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Abstract 
The superconductor-insulator transition of an array of Josephson junctions 
is studied. In junctions with small capacitance the interaction of charges 
introduces quantum fluctuations and shifts the phase transition. An exter- 
nal voltage controls the total charge and creates “charge frustration”. Com- 
mensurability effects lead to similar structure in the phase diagram as had 
been found for magnetic frustration. The model used to describe a nonclas- 
sical junction array is similar to a Bose-Hubbard model. We study and 
compare the phase diagrams obtained from both models. If the interaction 
in the Bose model has a finite range we predict the commensurability to 
lead to a richly structured dependence on the chemical potential. 

1. Introduction 
Two-dimensional arrays of Josephson junctions have long 
been studied because of their interesting phase transitions 
[ 11. In classical junction arrays, where the Josephson coup- 
ling energy E, between neighboring islands is dominant, the 
configuration of the phases can be characterized by vortices 
and spin waves. The long range interaction of vortices leads 
to a Kosterlitz-Thouless-Berezinskii transition [2] where 
vortex-antivortex pairs dissociate. The transition separates a 
superconducting low-temperature phase from a resistive 
high-temperature phase. An applied magnetic field intro- 
duces frustration and changes the nature of the phase tran- 
sition [3]. 

In junctions with smaller capacitance the interaction of 
charges gains importance. Charging effects introduce 
quantum dynamics and, in an array, lower the vortex- 
unbinding transition temperature. If the charging energy 
scale E,  exceeds the Josephson coupling E , ,  there exists no 
superconducting state even at T = 0 [4]. In most of the 
theoretical work devoted to this issue the self-capacitance 
CO of the superconducting islands was assumed to dominate 
over the junction capacitance C, [S, 13. The effect of dissi- 
pation due to Ohmic shunt resistors, which allow a contin- 
uous flow of charge, or due to quasiparticle tunnelling was 
also studied [SI. These models were applied to describe the 
transitions observed in granular films of superconducting 
material [7]. 

More recently it became possible to fabricate regular 
Josephson junction arrays with small capacitances and 
strong charging effects [8, 91. In these arrays there are no 
Ohmic shunts, and the charges change only in discrete 
quanta due to single electron tunneling or Cooper pair tun- 
neling. Furthermore, the junction capacitances usually 
dominate over the self-capacitances, C,  2 C o .  Arrays with a 
general capacitance matric and discrete charge states have 

been studied theoretically [ 10-163, and the possibility of a 
charge-ordeied, insulating phase was noted [ 10, 17-22]. The 
charges and phases of the superconducting islands are 
quantum mechanical conjugate variables. Charge and 
vortex order compete and exclude one another. This is most 
obvious in arrays with C,  9 CO,  where a duality exists 
between charges and vortices [19-221. The duality implies a 
universal conductivity at the superconductor-insulator tran- 
sition [23]. Similar properties have been observed in super- 
conducting films, which have been described in terms of a 
Bose-Hubbard model [23,24]. 

In the present article we study the effect of frustration on 
the phase transitions of the quantum phase model and of 
the Bose-Hubbard model. Magnetic frustration f, created by 
a magnetic field, is known to lead to a richly structured, 
periodic phase diagram. We also investigate charge frustra- 
tion q,., created by an applied voltage which induces a net 
charge. In the Bose-Hubbard model the equivalent of the 
charge frustration is the chemical potential p. For short 
range Coulomb interaction the phase diagram is periodic in 
qx (or p). For long range interaction the phase diagram 
shows much more structure, which arises because of the ten- 
dency that the ground state charge, configuration is com- 
mensurable with the junction lattice. This commensurability 
property has been overlooked so far, since the Bose- 
Hubbard model has been studied mostly for on-site 
Coulomb repulsion only, whereas in the quantum phase 
model the charge frustration has not been investigated sys- 
tematically. 

In the following Section we introduce the models and a 
reduced description in terms of charges and vortices, and we 
comment on the duality between both. In Section 3 we sum- 
marize some properties of the phase diagram of arrays 
without frustration. In Section 4 we derive the phase 
diagram of the Josephson junction array including the 
effects of magnetic and charge frustration. The “coarse- 
graining” approach allows us to analyze this problem in a 
transparent way. Charge frustration enhances the supercon- 
ducting phase. The phase diagram consists of lobes of insu- 
lating phase, centered around rational values of the charge 
frustration qx (or the chemical potential), separated by 
superconducting regions. In the lobes, because of the com- 
mensurability the total charge (or boson number) remains 
constant as a function of the charge frustration (or chemical 
potential), and a correspondingly defined compressibility 
vanishes. In Section 5 we analyze the conductivity of the 
array. The insulating state is characterized by a Coulomb 
gap, which vanishes at the transition. The nature of the 
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phase transition and the response function differ in the pres- 
ence or absence of charge frustration. In unfrustrated arrays 
we recover a universal conductance [23] .  It arises since the 
threshold frequency for the excitation of Josephson plasmon 
modes vanishes at the transition. In Section 6 we present the 
analysis of the Bose-Hubbard model, including the effect of 
amplitude fluctuations. Finally we give a short summary of 
the main results. 

2. The models 
The quantum phase model 
We consider a regular array of superconducting islands con- 
nected by tunnel junctions. In arrays of high quality tunnel 
junctions there is no flow of Ohmic currents. Hence, the 
charges can change only in units of 2e due to Cooper pair 
tunneling or in units of e due to single electron tunneling. In 
the present article we further assume that the quasiparticle 
tunneling is frozen out at the temperatures of interest (for a 
more general discussion see Refs [18, 19, 223). Ignoring all 
fluctuations other than those associated with the phases pi 
of the superconducting order parameters on the islands i we 
can describe the system by the Hamiltonian 

i , j  

- E, COS (pi - vj - Aij) 

h d  
’ i d(hpJ2e)‘ 

Q.  = - 

The charge Qi on the island i and the phase pi of the islands 
are quantum mechanical conjugate variables. The Joseph- 
son coupling defines the energy scale E , .  The Coulomb 
interaction of the charges is described by a capacitance 
matric C j j  . For definiteness we consider a square lattice and 
take into account the self-capacitance of each island CO (the 
capacitance to the ground plane or to infinity), defining an 
energy scale E ,  E e2/2C0,  and the junction capacitance C , ,  
defining an energy scale E ,  e2/2C,,  but ignore all other 
capacitances. Hence Cii = CO + 4C1,  C i j  = - C ,  for i and j 
nearest neighbors, and C i j  = 0 otherwise. The charges inter- 
act with the inverse capacitance matrix C,’.  In the self- 
charging limit C ,  = 0 this matrix is diagonal. In general the 
interaction has a finite range, where the ratio of the capac- 
itances determines a screening length A = d m o  (in units 
of the lattice spacing). In the limit C, 9 CO the interaction 
decays logarithmically with distance. For later reference we 
give C;: x (1/4nC,) In (16 + 32C,/Co) and define the quan- 
tity E ,  e2C;:/2. A discussion of more general and realis- 
tic models for the capacitances is given in Ref. [lS]. 

Electromagnetic fields are accounted for by a vector 
potential 

Aij  = - 2e dl. 
hc i 

In the Hamiltonian ( 1 )  we also allowed for “offset” or 
“external” charges Q x , i  on the islands. They arise for 
instance due to charged impurities in the substrate, which 
bind a part of the total island charge. In this case the offset 
charges are random variables, (In systems with a small 
number of junctions they can be tuned out by applying suit- 
                    

able gate voltages.) We can change the value of the offset 
charges by applying an overall voltage V,  between the array 
and the substrate. In general this introduces a term 

K c  Qi  
i 

into the Hamiltonian, where c Qi is the net charge which 

has traversed the voltage source. Clearly this corresponds to 
a homogeneous offset charge Q,, = Q, = CO V,  in eq. (2). 
Here we made use of 

i 

C,’ = C-’ (k  = 0) = l /Co .  
j 

The Bose-Hubbard model 
Bose-Hubbard models have been studied in various con- 
texts, for instance with the aim to describe the 
superconductor-insulator transition in thin films [23, 241. 
Usually only short range Coulomb interaction between the 
charged bosons is considered (see, however, [25, 261). For a 
more general interaction the Hamiltonian is 
H = - gJ exp (i,4ij)&l&j + h.c. 

0, j >

i i 
(3) 

Here ai is a Bose annihilation operator, iti = is the 
number of bosons at site i. The total number of bosons is 
controlled by the chemical potential p 2 0. The hopping 
parameter is denoted by J .  Since the bosons are introduced 
here to represent Cooper pairs of charge 2e, they couple to 
the vector potential given in (2). We wrote the interaction 
term such that there is no contribution if a site is occupied 
with a single boson. We could also account for this by a 
redefinition of the chemical potential. The similarity of the 
Bose-Hubbard model and the quantum phase model ( 1 )  is 
obvious; we will compare them further below. 

Charges and vortices 
We can describe the Josephson junction array in terms of 
charges and vortices. In order to do so we express the parti- 
tion function of the quantum phase model as a path integral 
in imaginary times 0 < z < ,9 = 1/T (from here on we 
choose h = k ,  = c = 1 ) .  In a mixed representation involving 
the phases V A T )  and charge trajectories q i z )  5 Qi(z)/2e = 0, 
- + 1 ,  & 2, . . . the partition function is 

It depends on the action, 
PS r 

- E,  COS (pi - p j  - Aij) . (5 )  
( i .  1 )  1 

In the absence of Ohmic shunts or other continuous flows of 
charge we are allowed to restrict ourselves to discrete charge 
states ( Q x , i  plus integer multiples of 2e) only. This implies 
that values of the phase which differ by 2n are equivalent, 
and the integral in (4)  includes a summation over winding 
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numbers c p @ )  = cppX0) + 2xni and a Q,-dependent phase 
factor [27] .  

The Villain transformation, which can be generalized to 
the present problem with charges [ 19, 281, allows us to inte- 
grate out the phases at the expense of introducing at each 
(dual) space-time lattice point an integer-valued field uxz) = 
0, f l ,  ..., the vorticity in the plaquette i. As a result the 
partition function can be written as a sum over integer 
valued paths qi(z) and q(z) 

1 + 4iGijqj + nEj(ui +fi) 4nE, 

x Gi,(uj +fi) - iqiOijt j j  . 1 (7) 

Here we introduced the frustration fi which is the magnetic 
flux through the plaquette i ,  measured in units of the flux 
quantum @, = hc/2e. For transparency we consider here 
only static external fields (see Ref. [22]  for a more general 
discussion). The kernel Gi j  = G(r, - r j )  describes the inter- 
action between vortices 

which for large distances depends logarithmically on r .  The 
kernel 

Oij = arctan (P: 1 ;), (9) 

where r i  = ( x i ,  yi), describes the phase configuration at site i 
around a vortex at site j .  The first and third term in (7) 
represent the classical action of the electric charges and of 
the vortices. The interaction between the two types of exci- 
tations is described by the fourth term. Obviously this is the 
interaction energy of a charge qi with the voltage Oijtjj at 
site i ,  which is created by the changing vorticity at sitej. 

The action (7) shows a high degree of symmetry between 
the vortex and the charge degrees of freedom. In the limit 
C ,  CO the inverse capacitance matrix becomes (for large 
distances) 

E e2(C;' - C;:) = G ,  where E ,  = e2/2C, .  
II 

In this case charges and vortices are (nearly) dual, The 
duality is broken by the term qi Gij  qj  . It arises as the spin- 
wave contribution to the charge correlation function. An 
equivalent term involving t j i  does not arise, since in the 
charge gas defined by the model (2) the corresponding exci- 
tations are absent. 

3. Phase transitions in unfrustrated junction arrays 
We briefly discuss the phase transitions in a junction array 
without external fields and off-set charges, A = 0 and Qx = 
0. For a more extensive discussion we refer to Refs [19, 223. 
In classical junctions with large capacitance E ,  Q E ,  the 

action (7)  reduces to the Hamiltonian of the classical 
Coulomb gas of vortices. The system has a Kosterlitz- 
Thouless-Berezinskii (KTB) transition, where vortex dipoles 
unbind, at a temperature TLo) = ( n / 2 ) E J .  (We ignored a 
dielectric constant which is close to one.) This transition 
separates a superconducting from a resistive phase. If Ej = 0 
the problem reduces to the classical Coulomb gas of 
charges. If the junction capacitance dominates C ,  b CO the 
charges interact logarithmically over sufficiently long dis- 
tances; and also this system has a KTB transition. But now 
charge dipoles, formed by a Cooper pair and a missing pair, 
unbind. The transition temperature is Tio) = E J n .  It 
separates an insulating from a conducting phase. 

At finite Ej and E ,  both charges and vortices need to be 
considered simultaneously. The charging energy provides a 
kinetic energy for the vortices, vice versa the Josephson 
coupling allows the tunneling of Cooper pairs and provides 
the dynamics for the charges. If the charging energy E ,  or 
E ,  is still small compared to E, we can show in a per- 
turbative approach that the transition temperature of the 
vortex-unbinding KTB transition is lowered below the clas- 
sical value T$). Similarly, in the limit C ,  b C O  weak Cooper 
pair tunneling El 4 E ,  lowers the charge unbinding tran- 
sition temperature below TLo) [ 191. Further conclusions 
depend not only on the ratio of Josephson coupling energy 
and charging energy, but also on the form of the capac- 
itance matrix. Let us first consider the limit where the junc- 
tion capacitance dominates. 
Arrays with charge-uortex duality 
In the limit C ,  b CO the duality between charges and vor- 
tices allows us to draw further conclusions. If the duality 
were perfect (i.e. if the duality breaking last term in (7) were 
absent) the transition temperatures would be symmetric 
around the self-dual point 

(EJ/El)self-dual  = 2/n2* ( 1  1 )  
By independent arguments we had shown [19] that at 
T = 0 there exists only one transition. From this we can 
immediately conclude that at T = 0 there exists an 
insulator-superconductor transition, separating a charge- 
from a vortex-ordered phase, and the critical value of Ej/E,  
is given by ( 1 1 ) .  The duality breaking term, even if it 
becomes irrelevant at the fixed point, shifts the critical point 
to a value which exceeds ( 1  1 )  by a factor of order one. Com- 
bining this information with the perturbative results (but 
ignoring the shift due to the lack of perfect duality) we 
arrive at the picture shown qualitatively in Fig. 1. 

The duality also allows us to draw conclusions about the 
response of the system. The charges are driven by an 
applied voltage, and their motion produces a current. On 
the other hand, the vortices are driven by an applied 
current, and their motion produces a voltage. The duality 
between charges and vortices at the superconductor- 
insulator transition implies that the resistance of the array 
exactly at the transition is given by the quantum resistance 
R, = h/4ez = 6.45kR [23] .  We will comment further on this 
result in Section 5 where we evaluate the conductivity of the 
system near the transition. 
General capacitance matrix 
If C ,  is not much larger than C O  the interaction of the 
charges is screened. Since the requirements for an insulating, 
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Fig. 1. Transition temperatures as a function of E J E ,  for the vortex 
unbinding transition (large E,/E,) and the charge unbinding transition 
(small E J E , )  in ajunction array with C, P CO 

charge ordered phase are not satisfied the phase diagram 
looks simpler. Results will be shown below. There exist only 
two phases, a low temperature superconducting phase at 
sufficiently large values of Ej/E,, and a disordered phase at 
higher temperatures, which extends down to T = 0 for small 
values of Ej/E, [5]. The nature of the disordered phase 
deserves a comment. Since our model does not include an 
explicit mechanism for dissipation, the system can only have 
an infinite or a zero dc-conductivity [29]. However, at finite 
temperatures, in the presence of dissipation, or at finite fre- 
quencies the disordered phase in general is resistive. This 
differs from the case where the charges interact logarithmi- 
cally over long distances, where the insulating phase exists 
also at finite temperatures and in the presence of dissipation. 
Detailed studies of dissipative junction arrays have revealed 
that the T = 0 phase diagram shows more distinct phases, 
depending on the strength of the dissipation and the Joseph- 
son coupling [30, 311. The phases differ in their correlation 
functions in space and time direction and have different 
response functions. Another question has remained contro- 
versial in the literature, namely whether or not the phase 
diagram is reentrant [5 ,  61. Below we will show, within our 
approximation scheme, that the answer depends on the 
allowed charge states. 

4. Phase transitions in junction arrays with frustration 
The properties of junction arrays and their phase transitions 
are influenced by both external magnetic fields and external 
charges. In the classical case the influence of the magnetic 
field has been studied extensively, and a complicated period- 
ic dependence onf ,  the flux per unit cell in units of the flux 
quantum, has been found [ l ,  31. This arises because of com- 
mensurability between the vortex lattice and the underlying 
junction array. In the quantum case the phase diagram 
depends in a nontrivial way on f as well. This has been 
demonstrated for a system with Ohmic dissipation, and 
hence a continuum of charges, in Ref. [32]. In disordered 
lattices the commensurability plays no role, but the mag- 
netic field can still lead to a “field tuned transition”. Several 
scaling predictions of the theory [33] have been verified in 
disordered films [34]. Recently a transition with similar 
scaling properties has been observed in regular, fabricated 
junction arrays with suitable parameters [35]. It occurs at 
values off close to an integer, together with the expected 
flux periodicity. However, the picture is more complex than 
                    

in disordered films. For instance, another transition occurs 
nearf = 1/2,3/2, . . . (see also [36]). 
The coarse-graining approximation 
In order to study the system with frustration we make use of 
the so-called “coarse graining” approximation developed by 
Doniach [37]. The essence of this approach is to introduce 
a complex order parameter field $, whose expectation 
values is proportional to that of exp (iq). As long as $ is 
small, i.e. close to the onset of phase coherence, the system is 
governed by an effective Ginzburg-Landau functional. The 
method has been discussed in the literature, but we briefly 
recapitulate it. 

By introducing (Xz) = exp [iqi(z)] and a Hubbard- 
Stratonovich field t+bi(r), we can write the Josephson term as 

- E ,  COS (Vi - q j  - Aij) 
0. j >  

where yij = 1 for nearest neighbors and zero otherwise. The 
partition function becomes 

J i  

with the Ginzburg-Landau functional 
ri3 

Here and in the following, (*-*) , ,  refers to expectation 
values computed with the charging energy So 

and including the effect of offset charges. Since in our model 
the charges change only in discrete quanta of 2e the path 
integrals include a summation over winding numbers and 
the phase factors exp (2nini qx, as shown in eq. (4). This has 
interesting consequences; for instance the correlation func- 
tions in general differ for continuous and discrete charges. 
(An example is presented in the Appendix.) 

Performing a cumulant expansion we obtain to second 
order in $ 

1 

which depends on the correlation function 
gij(z) = ( ~ X P  {iCqXz) - c~,(o)I})o = 6 i j d z )  (17) 
A virtue of the coarse-graining approach is the simple struc- 
ture of (16). All the dependence on the offset charges is con- 
tained in the correlation function g(w,), while all the 
magnetic field dependence is still explicit in the first term. 
Since the charging energy depends on @ j  only, the corre- 
lation function g i j  is diagonal in the site index even for non- 
diagonal capacitance matrices. In the following we will 
consider the effect of a homogeneous magnetic field J =f 
and of an external voltage, which is described by a homo- 
geneous offset charge qx,  = q x .  This means that we can 
suppress the site-index in gii = g. 
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Charge-frustration 
If no magnetic field is appliedf= 0, we can rewrite (16) in a 
Fourier representation 

r 1.2 1 

Here we have absorbed a factor of Jw,in + k ( w p ) ,  

where Ec = e2C;:/2. We also expanded y - ' ( k )  and g(w,) to 
second order in k and w, , with the result 

- 2EcgL2. (19) 

The mean-field phase boundary is given simply by the 
condition 

E(T, Ej ,  C - ' ,  4,) = 0. (20) 
Next we have to determine g. In the homogeneous 

problem considered here, without loss of generality, we con- 
centrate on the correlation function at the site i = 0. At low 
temperatures it is favorable to evaluate it in the charge rep- 
resentation [ l o ] .  If we start from the phase representation 
( 1 5 )  of So we obtain the charge representation by performing 
a Poisson resummation. The result (for homogeneous values 
of 4,) is 

1 1  1 
r 1 

i j  J 

The sums run over all integer charge configurations on each 
site. The derivation is sketched in the Appendix. 

Self-charging limit. In the self-charging case C ,  = di j /C0 
both the numerator and the denominator Zo of the expres- 
sion (21) factorize into terms which depend on the charge of 
one island only. Hence, 

(The expression for Zoo is obvious). At low temperatures the 
sum is dominated by that integer-valued charge q which 
makes the exponent smallest. For - +  < q, < 4 this value is 
q = 0, and the result is simply 

1 1  g ( 0 ,  = 0)  = - -2Eo 1 - 4qz 

At q, = i, 3, ... the dominant value of q jumps to 1, 2, ... 
which makes g(w, = 0) a periodic function. 

In Fig. 2 we show the phase boundary (for the self- 
charging limit CO b C , )  between the disordered (insulating 
or resistive) and the superconducting phase for different 
temperatures as a function of q,. At low temperatures we 
find pronounced lobes periodic in q, of insulating phase 

E/EO 
Fig. 2. Phase boundary between the disordered phase (left side) and the 
superconducting phase (right side) of an array in the self-charging limit 
CO & C, for temperatures between (from left to right) TIE, = 0 and 
T/Eo = 2 in intervals of 0.4, as a function of 4,. Finite q, favors supercon- 
ductivity since it will frustrate the charge order, and for q, = f and T = 0 
the superconducting phase is seen to exist for arbitrarily small values of 
EJPO 

separated by regions of superconducting phase. These were 
known already from the analysis of the Bose-Hubbard 
models [23, 241. Finite q, frustrates the charge order and 
favors superconductivity. For q, = 3 and T = 0 the super- 
conducting phase exists for arbitrarily small values of EJE, .  

In the insulating lobes the expectation value of the charge 
per island is integer, forming plateaus when viewed as a 
function of 4,. The analysis presented here allows us to 
draw this conclusion only for infinitesimal values of E , .  
However, it is reasonable to assume that this property does 
not change as long as we stay away from the phase tran- 
sition. It is also supported by the results of the quantum 
Monte Carlo studies of Refs [24, 38, 401. The transition 
between the plateaus occurs in the superconducting phases 
separating the lobes. For small Ej this transition occurs in a 
narrow range of q, near half-integer values, for larger Ej the 
transition region becomes broader. However, the transition 
is always from one integer value to the next one. This is a 
consequence of the factorization of the correlation function 
g(w, = 0) in the self-charging limit. As a result in the ground 
state each island has the same value of the charge, which 
changes at the same value of q x .  For a general capacitance 
matrix considered below we will find a more complex 
behavior. 

Since charge fluctuations are suppressed exponentially at 
low T their effect is weak, and the critical value of (EJ/Eo)cr 
depends only weakly on T [ l o ]  

This can be clearly seen in Fig. 3 where we plot the phase 
boundary as a function of temperature. 

If we allow the charges to take all continuous values, for 
instance because of a continuous flow of currents the pres- 
ence of Ohmic shunts, the correlation function is given by 
the function gc  presented in the Appendix. In this case the 
phase diagram obtained with the coarse-graining approach 
(but also in several other approximations) is reentrant. This 
means there exists a range of values of E,/.!?, where with 
increasing temperature the system moves from a disordered 
phase into the superconducting phase and back into the dis- 
ordered phase. In contrast, when the charges can take only 
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& / E O  
Fig. 3. Phase boundary in the self-charging limit CO % C, between the dis- 
ordered phase (left side) and the superconducting phase (right side) as a 
function of temperature for qx = 0, 4, 4 and f (from right to left). For the 
problem considered here, where the charges take only discrete values, there 
is no reentrant behavior in contrast to the case of continuous charges 

discrete values, which is what we consider here, the phase 
diagram shows no reentrant behavior. 

For the discussion of the response of the system we have 
to determine also the other coefficients in the GL free 
energy (18). They are periodic in q, . The coefficient ,I is an 
odd function of qx = 0, whereas ( is even. In the self- 
charging limit for T = 0 they can be evaluated explicitly. 
For -3 < 4, < 3 they are 

A nonzero value of I for q, # 0 leads to the appearance of a 
first order time derivative (with respect to the imaginary 
time z) in the Ginzburg-Landau functional. This term 
should not be interpreted as a dissipative term. It is 
obtained in other field-theoretical treatments of Bose 
systems as well (see e.g. [41] and Section 6 of the present 
work). It obviously depends on excess charges and, for 
instance, gives rise to a Magnus force on vortices [41,22]. A 
dissipative term (e.g. Ohmic dissipation) is described by a 
term involving I w,, I [42]. 

General capacitance, j n i t e  range of the Coulomb inter- 
action. For a general capacitance matrix the correlation 
function does not factorize and is more complicated to 
evaluate. At low temperatures the sum in (22) is still dom- 
inated by the charge configuration which minimizes the 
charging energy. The total energy can be written as 

e' e' 
i, j CO CO E({ 4 j } ,  4,) = 2e' qi C, 'qj  - 4 - 4, qx + 2N - q: (24) 

Here we introduced the total charge 4r = qj  and made 

use of the relation C,' = C-'(k = 0) = l/Co. The solu- 

tion of the problem reduces to the following steps: 
(i) For a given total charge 4z we have to find the config- 

urations of the (4J which minimize the first term in the 
energy (24). (This is a nontrivial problem because of com- 
mensurability and degeneracy. The problem is similar to 
finding the minimum energy configuration of vortices in a 
Josephson array with frustration, examples of which are dis- 
cussed in Refs [3]. 

(ii) For a given q, we have to find the value of the total 
charge 4z which yields the lowest energy. 
                    

1 

j 

(iii) After having determined the configuration with 
minimum energy we evaluate the correlation function (21) 
and determine the mean field phase boundary. 

Results for a finite system with periodic boundary condi- 
tions are shown in Fig. 4. The commensurability of charge 
distribution and underlying lattice provides a richly struc- 
tured phase diagram with many lobes centered around 
rational values of 4,. The result shown refers to a small 
system, but at least some of the lobes keep a finite width in 
the infinite system limit. For instance the width of the lowest 
lobe around q, = 0 for E, = 0 is given by Aq, = CO C;: x 
(C0/4nC,) In (16 + 32C1/C0). At q, = 0 it extends to 
E,/Ec = 1. Also the lobe around q, = 4 maintains a finite 
width Aq, = CO C i i  - 1/(1 + 8C1/C,), and at qx = 4 it 
extends to E,/E, = 1 - l/[Ci:(Co + 8C,)I2. In the self- 
charging limit we have only one big lobe around integer 
values of 4,. In the opposite limit C1 P CO all lobes have 
widths which vanish with increasing system size. 

If we increase qx (say, from 0 to 1) we find that a sequence 
of inhomogeneous charge configurations made up of qj  = 0, 
1 minimizes the charging energy. The average value of q j ,  
i.e. ( q )  = qJN, follows q, in many small steps. In each lobe 
( q )  takes a rational value. Again we have shown this only 
for vanishing E,, but in analogy to the self-charging limit, 
where the extension has been confirmed by quantum Monte 
Carlo simulations, we expect that this property does not 
change as long as we stay away from the phase transition. 
Configurations with a high commensurability have a rela- 
tively low energy and lead to particularly pronounced lobes. 
Therefore, ( q )  is not simply equal to q,, rather it remains 

0.5 1 

9 x  

0.5 

Fig. 4. Examples of phase diagrams of a 4 x 4 array (with periodic bound- 
ary conditions) with a general capacitance matrix at T = 0 in the presence 
of an external charge 4%. We have chosen (a) C, = 0.025C0, (b) C, = Co. 
The diagrams show strong commensurability effects 
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stuck at simple rational values (e.g. integer or half-integer) 
or in fact jumps already before q, has reached such a value. 
In the self-charging limit we have only one big lobe and ( q )  
jumps from one integer to the next. In the opposite limit 
C ,  9 CO the average value (4) is equal to q X .  

The coefficients I and ( also show a more complicated 
behavior than in the self-charging case (23). The coeficient 1 
changes its sign in the center of each of the lobes shown in 
Fig. 4, and its dependence on q, is not strictly linear 
anymore. The coeficient I is constant across the lobe 
around q, = 0 [as given in (23)], but in general it develops 
structure and increases towards the edges of a given lobe. 

At T = 0 and q, = 0 the mean field phase boundary is 
given by E j / E c  = 1. In the limit where CO vanishes the 
diagonal element C;: cc E ,  diverges. (For CO = 0 it grows 
logarithmically with system size, in the same way as the 
energy of a single vortex in a junction array.) This would 
imply that the system remains in the disordered phase for 
arbitrarily large values of Ej  . However, this result is an arti- 
fact of the coarse-graining approach. The duality discussed 
in Section 3, as well as different mean field approximations 
[16] give a transition to a superconducting state at a finite 
ratio of E j / E ,  of order 1 .  

Magnetic frustration 
In the presence of a magnetic field f # 0 we have to return 
to (16). The phase boundary is given by the parameters 
where (16) ceases to be a positive definite quadratic form. 
This means we have to solve an eigenvalue problem, which 
is equivalent to that of a Bloch electron in a magnetic field 
Ref. [32] This is described by Harper’s equation, which in 
turn had been analyzed in detail by Hofstadter [43] .  The 
largest of the eigenvalues E,(!) of Harper’s equation trans- 
lates directly into a mean field phase diagram of the junc- 
tion array 

&(T, EJ > c-’ > 4 x 1  = max ( E n ( f ) }  (25) 
Examples of the resulting phase diagrams are shown in Fig. 
5 for the limit where the self-capacitances dominate CO << 
C , .  Notice that it is trivial to include the q,-dependence due 
to the separation of the qx- and magnetic field dependence 
in the Ginzburg-Landau functional (16). In the opposite 
limit C ,  9 CO duality implies that the effects of magnetic 
frustration on the vortex-unbinding transition is the same as 
the effect of offset charges on the charge-unbinding tran- 
sition. This means that the self dual point does not shift if 
f = q x .  

For suitable junction parameters, such that the system is 
close to the superconductor-insulator transition, the critical 
value off is small. In this limit the commensurability should 
not play an important role (a remaining weak positional 
disorder in the array makes it ineffective) and we can 
expand inf :  In this limit the Ginzburg-Landau action (16) 
reduces to 

FC$l = d7 [ d2r{ I $(r, 4 l 2  

I 

I I I 

EJEO 

0 
0 0.25 0.50 0.75 1.00 

f 
(b) 

Fig. 5. Examples of phase diagrams in the presence of a magnetic field that 
show the typical flux periodicity and commensurability effects. (a) Phase 
boundary as a function of flux per plaquettefand temperature for ,!?,/Eo =
1.5 and qr = 0 (squares), (stars). Small values offlower the 
superconducting T, .  The data for q, = 0 show an interesting reentrant 
behavior: the region around f =  0.4 remains insulating at arbitrarily low 
temperatures, but for f z 1, superconductivity reappears. (b) The critical 
value of E,, ,,,/Eo at T = 0. The array is superconducting above the lines 
for qx = 0 (squares), (dots) and (stars) 

(dots) and 

In the limit considered we see that the effect of a magnetic 
field on the properties of the junction array is precisely the 
same as that of a field on the properties of a superconduct- 
ing film. There exists an upper critical field ( H C 2  of the film), 
which marks a “field-tuned” phase transition of the array as 
well. Its value follows from 

E(T,  E , ,  C - ’ ,  4,) + ~$72 = 0. (27) 

5. Conductivity near the transition 
N o  frustration 

In the model described by (26) we can evaluate the fre- 
quency dependent conductivity explicitly. This sheds light 
on the properties of the disordered phase and explains the 
origin of the universal conductance at the transition [23]. In 
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order to evaluate the conductivity we study the following 
imaginary time correlation function 

emerges. This response is the universal conductivity found 
by Cha et al. [23]. 

At temperatures T x m a cross-over to classical 
behavior occurs. For T % m we find from (31) 

Re 

Im a(w) = & {($ - 1) f In 11 - %I- dj 

(28) 

where 2 is the partition function (13). For vanishing mag- 
netic and charge frustration the longitudinal component 
becomes 

52 
471 T (1 - $)e(iw2 - 44 = - 

8 R q 1 4  

(35) 
rm 

The excitation gap persists, however, the effective capac- 
itance Ceff now diverges as E - ’  near the transition. It is 

(29) 
T Y  

In order to extract the conductivity we perform an analytic 
continuation to real frequencies [37]. The corresponding 
spectral density S(o) is 

At zero temperature the real and imaginary part of the con- 
ductivity are 

The real part clearly exhibits an excitation gap for o < 
w, = 2 a .  This is consistent with the fact that no dissi- 
pation was present in the model to begin with. At low fre- 
quencies we can expand the imaginary part of the 
conductivity in w. The result is a(w -4 0,) = i d e f f .  This 
means the system behaves as a capacitor with effective 
capacitance 

(The second part of the last equation refers to the selfcharg- 
ing limit.) On the insulating side of the transition the array 
shows a Coulomb gap. This means no current is flowing for 
voltage smaller than a threshold voltage which scales with 
eCe;/. Near the transition the effective capacitance diverges 
as E - ~ ” ,  and the transition to the superconducting state is 
marked by a Coulomb gap vanishing proportional to E’/’.  

Above the gap frequency U, propagating Josephson 
plasmon modes can be excited [37], and the real part of the 
conductivity is finite. The gap frequency o, is proportional 
to 4, and vanishes as the transition is approached. Right 
at the transition there exists no gap, and a finite dc conduc- 
tance equal to 

Charge frustration 
Charge frustration qx # 0 modifies the coefficient &), but 
also leads to the appearance of a term iw,l in the 
Ginzburg-Landau free energy functional (18) and in the 
Green’s function (30). When evaluating the conductivity we 
can perform the integration over the frequencies in eq. (29) 
and the analytic continuation in the same way as above. 
The only modification is that E in eqs (31-33) is replaced by 

(37) 

which does not vanish at the phase transition marked by 
&,) = 0. In the self-charging case the combination in eq. 
(37) is simply equal to Eerf(qx) = ~ ( q ,  = 0). Again we find that 
at low frequencies the response of the system is that of a 
capacitor, and above a threshold frequency the conductivity 
acquires a real part. In the case qx = 0 the effective capac- 
itance diverges at the transition and the frequency threshold 
vanishes. In contrast, for nonzero qx both remain finite up 
to the transition. This means the Coulomb gap vanishes in a 
stepwise fashion as we cross the superconducting phase 
transition. Furthermore, there is no indication for a univer- 
sal conductivity at the transition. The nature of the phase 
transition differs in the system with charge frustration from 
that without (at the centers of the main lobes in the phase 
diagram) [23]. 

Magnetic Jield effects 
The effect of a magnetic field, if we neglect commensur- 
ability effects, is described by the eq. (27) (in Ref. [36] it is 
outlined how to treat commensurability effects in the 
coarse-graining approach). In this case we can take the mag- 
netic field into account by replacing the integral over k in 
(29) by a sum over Landau levels n. Hence eq. (29) is 
replaced by 

where 

(38) 

(39) 
71 

C(& = 0, w = 0) = - 
8 4  
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The mean field phase transition is determined by Ecff(f) = 0. 
The real and imaginary parts of the conductivity are 

x [6(0 - 11, - u n  + 1) + d ( 0  + U, + U, + 111 
P 

(nf IZ 2 
Cz4Rq n = O  u n u n + I ( u n  +un+1)  

(n + 1) coth - U,+ 

Im a(o) = - 

- ) (40) 
x (  U, + U,+ 1 - w U, + U,+ 1 + w 

1 

where U, = C-li2J-; was introduced. As is clear 
from (40), the excitation gap frequency w, is now given by 

Just as for the charge frustrated case, the gap does not 
vanish at the transition. For small field or far from the tran- 
sition, i.e. f <  Eeff(f), the result for the conductivity (32) is 
essentially unchanged, except that E is replaced by Eeff(f). 
For high f or close to the transition one can approximate 
the sum over Landau levels by the first (divergent) term. In 
this limit, at zero temperature the effective capacitance 
reduces to 

It still diverges at the transition. For temperatures T % 
u1 = r - ’ / ’ , / G f  the behavior of the effective capac- 
itance depends on the critical field f,, , for a large range of 
parameters the effective capacitance is inversely proportion- 
al to the field, i.e. C e f f  N f - ’. 

In the absence of external charges the results (32-42) can 
also be obtained from the real time Ginzburg-Landau equa- 
tion 

= t(r, t )  (43) 
that corresponds to the free energy (26). Here 5 is a Lange- 
vin force with power spectrum (tt), = qo coth P0/2 and q 
is an infinitesimal dissipation. A fluctuation conductivity 
calculation [39], using the ordinary Kubo formula, now 
with the additional second time derivative added, also yields 
the results quoted above. 

Non-Gaussian corrections will quantitatively modify the 
response functions. It is known that the Gaussian approx- 
imation to the universal conductance at the transition 
(where the fourth order term in the cumulant expansion for 
the Ginzburg-Landau free energy is most important) differs 
only 30% from Monte Carlo simulations [23]. Therefore, 
we expect that higher order corrections will not seriously 
alter our conclusions. 

6. Bose-Hubbard model in the coarse-graining approach 
In this section we discuss the Bose-Hubbard model on a 
d-dimensional cubic lattice in the absence of a magnetic 
field ( A  = 0), and in this section we focus on on-site 

Coulomb interactions only 

i i 

The chemical potential p 2 0 controls the total number of 
bosons N ,  and the hopping term is restricted to nearest 
neighbor sites. At T = 0 the Bose system is either insulating 
or superconducting. The corresponding phase diagram with 
respect to the model parameters p / V  and J / V  is convenient- 
ly sketched if we start from J = 0 [23]. In this limit every 
site is occupied by an integer number of bosons. For 
n - 1 c p /V  < n the boson occupation number is pinned at 
the integer value n 2 1 and the system has a vanishing com- 
pressibility K = a N d a p  due to an energy gap V for the 
transfer of one boson to a neighboring site. The energy gap 
decreases with increasing kinetic energy and vanishes at a 
critical value of J / V  when the insulating Mott phases at 
commensurate fillings (the number of bosons per site is an 
integer) become a superconducting fluid. For non-integer 
fillings the system remains superfluid at all values of the 
repulsive Coulomb interaction [40]. Lobe-like shapes will 
therefore appear for the insulating phases in the p/V us. J / V  
phase diagram [24]. The critical phenomena related to the 
zero temperature insulator-superconductor transition are 
expected to be the same as for the continuum Bose gas [44] 
except at the tips of the phase boundary lobes. There the 
transition of the lattice boson model takes place at fixed 
integer fillings and the critical behavior is that of an X-Y 
model in d + 1 dimensions [37]. At finite temperatures the 
possibility of an intermediate phase arises which may have 
similar features like the so-called Bose glass which forms in 
the presence of diagonal disorder. It may be characterized 
by a nonvanishing compressibility but still a vanishing 
superfluid density [23, 381. 

The partition function of the Bose-Hubbard model can be 
expressed as a coherent state path integral [45] in imagin- 
ary times 0 c 7 < /? = l/k, T 

Z = n ~O:(z)~L(Pi(z)e-(so+s” (45) 
! i  

So = [ dz 1 [Or a, Oi - pL(P:Oi + 3 VL(PfL(Pi(O:L(Pi - l)] (46) 
i 

(47) 

The complex c-number fields Oi(z) satisfy the periodic 
boundary condition a,@) = @LO). 

Our qualitative discussion suggested already that the 
phase diagram develops interesting structure for small J / V .  
Since the action So involves on-site terms only we will treat 
the hopping part as a perturbation and decouple it by a 
Hubbard-Stratonovich (HS) transformation. This is in fact 
opposite to what is most commonly done in many-body 
problems where the interaction part and not the kinetic 
energy is treated by approximate techniques. 

Again we follow the standard steps of the “coarse- 
graining” procedure [37], i.e. we perform a cumulant expan- 
sion of e-S1 to leading order in the auxiliary HS fields xi(?). 
The expectation value ( x i )  is linearly related to ( m i )  and 
the HS fields therefore serve as an order parameter field for 
superconductivity. Since we are here mainly interested in the 
phase diagram it is sufficient to obtain the effective action to 
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quadratic order in the order parameter fields. Explicitly we 
find 

P 

where we have introduced the correlation function 

G(z - 7') = (@F(z)@~(z'))~ 

= 2- j n 9 @ ~ ( Z ) 9 ~ ~ Z ) ~ F ( Z ) @ ~ Z ' ) e - S 0  (49) 
20 j 

and 2, is the partition function for J = 0. For a cubic 
lattice in d dimensions the kinetic energy dispersion is given 
by 

For the calculation of the correlation function G(z) with 
the (D4 action (46) we restrict the paths to Gaussian fluctua- 
tions around the saddle point Do of the action So which is 
determined by 1 Q0 1' = 4 + p / V .  This approximate evalu- 
ation of G(T) is most accurate for p /V  & 1, i.e. for large 
boson numbers when charge fluctuations on a single site are 
small. Introducing phase and amplitude of the boson fields 
by @ = (I Q0 I + A) ei+' we consider for each site the effective 
(complex) quadratic action for phase and amplitude fluctua- 
tions 

x C2V Io0 I A2(r) + i(I @o I + 2APr VI (5 1) 

Since values of the phase which differ by 2n are equivalent 
the path integral for G(r) also includes a summation over 
winding numbers q(B) = q(0) + 2zn [27] leading to 

x j ~A(z)@*(z)@(z')~ -'bff 

Here we have already dropped the site index because the 
action So does not couple the boson fields at different sites. 
The coupling of phase and amplitude fluctuations requires 
the calculation of three separate contributions to the corre- 
lation function G(T), i.e. 

G ( ~ )  = I m0 12(eWd-d0) l  >o + l @ o l  
x ([A(z) + A(0)]ei[v(')-+'(o)l > O

+ (A(Z)A(0)e'['P(r) - d O ) I  >O (53) 
All three correlation functions are evaluated with the 

quadratic action (51). For brevity we give explicitly the 
resdt for the pure phase correlator and present the lengthy 
expressions for the amplitude correlation functions else- 
where [46]. 
                    

Here q = exp (-2n2//3V) and 9,(z, 4) is the Jacobi theta 
function [47] defined by 

which appears in (54) as a consequence of the winding 
number summation. Given G(z) the mean field boundary to 
the superconducting phase is determined from 

0 = 1 - Jd dzG(r) [ 
In Fig. 6 we plot the corresponding phase boundary in 

the p /V  us. J/V plane for different temperatures. For the 
lowest temperature we clearly recognize the two first lobes 
discussed above. In the zero temperature limit the supercon- 
ducting phase extends down to J = 0 for all integer values 
of p / V .  The critical values of J/V at the tips of the lobes 
follow an envelope function which scales as - l/[ O0 12.  For 
d = 2 and at a filling ( i t i )  = 1 the coarse-graining result for 
the critical value is given by JJV = 0.139 as compared to 
the value of J J V  x from quantum Monte Carlo (QMC) 
[40]. The mean field result therefore deviates quantitatively 
from the exact numbers by less than 10%. Also the asym- 
metric shape of the first lobe appears very similar to what 
was recently found in QMC calculations for the d = 1 Bose- 
Hubbard chain [24]. 

With increasing temperature the lobe-like structures are 
smoothened and the phase boundary is shifted to larger 
critical values of J /V.  At the tips of the lobes, however, the 
temperature dependence is nonmonotonic. This is more 
clearly displayed in Fig. 7, which reveals reentrant features 
at low temperatures. This behavior is very reminiscent of the 
analogous behavior found in early work on quantum phase 
models for Josephson junction arrays [lo, 123. The physics 
of this phenomenon is so far not understood. Whether it is a 
real property of the models or an artifact of the approx- 

0 0.1 0.2 0.3 

fflN 
Fig. 6. "Coarse-graining" phase boundary for a d-dimensional Bose- 
Hubbard model at the different temperatures T/V = 1/100 (solid line), 1/10 
(dashed line), and 1/5 (dotted line) 
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d/V 
Fig. 7.  Superconducting transition temperature us. dJ/V for different 
values of the chemical potential. (a) p/V = i, (b) p/V = 4, (c) p / V  = 1 

imation schemes can be tested by the QMC techniques of 
Refs [24 ,38 ,40 ] .  

7. Discussion 
A comparison of the phase diagrams for the Bose-Hubbard 
and the quantum phase model in Fig. 6 and Fig. 2, respec- 
tively, shows that the applied voltage or offset charges qx = 
CO Vx/2e and the chemical potential p / V  play a similar role. 
In both cases we find lobes of insulating phase separated by 
superconducting regions. For offset charges qx = &f, &$, 
... or at integer p /V  = 0, 1, ... the two models lead to a 
superconducting state at T = 0 for arbitrary strength of the 
Coulomb interaction. (The shift by f arises since the inter- 
action in the Bose-Hubbard model (44) is written such that 
it vanishes for single site occupancy n, = 1.) 

While the phase model is perfectly periodic in qx with 
period 1 ,  there is no perfect periodicity for integer steps in 
p / V  in the Bose-Hubbard model. Rather the critical coup- 
ling strength J/V for the superconductor-insulator tran- 
sition at integer filling decreases inversely proportional with 
increasing total particle number N ,  , i.e. increasing p / V .  This 
shows [23] that the analogy between both models holds 
only for large particle numbers, if we identify E ,  = ( r i i ) J .  

For on-site Coulomb repulsion the phase diagram shows 
one insulating lobe per period, characterized by an integer 
occupation of the site. Finite range Coulomb repulsion leads 
to much more structure. Many lobes show up centered 
around rational values of q x .  Some of them will survive in 
the infinite system size limit. We modeled the finite range 
interaction by allowing for self-capacitance as well as 
nearest neighbor capacitance in the quantum phase model. 
It is obvious that the Bose-Hubbard model with an equiva- 
lent generalization, analyzed within the coarse-graining 
approach, will develop the equivalent structure. It would be 
interesting to verify - for instance by the quantum Monte 
Carlo techniques of Refs [24, 38, 401 - whether this struc- 
ture is a real property of the models or an artifact of the 
approximation schemes. 

The analysis of the conductivity, in the coarse-graining 
approach, is very transparent. Of course the explicit results 

reveal the mean field approximation used, but we believe 
that several of the conclusions are valid in general. The 
Coulomb blockade, which has been found in many small 
capacitance junction systems, is responsible for the insulat- 
ing behavior. The Coulomb gap vanishes at the transition. 
The nature of the phase transition and the response function 
differ in the presence or absence of charge frustration. Only 
for integer qx does the threshold frequency for the real part 
of the conductance vanish at the transition, leading to a uni- 
versal value of the conductivity. 

In principle the effect of charge frustration can be checked 
in an array of Josephson junctions by controlling the exter- 
nal voltage relative to a ground plane. However, the 
detailed predictions for the phase diagram presented here 
depend essentially on the assumption that the array has no 
disorder. The fluctuations of the junction parameters are 
probably small enough to make this possible. But random 
offset charges due to charged impurities (which are equiva- 
lent to random on-site energies in the Bose Hubbard model) 
are hard to avoid. Only if their effect is weak can we expect 
to observe the rich structure in the phase diagram. 
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Appendix A. The correlation function g,,(w,,) 

According to the definition given in (17) for the correlation 
function, we have to calculate 

Q ~ O  + Znnj 

gio(7) = J- n Sdqjo S,, gq j ~s )  exp {- S O C ~ I  
‘0 ln j )  j 

(57) 

The partition function 2, is expressed in a similar fashion. 
Using So given in (15) and the parametrization qXz)  = qio 
+ 2nini r/B + O,(s) we find that all the off-diagonal elements 

of the correlation function, viz. g i 0 ( ~ )  for i # 0 vanish 
because of the integrations over qjo.  The reason is that So 
does not depend on the phase q j s )  itself but only on its 
time derivative. 

It is therefore sufficient to calculate the on-site correlation 
function at site 0 

Q(T)  = g o o ( 4  

47r2 
‘0 ( n j )  j i j  8e2 

= exp (2ni 1 qx jn j  - T 1 - niCi jn j  

x exp ( -  2niTn, T)gc(s) (58) 
where gc(s), the correlation function for the case of contin- 
uous charges, results from the remaining integral over O(T) .  
It is [48] 

gc(z) = exp [- 2ezC,-,’z(l - s T ) ]  (59) 
and 

(60) 
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The Poisson resummation formula 16. 

17. 

19. plus a subsequent Fourier transform g(o,) = 

[ exp (io, z)g(z) lead to 20. 

21. 

from which expression (22) follows. 
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