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Cluster method for the Hubbard model: Local moments and short-range correlations
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We use a functional-integral representation for the Hubbard model to describe the formation of local
moments and their magnetic correlations. In the absence of long-range magnetic order, the presence of
well-established local moments alone is sufficient to produce a gap in the electronic spectrum. The local
moments are treated within a coherent-potential approximation, and we apply an embedded-cluster
method to incorporate their interactions.

I. INTRODUCTION

In order to describe the physics of the high-T, oxide
superconductors two alternative approaches have been
put forward' to account for the magnetic properties and
the proximity in the phase diagram of antiferromagne-
tism and superconductivity. In strong-coupling theories
the on-site Coulomb repulsion between the carriers is as-
sumed to be large compared to their effective bandwidth
allowing to project onto the Hilbert space with no double
occupancy of sites. Within an effective one-band model
this gives rise to t-J or t-t'-J models describing the corre-
lated hopping of holes in the background of antifer-
romagnetically coupled spins. While these approaches
should be correct for the lightly doped compounds, a
description in terms of itinerant electrons may be more
appropriate in the intermediate doping regime of the su-
perconducting compounds. Alternatively, in weak-
coupling theories antiferromagnetism arises from the for-
mation of a spin-density wave (SDW). The long-range
spin order of the SDW leads to a gap in the single-
particle excitation spectrum. Hole doping destroys the
long-range order, but finite-range spin correlations still
give rise to a pseudogap in the density of states. Since
the cuprates may very well be in an intermediate-
coupling regime with a Coulomb repulsion comparable to
the bandwidth, either approach is valid as a starting
point to discuss the novel properties of the cuprates.
A weak-coupling SDW approach, however, does not

properly include the presence of local moments. The
long-range order of the SDW at zero temperature and
half-Glling can be destroyed either by doping with holes
or electrons or by increasing the temperature above the
Neel temperature T&. The true SDW gap in the single-
particle spectrum is then reduced to a pseudogap with a
Gnite density of states at the Fermi level. The system
therefore is no longer an insulator but a conductor. The
antiferromagnetic parent compounds, however, are still
insulating due to a Mott-Hubbard gap even above their
Neel temperature where the magnetic order is only short
range. It is well known that the presence of the well-
established local moments alone is responsible for the in-
sulating behavior and it is important to incorporate their
presence in any theoretical description.
Earlier attempts to understand the local-moment for-

mation in the framework of the single-band Hubbard

model have used the static approximation within the
Hubbard-Stratonovich functional integral scheme. In
this scheme the paramagnetic phase is considered as a
disordered alloy of up and down magnetic moments. ' A
disordered alloy is known to have a gap in the density of
states if the difference between the atomic levels is larger
than the bandwidth and this analogy leads to the insulat-
ing behavior of the disordered local-moment regime.
In this paper we will take a similar line of arguments,

but we will apply a more sophisticated cluster-alloy
theory, which was developed in recent years to account
for short-range correlations beyond the single-site ap-
proximation of the commonly used coherent potential ap-
proximation (CPA). In fact, we will start with the CPA
to describe an effective medium in which we embed a
cluster of sites where local correlations of the moments
are treated by weighted configurational averages. The
method is described in Secs. II and III. Small cluster re-
sults for a half-filled band are presented in Sec. IV. The
inclusion of fluctuations is discussed in Sec. V, giving an
outlook of how the present method can be extended to in-
vestigate fluctuating local moments with short-range
correlations.

II. FUNCTIONAL INTEGRAL SCHEME: CPA

We consider an effective single-band Hubbard model
on a square lattice

H =g Ekc k ck +Ug n, t n; t pN, , — (I)
k, cr I

with the tight binding dispersion e(k)=—2t [cos(k„a )
+cos(k a)] and the chemical potential p for N, elec-
trons. U is the intra-atomic electron-electron interaction
and t is the nearest-neighbor hopping integral. The Hub-
bard interaction can be rewritten in several ways leading
to some ambiguities in the functional integral method.
In the present paper we will apply the two-Geld method
which starts from

Un, &n, &=—(n, t+n, t) ——(n;&—n, ~) (2)

and has the advantage that its saddle-point approxima-
tion (SPA) yields the Hartree-Fock theory, although the
SPA breaks the rotational invariance for the magnetic
moments. After the Hubbard-Stratonovich (HS) decou-
pling the partition function in this scheme is given by
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Z = fQSx;(r) f gSy (w)exp —af g[x~ (r')+y& (r')]d7 Z[x,y ],
i J I

(3a)

1Z[x,y]=TrT exp — f3+(E&—p)ck cz +gu, (r')n, . (v') dr'
0 ka i 0'

(3b)

u; (r)=&mPU [ox,.(r)+iy;(r)] . (3c)

&~U IPyj =i (n t+—n, t),0 . U (4a)

while the saddle point for the x field determines the mag-
nitude of the local moment

a', :=&~UyPx,'= &n,—, n, , )—.0 U (4b)

In the above approximations the functional integral
reduces to a simple integral over all values of the local
magnetic moments. The trace over the fermion fields is
therefore reduced to an alloy problem with diagonal dis-
order and with the magnetic potentials —6; on the
sites. ' The probability for a given distribution of the
sise ' ', where

The many-electron problem of the Hubbard model is thus
transformed into a complicated one-electron problem in a
complex and time-dependent potential and a functional
integration over the potential itself. In the static approxi-
mation all time dependences are neglected, which is sup-
posed to be a good approximation when the Gipping time
AU/t of a magnetic moment is long compared to the
electronic hopping time fit ', i.e., for U/t large. In this
limit charge fluctuations are negligible and the y field,
which decouples the charge component of the interaction
Eq. (2), is replaced by its saddle-point value y 0

G;; is the local Green's function of the unperturbed
tight-binding band

1 1 2
G;;(cu)=—g E% „co—(Ek—p) ~(co+@,)

4t
CO+P

where K is the complete elliptic integral of the first kind.
The CPA site-diagonal self-energy X(co) is determined by
the condition

X(z)=[A —X (z)]G,, [z—X(z)] .
In Fig. 1 we plot, as in Ref. 8, the local density of states
for different values of the effective potential 6 for the case
of one electron per site with p=0. For small 6/t the
band is broadened slightly and the van Hove singularity
at the band center is suppressed. As expected, for values
of 6 larger than half of the bandwidth of the noninteract-
ing tight-binding band 6)2t a gap develops around
co=p =0. With decreasing temperature the correspond-
ing free energy as calculated from Eq. (5) develops a local
minimum as a function of 6, which further shifts to
larger values of 5 when the temperature is lowered.
Since b, is by Eq. (4b) directly related to the magnitude of
the local moment, the system becomes more magnetic
with decreasing temperature.

III. CLUSTER METHOD
+-++f p; (6„.. . , b~;co)

i io

Xln( I+e ~' "')dc@,

p,. is the local density of states on site i, and N is the
number of sites. The total free energy F is then to be
determined from

&F
—(pUy4)( „+,, &NZ=e =e

N
X +dh

It is well known" that there are two symmetric minima
for 9'(b. ) when 6, is different from zero. In the paramag-
netic regime we start by neglecting the short-range corre-
lations between the local moments and assume that p;
depends on the local value of 5; only. p; is then calcu-
lated in the coherent potential approximation' for a ran-
dom binary alloy of potentials +

~
b, ~:

=1 G;; [co—X(cu) ]
p; (cu—p)=—Im l—[6,—X(co)]G;,[co—X(cu)]

Although the CPA treatment has the appealing feature
that it describes the formation of local magnetic moments
and the appearance of the Mott-Hubbard gap in a simple
way, any sort of magnetic ordering is already beyond the
scope of this single-site treatment, since no interaction
between the moments is taken into account. The short-
range correlations, however, can be incorporated by us-
ing the embedded-cluster method (ECM) (Ref. 7) method
from alloy theory that was originally invented to study
the effects of local clustering of atoms on the electronic
properties of the alloy. In the language of the Hubbard
model this precisely corresponds to local magnetic order-
ing. The embedded cluster method is in detail described
in the literature, ' but for the sake of completeness we
will in the following outline the basics of its computation-
al procedure.
In the static approximation the HS decoupling leads to

a tight-binding Hamiltonian for electrons on a lattice
with diagonal disorder

(lo)

where the local potentials v; are given by the auxiliary
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HS fields. The Dyson equation for the single-particle
Green's function is now split up into the contributions
from lattice sites inside and outside of an arbitrarily
chosen cluster C

1.5

1.0
~~
V)

0 ~ 5I 1a=-i1

~g0 ~0
~gS ~~ ~ ~~ ~ 4~ ~~0

at@ ++IOI I
~OIIPJ~tgg~ ~ Wg» I

Gij cr gi a ~ij + P ij kja+ P ik kj cr
kmC k~C

g, (z)=[z—(U; —/M)] ' is the bare local Green's func-
tion in the absence of hopping. For i,j H C the last term
in the Dyson equation can formally be treated as a per-
turbation and Eq. (11) is iteratively solved by introducing
a matrix 6:k

0 ' 0
I

-1 ~ 0
I

-0 ~ 5
I

0.5
I1.0

kGk/ a
= Q 5;kGk/ ~

kEC keC
(12)

for i H C. The matrix 6 represents the sum of all hopping
paths that start and end at sites inside the cluster but
avoid all cluster sites at intermediate steps:

6;k= y t;„g„l„k+ y t;„g„r„g t /, +
n&C n, m PC

(13)

0
~~
N
CO
U

2.0—

1.5-'

1.0—

0 ~5—

0 ~0—

h,=0.4

I

-1 ~ 0
I-0.5 I

0.5
I1.0

With the matrix 6 we easily solve for 6 inside the clus-
ter. The key idea of the method now is to recognize that

depends only on the part of the system outside the
cluster, but it is independent of the configuration inside
the cluster. We will therefore assume that the cluster is
surrounded by an effective medium that we describe
within the coherent potential approximation, i.e., the lo-
cal Green's function outside the cluster is given by

CPA( )
1

z—[X(z)—iLt]
and independent of the site. Using the local CPA
Green's function in the expansion for 5, the intracluster
Green's function matrix is given by

G (z)= [z 1 H 5 cp~]
where the matrix elements ofH are defined by

(15)

Ct.

2.0— b,=0.7
(c) H-='

lJ
1J

ifi=j
ifi' . (16)

O

~~
McI

1 ~5—

1.0—

0.5—

0.0- ~

-1 ~ 5
I-1.0 I-0.5 I

0.5
I1.0 I

1 ~ 5

If we disregard the distinction between sites inside and
outside the cluster and treat the whole system within
CPA, we know that

ik(R,.—R. )
(G cpA)

e
N k z—(Ek—/M)

—X(z) (17)

This in turn can be used to determine the matrix 6 cpA in
Eq. (15) and we finally obtain

G (z)= [H H+ G cp~(z)]—
FIG. 1. Local density of states for a random binary alloy

with local potentials +6 based on a two-dimensional tight bind-
ing band. (a) 1~1=0.15, (b) 1~1=0.40, and (c) 1~1=0.70.
Dashed lines correspond to the case where the local potential at
the given site is o161 with cr=+ and their sum is given by the
continuous line. Energies are measured in units of 4t.

The matrix elements of H differ from those of H in that
the local potentials v; are replaced by the CPA self-
energy X(z).
Inside the cluster it is now possible to perform a

weighted average over the static auxiliary HS fields. The
weight factor is determined by the free energy Eq. (5) of a
given configuration. The advantage of the cluster
method is that for a small enough cluster we can indeed
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perform the configurational average and the magnetic
correlations between the local magnetic moments mani-
fest themselves by the lower free energy of specific "up"
and "down" arrangements of the moments. For obvious
reasons we will choose a highly symmetric cluster of sites
and in particular be interested in the local density of
states p, =—1/~ ImG;; at the center of the cluster.

IV. XUMERrexr. CWI,CUI.WTIu~S

2.0—
tA

tA 1 5
O

Ce 1.0—

I

site c
guratio

h,W

For an illustration of the method we will in the follow-
ing present the calculations for the smallest meaningful
cluster: a star-shaped five-site cluster for the two-
dimensional square lattice. Given the CPA self-energy
and a specific configuration of local potentials 5, i.e., lo-
cal moments, the calculation of G is simple and involves
only the inversion of complex matrices of dimension
X,XX„where X, is the number of sites inside the clus-
ter. In addition, the lattice Green's functions'"

ik.R,"
G,'(z)=— (19)X k z

—(Ei,—p)

0.5—

2.0—

VI

C$e 1,5—

I-1.0 I-0.5 0.0
I/4 t

I

,
five-site cluster
configuration (f)

p,W h.=0.4

I

0.5
I1.0

have to be evaluated for arbitrary complex arguments
and sites i,j E'C.
As for the CPA calculation in Sec. II we also adopt the

binary alloy approximation for the calculation of the
cluster G-reen's function, i.e., we consider all possible 2
configurations of potentials + ~A

~
on the five cluster sites.

But due to their degeneracy, actually only the six ar-
rangements shown in Fig. 2 need to be evaluated. For
each configuration A. the corresponding contribution
from the central cluster site to the free energy is calculat-
ed from Eq. (5). The relative weight of a given
configuration A is then determined by

MC
a) 1.0—'U

0.5—

0.0-&
I-1.0 I-0.5 0.0

m/4 t
0.5

I1.0

FIG. 3. Local density of states at the center of the five-site
cluster calculated by the embedded-cluster method (a) for the
antiferromagnetic and (b) for the ferromagnetic configuration.

(20)

Ni=i, . . . , 2
Figure 3 shows the local density of states at the cluster

+h, -b,

(b)

C+h, +h, O+6

(d)

+Q +g

In

iL JK jIK(~--~g i)

FIG. 2. Configurations of local potentials +6, i.e., "up" and
"down" magnetic moments for the five-site cluster for a fixed
potential +5 at the center. (a) is an antiferromagnetic and (f) a
ferromagnetic arrangement.

center for the totally antiferromagnetic and ferromagnet-
ic configurations. A value of 6 was chosen for which the
CPA calculation in Sec. II did not develop a gap in the
density of states, but only a pseudogap (see Fig. 1). The
"ferromagnetic" configuration shows an enhancement
around cu=p =0, while the "antiferromagnetic"
configuration further deepens the pseudogap, indicating
the expected tendency towards the formation of a true
gap with antiferromagnetic spin order. ' Most remark-
able, however, are the differences in the cluster free ener-
gies of the diFerent configurations as listed in Table I.
For the chosen parameters, temperature, and Ult, the
antiferromagnetic configuration has by far the lowest free
energy V and translated into a relative weight according
to Eq. (20) any other configuration contributes less than
6% to the partition function. The configurationally aver-
aged local density of states is therefore barely distinguish-
able from the density of states shown in Fig. 3(a) for the
antiferromagnetic configuration. The above numbers do
of course depend on U/t and the temperature, but
presumably not very sensitively on the cluster size as cal-
culations on a nine-site cluster did indeed indicate. The
embedded-cluster method therefore in a very simple way
nicely demonstrates how the many-body correlations, i.e.,
the magnetic ordering, are reinstalled by the functional
integration over all the single-particle alloy problems by
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Configuration A Free energy 7/4t Probability P~

TABLE I. Parameters chosen for the five-site cluster calcula-
tion:

~
6

~

= 1.6t, T=0.2t, and U=4t.
for the bosonic Matsubara frequencies co„=2~n /p.
Since the dynamic spin susceptibility is directly related to
the mean-square fiuctuations of the auxiliary field 5;(r)
b 16

(a)
(b)
(c)
(d)
(e)
(f)

—0.562—0.340—0.246—0.260—0.175—0.226

0.9422
0.0110
0.0017
0.0022
0.0004
0.0011

r

g(q, ico„)=— ( ~A(q, ico„)~ )—1
1 2P (26)

the functional integration immediately leads to a
random-phase-approximation-like result for y(q, i co„)

its selection of the relevant static configurations (or dy-
namic paths beyond the static approximation).

V. EXTENSIONS: SUMMARY

@CPA(q ~. )
g(q, t co„)='

1—U&cpA(q, i co„) (27)

1 lj
G()~ (ico )=—gX q in)„(Ei,—p )— (22)

The trace has to be performed with respect to the site in-
dices i, o., and v, where v labels the fermionic Matsubara
frequencies co =(2n + 1)m. /p. Since we want to keep the
CPA propagator as a leading approximation, we write

ln(Z [x ] )=Tr ln(G oG cpA)

+Tr in[1+G cpA(G '—G cpA)] (23)

and expand the last logarithm to second order in
(XcpA—v), where v is the alloy potential Eq. (3c). This
expansion leads to

In(Z[x])=Tr ln(1—X CPA' o)+Tr(G CPA~ cpA)

+pglh(q, ico„)~ NcpA(q, ico„)
q, n

There are several ways to improve on the method out-
lined so far. First we can improve on the treatment of
the cluster environment by including small fluctuations of
the HS potentials b, ;(r) around their saddle-point values.
The corrections to the CPA formulation are then most
naturally incorporated by rewriting the trace over the
time evolution operator Z[x] Eq. (3b) for the time-
dependent alloy problem as"

Z[x]=e (21)

again keeping the y field fixed to its saddle-point value. G
is the exact single-particle propagator of the alloy prob-
lem and Go is the propagator in the absence of interac-
tions

This result holds for finite frequencies i co„&0. For
iso, =0 the dependence of the CPA self-energy- on the
static alloy configurations has to be taken into account.
However, as long as the (imaginary) time-averaged part
of the auxiliary field is assumed to be fixed to the saddle-
point value, the static susceptibility is determined by the
saddle-point alone. The form Eq. (26) for the susceptibili-
ty is interesting in itself and it is currently investigated in-
dependently from the cluster method. '
The second line of extensions addresses the treatment

of the cluster itself, in particular, the question how Auc-
tuations of the auxiliary fields can be incorporated.
Within an adiabatic approximation it is in fact straight-
forward to include a time dependence of the fields or,
equivalently, the local moment parameters b, , (r). In this
approximation the intracluster Green s-function matrix
G is calculated for the "snapshot" configurations of the
auxiliary fields at a given time ~. Standard available
Monte Carlo algorithms can be used to perform the func-
tional integral by sampling over the fields inside the clus-
ter. This procedure, in the adiabatic approximation,
would allow to describe fluctuating local moments with
short-range correlations inside the small cluster, yet the
infinite system is represented by the CPA self-energy for
the eff'ective medium surrounding the cluster. It will be
interesting to compare the ECM cluster results with
quantum Monte Carlo data obtained on finite lattices of
the same size. Numerical calculations in this direction
are already in preparation and their results will be report-
ed elsewhere.
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