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Anharmonic local-moment fluctuations in the Hubbard model
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We investigate the role of anharmonic local-moment Auctuations in the two-dimensional Hubbard

model for intermediate correlation strength in the regime of local-moment formation. Within a
functional-integral scheme we perform a linked-cluster expansion of the eA'ective action up to quartic
order in the local-moment amplitudes. The resulting quadratic and quartic expansion coefficients are
compared in real space and as a function of frequency, temperature, and chemical potential. We find
the quartic contribution to suppress quadratic fluctuations and to be more susceptible to nesting than
the quadratic term.

A key to the understanding of the high-temperature su-
perconductors' is the effect of electron-electron correla-
tion in the Cu02 planes of the layered perovskite cuprates.
This has become widely accepted after the two-dimen-
sional, nearly half-filled Hubbard model was proposed as
the effective Hamiltonian and experiments showed a
correlation strength U/4t of order unity. Here U denotes
the on-site Coulomb repulsion and t is the hopping energy.
Despite the apparent simplicity of the Hubbard model and
although techniques exist to treat the strongly and the
weakly interacting limit, no computational scheme for
the relevant regime of intermediate correlations is known,
and the interpolation between the two extreme limits
remains an open question. Further complication arises
through the rich low-temperature phase diagram of the
model as a function of the hole doping relative to the
half-filled case, including the antiferromagnetic insulator
at very small doping, a spin-glass-like phase, and a strong-
ly correlated electron liquid at intermediate doping con-
centrations.

The above emphasizes the need for novel theoretical ap-
proaches to the Hubbard model applicable to the range of
intermediate coupling strength and doping. In this regime
charge fluctuations are strongly suppressed due to the on-
site Coulomb interaction. In contrast to this, local-
moment fluctuations are significantly enhanced and, in
addition, as one is near the antiferromagnetic instability,
they develop medium-range correlations. It is important
that these local-moment fluctuations are of large ampli-
tude and experience strongly anharmonic dynamical re-
storing forces. An illustration for this is provided by the
symmetric single-site Anderson model for U—I", where I"
is the bare level width. ' Here the free energy as a func-
tion of the local moment exhibits only a single minimum
for U« I, but turns into a double well for U»I as the lo-
cal moment forms. Thus the essential signature of the in-
termediate coupling regime are anharmonic fluctuations
of the effective exchange field. This in turn influences the
single-particle properties as well as the spin-fluctuation
spectrum. The main goal of the present work is to explore
a functional-integral scheme capable of incorporating the
effects of anharmonic local-moment fluctuations within
correlated electronic systems. The paper is organized as

follows. First, we outline the auxiliary field approach to
the Hubbard model. Within this scheme we then intro-
duce the relevant nonparabolic action functional by going
beyond Gaussian order. To discuss this functional we per-
form a numerical evaluation of the relevant coupling
terms involved and compare the Gaussian versus the non-
Gaussian contributions. Finally, we state our conclusion.

In the following we concentrate on the partition func-
tion for the Hubbard model

H= —t g c; c~ +Urn;tn;~,
(i j),a i

where (i,j& refers to nearest-neighbor sites, c; and cj
create and destroy fermions on the two-dimensional
square lattice, respectively, and n; =c; c; is the local
density for spin o. We want to focus on the spin density
as the dominant collective coordinate of the system. This
is achieved by the Hubbard-Stratonovich transforma-
tion, ' which maps the partition function of an interacting
many-body system onto that of a single-particle problem
in the presence of an auxiliary c-number field with Gauss-
ian fluctuations. This mapping is not unique, ' ' reflecting
the freedom of choice of a particular collective coordinate.
Using the continuous Ising field representation, one ob-
tains the following functional integral: ' '

r

r~

Z = D[x]Tr ~ T, exp — —gx; (r )+H([x/ ) dr40
J

(2)
H([xI) =—t g c; c1 —Ugox;(r)n; pN. —

(ij),a io

Here P =1/T is the inverse temperature, N is the total
particle number operator, and p =pp —U/2 is a renormal-
ized chemical potential. The auxiliary fields are denoted
by x;(r ), where i labels the lattice site and r is the imagi-
nary time. Equation (2) represents a one-particle prob-
lem, with x;(r) playing the role of the fluctuating, site-
diagonal exchange field. Although Eq. (2) refers to a par-
ticular spin-quantization direction, the functional integra-
tion restores the spin rotational invariance. Taking the
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trace over the fermion degrees of freedom leads to'

Z =Zp„D[x]exp[A(fxj )],

A(fxj) — g ~x;(cp()( +Trln(1 —M) .U
l, Col

(3)

Here A({xj) represents the action functional. Zp is the
partition function of the noninteracting system, x;(tp() is
the Fourier transform of x;(z) where to( =2(rlT, and l is
an integer. The remaining trace in A({xj) refers to a ma-
trix in real, frequency, and spin space where M is defined
by

I

MI»i+v„,v„l(j , cr~aa'Uxi (cp()G(j(v») ~ (4)
In Eq. (4) we have introduced the lattice Green's func-
tions G;j(v„)for the two-dimensional tight-binding mod-

e

el, ' where i,j label sites of the two-dimensional square
lattice and v„=(2n+ 1)(rT.

A standard way to evaluate Eq. (3) is to treat only the
Gaussian fluctuations of the x fields around a saddle point
of A({xj), i.e., the random-phase approximation (RPA).
Since this approach is restricted to an action functional
which is dominated by harmonic fluctuations about a sin-
gle absolute minimum in the exchange field configuration
space, it is insufficient for intermediate values of U/t
where, due to local-moment formation large amplitude,
anharmonie, and slow mode fluctuations of the x fields
play the important role. For a proper description of this
regime one has to retain the non-Gaussian terms in
A({xj). To pursue this point, which is motivated by the
single-site Anderson problem, we have investigated the
quartic contributions to A({xj). The action up to fourth
order in x;(tp() is given by

U2A4({xj)=— g (x;(tp() ['— QK2(i, cu()p)x;(cp()xp( ro()—

U4
2T QK4(i, tp(}(j,rp„~k,ro» ~p)x((rp()xj(ra~)x(, (cp»)xp( —roy), (5)

where tuz =to(+ rp„,+ to» and the summation is implied to run over the respective lattice sites and Matsubara frequencies.
K2 and K4 are obtained by the standard linked-cluster expansion of A ({xj): '

K2 (t', ro() =Tg G;p (v„+cp()G p; (v„),
I'n

K 4 (i, cp( ~j,tp», ~ k, cp» ) 2TRep [G;p (v„)Gji (v„+rp( )Gp j (v„+cp( + rp»I )Gpt (v„+cps' )
+G(p(v„)Gt;(v„+ru()Gj(, (v»+ cp(+ co»)Gpj (v»+ cps)

+G p(v„)G;.(v„+co„,)Gt.;(v„+to(+co )Gpt (v„+rug)] . (6)

Translational symmetry has been used to fix the site p in
Eq. (5) at the origin denoted by the subscript "0." Note
that A4(txj), as well as K2 and K4, are real quantities and
that K4 is symmetric under permutations of any of the
vertex pairs i,m~ j,m„,.

In the following our main objective is to understand the
properties of K4 and the interplay between the quadratic
and the quartic term in A4({xj). Thus we have performed
the frequency sums in Eq. (6) numerically. Since local
eAects are most interesting for the relevant parameter
range of the doping concentration and U/4t, the lattice
Green's functions G(„(v„)form the appropriate represen-
tation. Values for these lattice Green's functions can be
obtained by exploiting their relation to the first and second
elliptic integrals through a set of recursion equations. '

Before treating the lattice it is instructive to apply Eqs.
(5) and (6) to the simpler case of a two-site Hubbard
model. Choosing a particular path {xjp in the configur-
ation space one may compare the exact action A({xjp)
obtained from Eqs. (2) with an expansion similar to Eq.
(5). In this case K2 and K4 can be evaluated analytically.
Figure I shows the result for the path: x((z) x2(z)
=(Bgp/2)sin(ru„z) for the parameters Pt =10 and U/t=4. In the figure we have subtracted the "bare" Gauss-
ian contribution from the expansion, as well as from the
exact result. It is evident that for small amplitude fluctua-
tions the RPA is a reasonable approximation for all fre-
quencies. For large amplitudes and low frequencies the

I

RPA overestimates the fluctuation contribution to the ex-
act action A({xj@).The inset demonstrates that this ten-
dency of the RPA is counteracted by the quartic contribu-
tion, which has a sign opposite to the quadratic term and
is restricted to lower frequencies. This results in good
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FIG. I. The quartic approximation to the action A4({x}p)
(solid lines) compared with the exact result A({x}p) (dashed
lines) for the two-site model and the particular path P:
x~(r) —x2(r) =((I(II/2)sin(ro, z). Inset: The K4 contribu-
tion to A4({x}p). Pt =10, U/t =4, and the labels a, b, c, and d
refer to b'(0 =0.25, 0.5, 0.75, and 1.0, respectively.
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agreement between A(fxlp) and A4(ix) p) for the range
of parameters we have used in Fig. 1.

Turning to the lattice, we first compare the real-space
structure of K2 and K4 in the static limit A. s K4 depends
on two more coordinates than K2 we select those K4 with
only two independently chosen sites. There are two dom-
inant configurations of this type since 6;~.(v„)decreases
rapidly as a function of the distance between i and j. One
is obtained by equating three sites, j =k =p, leaving the
fourth, i, independent. The other is given by contracting
the vertices pairwise, i =j and k =p, onto two indepen-
dent sites. We find both contributions to behave similarly
in real space.

In Fig. 2 we keep j, k, and p at the origin and vary i
along the x direction or the diagonal, respectively. For
simplicity we have assumed the doping concentration b to
be zero: p =0. The temperature is set to T=0.01, where
the hopping matrix element has been normalized to unity
t =1. Obviously, K4 is of opposite sign, and counteracts
K2 for all sites—including those which are not depicted.
The real-space structure of the signs is in accordance with
long-range, commensurate antiferromagnetic (AFM)
correlations at 8=0. For 6&0 we find that the competi-
tion between K2 and K4 remains valid, but AFM correla-
tions are commensurate only within a shorter range. Note
that K2 and K4 extend further along the diagonal, where
K4 is of longer range, than along the x direction for the
given value of the chemical potential. This is the real-
space signature of nesting. Since K4 contains a product of
four Green's functions it is even more susceptible to nest-
ing than K2. For doping concentrations 8~0.2 one finds
K2 and K4 to be short ranged in all directions.

In Fig. 3 we compare the temperature and the
chemical-potential dependence of the static on-si'te values
of K2 and K4. One observes that K4 is very sensitive to
variations of the temperature at zero doping and the
chemical potential at a moderately low temperature. In
contrast to that K2 depends only weakly on these parame-

Ks(i; ur,=O), K4(i; j=k=0,~, =0)
T = 0.01, ~= 0.0
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FIG. 3. (a) Typical temperature and (b) chemical-potential
dependence of the static on-site terms K2 and K4. (t =1.)

Ks(u&, ; i=O), K4(ur, ; i=j=k=O, u =0)

ters. Figure 4 demonstrates the frequency dependence of
the on-site values of K2 and K4. Analogous to the real-
space situation only one of the independent frequencies of
K4 is varied. The remaining two are chosen to be zero.
The temperature has been set to T=0.01 and the chemi-
cal potential to p —0.1. Both the quadratic and the
quartic term fall oA' on a scale of the order of the band-
width, as expected. In addition, K4 decays more rapidly
than K2. This is clear also from the high-frequency ex-
pansions of the expressions in Eq. (6). These features are
reminiscent of the two-site case.

Finally, we comment on the magnitude of the quadratic
versus the quartic contribution. First, it is clear from Eq.
(3) that the mean-square value (~x;(cot) ~

) of a typical
x;(tot) will be of order T/U in the paramagnetic phase.
Second, Fig. 4 suggests that each frequency sum over K2
and K4 in Eq. (5) contributes approximately t/T similar
terms. Third, the functional integration contracts the x
fields, reducing the number of frequency sums in the quar-
tic contribution eAectively by 1. Thus an estimate of the
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FIG. 2. Real-space dependence of K~ and K4 for j =k at the
origin and i varying along (a) the x direction and (b) the diago-
nal, respectively. The lattice constant a and the hopping matrix
element t are normalized to l.

0 1

FIG. 4. Frequency dependence of the on-site terms K2 and
K4 for re„,=re„=O. (t = I. )
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relative weight of K4 vs K2 within the path integration can
be inferred from Figs. 2, 3, and 4 by multiplying the value
of K4 given in the figures with a factor of order U/t-o(i).

In conclusion, we have emphasized the anharmonic na-
ture of the action functional for the Hubbard model in the
configuration space of local-moment amplitudes within
the regime of intermediate correlation strength. In partic-
ular, we find that the quartic term in the action opposes
the RPA instability and is even more sensitive to nesting
than the quadratic term. Thus we expect that large am-
plitude, non-Gaussian local-moment Auctuations will
strongly inIIuence the single-particle spectrum as well as
the low-frequency dynamical spin susceptibility. The full
single-particle Green's function O';J(v„) is given by the
average of the Green's function for given x fields
(Q,t" (v„))using the distribution implied by Eq. (2) and

the spin susceptibility g;~ (to„) is proportional to
[PU(x;(cot)xj(—tot)) —8;J].'' Equations (3) and (5)
provide a convenient starting point for the evaluation of
such average values within the framework of classical
Monte Carlo techniques. Future investigations should in-
clude the eA'ect of renormalizations on the quadratic and
the quartic terms. In addition, it will be interesting to
compare the above calculation using the itinerant picture
with an expansion analogous to Eq. (5) but starting from
the atomic limit.
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