s(i)) .

By this we can refer to the root of an access element a in predicates. A main
tool for expressing separateness and decomposability is the following.
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Definition 6.4 For linked structures a1, a2 we define directed combinability by

a1 . a2 ⇔df pa1 · a2 = 0 ∧ a1q · a2q ≤ 2 ∧ root(a2) ≤ links(a1) + 2 .

This relation guarantees domain disjointness and excludes occurrences of
cycles, since pa1 · a2 = 0 ⇔ pa1 · pa2 = 0 ∧ pa1 · terms(a2) = 0. Moreover, it
excludes links from non-terminal nodes of a1 to non-root nodes of a2. If a1, a2
are trees, it ensures that a1 and a2 can be combined by identifying some non-nil
terminal node of a1 with the root of a2. Since a1 is a tree, that node is unique,
i.e., cannot occur more than once in a1.

Note that by Lemma 4.6 the second conjunct above can be dropped when
both arguments are singly-linked lists. We summarise some useful consequences
of Definition 6.4.

Lemma 6.5 If a is a tree then a . 0 and a . 2. Moreover, 2 . a ⇒ a = 2.

Lemma 6.6 For trees a1 and a2, assume a1 . a2. Then terms(a1 + a2) =
(terms(a1) − root(a2)) + terms(a2) and hence links(a1 + a2) = (links(a1) −
root(a2)) + links(a2). Symmetrically, if a1 6= 0 then root(a1 + a2) = root(a1).

Proof. By domain distributivity and De Morgan’s laws we get

terms(a1+a2) = a1q·¬pa1·¬pa2+a2q·¬pa1·¬pa2 = terms(a1)·¬pa2+terms(a2)·¬pa1 .
Since terms(a2) ≤ a2 by definition and a2 ≤ ¬pa1 by the assumption a1 . a2,
the right summand reduces to terms(a2). To bring the left one into the claimed
form, we first assume a2 6= 2 and calculate

terms(a1)− root(a2) = terms(a1) · (¬pa2 + a2q)
= terms(a1) · ¬pa2 + terms(a1) · a2q = terms(a1) · ¬pa2 ,

since terms(a1) · a2q = a1q · ¬pa1 · a2q = 0 by a1 . a2. The case a2 = 2 follows
immediately.

For root we first assume a1 6∈ {2, 0}, thus a1 + a2 6= 2. Next, we calculate,
symmetrically, root(a1 + a2) = pa1 · ¬a1q · ¬a2q + pa2 · ¬a1q · ¬a2q.

The first summand reduces to pa1 · ¬a1q = root(a1), since a1©# a2 implies
pa1 · a2q = 0, i.e., pa1 ≤ ¬a2q. The second summand is, by definition, equal to
root(a2) · ¬a1q. Since a1 . a2 implies root(a2) ≤ terms(a1) and hence root(a2) ≤
a1q, this summand reduces to 0. If a1 = 2 then also a2 = 2 by Lemma 6.5 and
the claim follows. ut

Definition 6.7 We define the predicate tree =df {a : a is a tree }. For P1, P2 ⊆
tree we define directed combinability ©. by

P1©. P2 =df {a1 + a2 : ai ∈ Pi , a1 . a2} .

This allows, conversely, talking about decomposability: If a ∈ P1©. P2 then
a can be split into two disjoint parts a1, a2 such that a1 . a2 holds.

7 Examples

Using the just defined operations and predicates we give two concrete examples
namely in-situ list reversal and rotation of binary trees.
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7.1 List Reversal

This example is mainly intended to show the basic ideas of our approach. The
algorithm is well known, for variables i, j, k:

j := 2 ; while (i 6= 2) do
(
k := i.next ; i.next := j ; j := i ; i := k

)
.

Definition 7.1 We call a chain a a cell if pa is an atomic test.

Note that by a = 0 ⇔ pa = 0, cells are always non-empty. This will be
important for some of the predicates defined below.

Lemma 7.2 For a cell a we have root(a) = pa, hence ¬root(a) · a = 0 .

Proof. By definition root(a) ≤ pa and root(a) 6= 0. Thus root(a) = pa . ut

Lemma 7.3 Twigs p 7→ q are cells.

Proof. By assumption, p(p 7→ q) = p is atomic. Moreover, by properness,
reach(p, p 7→ q) = p 7→ q = p + q , acyclicity holds by p · q = 0. It remains
to show determinacy: for arbitrary tests s we have q · s ≤ q ⇒ q · s = 0 ∨ q · s =
q ⇔ q · s = 0 ∨ q ≤ s . Hence, 〈〈p 7→ q|| ||p 7→ q〉〉 s ≤ 〈〈p 7→ q|| p ≤ q ≤ s . ut

Now, we define predicates LIST =df {list , l cell } for singly linked lists by

list =df {a : a is an unlinkable chain } ,
l cell =df {a : a is a linkable cell } .

Lemma 7.4 For predicates in LIST , the operator ©. is associative.

Proof. Assume a ∈ (P1©. P2)©. P3 with a = a12 + a3 ∧ a12 . a3 and a12 ∈
P1©. P2 ∧ a3 ∈ P3. There exist a1, a2 with a1 . a2 and a12 = a1 + a2 ∧ ai ∈ Pi.

From the definitions we first know pa1 · pa2 = 0 and p(a1 + a2) · pa3 = 0 ⇔
pa1 ·pa3 = 0 ∧ pa2 ·pa3 = 0. Hence, we can conclude pa1 ·p(a2+a3) = 0. Analogously,
pa1 · (a2 + a3)q = 0 and a1q · (a2 + a3)q = 0.

Finally, we show root(a3) ≤ links(a2) and hence a2 + a3 ∈ P2©. P3: By
the assumption a1 . a2 and Lemma 6.6 we have root(a3) ≤ links(a1 + a2) =
(links(a1) − root(a2)) + links(a2). Since a1 is a chain, links(a1) is at most an
atom, hence links(a1)− root(a2) = 0 by a1 . a2, and we are done.

Moreover, root(a2+a3) ≤ links(a1) also follows from Lemma 6.6 and therefore
a ∈ P1©. (P2©. P3). The reverse inclusion is proved analogously. ut

We give some further results used in the list reversal example.

Lemma 7.5 If a is an unlinkable chain then 〈〈a∗|| root(a) = pa+ 2.

Lemma 7.6 l cell ©. list ⊆ list .

Proof. Let a1 ∈ l cell and a2 ∈ list and assume a1 . a2. We need to show a1 +
a2 ∈ list . Properness of a1 + a2 follows from Corollary 4.2. Using distributivity
of domain, we get 〈〈a1 + a2|| ||a1 + a2〉〉 p ≤ p since 〈〈ai|| ||ai〉〉 p ≤ p as a1, a2 are
deterministic and 〈〈a2|| ||a1〉〉 p ≤ 0 ∧ 〈〈a1|| ||a2〉〉 p ≤ 0 by pa1 · pa2 = 0 which follows
from the definition.
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It remains to show 〈〈(a1+a2)∗|| root(a1 + a2) = pa1+pa2+2 . By definition we
know pa1 ·a2q = 0, hence a2 ·a1∗ = a2. Finally, using (a1+a2)∗ = a1

∗ ·(a2 ·a1∗)∗ =
a1
∗ ·a2∗ and Lemma 6.6 we have 〈〈(a1+a2)∗|| root(a1 + a2) = 〈〈a1∗ ·a2∗|| root(a1) =
〈〈a1∗|| root(a1) + 〈〈a2 · a2∗|| root(a1) = pa1 + links(a1) + 〈〈a2 · a2∗|| (pa1 + links(a1)) .
By atomicity, definitions and Lemma 7.5, pa1 + root(a2) + 〈〈a2 · a2∗|| root(a2) =
pa1 + 〈〈a2∗|| root(a2) = pa1 + pa2 + 2. ut

Lemma 7.7 p 6= 2 ⇒ list (p) ⊆ l cell (p)©. list and list (2) = {2}.

Definition 7.8 Assume a set L of selector names. For l ∈ L, an l-context is
a linked structure a over L with al ∈ l cell . The corresponding predicate is
l context =df {a : a is an l-context }.

Lemma 7.9 For predicates Q,R and l ∈ L we have

{ (l context(i)©. Q)©∗ R(j) } i.l := j { (l context(i)©. R(j))©∗ Q } ,
{ (Q©. l context(i))©∗ R(j) } i.l := j {Q©. (l context(i)©. R(j)) } ,

{ l context(i))©. Q } k := i.l { l context(i)©. Q(j) } .

Proof. Consider a store s and a ∈ (l context(p)©. Q) ©∗ R(q). Thus, a = a1 +
a2 +a3 with a1 ∈ l context ∧ a2 ∈ Q ∧ a3 ∈ R and a1©# a3 ∧ a2©# a3 ∧ a1 .a2 ∧
s(i) = root(a1) ∧ s(j) = root(a3) . With a1 . a2 we have pa1 · a2 = 0 ∧ a1q · a2q ≤
2 ∧ root(a2) = links(a1).

We show (root(a1) 7→ root(a3))+¬root(a1)·a ∈ (l context(p)©. R(q))©∗ Q .
First, a1©# a3 ∧ a1 . a2 implies ¬root(a1) · a3 = a3 ∧ ¬root(a1) · a2 = a2 and
¬root(a1) · a1 = 0 by Lemma 7.2. Hence, ¬root(a1) · a = a2 + a3 .

Further, we know root(a1), root(a3) 6= 0 by definition. Assume a3 6= 2, thus
root(a3) ≤ pa and root(a3) 6= 2. Then a1©# a3 ⇒ root(a1) · root(a3) = 0,
Lemma 6.2 and assumptions imply links(root(a1) 7→ root(a3)) = root(a3) .
Moreover, p(root(a1) 7→ root(a3)) · a3 = root(a1) · a3 ≤ pa1 · a3 = 0 and
(root(a1) 7→ root(a3))q · a3q = root(a3) · a3q ≤ 0. Finally by Lemma 7.3 we have
(root(a1) 7→ root(a3)) + a3 ∈ l context(p)©. R(q) .

It remains to show (root(a1) 7→ root(a3))©# a2 and a3©# a2 . The latter fol-
lows from commutativity of©# while the former resolves to root(a1) · a2 = 0 and
root(a3) · a2 = 0 by Lemma 6.2. We calculate a2 = 〈〈a2∗|| root(a2) = pa2 + 2 by
Lemma 7.5. Hence, root(a1) · a2 = root(a1) · (pa2 + 2) = 0 by a1 . a2 and a1
linkable. Similarly, root(a3) · a2 ≤ 0 by assumptions.

If a3 = 2 then root(a3) = 2 and R = {2}; the proof for this case is analogous
to the above one, except that root(a3) · a2 ≤ 2 and root(a3) · a3q ≤ 2.

Proofs for the remaining triples can be given similarly. ut

For proving functional correctness we introduce the concept of abstraction
functions [9]. They are used, e.g., to state invariant properties.

Definition 7.10 Assume a ∈ list and an atom p ∈ a . We define the abstraction
function lia w.r.t. a as well as the semantics of the expression i→ for a program
identifier i as follows:
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lia(p) =df

{
〈〉 if p · pa = 0 ,
〈p〉 • lia(〈〈a|| p) otherwise ,

[[i→]](s,a) =df lia(s(i)) .

Here • stands for concatenation and 〈〉 denotes the empty word.

Now using Lemma 7.9 and Hoare logic proof rules for variable assignment
and while-loops, we can provide a full correctness proof of the in-situ list reversal
algorithm. The invariant of the algorithm is defined by I ⇔df (j→)† • i→ = α
where † denotes word reversal. Note that (s, a) |= I ⇔ [[(j→)† • i→]](s,a) = s(α)
where α represents a sequence.

{list (i) ∧ i→ = α}
j := 2 ;
{(list (i)©∗ list (j)) ∧ I}
while (i 6= 2) do

(
{((l cell (i)©. list (i.next ))©∗ list (j)) ∧ I}
k := i.next ;
{((l cell (i)©. list (k))©∗ list (j)) ∧ (j→)† • i • k→ = α}
{((l cell (i)©. list (k))©∗ list (j)) ∧ (i • j→)† • k→ = α}
i.next := j ;
{((list (i)©∗ list (k)) ∧ (i→)† • k→ = α}
j := i ; i := k
{(list (j)©∗ list (i)) ∧ I})
{list (j) ∧ (j→)† = α}
{list (j) ∧ j→ = α†}

Each assertion consists of a structural part and a part connecting the concrete
and abstract levels of reasoning. The same pattern will occur in the tree rotation
algorithm in the next subsection.

Compared to [19] we hide the existential quantifiers that were necessary
there to describe the sharing relationships. Moreover, we include all correctness
properties of the occurring data structures and their interrelationship in the
definitions of the new connectives. Quantifiers to state functional correctness
are not needed due to abstraction functions. Hence the formulas become easier
to read and more concise.

To further underpin practicability of our approach, one could e.g. change
the first two commands in the while loop of the list reversal algorithm (inspired
by [3]), so that the algorithm could possibly leave a memory leak. Then after the
assignment i.next := j we would get the postcondition (l cell (i)©. list (j))©∗ list .
This shows that the memory part characterised by list cannot be reached from
i nor from j due to strong separation. Moreover, there is no program variable to
the root reference of list .

7.2 Tree Rotation

To model binary trees we use the selector names left and right. A binary tree is
then a tree (bleft, bright) over {left, right}. Setting b =df bleft + bright, we define an
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abstraction function tr similar to the → function above:

tr b(p) =df

{
〈〉 if p · pb = 0 ,
〈tr b(〈〈bleft|| p), p, tr b(〈〈bright|| p)〉 otherwise ,

[[i↔]](s,b) =df tr b(s(i)) .

As an example, we now present the correctness proof of an algorithm for tree
rotation as known from the data structure of AVL trees. We first give a “clean”
version, in which all occurring subtrees are separated. After that we will show
an optimised version, where, however, sharing occurs in an intermediate state.
The verification of that algorithm would take a few more steps, and hence we
will not include it because of space restrictions.

For abbreviation we define two more predicates, for l ∈ {left, right}, by

l tree context =df tree ∩ l context .
Let Tl, Tk, Tl stand for trees and p, q denote atomic tests:

{tree(i) ∧ i↔ = 〈Tl, p, 〈Tk, q, Tr〉〉}
j := i.right;
{ (right tree context(i))©. tree(j)∧
i↔ = 〈Tl, p, 〈Tk, q, Tr〉〉 ∧ j↔ = 〈Tk, q, Tr〉 }
i.right := 2,
{ tree(i)©∗ tree(j)∧
i↔ = 〈Tl, p, 〈〉〉 ∧ j↔ = 〈Tk, q, Tr〉 }
k := j.left;
{ tree(i)©∗ ((left tree context(j))©. tree(k))∧
i↔ = 〈Tl, p, 〈〉〉 ∧ j↔ = 〈Tk, q, Tr〉 ∧ k↔ = Tk }
j.left := 2;
{ tree(i)©∗ tree(j)©∗ tree(k)∧
i↔ = 〈Tl, p, 〈〉〉 ∧ j↔ = 〈〈〉, q, Tr〉 ∧ k↔ = Tk }
j.left := i;
{ (left tree context(j)©. tree(i))©∗ tree(k)∧
i↔ = 〈Tl, p, 〈〉〉 ∧ j↔ = 〈〈Tl, p, 〈〉〉, q, Tr〉 ∧ k↔ = Tk }
i.right := k;
{ left tree context(j)©. (right tree context(i)©. tree(k))∧
j↔ = 〈〈Tl, p, Tk〉, q, Tr〉 ∧ i↔ = 〈Tl, p, Tk〉 ∧ k↔ = Tk }

In particular, j now points to the rotated tree. The optimised version reads,
without intermediate assertions, as follows:

{i↔ = 〈Tl, p, 〈Tm, q, Tr〉〉}
j := i.right;
i.right := j.left;
j.left := i;
{j↔ = 〈〈Tl, p, 〈〉〉, q, Tr〉}

8 Related Work

There exist several approaches to extend SL by additional constructs to exclude
sharing or restrict outgoing pointers of disjoint heaps to a single direction. Wang
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et al. [22] defined an extension called Confined Separation Logic and provided
a relational model for it. They defined various central operators to assert, e.g.,
that all outgoing references of a heap h1 point to another disjoint one h2 or all
outgoing references of h1 either point to themselves or to h2.

Our approach is more general due to its algebraicity and hence also able to ex-
press the mentioned operations. It is intended as a general foundation for defining
further operations and predicates for reasoning about linked object structures.

Another calculus that follows a similar intention as our approach is given
in [3]. Generally, there heaps are viewed as labelled object graphs. Starting from
an abstract foundation the authors define a logic e.g. for lists with domain-
specific predicates and operations which is feasible for automated reasoning.

By contrast, our approach enables abstract derivations in a fully first-order
algebraic approach, called pointer Kleene algebra [7]. The given simple (in-)-
equational laws allow a direct usage of automated theorem proving systems as
Prover9 [15] or any other systems through the TPTP Library [21] at the level
of the underlying separation algebra [11]. This supports and helpfully guides
the development of domain specific predicates and operations. The assertions
we have presented are suitable due to their simplicity for expressing shapes of
linked list structures without the need of any arithmetic as in [3]. Part of these
assertions can be automatically verfied using Smallfoot [1].

9 Conclusion and Outlook

A general intention of the present work was relating the approach of pointer
Kleene algebra with SL. The algebra has proved to be applicable for stating
abstract reachability conditions and the derivation of such. Therefore, it can be
used as an underlying separation algebra in SL. We defined extended operations
similar to separating conjunction that additionally assert certain conditions on
the references of linked object structures. As a concrete example we defined
predicates and operations on linked lists and trees that enabled correctness proofs
of an in-situ list-reversal algorithm and tree rotation.

As future work, it will be interesting to explore more complex or other linked
object structures such as doubly-linked lists or threaded trees. In particular,
more complex algorithms like the Schorr-Waite Graph Marking or concurrent
garbage collection algorithms should be treated.
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