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Abstract. We present a calculation of the electronic Raman cross section for the scattering of light 
across the energy gap of an antiferromagnetic insulator. The antiferromagnet is described in terms of 
a spin density wave state for the Hubbard model at  half filling. We consider the coupling of the light 
to the current density and the inverse mass tensor on equal footing. A comparison of the cross section 
for different scattering geometries is given. 
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1 Introduction 

Experimental and theoretical studies of Raman light scattering in antiferromagnets have 
commonly focused on the two-magnon contribution to the intensity of the scattered 
light. In particular the investigation of the antiferromagnetic parent compounds of the 
high temperature superconductors has renewed the interest in this field. The magnetic 
properties of undoped La2Cu0, are well described by a two-dimensional antiferro- 
magnetic spin 1/2 Heisenberg model for the magnetic moments of the Cu2+ ions [l] .  
The in-plane quantum spin excitations give rise to a broad two-magnon peak at around 
3000 cm- '  in the Raman spectrum [2]. The understanding of the position and the 
lineshape has been shown to require approaches beyond spin wave theory which include 
quantum effects and magnon-magnon interactions [3]. 

In an itinerant magnetic system, and in contrast to the above mentioned scattering of 
light from the collective degrees of freedom, there are additional single particle effects 
which have received less attention in the literature. Thus, in this note we focus on the 
purely electronic contribution to the Raman intensity which arises from resonant 
scattering across the energy gap of an itinerant antiferromagnetic (AF) insulator. In the 
cuprate materials this energy gap is related to the spin density wave (SDW) gap which is 
obtained at half filling for the effective single band Hubbard model, which results from 
the well known transformation [4] of the three band model for the direct overlap of Cu 
and 0 orbitals, onto a one band model. In the following we therefore describe the 
magnetic system in terms of an SDW state in a single band Hubbard model at half filling. 
If RPA fluctuations around the mean field static SDW are included this approach has 
been shown to reproduce the results of linear spin wave theory in the limit of a large on 
site Coulomb repulsion of the itinerant electrons [ 5 ] .  Needless to say, the extension to the 



                                                                          207 

metallic regime away from half filling is of particular interest and relevance to the high 
temperature superconductors. Their normal state Raman response function is highly 
unusual and shows an almost featureless continuum ranging from thermal up to energies 
on the 1 eV scale which cannot be explained by standard two-phonon contributions and 
is likely to be electronic in origin [ 6 ] .  

Despite all theoretical efforts to describe the normal state properties of high tempera- 
ture superconductors in terms of strongly interacting electron models only a limited 
number of works have addressed the problem of Raman light scattering from correlated 
systems. As yet another first step into this direction we will calculate the relevant response 
function in the simple limit of a half filled single band Hubbard model. We will discuss 
the possible extension of our approach to include two-magnon scattering and to the 
doped AF correlated metal regime at the end of our paper. 

2 Electronic Raman scattering 

Shastry and Shraiman have recently outlined a theory for Raman scattering in Mott- 
Hubbard systems [7]. Based on their approach we start from the Hubbard Hamiltonian 
on a square lattice in the presence of an external transverse electromagnetic photon field 
represented by the vector potential A 

where as usual cTu(ci,) destroys (creates) an electron of spin o on the site i of the lattice 
and the sum on ( i j )  is restricted to next nearest neighbors. t and U represent the hopping 
integral and the on-site Coulomb repulsion, respectively, and n j u  is the local density. We 
expand to second order in A and in performing the Fourier transformation we introduce 
the components of the current operator 

and the components of the inverse mass tensor 

with the tight binding dispersion &k = -2t(cos(k,a) + cos(k,a)). Only for a free 
electron dispersion is r:p proportional to the familiar density operator. With this 
notation we obtain the effective Hamiltonian 
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We write the components of the electromagnetic field operator Aa in the second 
quantized form as 

where e, are the complex components of the unit vector e of the photon polarisation and 
the overbar denotes complex conjugation, oq = c 1 q I is the photon energy and a,f(a,) 
are the photon creation (annihilation) operators, respectively. 

The Raman scattering cross section is proportional to the transition rate R which can 
be obtained by applying Fermi's Golden Rule. The inelastic scattering rate for transitions 
with energy and momentum transfer cu = of - mi and q = k, - ki  is therefore of the 
form 

where Z is the partition function and p = l / k g T  is the inverse temperature. fi is the 
effective scattering operator responsible for transitions between initial and final 
eigenstates of the Hubbard Hamiltonian with energy eigenvalues E ;  and E,f, respectively. 
From the electron-light coupling Eq. (4) there are two contributions to &, a direct 
scattering from the coupling to the inverse mass tensor and a resonant contribution from 
the coupling to the current, which involves 
finds 

virtual intermediate states. Explicitly, one 

where the two terms for the resonant scattering operator arise from two different time 
orderings. Using the fluctuation dissipation theorem it is useful to rewrite the transition 
rate in terms of the imaginary part of a corresponding dynamical susceptibility. 

Here n(o) is the Bose distribution function, but in what follows we will only consider 
the limit of zero temperature T --t 0. The scattering operator is given by 

The time dependence of &(t)  = eitHA 0 fi e P i f H A - o  is determined by the Hubbard 
Hamiltonian in the absence of the photon field. Since the wavelength of light in the 
optical range is large compared to the lattice spacing and all length scales of the electronic 
system, we can safely neglect the momentum transfer of the photon and we will from now 
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on use q = k, - ki  = 0. We refer the reader to the work of Shastry and Shraiman [7] 
for a more complete exposition of the formal manipulations outlined above. Note that 
their derivation did not rely on any specific form of the electron-electron interaction since 
the photon field couples to the electrons only through the phase factor in the kinetic 
energy. 

3 Raman scattering from a spin density wave insulator 

In this section we apply Eq. (8,9) to study the Raman scattering from the Hubbard model 
for the special case of half filling. As mentioned earlier an explicit calculation is feasible 
in this case since here long range antiferromagnetism is well established (at least at T = 
0 in two dimensions) and we may use the mean field weak coupling SDW formalism to 
describe the broken symmetry state. The Hartree-Fock factorized Hamiltonian is 
diagonalized by the Bogoliubov transformation [5] 

mixing the bare electron states I k )  and I k + Q )  due to Bragg scattering from the 
commensurate AF spin order. Q = (n, n) is the AF  wavevector and uk and v k  are the 
standard coherence factors 

The tight binding band is split into a valence and a conduction band separated by twice 
the SDW energy gap 2AsDw. The diagonalized Hamiltonian is then given by 

with Ek = v z t x  and due to the doubling of the unit cell the momentum sum is 
restricted to the magnetic Brillouin zone (MBZ) as indicated by the primed sum. In this 
Hartree-Fock state the time dependence of the bare electron operators is determined by 
Eq. (10) and 

for momenta k E MBZ. Since we have discarded residual quasiparticle interactions within 
the Hartree-Fock Hamiltonian Eq. (12) we now may obtain an explicit form for the 
Raman scattering operator Eq. (9) whereby the light couples only the effective single 
particle excitations of the SDW state. After straightforward calculation we find 
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Here we have introduced the following abbreviations to represent the various energy 
denominators for the different scattering processes between the valence and the conduc- 
tion band 

For the remaining calculation of the scattering response function four commutators need 
to be evaluated corresponding to the different diagrams shown in Fig. 1 [8]. At half filling 
the insulating gap allows only for interband transitions between the valence and the 
conduction band to contribute to the scattering intensity. Since we assume that k ,  T e 
2AsDw we list the different contributions for T = 0. 

0 
I) 

Fig. 1 Diagrammatic representation of the different 
< I  a * I  scattering processes from coupling to the inverse mass tensor 

(4 (d) and to the current operator 
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This result for the scattering intensity is naturally restricted to photon frequency shifts 
a < mi. The different combinations of the polarisations of the incoming and outgoing 
photons are absorbed into the symmetry coefficients P,,, PRr, and PRR. They are given 
by 

The polarisation vectors of the photons for different scattering geometries are collected 
in Table 1 and the corresponding symmetry coefficients in Table 2. The energy conserving 
&functions in Eq. 16 appear as in a conventional Golden Rule analysis for light induced 
transitions. The absorption sets in when the incoming photon energy exceeds 2AsDw 
and the spectral weight of the transition is determined by matrix elements which appear 
in the form of different coherence factor combinations of the underlying spin density 
wave. 

Table 1 
and outgoing photons ei and ef, respectively 

Scattering geometries for different combinations of the polarisation vectors of the incoming 

Symmetry e; ef 

It is generally known for nearly free electron systems that the photons are dominantly 
scattered by density fluctuations [9] and the coupling to current fluctuations is usually 
neglected [lo]. These arguments are based on the experimentally common situation that 
the optical energies are large compared to important electronic excitation energies. In 
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Table 2 Symmety coefficients P,,, P R r ,  and PRR for different scattering geometries 

addition, possible cancellation effects of the two time ordered contributions of the j - A 
coupling in Eq. (7 b) may cause a further reduction in magnitude. In the case of resonant 
scattering from a spin density wave insulator, however, the situation is more subtle. On 
the one hand the j - A contributions are reduced in magnitude since they appear with 
higher power in the coherence factors due to the second order of the resonant scattering 
part RRR. On the other hand they are strongly enhanced if the energy of the incoming 
photon is near 2AsDw or in general, if the Raman frequency shift becomes comparable 
to the incoming photon energy. This effect is represented by the prefactors mcv and mu“. 

Apart from the above variation of the Raman cross section as a function of frequency 
there is an additional dependence of the scattering intensity on the various polarisation 
geometries. In Fig. 2(a) and Fig. 2(b) we show the results of a numerical evaluation of 
Eq. (16a) for the Raman transition rate for two particular scattering geometries namely 
B ,  and A ,  g, respectively, at fixed oi. For B ,  symmetry a strong peak appears near the 
threshold energy 2ASDw which arises from the coupling to the inverse mass tensor (i. e. 
density) fluctuations alone. As evident from Fig. 2(b) this peak, however, is entirely 
wiped out for A symmetry where P,, = 1 /4 ~i which vanishes near the top of the 
valence band for the transitions with o = 2AsDw. A similar argument applies for B,, 
scattering, where the symmetry factor P,, is identically zero. These symmetry features 
may help to identify a SDW gap in a Raman scattering experiment. As a generic feature 
it is seen from Fig. 2(a), (b) that the transition rate is enhanced with increasing photon 
frequency shift for the contributions from the coupling to the current fluctuations. Note 
in passing that even though the transition rate is a strictly nonnegative number the mixed 
term ( R s  + T R )  can be of either sign, as seen in comparing Fig. 2(a) and Fig. 2(b) for 

2A=l. 0 = 4  (a) m (b) m 2A =l. o. -4. 

RT 

0 1 2 3 4 

frequency shift o 

I i 1 

0 1 2 3 4 

frequency shift o 

Fig. 2 
different scattering processes of Fig. I .  Energies are in units of t 

Contributions to the Raman scattering rate for (a) B , ,  and (b) A , ,  and symmetry for the 
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B ,  , and A ,  symmetry, respectively. We point out that for B,, symmetry it is only R R R  
which is finite. 

With the parameters chosen as in Fig. 2 the energy of the incoming photon w ,  is well 
above the SDW gap energy. It is evident, that a variation of this frequency will lead to 
an additional truly resonant feature which is a consequence of the factors rn? cc, U” as 
given in Eq. (15). If co, approaches 2ASDW, a huge enhancement appears in each 
scattering geometry which can be traced back entirely to the j - A coupling. 

To conclude our analysis, we discuss possible extensions of this work. A natural 
question besides the resonant features of the Raman scattering across the insulating gap 
of the antiferromagnet regards two-magnon excitations which would provide for a 
continuous low frequency contribution. In order to describe these spin-waves within our 
approach to the Hubbard model the fluctuations around the mean-field spin density wave 
ground state have to be included. This is most conveniently done using RPA for the 
transverse spin fluctuations in the two-band system of the SDW insulator [ 5 ] .  Despite the 
general validity of our commutator analysis a standard diagrammatic approach may 
prove to be more convenient for evaluating the two-magnon scattering contribution to 
the Golden Rule. 

Another issue of special interest involves the extension fo finite doping concentrations 
<ni) = 1 - 6 < 1 away from half-filling. Starting from the mean-field SDW ground state, 
a rigid band picture would allow the same analysis as we applied above. This picture is 
based on the assumption that for small doping concentrations the long range ordered 
SDW is still a valid starting point, and doped holes simply start to fill the top of the 
valence band. Particle-hole intra valence band transitions will then lead to Raman 
intensity below the gap energy. However, an analysis that includes only finite range 
magnetic correlations in the doped paramagnetic metal should be more appropriate. On 
the RPA level one may still evaluate the two-spin fluctuation Raman scattering 
analogously to the two-magnon scattering in the ordered antiferromagnet. We will 
present the results of a more complete diagrammatic analysis of the RPA extensions in 
a future note. 
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