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Abstract: The parent compounds of high temperature oxide superconductors are 
antiferromagnetic. The nature of hole excitations in the parent compounds is discussed 
in both the weak coupling or spin density wave (SDW) regime and the strong coupling, 
or t-J model limit. One finds that the hole becomes dressed by a cloud of antiferromag- 
netic spin fluctuations which describe the reduction of the staggered antiferromagnetic 
order parameter in the vicinity of the hole. In addition a twist of the spin quantization 
axis occurs near the hole. As the hole concentration x increases, long range antiferro 
magnetic order is suppressed with finite range spin fluctuations occuring in the super- 
conducting phase. The nature of the hole-like excitations in this regime is discussed. 
One finds that as in the ordered antiferromagnetic regime, the one particle spectral 
function is dominated by two peaks centered near the SDW or Mott Hubbard upper 
and lower bands. In addition, there appears a third peak of fundamental importance 
in understanding the position of the chemical potential as a function of doping. This 
peak located between the upper and lower bands corresponds to a fully dressed quasi 
particle with very small weight zk which is populated by doping and can be probed 
by photoemission spectroscopy. This split off band removes spectral weight from both 
the lower and upper bands and leads to a foot on the photoemission intensity versus 
binding energy curve as seen experimentally. For increased doping the spin fluctuations 
are reduced in amplitude as the spin-spin correlation length becomes of order the atomic 
spacing. In this regime the Landau quasiparticle scheme is restored. It is argued that 
the spin bags or polarons evolve smoothly from the weak coupling SDW to the strong 
coupling large U regime as do the corresponding spectra. 

Keywords: High Tc superconductivity, photoemission spectroscopy, spin density wave, spin 
bag, spin polaron. 
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I. INTRODUCTION 

Current theoretical efforts to understand high temperature superconducting material can be 
classified into two categories, namely novel and exotic. In novel approaches a pairing type con- 
densation is assumed to exist with fermion quasi particles of charge fe and s = a being paired 
by an effective attractive interaction, with superconductivity already latent in a two dimensional 
copper oxide plane and phase fluctuations being suppressed when interplanar hopping extends 
the pairing correlations to three dimensions. 

In exotic approaches, many if not all of these conditions are violated. For example, in the 
resonating valence bond and related approaches, the excitations are taken to have charge fe and 
spin 0 (holon) and charge 0 and spin one-half (spinon). Thus, it is presumed that for the doped 
material in the absence of long range antiferromagnetic order, an injected hole spontaneously 
fissions into a holon and spinon, the presumed stable excitations. While at first sight such 
a spontaneous decay appears peculiar, similar effects actually occur in quasi one-dimensional 
conductors such as polyacetylene where the excitations are charged spinless solitons and neutral 
spin one-half solitons. The statistics of such excitations depends on the theoretical framework 
being used. So-called anyon statistics implies that the ground state of the system breaks time 
reversal symmetry as in the ground state of the quantum Hall effect where an external magnetic 
field & is imposed. In high ?‘c materials a spontaneously broken time reversal symmetry is 
assumed although the existence of a ground state having such broken symmetry has yet to be 
demonstrated either experimentally or theoretically starting from a credible Hamiltonian. It is 
well known that one can transmute the statistics of particles in two dimensions by attaching 
statistical flux tubes to the particles. Thus, anyons can be transformed to a bosonic or fermionic 
representation with a suitable interaction between the statistical flux tubes being included. Most 
of these exotic schemes require at least weak three dimensional coupling for superconductivity 
to occur. 

While the two categories of theories appear to be exceedingly different, there are certain 
common features between them. The first such feature is the fact that the quasiparticle renor- 
malization constant zh is small compared to unity. That is, the amplitude for a bare hole to be 
inserted in a fully dressed state is small compared to one. This feature occurs not only in the 
two schemes mentioned above but also in the so-called marginal Fermi liquid’ approach in which 
the hole self energy exhibits anomalous behavior near the chemical potential. 

A second common feature is the strong correlations leading to non-Fermi liquid temperature 
and energy dependence in the normal state which occurs in both limiting approaches. Such 
anomalous normal state properties are dictated by experiment. What is less clear is which of the 
approaches to the superconducting phase will ultimately be correct. Recent experiments probing 
the broken time reversal symmetry of the superconducting phase suggest evidence both pro and 
con. We must await the final experimental resolution to this fascinating question. 

The generic phase diagram of high temperature superconductors is shown in Figure la. 

l 
X 

Figure la. Phase diagram 
TC materials of doping x. 
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For weak doping the system is an antiferromagnetic insulator with the NCel temperature vanish- 
ing at a concentration xo which is typically of order 3% holes. The smallness of ~0 indicates that 
the magnetic form factor of a dressed hole involves the suppression of antiferromagnetism in a 
significant region surrounding the hole encompassing of order 10 neighboring sites. This picture is 
consistent with the fact that long range antiferromagnetic order in such an anisotropic antiferro- 
magnet continues only to small hole concentrations. For doping larger than ~0 a spin glass-type 
phase appears in which the dressed holes are likely pinned to charged impurities, perhaps in the 
fashion of weak localization. For larger doping, this glass melts and the semiconducting behavior 
of the spin glass converts into metallic behavior leading to superconductivity. In this regime, 
one is dealing with a strongly correlated system or a “strange metal”. Finally, as the doping 
continues, the system presumably approaches Fermi liquid behavior although thermodynamically 
it is difficult to achieve such large dopings in a stable materials. 

Figure lb shows a schematic density of states as a function of energy for each of the principal 
regimes-the antiferromagnetic insulator, the strongly correlated metal and the paramagnetic 
Fermi liquid. 

Figure lb. A schematic density of electronic states for the antiferromagnetic, pseudogap and Fermi liquid regimes. 

One sees that the gap characteristic of the antiferromagnetic insulator is transformed into a 
pseudogap in the strange metal phase and finally a bump characteristic of a mass enhancement in 
the Fermi liquid regime. The principal theoretical puzzle is to understand the normal phase of this 
strange metal and how the peculiar excitations in this regime lead to high TC superconductivity. 

II. THE HUBBARD MODEL 
The essential physics of cuprate superconductors is centered on transport in the two di- 

mensional (7~02 planes. As mentioned above, phase fluctuations of the superconducting order 
parameter are quenched by hopping along the direction c perpendicular to the ab planes. Since 
there are three important orbitals per copper oxides unit cell, namely the copper ~&2_~2 and p, 
for each of the two oxygen atoms, there are three bands important for the spectroscopic proper- 
ties of these materials. However, since the lower two bands are filled and the upper band is half 
empty for the parent antiferromagnetic insulator, it is likely that the dominant low energy effects 
essential for superconductivity can be mapped into a one-band problem in which the copper d 
orbital and the oxygen p, orbitals mix to form an antibonding, partly filled band. It is this 
upper antibonding band which we consider in an effective two dimensional one band Hubbard 
model. Interband transitions are, no doubt, important for optical spectra. 

The one band Hubbard model is defined by the Hamiltonian 

H= --t c (c&g + h.c.) + u c nqf-q, 
<ij> i 

0 

(1) 
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In Figure 2a, the mean field Nobel temperature TN is sketched as a function of the coupling 
constant g E U/4t. 

Figure 2a. Mean field N&l 
temperature versus V / 1. 

REGIME 1 IN T E R M E D IA T E  1  MOTT-HUBBARD 
/ C W ;E G  1  R E G IM E  

The N&e1 temperature peaks for g of order unity, with ?‘N vanishing for both large and small 
values of g. The region g small compared to unity corresponds to the spin density wave or 
weak coupling behavior while, g large compared to unity corresponds to the Mott Hubbard 
strong coupling regime. Experimental evidence suggests that physical reality in the cuprate 
superconductors occurs for intermediate coupling, with g of order unity. 

In Figure 2b the density oft spin (dashed line) and 1 spin (solid line) is shown for the three 
regimes. 

0123'0123 

Figure 2b. Density of spin up (dashed he) and spin down (solid line) electrons in the weak, intermediate and strong coupling 
regimes. 

For g of order unity the t spin tends to sit mainly on the even sites while the down spin sits 
primarily on the odd sites, although there are fluctuations to the opposite spin configuration. 
For weak coupling, scattering of electrons by the oscillating exchange potential set up by the spin 
density wave leads to an energy gap 2A. This gap grows as the amplitude of the spin density 
wave increases and saturates at the value U for large values of g. It is important to note that the 
gap essentially disappears well above the N&l temperature for weak coupling while it remains 
essentially U in the strong coupling regime. One can view the persistence of the gap in the spin 
disordered regime either as a local Coulomb correlation effect or equally well as a local exchange 
interaction set up by the local moments on the individual sites. These two views are related by 
a simple mathematical identity 



                           1325 

We first consider the weak coupling approach for small dopinga. The sublattice magnetiza- 
tion Mz is shown in Figure 3 as a function of g. 

l.O( 1 1 I I I I I I 

Figure. 3. Sublattice magne- 
tization as a function of U / 1 
in the mean field approxi- 
mation (dashed line) and 
with gaussian spin fluctua- 
tion dressing of the ground 
state (solid line). 

0 I , I I I I I I 
0 3 6 9 

The results of the mean field calculation are shown in the dashed line with the reduction of the 
sublattice magnetization due to Gaussian spin fluctuations as indicated by the solid line. In 
Figure 4, the spin wave velocity in units of ta is shown, where a is the lattice spacing. 

I I I I ’ 

Figure 4. Spin wave veloc- 
ity for harmonic spin waves 
about the mean field SDW 
state (solid line) and the re- 
sult of the 2-d Heisenberg 

j * 

model with J = 412 / U. Q2- 

a I I I 1 
0 2 4 6 0 

u/t 

The solid line indicates the results of mean field plus Gaussian spin wave dressing while the 
dashed line indicates the results of the antiferromagnetic Heisenberg model. Interestingly, the 
mean field result reduces to Anderson’s result for the Heisenberg model in the large U limit in 
the absence of spin fluctuation corrections. Thus it appears that the mean field plus Gaussian 
spin fluctuation approximation gives a reasonable account of the undoped antiferromagnet over 
the entire coupling constant domain. 

III. Fermion Excitations 
As shown in Figure 5, for u = 0 the electronic spectrum is given by 

Ek = -2t (cos k~u+cos kya) .  

Figure 5. The Bloch energy 
Ek for k, = k,,. 

(3) 

In the presence of the spin density wave, exchange Bragg scattering leads to a gap 31 in the 
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spectrum with the energies Ek being 

Ek = q/&z, (4) 
as shown in Figure 6a. 

Figun6.a. The mean field 
SDW Blocb energy EL in the 
full zone (top panel) and in 
the magnetic (reduced) zone 
(lower panel). 

Electronic states can be described either in the original Brillouin zone or in the magnetic zone 
where the upper band is folded back into this smaller zone, indicated hy the shaded portion of 
Figure 6b. 

Figure 6b. The full zone and 
Ihe magnetic zone, illustrat- 
ing the nesting vector Q. 

The quasiparticle operator yh creating its mean field excitations is given by 

^Iks = ~kCLs + %Q+&,s? (5) 

where Q is the SDW wave vector (r/a, r/a). In the undoped antiferromagnetic insulator, the 
lower band is fully occupied while the upper band is empty. In the large U limit the two bands 
go over to the lower and upper Mott Hubbard bands. In actuality, an added electron or hole 
locally weakens antiferromagnetism and leads to a dressing of the fermion wit.h a. cloud of spin 
fluctuations. The dressed excitation, a spin bag or one band polaron, is illuaLrated in Figure 7 
where the staggered magnetization 

(6) 



                           

is reduced in magnitude within a region of size &Dw defined by 

bW = fiVF/‘%DW- 
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(7) 

Figure7. Reduction of the 
staggered magnetization within 
tie spin bag of size 5. 

The hole self energy I& (k, w) is shown within the one loop approximation in Figure 8. 

Figure 8. Hole self energy, 
where the fetmicm propaga- 
tor and the. vertices represent 
y particles, Eqn. (5). and the 
boson is the RPA spin wave, 
both kmgitudinal and trans- 
verse modes. 

Notice that bot,h the fermion and boson line are excitations within the mean field SDW approx- 
imation with c00~~ence factors entering at the vertices. The boson line is tht, i qitudinal or 
transverse spin susceptibility for the SDW. xZz leads to the reduction of Mz ,\ ithin the bag 
while x* creates the spin twist about the bag with the spatial variation given by an inverse 
power law falloff. The spin bag is analogous to the polaron in a semiconductor where the band 
gap is locally reduced in the presence of an added electron or hole, 

When two holes are added the interaction is given to leading order by the exchange of one 
drt=.cd spin ~uctuat.ion as indicated in Figure 9a. 

Figure 9a. The pairing inter- 
action between y states 
within the one spin wave ap- 

kt k'  ?

The pairing potential vhh/ within this approximation is shown in Figure 9b. 

Figure 9b. Pairing potential 
for the graph of Figurc 9s. 



I328                                  

These resullt first derived by Wen, Zhang and one of the authors shows a region of strong attraction 
for momentum transfers k - k’ smaller than the inverse bag size. This is in sharp contrast with 
the Born approximation for bare particles interacting with bare phonons as shown in Figure 10 
with V being repulsive for all values of k - k’. Therefore, the bag effect is essential to obtain 
an attractive interaction in this system. 

Figure 10. Pairing interaction dia- 
gram between bare Bloch electrons c& 
(upper panel), illustrating that the 
potfxttiat is repulsive in this approxi- 
mation for all k - k’. 

IV. Intermediate Doping and Short Range Spin Correlations 
We next consider the doping range x corresponding to a strongly correlated metal as shown 

in Figure 1. This regime can be approached from the large x regime where Fermi liquid theory 
presumably holds. On reducing x, antiferromagnetic spin fluctuations build up, both in ampli- 
tude and in spatial coherence with the spin-spin correlation length eventually diverging as one 
approaches the antiferromagnetic insulator instability. Kampf and Schrieffer3 have explored this 

’ regil I I 1 1 by considering the one particle self energy Es (k, w) as illustrated in Figure 11 within. 
the OI s 1: loop approximation. 

Figure Il. One loop self 
energy in the paramagnctic 
regime. ?he spin wave is 
summed over longitudinal 
and transverse modes. 

The boson propagator was represented by the susceptibility 

x(w) = x2 c & (q _ ($2 + ,2F(w)y (S) 



                           

where r is the reciprocal of the spin-spin correlation length and 8’(w) is given by 

1329 

F(w) = 
J 

2vg(v) dv 
,2 _ ,2 + i6’ 

d4 = 4 4 4--o 
0 

9 otherwise. 

This form is similar to that used by Millis, Monien, and Pines4 

XAFh‘d =  
X Q  

1+(Q-q)2c2-i.&’ 
(10) 

For large doping the spin-spin correlation length is very short and one obtains a self energy 
of the form shown in Figure 12. 

Figure 12. The real part of the electron self energy ReZ in the Fermi liquid regime (top panel) and the cornsponding density of 
states enhancement at the chemical potential, comsponding to m’/ n( > 1. 

An essential point is that in this regime the slope of c as a function of W is negative over a 
substantial region around the Fermi surface. This leads to an increase of the density of states 
near the Fermi surface and a depletion away from the Fermi surface. 
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This conventional Fermi liquid picture is drastically altered when the spin-spin correlation 
length becomes large compared to the interatomic spacing. In this case, the real part of Z: takes 
on a very different form as shown in Figure 13a. 

Figure 13a. ReZ in the pres- 
ence of strong antiferromag- 
netic spin fluctuations in the 
paramagnetic phase (top 

Except for the small wiggle near the chemical potential, the basic slope of c is positive rather 
than negative. Thus, since the real part of c corresponds to the level shift effect, states of 
positive energy are pushed up and states of negative energy are pushed down leading to a pseudo 
gap indicated in Figure 13b. 

N(w) 

Figure 13b. The formation of 
a pseudo gap. 

The physical origin of these two quite different energy dependences of c can be understood 
as follows: two possible time orderings of the vertices in Fig. 11 can occur. In Figure 14a one has 
the conventional polaron self energy in which an injected hole is scattered into an intermediate 
hole state beneath the Fermi surface, as for a hole polaron in a semiconductor. 

e k’ 

k k 

(a) 

k 

Figure 14a. Polaron time ordering of the 
self energy graph, in which a hole 
occupies the intermediate state k’. 

Figure f4b. The exchange graph which describes 
the Pauli principle suppression of a spin fluctuation 
process which lowers the system energy in the 
absence of the added hole. Thus, this contribution 
raises the hole (and the f electron) energy and 
leads to a pseudo gap. 
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However, as shown in Figure 14b an injected hole can also be converted into an electron above the 
Fermi surface in the intermediate state. This second diagram physically arises from the suppression of 
vacuum spin fluctuations by the action of the exclusion principle effect associated with the added hole. 
This can best be seen as in Figure 15a where the added hole in state k excludes a vacuum fluctuation. 

8 

k+q 

k 

Figure 15a. The vacuum fluctuation referred to in Figure 14b. 

(a) 

b) 

Figure 15b. The Feynman exchange graph essential to Preserve the Pauli principle and the linked cluster expansion. 

In this state a second hole, also in state k, is contained in the vacuum spin fluctuation and is 
forbidden by the exclusion principle. As Feynman showed, such Pauli principle violating effects 
can be handled by adding another diagram given by exchanging the lines of the two violating 
particles as is shown in Figure 15b. This extra diagram precisely cancels the forbidden graph, 
and also allows one to preserve the linked cluster expansion which is crucial to the proper volume 
scaling of the system energy. Since the vacuum fluctuation energy lowers the total system 
energy in the absence of the hole, the introduction of the hole raises the energy and therefore 
leads to the pseudo gap behavior characteristic of Figure 13, recalling that increasing hole energy 
is measured toward negative w - Jo. 
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V. Implications for Phot~emission Spectroscopy 
Photoemission and inverse photoemission spectroscopy in essence measure the one particle 

spectral function 

1 
A(k,wf =I ;lmG(k,w) [=I aIrnw _ Ek _ C(k,w) 1 ’ (11) 

Angular resolved spectra measure both the k and w dependence of A, as shown in Figure 16. 

Figure 16. Hole 
lr’ 

spectral ; 
function for spin-spin corre- c s - 
lationlengthhss= l/r=a, 8 
andk=W(n/2,x/2). This 22_ 
illustrates Fermi liquid be- G 
havior. L 

Zl- 

In the large doping limit the Landau theory presumably holds with a sharp quasiparticle peak 
located at the renormalized single particle energy and two incoherent peaks, one for holes and the 
other for electrons occurring at large energy. As the dopin;l is reduced the spin-spin correlation 

length grows and the weight of the quasiparticle zk is reduL( ;-I, with the incoherent backgrounds 
becoming more sharply defined, as shown in Figure Ii’. 

Figure 17. Hole spectral 3.2” 

function for Lss = 200 and A,r’ 
k = l . l S(n /2,7t 12) illustrat- 

rrl.O- 
( 

ing sharpening of the iuw- EO.I- 
herent backgrounds which 5 
arise from quasi-Bragg $**a- 
scattering of the hole by the go.,- 
large amplitude slow spin z 

fluctuations. The quasi par- go.t- (A 
tide amplitude zk iS Smdk 

0.0 
*. .2 

CQYt 
i i 
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Finally, in the antiferromagnetic phase, if k is near the magnetic Brillouin zone boundary, A 
becomes two sharp peaks as seen in Figure 18. 

i 
4 

Figure 18. Hole S p e c tra l 

fu n c t io n  near the SDW tran- 
sition, for L = 1lNkz. Clearly 
the quasi particle has ex- 
tremely small weight and the 
SDW split peaks appear. 
The smaller of the two peaks 
is called the shadow band. 

Using the phenomenological model susceptibility and evaluating the spectral function A( k, w) 
for momenta close to the Fermi momentum allows one to follow the Landau quasiparticle peak 
as it disperses through the Fermi level. Figure 19 shows the corresponding finite temperature 
photoemission spectrum, very similar in their line shape to the experimental data by Olson, et 
al.8 

Figure 19. Photoemission 
spectrum for several values 
of k near &. 

For each k an additional sharp feature appearing in the spectral function in the pseudogap regime 
should also be observable near momentum k+Q where Q = (h, fr) is the antiferromagnetic 
wave vector. Although there is a unique quasiparticle state for each k in the reduced magnetic 
Brillouin zone, the wave function for such a state is a linear combination of Bloch waves for wave 
vectors k and k+Q. Th ere ore f the emitted electron will carry momentum k as well as k+Q 
even though a single unique quasihole state is created. The spectral intensity associated with 
the exchange Bragg scattering therefore leads to a shadow band displaced by Q. 
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An interesting feature in the spectrum has been observed by Allen and coworkers7 in 
Ndz_% Ce& 0 u +. They find that in contrast to a rigid band model, their data are consis- 
tent with a picture in which each hole splits off a state from the valence band, thereby pinning 
the chemical potential inside the gap. It is suggestive that this effect is the result of spin bag 
formation, which splits one state off from a linear combination of the valence and conduction 
bands, with weights favoring the band whose edge is nearer the spin bag energy. For large doping, 
this effect will smear into the band edge, as in heavily doped semiconductors. To treat this effect, 
it is essential to include in c the two loop crossed line diagram. In essence, one loop produces 
the pseudogap discussed above and the second loop accounts for the local depression of the pseu- 
dogap to form a bag. This is in analogy with the situation in the ordered antiferromagnet, where 
the mean field potential produces the gap and the loop accounts for the depression of the gap in 
the vicinity of the hole to form the bag. Model calculations of this effect are in progress8. 

VI. The Large U/4t Limit 
Many authors have studied both the 2d one band Hubbard model for large U and the t-J 

model using a variety of techniques, both analytic and numerical. The results are remarkably 
similar to those discussed above in the weak coupling theory. In particular, bag effects are 
observed including the spin twist mentioned above. 

In addition, the dressed holes are observed to attract as in the weak coupling situation. The 
one hole spectral weight function A( k, LQ) exhibits a small or vanishing zkF corresponding to a 
large incoherent shakeoff s 

9 IB 
ectrum when a hole is created. The reader is referred to the literature 

concerning such effects ) . 

Concerning charge and spin separation postulated in the exotic approaches, to date no 
calculations on the Hubbard, t-J and related models have shown these quantum numbers to be 
deconfined so that the charge and spin of the excitations ar; very likely to be the conventional 
ones for a hole or an electron, namely charge fe and spin 2, although the issue remains open 
at present. 

This work was supported in part by NSF grant DMR89-16582 and by the Electric Power 
Research Institute, contract RP8009-18. 
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