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Abstract. Preference algebra, an extension of the algebra of database
relations, is a well-studied field in the area of personalized databases. It
allows modelling user wishes by preference terms; they represent strict
partial orders telling which database objects the user prefers over other
ones. There are a number of constructors that allow combining simple
preferences into quite complex, nested ones. A preference term is then
used as a database query, and the results are the maximal objects accord-
ing to the order it denotes. Depending on the size of the database, this
can be computationally expensive. For optimisation, preference queries
and the corresponding terms are transformed using a number of algebraic
laws. So far, the correctness proofs for such laws have been performed
by hand and in a point-wise fashion. We enrich the standard theory of
relational databases to an algebraic framework that allows completely
point-free reasoning about complex preferences. This black-box view is
amenable to a treatment in first-order logic and hence to fully automated
proofs using off-the-shelf verification tools. We exemplify the use of the
calculus with some non-trivial laws, notably concerning so-called prefer-
ence prefilters which perform a preselection to speed up the computation
of the maximal objects proper.
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1 Introduction

In many database applications, the queries are based on multiple, and sometimes
conflicting, goals. For example, a tourist may be interested in hotels in Nassau
(Bahamas) which are cheap, have reasonable ratings (say, 3-star) and are close to
the beach. Unfortunately, these goals are conflicting, as the hotels near the beach
tend to be more expensive. Thus, there may be no single optimal answer: it is
unlikely that there exists a single 3-star hotel that is cheapest among all 3-star
hotels and closest to the beach. Still, users are looking for satisfactory answers.
But what does “satisfactory” mean? For the same query, different users, guided
by their personal preferences, may find different answers appealing. For example,
a person may be willing to pay a little more to be closer to the beach; another
may be contented with a cheaper hotel as long as it is convenient to reach the
beach from it. Thus, in our example one would like to find a whole set of budget
hotels, where those closer to the beach are slightly more expensive.



Therefore it is important for a database system to present all interesting
answers that may fulfil a user’s need. Still, most current database search engines
only deal with hard constraints: a tuple belongs to the search result if and only
if it fulfils all given conditions.

As a remedy, queries with soft constraints are investigated, especially the
so-called “skyline queries” [BKS01], which combine multiple, equally important,
goals. An extension of this leads to the more comprehensive approach of prefer-
ence relations which has been investigated in [Kie02,KH03,KEW11]. A prefer-
ence allows users to establish a strict partial order that expresses which database
objects are better for them than others. Based on this, a query selects according
to the “best matches only (BMO)” model [Kie02] those objects that are not
dominated by any others in the preference relation. To give the user more flexi-
bility, a large set of predefined operators for constructing preference relations is
provided.

Depending on the size of the database, the selection of the best matches ac-
cording to a complex preference relation can be computationally expensive. To
improve the process, preference queries and the corresponding terms are trans-
formed using a number of algebraic laws for heuristically driven optimisation.
So far, the correctness proofs for such laws have been performed by hand and in
a point-wise fashion.

The contribution of the present paper is to enrich the standard theory of
relational databases with an algebraic framework that allows completely point-
free reasoning about (complex) preferences and their best matches. This “black-
box view” is amenable to a treatment in first-order logic and hence to fully
automated proofs using off-the-shelf verification tools. We exemplify the use of
the calculus with some non-trivial laws, notably concerning so-called preference
prefilters (introduced in [End11]), which perform a preselection to speed up
the computation of the best matches proper, in particular, for queries involving
expensive join operations. It turns out that the original laws hold under much
weaker assumptions; moreover, several new ones are derived.

2 Types and Tuples

In this section we present the formal framework to model database objects as
tuples. We introduce typed relations whose types represent attributes, i.e. the
columns of a database relation. Conceptually and notationally, we largely base
on [Kan90].

2.1 Typed Tuples

Definition 2.1. Let A be a set of attribute names. For A ∈ A the set DA is
called the domain of A, and (DA)A∈A is a family of domains. We define the
following notions:

– A type T is a subset T ⊆ A.
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– An attribute A ∈ A is also used for the type {A}, omitting the set braces.
– A T -tuple is a mapping

t : T →
⋃
A∈A

DA where ∀A ∈ T : t(A) ∈ DA.

– For a T -tuple t and a sub-type T ′ ⊆ T we define the projection πT ′(t) to T ′

as the restriction of the mapping t to T ′: πT ′(t) : T ′ →
⋃

A∈ADA, A 7→ t(A).
– The domain DT for a type T is the set of all T -tuples, i.e., DT =

∏
A∈T

DA.

– The set U =df

⋃
T⊆A

DT is called the universe.

– For a tuple t, and a set of tuples M we introduce the following abbreviations:

t :: T ⇔df t ∈ DT , M :: T ⇔df M ⊆ DT .

Definition 2.2 (Join). The join of two types T1, T2 is the union of their
attributes:

T1 1 T2 =df T1 ∪ T2.

For sets of tuples Mi :: Ti (i = 1, 2), the join is defined as the set of all consistent
combinations of Mi-tuples:

M1 1M2 =df {t :: T1 1 T2 | πTi
(t) ∈Mi, i = 1, 2} .

We illustrate this concept with the following example.

Example 2.3. Assume a database of cars with a unique ID and further attributes
for model and horsepower. Hence the attribute names, i.e. types, are ID,model
and hp. The tuples are written as explicit mappings. Assume the following sets:

M1 =df {{ID 7→ 1, model 7→ ’BMW 7’}, {ID 7→ 3, model 7→ ’Mercedes CLS’}},
M2 =df {{ID 7→ 2, hp 7→ 230}, {ID 7→ 3, hp 7→ 315}}.

The sets have the types M1 :: ID 1 model and M2 :: ID 1 hp. Now we consider
the join M1 1M2 :: ID 1 model 1 hp. We have (ID 1 model)∩ (ID 1 hp) = ID.
The only tuple t :: ID 1 model 1 hp which fulfills both πT1

(t) ∈ M1 and
πT2(t) ∈M2 is the one with t : ID 7→ 3. Hence the join is given by:

M1 1M2 = {{ID 7→ 3, model 7→ ’Mercedes CLS’, hp 7→ 315}} .

Corollary 2.4. The following laws hold:

1. 1 is associative and commutative and distributes over ∪.
2. 1 preserves the inclusion order, i.e. M 1 N ⊆M ′ 1 N for M ⊆M ′.
3. Assume Mi, Ni :: Ti (i = 1, 2). Then the following exchange law holds:

(M1 ∩N1) 1 (M2 ∩N2) = (M1 1M2) ∩ (N1 1 N2).

Proof. (1) and (2) follow directly from definition. Using the definition of the join
and the usual intersection of sets we show the exchange law as follows:
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x ∈ (M1 ∩N1) 1 (M2 ∩N2)

⇔ πT1(x) ∈ (M1 ∩N1) ∧ πT2(x) ∈ (M2 ∩N2)

⇔ πT1
(x) ∈M1 ∧ πT1

(x) ∈ N1 ∧ πT2
(x) ∈M2 ∧ πT2

(x) ∈ N2

⇔ x ∈M1 1M2 ∧ x ∈ N1 1 N2

⇔ x ∈ (M1 1M2) ∩ (N1 1 N2) .

2.2 Typed Relations

Definition 2.5 (Typed homogeneous binary relations). For a type T we
define the following abbreviations:

(t1, t2) :: T 2 ⇔df ti ∈ DT , R :: T 2 ⇔df R ⊆ DT ×DT .

We say that the typed relation R has type T . There are some special relations:
The full relation >T =df DT ×DT , the identity 1T =df {(x, x) | x ∈ DT } and
the empty relation 0T =df ∅.

This concept of typed relations also appears in the relation-based logical,
but not primarily algebraic, approach to database notions of [MO04]. We will
generalise it in Section 3.2.

Definition 2.6 (Join of relations). Let Ri :: T 2
i (i = 1, 2). Then the compo-

sition R1 1 R2 :: (T1 1 T2)2 is defined by

t (R1 1 R2)u ⇔df πT1(t)R1 πT1(u) ∧ πT2(t)R2 πT2(u).

Corollary 2.7.

1. Assume Mi, Ni :: Ti (i = 1, 2). Then the following exchange law holds:

(M1 1M2)× (N1 1 N2) = (M1 ×N1) 1 (M2 ×N2).

2. For types T1, T2 and X ∈ {0, 1,>} we have XT11T2
= XT1

1 XT1
.

Proof.

1. Straightforward from Definition 2.6.
2. Using part (1), (DT1

1 DT2
)× (DT1

1 DT2
) = (DT1

×DT1
) 1 (DT2

×DT2
).

By definition of the join for types we have that T1 1 T2 = T1 ∪T2. From the
definition of the join for sets we infer that DT11T2

= DT1
1 DT2

. This shows
the claim for X = >. For X = 1 we show the equality component-wise using
again the argument DT11T2 = DT1 1 DT2 . For X = ∅ the claim is obvious.

Corollary 2.8.

1. For M,N :: T we have M 1 N = M∩N . In particular, we have N 1 N = N .
2. For R1, R2 :: T we have R1 1 R2 = R1 ∩R2.
3. For Mi :: Ti (i = 1, 2) with disjoint Ti, i.e., with T1 ∩ T2 = ∅, the join

M =df M1 1M2 is isomorphic to the cartesian product of M1 and M2.
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Proof.

1. By the definition of join and the typing assumptions we have

t ∈M 1 N ⇔ t ∈M ∧ t ∈ N .

2. Similarly we conclude for all x, y :: T :

x (R1 1 R2) y ⇔ πT (x)Ri πT (y) (i = 1, 2) ⇔ xR1 y ∧ xR2 y

3. For x ∈M , the two join conditions πTi(x) ∈Mi are independent. Hence all
elements of M1 can be joined with all elements of M2. Thus, by definition,

t ∈M ⇔ πT1
(t) ∈M1 ∧ πT2

(t) ∈M2 ⇔ (πT1
(t), πT2

(t)) ∈M1 ×M2.

2.3 Inverse Image and Maximal Elements

Definition 2.9 (Inverse image). For a relation R :: T 2 the inverse image of
a set Y :: T under R is formally defined as

〈R〉Y =df {x :: T | ∃y ∈ Y : xR y} .

The notation stems from the fact that in modal logic the inverse-image op-
erator is a (forward) diamond.

Lemma 2.10. Assume Ri :: T 2
i and Yi :: Ti (i = 1, 2) with disjoint T1, T2. Then

the following exchange law for the join and the inverse image holds:

〈R1 1 R2〉 (Y1 1 Y2) = 〈R1〉Y1 1 〈R2〉Y2 .

Proof. Using the definition of the inverse image and the composition of relations
we infer:

x ∈ 〈R1 1 R2〉 (Y1 1 Y2)

⇔ ∃y ∈ (Y1 1 Y2) : x (R1 1 R2) y

⇔ ∃y ∈ (Y1 1 Y2) : πT1
(x)R1 πT1

(y) ∧ πT2
(x)R2 πT2

(y)

⇔ ∃y1 ∈ Y1 : ∃y2 ∈ Y2 : πT1(x)R1 y1 ∧ πT2(x)R2 y2
⇔ πT1

(x) ∈ 〈R1〉Y1 ∧ πT2
(x) ∈ 〈R2〉Y2

⇔ x ∈ (〈R1〉Y1 1 〈R2〉Y2) .

Note that splitting y into y1 and y2 in the third step is justified by disjointness of
the types: because of T1 ∩ T2 = ∅ the two join conditions πTi

(y) ∈ Yi for i = 1, 2
are independent of each other, hence the substitution yi := πTi(y) is allowed.

Assume that R1, R2 are strict orders (irreflexive and transitive), which is
the case in our application domain of preferences. Then, together with Corol-
lary 2.8.3, this lemma means that, under the stated disjointness assumption,
R1 1 R2 behaves like the product order of R1 and R2 on the Cartesian product
DT1 ×DT2 .
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The inverse image of a set Y under a relation R, when viewed the other way
around, consists of the objects that have an R-successor in Y , i.e., are R-related
to some object in Y or, in the preference context, dominated by some object in
Y . For this reason we can characterise the set of R-maximal objects within a set
Y , as follows.

Definition 2.11 (Maximal elements). For a relation R :: T 2 and a set Y :: T
we define

R . Y =df Y − 〈R〉Y ,

where “−” is set difference.

These are the Y -objects that do not have an R-successor in Y , i.e., are not
dominated by any object in Y . The mnemonic behind this notation is that in an
order diagram for a preference relation R the maximal objects within Y are the
peaks in Y ; rotating the diagram clockwise by 90◦ puts the peaks to the right.
Hence R . Y might also be read as “R-peaks in Y ”.

To develop the central properties of our algebra and the maximality operator
it turns out useful to abstract from the concrete setting of binary relations over
sets of tuples, which will be done in the next section.

3 An Algebraic Calculus

Since we have shown how to characterise the maximal elements concisely using a
diamond operation, it seems advantageous to reuse the known algebraic theory
around that. This also allows us to exhibit clearly which assumptions are really
necessary; it turns out that most of the development is completely independent
of the properties of irreflexivity and transitivity that were originally assumed
for preference relations in [Kie02], and in fact also independent of the use of
relations at all.

3.1 Semirings

Definition 3.1. An idempotent semiring consists of a set S of elements together
with binary operations + of choice and · of composition. Both are required
to be associative, choice also to be commutative and idempotent. Moreover,
composition has to distribute over choice in both arguments. Finally, there have
to be units 0 for choice and 1 for composition.

Binary homogeneous relations over a set form an idempotent semiring with
choice ∪ and composition “;”, which have ∅ and the identity relation as their
respective units.

Definition 3.2. Every idempotent semiring induces a subsumption order by
x ≤ y ⇔ x + y = y. A test is an element x ≤ 1 that has a complement ¬x
relative to 1, i.e., which satisfies

x+ ¬x = 1 , x · ¬x = 0 .
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It is well known (e.g. [MB85]) that the complement is unique when it exists
and that the set of all tests forms a Boolean algebra with + as join and · as
meet. Tests are used to represent subsets or assertions in an algebraic way. In
the semiring of binary relations over a set M the tests are subidentities, i.e.,
subsets of the identity relation, of the form IN =df {(x, x) |x ∈ N} for some
subset N ⊆ M and hence in one-to-one correspondence with the subsets of M .
Because of that we will, by a slight abuse of language, say that x lies in IN when
(x, x) ∈ IN .

We will use small letters a, b, c, ... at the beginning of the alphabet to denote
arbitrary semiring elements and p, q, ... to denote tests.

Based on complementation, the difference of two tests p, q can be defined as
p− q =df p · ¬q. It satisfies, among other laws,

(p+q)−r = (p−r)+(q−r) , (p−q)−r = p−(q+r) , p−(q+r) = (p−q)·(p−r) .

For the interaction between the complement and the subsumption ordering we
can use the shunting rule

p · q ≤ r ⇔ p ≤ ¬q + r .

A special case of applying this rule twice with p = 1 is the contraposition rule

q ≤ r ⇔ ¬r ≤ ¬q .

Tests can be used to express domain or range restrictions. For instance, when
a is a relation and p, q are tests, p · a and a · q are the subrelations of a all of
whose initial points lie in p and end points in q, respectively. Hence, all initial
points of a lie in p if and only if a ≤ p · a.

With these properties we can give an algebraic characterisation of the test
〈a〉 q that represents the inverse image under a of the set represented by q or,
equivalently, the set of initial points of a · q.

Definition 3.3. Following [DMS06], the (forward) diamond is axiomatised by
the universal property

〈a〉 q ≤ p ⇔ a · q ≤ p · a · q ⇔ a · q ≤ p · a .

Following the terminology of [DMS06], it would be more accurately termed a
pre-diamond, since we do not require the axiom 〈a · b〉 q = 〈a〉 〈b〉 q, which is not
needed for our application. In the relational setting of [BW93], test and diamond
are called monotoype and monotype factor, respectively.

The diamond enjoys the following useful algebraic properties:

〈a〉 0 = 0 , 〈a+ b〉 p = 〈a〉 p+ 〈b〉 p , 〈a〉 (p+ q) = 〈a〉 p+ 〈a〉 q .

The latter two imply that diamond is isotone (i.e., monotonically increasing) in
both arguments:

a ≤ b ⇒ 〈a〉 p ≤ 〈b〉 p , p ≤ q ⇒ 〈a〉 p ≤ 〈a〉 q .
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A special role is played by the test

pa =df 〈a〉 1 .

It represents the set of all objects that have an a-successor at all and therefore
is called the domain of a. From the isotony of diamond we conclude, for test p,

〈a〉 p ≤ pa .

3.2 Representing Types

There are a number of ways to represent types algebraically, among then hetero-
geneous relation algebras [SHW97], relational allegories [BD97] or typed Kleene
algebra [Koz98]. All these involve some amount of machinery and notation, which
we want to avoid here.

More simply, we now interpret the largest test 1 as representing the universe U
and use other tests to stand for subsets of it, e.g., for the domains associated with
types. With every type T ⊆ A, we associate a test 1T representing its domain
DT . An assertion p :: T means that p is a test, representing a set of tuples,
with p ≤ 1T . Arbitrary semiring elements a, b, c, ... will stand for preference
relations. A type assertion a :: T 2 is short for a ≤ 1T · a · 1T . By 1T ≤ 1 this
can be strengthened to an equality. Hence, since tests are idempotent under
composition, a :: T 2 implies 1T · a = a = a · 1T .

This latter property entails that the diamond respects types, i.e., for a :: T 2

and q :: T we calculate

〈a〉 q :: T ⇔ 〈a〉 q ≤ 1T ⇔ a · q ≤ 1T · a · q ⇔ a · q ≤ a · q ⇔ TRUE .

To express that x is either an element which represents a relation or a test,
we introduce the following notation:

x :: T (2) ⇔ x :: T ∨ x :: T 2 .

We will also need the infimum for elements a1, a2 :: T 2, which is axiomatised
as follows:

∀x :: T 2 : x ≤ a1 u a2 ⇔df x ≤ a1 ∧ x ≤ a2 .

In the semiring of binary relations this coincides with the intersection of two
relations. For tests p, q we have, in every semiring, p u q = p · q.

Finally, we assume for every type T a greatest element >T in {x |x :: T (2)},
i.e. we have ∀x :: T (2) : x ≤ >T .

3.3 Join Algebras

We now deal with the central notion of join. For this, we assume the typing
mechanism of the previous section.

Definition 3.4 (Join algebra). A join algebra is an idempotent semiring with
an additional binary operator 1 satisfying the following requirements.
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1. Join is associative, commutative and idempotent and distributes over choice
+ in both arguments. Hence 1 is isotone in both arguments.

2. If ai :: T
(2)
i (i = 1, 2) then a1 1 a2 :: (T1 1 T2)(2).

3. For types Ti (i = 1, 2) we have

1T11T2
= 1T1

1 1T2
and >T11T2

= >T1
1 >T2

.

4. Join and composition satisfy, for ai, bi :: T
(2)
i (i = 1, 2) with disjoint Ti, the

exchange law

(a1 1 a2) · (b1 1 b2) = (a1 · b1) 1 (a2 · b2).

5. The diamond operator respects joins of elements with disjoint types: for
a :: T 2

1 , p :: T1 and b :: T 2
2 , q :: T2 with T1 ∩ T2 = ∅ we have the exchange law

〈a 1 b〉 (p 1 q) = 〈a〉 p 1 〈b〉 q .

Our typed relations from Section 2.2 form a join algebra.

3.4 Representation of Preferences

Preferences introduced in [Kie02] are strict partial orders, i.e. a special kind of
binary homogeneous relations. These relations are defined on domains of types,
and the objects compared are “database tuples” contained in a “database rela-
tion”, i.e., a set of tuples.

To avoid confusion between the two uses of the word “relation” we call tuples
database elements here and the database relation the basic set of objects. This
means that we consider a “static” snapshot of the database at the time of the
respective preference-based query and assume that no data is deleted or inserted
into the database while the query being evaluated.

Abstractly, preferences can now be modelled as typed elements a :: T 2 for
some type T . If one wants to express transitivity or irreflexivity of a, this can be
done by requiring a · a ≤ a or a u 1T = 0, respectively. However, as we will see,
for the most part these assumptions are inessential for the laws we will derive.

4 Maximal Element Algebra

Now we are ready for the algebraic treatment of our central notion.

4.1 Basic Definitions and Results

Definition 4.1. The best or maximal objects w.r.t. element a :: T 2 and test
p :: T are represented by the test

a . p =df p− 〈a〉 p .
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In particular, the test a . 1T represents the a-best objects overall.
This definition is also given, in different notation, in [DMS06]. An analo-

gous formulation, however, with tests encoded as vectors, i.e., right-universal
relations, can be found in [SS93].

To give a first impression of the algebra at work, we show a number of useful
basic properties of the . operator. Proofs of the following two lemmas can be
found in Appendix B.1 and B.2.

Lemma 4.2. Assume a, b :: T 2, p :: T . Then the following holds:

1. a . 1T = ¬pa.
2. pb ≤ pa ⇔ a . 1T ≤ b . 1T .
3. a . p ≤ p.
4. a . 1T ≤ p ⇔ a . 1T ≤ a . p.
5. a . 1T ≤ a . (a . 1T ).
6. a . (a . p) = a . p.
7. (a+ b) . p = (a . p) · (b . p).
8. b ≤ a ⇒ a . p ≤ b . p.
9. 1T ≤ a ⇒ a . p = 0T .

Lemma 4.3. Let p, q :: T be a disjoint decomposition of 1T , i.e. p + q = 1T ,
p · q = 0T . Then we have ¬p = q.

4.2 Basic Applications

Now we want to demonstrate how the maximality operator . works.

Example 4.4. Let a :: T 2 be a preference relation and suppose p1, p2 :: T are
tests that form a disjoint decomposition of 1T . Assume that all elements in p2
are better than all elements in p1, i.e.,

〈a〉 p2 = p1, 〈a〉 p1 = 0T .

We show that p2 represents the maximal elements, i.e. p2 = a . 1T :

a . 1T

= {[ definition ]}
¬ 〈a〉 1T

= {[ p1 + p2 = 1T ]}
¬(〈a〉 (p1 + p2))

= {[ distributivity of diamond ]}
¬(〈a〉 p1 + 〈a〉 p2)

= {[ assumptions of a ]}
¬p1

= {[ Lemma 4.3 ]}
p2
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By this tiny example one can see how the maximality operator works in
general, because one can always decompose 1T into tests representing the non-
maximal (p1) and the maximal (p2) elements, where p1 and p2 are disjoint.

4.3 Prefilters

In practical applications, e.g., in databases, the tests, in particular the test 1
representing all objects in the database, can be quite large. Hence it may be
very expensive to compute a . 1 for a given a. However, it can be less expensive
to compute b . 1 for another element b; ideally, that set is much smaller and the
a-best objects overall coincide with the a-best objects within b.1. This motivates
the following definition.

Definition 4.5. Assume a, b :: T 2. We call b a prefilter for a, written as b pref a,
if and only if

a . 1T = a . (b . 1T ) .

Note that no connection between a and b is assumed. By Lemma 4.2.6 we have
a pref a for all a. A concrete example of a prefilter will be given in Section 5.1.

We can give another, calculationally useful, characterisation of prefilters. The
proof of the following theorem can be found in appendix B.3.

Theorem 4.6. b pref a ⇔ pb ≤ pa ∧ pa ≤ pb+ 〈a〉 ¬pb.

So far, we have not required any special properties of the elements a that
represent, e.g., preference relations. Instead of transitivity or irreflexivity we
need an assumption that such elements admit “enough” maximal objects. This
is expressed by requiring every non-maximal object to be dominated by some
maximal one. In a setting with finitely many objects, such as a database, and
a preference relation on them this property is always satisfied and hence is no
undue restriction for our purposes. We forego a discussion of this assumption
for infinite sets of objects, since there it is related to fundamental issues such
as Zorn’s Lemma and Hausdorff’s maximality principle, hence to the axiom of
choice.

Definition 4.7. We call an element a :: T 2 normal if it satisfies ¬(a . 1T ) ≤
〈a〉 (a . 1T ).

This is a compact algebraic formulation of the above domination requirement.
By Lemma 4.2.1 it is equivalent to pa ≤ 〈a〉 ¬pa.

First we show that any relation on a subset of the domain of a normal relation
provides a prefilter.

Theorem 4.8. Assume a, b :: T 2.

1. Let a be normal. Then pb ≤ pa ⇒ b pref a.
2. Let a+ b be normal. Then a pref (a+ b).
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Proof.

1. The assumption about b is the first conjunct of the right hand side in The-
orem 4.6. For the second conjunct we calculate

TRUE

⇔ {[ a normal ]}
pa ≤ 〈a〉 ¬pa

⇒ {[ pb ≤ pa, contraposition and isotony of diamond ]}
pa ≤ 〈a〉 ¬pb

⇒ {[ x ≤ x+ y and transitivity of ≤ ]}
pa ≤ pb+ 〈a〉 ¬pb .

2. Since a ≤ a+ b, isotony of diamond and hence of domain imply pa ≤ p(a+ b)
and the claim follows from Part 1.

Next we show that under certain conditions prefilters can be nested.

Theorem 4.9. Assume a, b, c :: T 2, where b . 1T ≤ c . 1T and b pref a with
normal a. Then also c pref a.

Proof. First, by Theorem 4.6 we have pb ≤ pa ∧ pa ≤ pb + 〈a〉 ¬pb. Second, by
Lemma 4.2.1 and contraposition the assumption b . 1T ≤ c . 1T is equivalent
to pc ≤ pb. Hence by transitivity of ≤ we infer pc ≤ pa. Now normality of a and
Theorem 4.8.1 show the claim.

5 Complex Preferences

We have seen how some laws of single preference relations can be proved in
point-free style in our algebra.

Now we want to compose preferences into complex preferences. To this end
we will introduce some special operators. The standard semiring operations like
multiplication, addition and meet also lead to some kind of complex preferences,
but they are rarely used in the typical application domain of preference algebra
[Kie02,KEW11]. Instead the so-called Prioritisation and Pareto composition are
the most important constructors for complex preferences.

5.1 Complex Preferences as Typed Relations

To motivate our algebraic treatment we first repeat the definitions of these pref-
erence combinators in the concrete setting of typed relations [Kie02].

For basic sets M,N and preference relations R ⊆ M2, S ⊆ N2 the prioriti-
sation R& S is defined as:

(x1, x2) (R& S) (y1, y2) ⇔df x1Ry1 ∨ (x1 = y1 ∧ x2 S y2)
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where xi ∈M,yi ∈ N . The Pareto preference is defined as:

(x1, x2) (R⊗ S) (y1, y2) ⇔df x1Ry1 ∧ (x2 S y2 ∨ x2 = y2) ∨
x2 S y2 ∧ (x1Ry1 ∨ x1 = y1)

In order theory the prioritisation is well-known as lexicographical order.
We now want to get rid of the point-wise notation in favour of operators on

relations. The technique is mostly standard; we exemplify it for the prioritisation.
We calculate, assuming first M :: A,N :: B with distinct attribute names A,B,

(x1, x2) (R& S) (y1, y2)

⇔ {[ definition ]}
x1Ry1 ∨ (x1 = y1 ∧ x2 S y2)

⇔ {[ logic ]}
(x1Ry1 ∧ true) ∨ (x1 = y1 ∧ x2 S y2)

⇔ {[ definitions of >B and 1A ]}
(x1Ry1 ∧ x2>B y2) ∨ (x1 1A y1 ∧ x2 S y2)

⇔ {[ definition of cartesian product of relations ]}
(x1, x2) (R×>B) (y1, y2) ∨ (x1, x2) (1A × S) (y1, y2)

⇔ {[ definition of relational union ]}
(x1, x2) ((R×>B) ∪ (1A × S)) (y1, y2) .

A similar calculation can be done for the Pareto composition. Now we can write
the point-free equations

R& S = (R×>B) ∪ (1A × S) ,
R⊗ S = (R× (S ∪ 1B)) ∪ ((R ∪ 1A)× S) .

This is close to an abstract algebraic formulation. However, since we want to
cover also the case of non-disjoint, overlapping tuples, we will replace the Carte-
sian product × by the join 1 . From now on a preference x has type Tx, i.e.
a :: T 2

a , b :: T 2
b , ....

Definition 5.1. For the sake of readability we define for x :: T 2:

0x =df 0T , 1x =df 1T , >x =df >T

Definition 5.2 (Prioritisation/Pareto composition of preferences). As-
sume a join algebra. For a :: T 2

a , b :: T 2
b the Prioritisation a & b :: Ta 1 Tb is

defined by
a& b =df a 1 >b + 1a 1 b.

The Pareto compositions a <⊗ b, a⊗> b, a⊗ b :: Ta 1 Tb are defined by

a <⊗ b =df a 1 (b+ 1b),

a⊗> b =df (a+ 1a) 1 b,

a⊗ b =df a <⊗ b+ a⊗> b.
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a<⊗ b and a⊗>b are called left and right Semi-Pareto compositions, while a⊗ b
is the standard Pareto composition.

Remark 5.3. Under certain circumstances the term 〈>T 〉 q occurring, for exam-
ple, in 〈a& b〉 (p 1 q) can be simplified. Call an idempotent semiring weakly
Tarskian if for all types T and tests q :: T we have

〈>T 〉 q =

{
1T if q 6= 0T ,
0T if q = 0T .

For instance, the semiring of binary relations is weakly Tarskian. This implies
that in a term like 〈a 1 >b〉 (q1 1 q2) with a :: T 2

a the test q2 is irrelevant as long
as q2 6= 0b. This is exactly what we want, because q1 1 0b (= 0a1b) is a zero
element and must not have successors in any relation.

A semiring with > is called Tarskian when a 6= 0 ⇒ > · a · > = >. This
property was first stated for the semiring of binary relations (see, e.g., [SS93]).
By the standard theory of diamond and domain [DMS06], a Tarskian semiring
is also weakly Tarskian, but generally not vice versa.

In our hotel example from the introduction, the user would typically express
her preference as the Pareto composition of price and distance to the beach.

The definition of the Pareto compositions immediately yields an important
optimisation tool.

Corollary 5.4. The preferences a<⊗b and a⊗>b are prefilters for a⊗b. Likewise,
a 1 >B is a prefilter for a& b.

Proof. By definition, a <⊗ b, a ⊗> b ≤ a ⊗ b and a 1 >B ≤ a & b; hence Theo-
rem 4.8.1 applies.

Hence, in our hotel example from the introduction, we may prefilter by price
or by distance to the beach to speed up the overall filtering. Further applications
of this principle are discussed in detail in [End11].

5.2 Maximality for Complex Preferences

We first state the behaviour of the maximality operator for joins of preference
elements.

Lemma 5.5. For a :: T 2
a , p :: Ta and b :: T 2

b , q :: Tb with Ta ∩ Tb = ∅ we have

(a 1 b) . (p 1 q) = (a . p) 1 q + p 1 (b . q) .

Proof. We observe that, under the disjointness assumption, by Corollary 2.8.3
and a standard law for Cartesian products, for r :: Ta, s :: Tb, we have

(p 1 q)− (r 1 s) = (p− r) 1 q + p 1 (q − s) .

Hence, by the definitions and Lemma 2.10,
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(a 1 b) . (p 1 q)

= (p 1 q)− 〈a 1 b)〉 (p 1 q)

= (p 1 q)− (〈a〉 p 1 〈b〉 q)
= (p− 〈a〉 p) 1 q + p 1 (q − 〈b〉 q)
= (a . p) 1 q + p 1 (b . q) .

Since both prioritisation and Pareto composition are defined as sums of joins,
we can now use this together with Lemma 4.2.7, 4.2.1 and the exchange axiom
of Definition 3.4.4 to calculate their maximal elements.

Lemma 5.6. For a :: T 2
a , p :: Ta and b :: T 2

b , q :: Tb with Ta ∩ Tb = ∅ we have

(a <⊗ b) . (p 1 q) = (a . p) 1 q ,
(a⊗> b) . (p 1 q) = p 1 (b . q) ,
(a⊗ b) . (p 1 q) = (a . p) 1 (b . q) ,
(a& b) . (p 1 q) = (a . p) 1 (b . q) .

The proofs are straightforward and hence omitted.

Remark 5.7. It follows directly from the above lemma that

(a& b) . (p 1 q) = (b& a) . (q 1 p) = (a⊗ b) . (p 1 q) ,

i.e. Pareto composition and Prioritisation are identical on tests of the form p 1 q.
Note that this does not hold for general tests. Consider, for instance, the

basic set {0, 1}2 and its subset N =df {(0, 1), (1, 0)}, both represented by tests.
Assume a preference order Ri in the i-th component which fulfills 0Ri 1, for
i = 1, 2. Then (R1 & R2) . N = {(1, 0)}, whereas (R1 ⊗ R2) . N = N . This
does not contradict our above result, since N cannot be represented in the form
L×M with L,M ⊆ {0, 1}.

5.3 Equivalence of Preference Terms

Corollary 5.8. Let a :: T 2
a and b, b′ :: T 2

b . Then we have:

a& (b+ b′) = a& b+ a& b′.

Proof. Follows from definition of & and distributivity of 1 over +.

Corollary 5.9. For a :: T 2
a we have a <⊗ a = a⊗> a = a⊗ a = a.

Proof. a<⊗ a =df (a+ 1a) 1 a = (a+ 1a)u a = a. For Right Semi-Pareto and
Pareto an analogous argument shows the claim.

Theorem 5.10. For a :: Ta we have that (a &) distributes over <⊗,⊗> and ⊗.

Proof. Let b :: T 2
b , c :: T 2

c . We use the auxiliary equation (see Appendix B.4 for
a proof)

a& b+ 1a1 b = a& (b+ 1B). (1)

Now we calculate:
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(a& b)⊗> (a& c)

= {[ definition of ⊗> ]}
(a& b+ 1a1b) 1 (a& c)

= {[ equation (1) ]}
(a& (b+ 1b)) 1 (a& c)

= {[ definition of & ]}
(a 1 >b + 1a 1 (b+ 1b)) 1 (a 1 >c + 1a 1 c)

= {[ distributivity of 1 ]}
a 1 >b 1 a 1 >c + a 1 >b 1 1a 1 c +
1a 1 (b+ 1b) 1 a 1 >c + 1a 1 (b+ 1b) 1 1a 1 c

= {[ a 1 a = a and a 1 1a = a u 1a, compare Corollary 2.8.2 ]}
a 1 >b 1 >c + (a u 1a) 1 >b 1 c +
(a u 1a) 1 (b+ 1b) 1 >c + 1a 1 (b+ 1b) 1 c

= {[ a u 1a ≤ a, c ≤ >c, subsumption order ]}
a 1 >b 1 >c + 1a 1 (b+ 1b) 1 c

= {[ >b1c = >b 1 >c, definition of & ]}
a& ((b+ 1b) 1 c)

= {[ definition ⊗> ]}
a& (b⊗> c)

A symmetric argument holds for <⊗, so that (a &) distributes over <⊗ and ⊗>.
Using this we infer the distributivity over ⊗, see Appendix B.4 for details.

The proof of this theorem shows that the framework of typed relations is rich
enough to prove non-trivial preference term equivalences.

We have proved this theorem using Prover9. The input for the auxiliary
equation (1) can be found in Appendix A and the input for the entire theorem
is given in [MR12].

Such equivalences are useful for an optimized evaluation of preferences, be-
cause the evaluation of an equivalent term may be faster.

6 Conclusion and Outlook

The present work intends to advance the state of the art in formalising preference
algebra. Besides the point-wise “semi-formal” proofs by hand that had been
used originally we wanted to use automatic theorem provers like Prover9 to
get the theorems of preference algebra machine-checked. But we realized that
there was no straightforward way to put theorems like the prefilter properties or
the distributive law for Prioritisation/Pareto into a theorem prover. Especially
for the latter problem, the main reason is that originally the equivalence of
preference terms was defined, e.g. in [Kie02], in a very implicit manner: two
preference terms are equivalent if and only if the corresponding relations are
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identical on the basic set. This definition is not very useful if one tries to find
(automatically) general equivalence proofs.

The presented concept of a typed join algebra makes it possible to define
such equivalences explicitly: two preference terms are identical, if and only if
their algebraic representations are equal in the algebra.

Other theorems for which proofs are necessary do not just involve preference
terms, but properties of the maximality operator and prefilters. With the inverse
image we have employed a well-known algebraic concept to define the maximality
operator in quantifier-free form. This reformulation led us to point-free proofs.

The relevance of this topic stems from the demand for optimizing the eval-
uation of preference queries (e.g. [KH03,HK05]. The paper [REM+12] presents
a practical application of preference algebra, where complex preference terms
and huge data sets occur, and therefore optimisation methods are of essential
interest.

Our algebra is rich enough to cover the concept of preferences and their
complex compositions as well as the application of the maximality operator to
them. Simultaneously, the algebra is simple enough to be encoded in theorem
provers like Prover9.

With this we have produced a framework which hopefully will be the first
step for a comprehensive algebraic description of preference algebra. Our work
also covers some aspects of databases in general and thus contributes to the
formal description of database-related problems. A project in which our calculus
is applied systematically at a larger scale, using machine assistance, is under
way.

Acknowledgements. We are grateful to Jeremy Gibbons (MPC Co-Chair) and
the anonymous referees for valuable comments.
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A Sample Prover Input

For a :: T 2
a and b :: T 2

b we show the auxiliary equation (1) from Theorem 5.10:

a& b+ 1a1 b = a& (b+ 1b).

We use the following operators:

Prover-Input mathematically
a typed T a a :: T 2

a

a join b a 1 b
T a tjoin T b Ta 1 Tb
a prior b a& b
a + b a+ b

The assumptions are given as follows:

% all elements are typed
exists T (x typed T).

% addition is associative , commutative and idempotent
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(x + y) + z = x + (y + z).
x + y = y + x.
x + x = x.

% addition preserves type
x typed z & y typed z -> (x+y) typed z.

% subsumption order
x <= y <-> y = x + y.

% top is greatest element
x typed z -> x <= top(z).

% typing of top
top(z) typed z.
top(z1 tjoin z2) = top(z1) join top(z2).

% typing of one
one(z) typed z.
one(z1 tjoin z2) = one(z1) join one(z2).

% abbreviated typing
x typed z -> top(x) = top(z).
x typed z -> one(x) = one(z).

% distributivity of the join over addition
x join (y1 + y2) = x join y1 + x join y2.

% typing of join
x typed z1 & y typed z2 -> (x join y) typed (z1 tjoin z2).

% prioritisation (without resulting type)
x prior y = x join top(y) + one(x) join y.

Finally our goal is:

% auxiliary equation for distributive law
u prior v + one(u join v) = u prior (v + one(v)).

The entire input for the proof of theorem 5.10 can be found in [MR12].

B Proofs

In the proofs of section 4 we omit the type-index of 1 and assume type-compat-
ibility.

B.1 Proof of Lemma 4.2

1. Immediate from the definitions and 1− q = ¬q.
2. Immediate from Part 1 and shunting.
3. a . p

= {[ definitions of . and − ]}
p · ¬ 〈a〉 p

≤ {[ property of intersection ]}
p .
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4. a . 1 ≤ a . p
⇔ {[ definition of . and Part 1 ]}
¬pa ≤ p− 〈a〉 p

⇔ {[ definition of − and universal property of intersection ]}
¬pa ≤ p ∧ ¬pa ≤ ¬〈a〉 p

⇔ {[ shunting in second conjunct ]}
¬pa ≤ p ∧ 〈a〉 p ≤ pa

⇔ {[ second conjunct true by (3.1) ]}
¬pa ≤ p

⇔ {[ definition of . ]}
a . 1 ≤ p .

5. Immediate from the previous property by setting p = a . 1.

6. a . (a . p)

= {[ definition of . ]}
(p− 〈a〉 p)− 〈a〉 (p− 〈a〉)

= {[ property of difference ]}
p− (〈a〉 p+ 〈a〉 (p− 〈a〉))

= {[ distributivity of 〈〉 ]}
p− 〈a〉 (p+ (p− 〈a〉))

= {[ since p− 〈a〉 ≤ p ]}
p− 〈a〉 p

= {[ definition of . ]}
a . p .

7. (a+ b) . p

= {[ definition of . ]}
p− 〈a+ b〉 p

= {[ distributivity of 〈〉 ]}
p− (〈a〉 p+ 〈b〉 p)

= {[ property of difference ]}
(p− 〈a〉 p) · (p− 〈b〉 p)

= {[ definition of . ]}
(a . p) · (b . p) .

8. Assume b ≤ a, i.e., b+ a = a.

a . p

= {[ assumption ]}
b+ a . p

= {[ previous property ]}
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(b . p) · (a . p)
≤ {[ property of intersection ]}

b . p .

9. By isotony of the diamond we have p = 〈1〉 p ≤ 〈a〉 p and hence a . p =
p− 〈a〉 p = 0.

B.2 Proof of Lemma 4.3

q = (p+ ¬p) · q =

=0︷︸︸︷
p · q + ¬p · q ≤ ¬p

¬p = (p+ q)︸ ︷︷ ︸
=1

·¬p = p · ¬p+ q · ¬p ≤ q

By antisymmetry we have ¬p = q.

B.3 Proof of Theorem 4.6

We split the left-hand side of the claim equivalently into

b pref a ⇔ a . 1 ≤ a . (b . 1) ∧ a . (b . 1) ≤ a . 1 .

By Parts 4 and 2 of Lemma 4.2 the first conjunct is equivalent to pb ≤ pa. For
the second conjunct we calculate

a . (b . 1) ≤ a . 1

⇔ {[ definition of . and Lemma 4.2.1 ]}
¬pb− 〈a〉 ¬pb ≤ ¬pa

⇔ {[ contraposition and De Morgan ]}
pa ≤ pb+ 〈a〉 ¬pb .

B.4 Proof of Theorem 5.10

Auxiliary equation (1):

a& b+ 1a1 b

= {[ definition of & ]}
a 1 >b + 1a 1 b+ 1a 1 1b

= {[ distributivity of 1 ]}
a 1 >b + 1a 1 (b+ 1b)

= {[ definition of & ]}
a& (b+ 1b)

Distributivity of (a &) over ⊗:
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a& (b⊗ c)
= {[ definition of ⊗ ]}

a& (b <⊗ c+ b⊗> c)

= {[ distributivity of & over +, cor. 5.8 ]}
a& (b <⊗ c) + a& (b⊗> c)

= {[ distributivity of (a &) over <⊗ and ⊗> ]}
(a& b)<⊗ (a& c) + (a& b)⊗> (a& c)

= {[ definition of ⊗ ]}
(a& b)⊗ (a& c)
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