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A microscopic theory for the scattering of light from spin 
fluctuation pair modes in the two-dimensional Hubbard 
model is presented. Two-spin fluctuation processes with 
opposite momenta near the antiferromagnetic wave vec- 
tor Q = (~z, ~) are shown to contribute in particular to the 
low energy part of the Raman cross section. We explicitly 
investigate the influence of the Raman vertex function 
that describes the coupling of the light to the electrons 
and distinguishes between the different scattering geo- 
metries. In addition we explore the dependence on the 
correlation strength and on the temperature. 

I. Introduction 

Electronic Raman scattering on nearly free electron met- 
als is usually an effect of minor relevance. At typical 
wave vectors of the incident light the cross section is 
determined by the spectral intensity of the correlation 
function of density fluctuations which vanishes at small 
momentum transfer due to particle number conservation 
[1]. Moreover the window for inelastic frequency shifts 
is extremely narrow in the small wave vector regime. 
The discovery of pronounced Raman scattering on elec- 
tronic excitations in the new high temperature supercon- 
ductors is therefore of great interest and supports the 
importance of strong electronic correlations in these ma- 
terials. It has revealed numerous unexpected features 
which still remain controversial. In particular a broad 
continuum of scattered intensity is found which extends 
from low energies of the order of kBT up to energies 
of approximately 1 eV [2, 3]. At frequency shifts below 
kR T/h and for selected polarization geometries, e.g. the 
Alg symmetry, the cross section vanishes proportional 
to o/T, indicating a decay rate of the relevant electronic 
excitations which is linear in temperature [3]. These find- 
ings have stimulated speculations on a 'marginal' behav- 
ior of a possible Fermi liquid underlying the normal 
state of the high temperature superconductors [4], but 

have also been described within more conventional 
schemes [5, 6]. 

Apart from these effects a different source of scatter- 
ing exists which is particularly evident in the undoped 
parent compounds. These materials exhibit inelastic light 
scattering resonances at frequencies of the order of 
3000... 4000 cm-1, e.g. in La2CuO 4 and YBazCu306. 2 
[2, 7], and somewhat weaker at approximately two times 
this value. The selection rules, the resonance position 
and the first non trivial moments of these features strong- 
ly support the concept of scattering from two and four 
magnon excitations of the two dimensional spin 1/2 Hei- 
senberg antiferromagnet of copper spins [2, 3, 8] in the 
CuO2 planes. Two-magnon Raman scattering is well es- 
tablished, experimentally as well as theoretically [-9], in 
more conventional antiferromagnetic (AF) insulators 
with larger spin like Rb2MnF4 [10] with S=5/2  and 
K2NiF 4 with S=  1 [11]. A description of the scattering 
intensity in terms of electronic density fluctuations seems 
unlikely in these systems, since due to the vanishing elec- 
tronic compressibility density fluctuations are strongly 
suppressed in the insulating regime. This also applies 
to the doped cuprates due to their immediate vicinity 
to the metal insulator transition as has been pointed 
out recently by Shastry and Shraiman [12]. In this work 
it was shown that light scattering from Mott-Hubbard 
systems close to half filling can be described by an effec- 
tive scattering Hamiltonian which is equivalent to the 
Hamiltonian used by Elliott et al. [13]. The latter cou- 
ples the electric field of the incident photon to a two-spin 
flip process and it was used to analyze magnetic Raman 
scattering in conventional antiferromagnets. This ap- 
proach provides also a theoretical basis of Raman scat- 
tering on magnetic excitations in undoped cuprates. 

Experimentally it is well established that spin fluctua- 
tions are not only relevant to the insulating AF phases 
of the layered cuprates but also lead to prominent low 
energy collective excitations in the doped materials. This 
is evident not only from neutron scattering data which 
exhibit appreciable spectral intensity close to the wave 
vector (zc, ~) indicating short range AF order even in 
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the superconducting compounds [14] but also from the 
deviations from Korringa's law for the temperature de- 
pendence of the copper NMR relaxation rate [15, 16]. 
At finite doping concentrations the two-magnon Raman 
feature is found to broaden and to shift to lower frequen- 
cies [17]. This is suggestive of a transition from sharp 
spin wave excitations to overdamped paramagnons. The 
polarization dependence of the scattering on these rem- 
nants of the two-spin resonance seems less crucial in 
doped systems. In particular the A~ ~ and B2~ channels, 
which contribute only very little to the Raman scattering 
in the AF compounds, develop finite intensity for finite 
doping concentrations. The relative contribution of mag- 
netic scattering to the total Raman cross section, how- 
ever, remains unclear. 

All these phenomena raise the interest for a theoreti- 
cal description of light scattering from spin fluctuations 
in itinerant systems close the magnetic instability. Pre- 
vious work on this topic was mainly phenomenological 
[5]. In the present investigation we provide a microscop- 
ic treatment of the Raman scattering from two-magnon 
excitations in the two dimensional Hubbard model 9 The 
paper is organized as follows: in Sect. II we start with 
a review of the basic notions of electromagnetic response 
and the scattering of light as applied to the Hubbard 
model 9 Section III is devoted to the description of our 
diagrammatic approach and in Sect. IV we describe in 
detail the evaluation of the Raman vertex function and 
the dynamical spin susceptibility. A discussion of our 
results is presented in Sect. V, and finally we conclude 
in Sect. VI. 

II .  E l e c t r o n i c  R a m a n  s c a t t e r i n g  

We start from the Hubbard Hamiltonian on a square 
lattice in the presence of an external transverse electro- 
magnetic photon field represented by the vector potential 
A in the usual Peierls description 

] HA=--t ~ exp thcc A . d l  c~cj~+h.c. 
<ij>,a i 

+ U~,ni~ ni+ (1) 
i 

cL(c~) destroys (creates) an electron of spin a on the 
site i of the lattice and the sum on (i j) is restricted 
to nearest neighbors, t and U represent the hopping inte- 
gral and the on-site Coulomb repulsion, respectively, and 
n~ is the local density. Since the photon field is a weak 
perturbation we expand to second order in A and in 
performing the Fourier transformation we introduce the 
components of the current operator 

.~ w c3ek + Jq = 2_, ~ c,_ q (2) k,(7 tJr~ K+~,e Ck-~,a 

and the components of the 'inverse mass tensor' 

02~k  C + (3) 

Table 1. Scattering geometries for different combinations of the po- 
larisation vectors of the incoming and outgoing photons e~ and 
ey, respectively 

Symmetry e i e f  

1 1 Alg ~ ( 1 , 1 )  ~ (1 ,1 )  

1 1 B1, ~ (1, 1) ~ (1, - 1) 

B:g (1, 0) (0, I) 

with the tight binding dispersion ek=--2t(cos(k~a) 
+ cos (ky a)). For a free electron dispersion r~P is propor- 
tional to the familiar density operator 9 With this nota- 
tion we obtain the effective Hamiltonian (in units where 
h = l )  

HA=HA=O--c~JqA-q 

+l(e~22 \c] 2 rq,+q2 A-q, A ~ q 2 " ~ '  
ql,q2,~x,fl 

(4) 

In the second quantized form the components of the 
electromagnetic field operator A s are given by 

_ / -hc  2 A;= V ~(e~a_q +Ga;) (5) 

where G are the complex components of the unit vector 
e of the photon polarisation and the overbar denotes 
complex conjugation. The polarisation vectors for the 
commonly used experimental configurations (AI~, Big, 
and B2g) with linearly polarized light are collected in 
Table 1 following the notation of [18] 9 c%=clql is the 

+ photon energy and aq (aq) are the photon creation (anni- 
hilation) operators, respectively. 

The Raman scattering cross section is proportional 
to the transition rate R which can be obtained by apply- 
ing Fermi's golden rule 9 The inelastic scattering rate for 
transitions with energy and momentum transfer A co 
=coi - coy and q = k i -  kr is therefore of the form 

27cc  2 ( e l  4 e - /~*  
R(q' Aco)= g2 ~] /~ i~  ~ \c) ; ~ l ( f l  Mli)[ z 

 9 ~ (5i - e~ - A co) (6) 

Z is the partition function and fl = 1/kB T is the inverse 
temperature. M is the effective Raman scattering opera- 
tor responsible for transitions between initial and final 
eigenstates of the Hubbard Hamiltonian with energy ei- 
genvalues ei and el, respectively. From the electron-light 
coupling Eq.(4) there are two contributions to M, a di- 
rect scattering from the coupling to the 'inverse mass 
tensor' and a resonant contribution from the coupling 
to the current, which involves virtual intermediate states 
of the correlated electron system. Explicitly one finds 
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( f l  Mr = Y', e~' e} <fl  89 + ~r~al i> (7a) 
e,,8 

<fl A4~P Ii> 
E[( f l j~ , [v) (v[ j~-k , [ i )  (f[j~-k, lv_)(v[j~,[i)] (7b) 

= 7" [ e~ - e~ - co~ 4 e~ - e~ + col J 

Eq. (7b) arise from two different time orderings. Using 
the fluctuation-dissipation theorem it is useful to rewrite 
the transition rate in terms of the imaginary part of the 
corresponding dynamical susceptibility, 

R(q, A co)= [1 +n(A co)] 

c 2 ( e l  4  9 O ~ \ c  ] ~ d t e-  ia'~ ( [M + (0),)~(t)]) (8) 

Here, n(A co)= (e ~a~'- 1)- 1 is the Bose distribution func- 
tion and we have rewritten the scattering operator as 
[ 12 ]  

~r (t) = ~ e7 e j  ~ 
~p 

 9 "~ t),Jk,(t)] e i o ,  a '  ~ZqP(t)+i d t ' [ j - k , ( t + '  "~ . (9) 
o 

Since the wavelength of light in the optical range is large 
compared to the lattice spacing and all length scales 
of the electronic system, we can safely neglect the mo- 
mentum transfer of the photon to the electrons and we 
will from now on use q = k , -  k r = 0. Note that the deriva- 
tion did not rely on any specific form of the electron- 
electron interaction since the photon field couples to the 
electrons only through the phase factor in the kinetic 
energy. 

The result for the scattering operator shows that the 
general form of the Raman intensity involves density- 
density, four current and mixed current-density correla- 
tions. Equations (8) and (9) may serve as a starting point 
for a perturbative analysis, but in this form it is hard 
to disentangle specifically the contributions from AF 
spin fluctuations which dominate the dynamic response 
functions in the Hubbard model near half-filling 9 For 
this purpose it is useful to follow alternatively a diagram- 
matic approach which allows to single out the contribu- 
tions we are interested in. 

IlL Raman scattering from spin fluctuations 

A somewhat different route to the evaluation of the Ra- 
man intensity results from the well known fact, that the 
transition rate given in (6) can be obtained from the 
imaginary part of the fully dressed two-photon Green's 
function. In particular, given any specific subclass of dia- 
grams which contribute to the two-photon Green's func- 
tion, its imaginary part can be deduced from taking the 
so called cuts of all these diagrams. Choosing a specific 
subclass of diagrams and a selected set of cuts that leads 
to an expression in accordance with the golden rule is 

o -q 

F2 -= x . . ~ j / . . .  ". 

. . .1 i t.,.l p q ,  i to f  It.,Ov \ 0  

Fig. 1. General diagram for the Raman intensity from two-spin 
fluctuation scattering. The broken lines represent the incoming (i) 
and outgoing (o) photon and the wiggly line the propagator (suscep- 
tibility) for the spin fluctuation 

a nontrivial task. We will follow here the formalism of 
Kawabata [-19] who applied the two-photon Green's 
function approach to the problem of Raman scattering 
from phonons. In this work a detailed description has 
been given for the cut procedure and the related selection 
of the relevant branches for the analytic continuation. 

We apply Kawabata's method and its extension to 
two-phonon Raman scattering E201 to the problem of 
Raman scattering from AF spin fluctuations. Since Ra- 
man scattering is a q=  0 probe an even number of AF 
fluctuations is necessary to satisfy the matching condi- 
tions with a momentum transfer close to the AF wave 
vector Q = (n, n) for each of the fluctuation propagators 
involved. Here, we will focus on Raman scattering from 
two spin fluctuations. Thus, the relevant contributions 
will arise from two-spin fluctuations with opposite mo- 
menta near Q, as in the case of two-magnon scattering 
in ordered antiferromagents. This is represented by the 
general diagram in Fig. 1 where the light couples to the 
electronic system by means of a vertex function creating 
internally two spin fluctuations of momenta q and - q ,  
respectively. Following [19] and [20] we evaluate the 
diagram Y2 in the finite temperature formalism and in- 
troduce three independent external frequencies as indi- 
cated in Fig. 1. 

Given the vertex function Vq and the spin fluctuation 
propagator, i.e. the spin susceptibility, which will be eval- 
uated both in Sect. IV, we have to calculate 

.72 (i co,, icon, icon) 
1 = ~  ~ Vq (ico u, icot, icom) U 2 z(q, icom +icot) 

mq 

 9 U2 z ( - q ,  -icom) Vq(icov, - icot ,  -icom) (10) 

where the ico u are bosonic Matsubara frequencies. Here, 
for our convenience, we have split off factors of U 2 from 
the vertex function. The reason for this will become ap- 
parent in Chap. IV. In order to compute if2 we introduce 
the spectral representation for the spin susceptibility 

z(q, ico0= - ~  do '  Imz( q, co') (11) 
7C i cov - -  CO r " 

In principle the frequency sum of (10) has to be per- 
formed taking into account all existing branch cuts, in- 
cluding those which result from the analytic structure 
of the vertex functions. Here, we include only the regular 
part of the vertex [20], i.e. we carry out the internal 
frequency sum excluding possible residue contributions 
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from the vertex function. The subsequent analytical con- 
tinuation to real frequencies requires to identify [20~ 

icou ~ coi+i6 ico~ ~ - c o i + i 6  icot ---, A co +_i3 (12) 

where A co = co~-col is the Raman frequency shift intro- 
duced earlier 9 Within the above approximation of a regu- 
lar vertex function only one cut across the spin fluctua- 
tion lines in the diagram is needed to obtain the scatter- 
ing intensity. This translates into taking the discontinuity 
of ~2 across the real frequency axis with respect to ico, 
i.e. 

1 
2~zi [o~2(coi+ i 3, - m i + i 3 ,  A co +i6) 

- -  o ~ 2 ( c o i + i 6  , -co~+i3, A co- i  f)]. (13) 

This yields for the contribution from spin fluctuations 
to the total Raman scattering intensity 

I(A co, T)=(1 + n(A co))2 1 dco' ] Vq (co, +i3, A co, co')l 2 
q 

 9 ( ~  ( c o ' )  - n ( c o '  - ~ c o ) )  

 9 UEImT.(q, co'+Aco) U2Imz( -q ,  co'). (14) 

This convolution of two spectral functions for the spin 
fluctuations has the expected form for a transition rate 9 
The appearance of the absolute square of the vertex func- 
tion is a consequence of the highly symmetric cut of 
the diagram. If the internal structure of the vertex, i.e. 
the residue contributions excluded above, is taken into 
account further possibilities arise for taking cuts provid- 
ing additional contributions to the electronic Raman 
scattering 9 Here, however, we focus on the selected cut 
since we expect its contribution to be relevant in the 
presence of strong AF spin correlations 9 

IV. The vertex part and X (q, to) 

The evaluation of the scattering intensity I(A co, T) in 
(14) requires to provide two input quantities: the vertex 
function Vq and the spin susceptibility 9 The electron-pho- 
ton Hamiltonian (4) already displayed the bare scattering 
vertices from the coupling to the current and to the den- 

i / i a 

0,~. 

. , ' j  
i / /  b 

0,. ~ 0~. 
+ + 

i /r  J . . ~  
c i . ~  ~ d 

Fig. 2a-d. Four-vertex function for two-spin fluctuation Raman 
scattering from the coupling to the inverse mass a and the current 
operator b, c and d for different time orderings 

sity of the correlated electron system. From these two 
basic scattering vertices four different diagrams follow 
which add up to the total vertex function Vq shown in 
Fig. 2. Here, the diagrams (a), (b), and (c) directly reflect 
the explicit form of the scattering operator in (7). The 
contribution (d) from the rhomb shaped diagram, how- 
ever, is equally valid and simply corresponds to another 
time ordering for the absorption (emission) of a photon 
and the creation of the internal excitation, i.e. the spin 
fluctuation. Yet, this diagram has not been included in 
similar diagrammatic approaches to electronic Raman 
scattering [20]. In our calculation, however, we find this 
diagram to be comparable in magnitude to the other 
three contributions and it is included in our subsequent 
analysis. 
For a given spin tr the vertex diagrams are given by 

Vq~(icou, ico. icon)= 1 ~ M~(k) G~(k, it2.) 
/~k,n 

 9 G~(k, ig2, +icor) G~(k-q,  if2,--icom) (15a) 

V~(ico., ico. i a~)=  _ 1  Z M~(k) G~ (k, iO.) 
]~k,n 

 9 G~(k, iO.+icou) G~(k, iO.+ico,) 
 9 [G~(k--q, it2.-ico,.)+G~(k-q, ifl.+ico,.+icot)] (15b) 

V~ (i cou, i co. i co.,) = - 1 E M~ (k, q) G~ (k, it2.) 
/~k,n 

 9 G~ (k, it'/. + iau) G~ (k, it2. + i co~ + ito.) 
 9 G~(k+q, iD.+ico~+icot). (15c) 

The total vertex function is obtained from the sum Vq 
= V~ + V~ + V~. For the fermion lines undressed free par- 
ticle propagators for the tight binding band of the square 
lattice are used, i.e. Gg (k, if2,) = ( iO,-  ek)- 1 with the fer- 
mionic Matsubara frequencies ion = i(2n + 1) ~z//~. The 
symmetry of the basic scattering vertices has been com- 
bined into the factors M~, Mj, and M~ together with 
the components of the photon polarisation vectors. It 
is these symmetry factors of the vertex function which 
distinguish between the different scattering geometries. 
They follow from 

zce2 02 ek ~ -t~ 
M~(k)_ O ~  ; 0~-kB e e (16a) 

2roe 2 ~z k ~ek+ q 
M r ( k ' q ) - Q l ~ ~ k  ~ Oka e~ea (16b) 

Mj(k) = M~(k, q = 0). (t6c) 

The explicit results for the Alg, B~g, and B2g scattering 
geometries are collected in Table 2. We may add that 
the diagrammatic representation for the vertex function 
also allows an extension to a multiband situation when 
the dependence of Vq on the incoming light frequency 
gives rise to resonant effects from interband transitions. 

For the calculation of the spin susceptibility we apply 
the weak coupling RPA approximation and sum the 
standard ladder and bubble diagrams for the Hubbard 
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Table 2. Symmetry coefficients of the vertex function for different scattering geometries. The coefficients M, introduced in (15) with 
7~e 2 

ee{~, r,j} are related to the quantities P~ listed in the table by M~: O , / ~  f V  c~ P~ 

P~(k) P~(k, q) Pj(k) 

A ~, cos k~ + cos ky 4 (sin k~ + sin ky) (sin (k~ + q~) + sin (ky + qy)) 4 (sin k~ + sin ky): 
B l g cos k~ - cos k r 4 (sin k:, + sin ky) (sin (k,: + q~r - sin (ky + qr)) 4 (sin k~ - sin k~) 2 
B2g 0 8 sin k~. sin(ky + qy) 8 sin k:r sin k r 

o ~ 0 0.,. "~ 

 9 / . / ' r  J ..*" j 
i /  J t i 

~ ,!  

! "  ~ 

/ "  

0 

\ ~ ,  ~[,_t ! i i~! ?!  - ' r  

i / t "., 

Fig. 3. a Effective vertex used in b-d (Note that these elementary 
photon-electron scattering vertices also appear as part of the vertex 
function in Fig. 2. b-d show the lowest order diagrams which are 
summed in the RPA series for the susceptibility, separated into 
b the 'even bubble', e the 'odd bubble', and d the ladder contribu- 
tions, e Example for an 'odd bubble' diagram which involves the 
rhomb part of the vertex. These diagrams are included in the calcu- 
lation, but they are not simpty represented by using the effective 
vertex introduced in a 

model [21]. The different lowest order contributions are 
shown in Fig. 3. Spin constraints impose an even (odd) 
number of closed particle hole loops or elementary bub- 
bles between the fermion lines of opposite (parallel) spin 
which are part of the vertex. We therefore have to consid- 
er separatly the contributions Z ~ ~ and Z ~ ~ = Z ~ ~ leading 
to 

U2 z~ ~ (q, co) = U 4 
U 2 Zo (q, ~) 

1 - U Zo (q,  co) 
U3 X~ ~) (17a) 

+ 1 Z ~ o 2 ( q , ~ )  . 

U2 Zo(q, co) (17b) 
U2 (q' co) = 1 - U 2 Zo2(q, o))' 

The elementary bubble Zo(q, co) is the susceptibility of 
the noninteracting system (U=0)  as given by the Lind- 
hard function 

1 f ( % + q ) - f ( % )  Zo(q, (18) 

Here, f (%)=[e(~ , -" ) / r+l]  -1 is the usual fermi factor 
with the chemical potential # and temperature T. Note 
also that due to the spin constraints only the combina- 
tions 2 [ I m z * * I m z t t + I m z  ~ I m y  +] and no mixing 
terms between TT and "[~ susceptibilities will enter in 
the intensity formula (14). The additional factor 2 results 
from summing over the spin. 

In this weak coupling diagrammatic expansion the 
Coulomb repulsion parameter is understood as an effec- 
tive U assuming that electronic correlations renormalize 
the bare onsite interaction to smaller values. Z t;  and 
~* ~ contain the contributions from both charge and spin 
fluctuations. However, the enhancement of the suscepti- 
bility near Q --- (n, re) arises purely from the magnetic part 
which is responsible for the Stoner enhancement denomi- 
nators while the charge fluctuations get suppressed with 
increasing U. 

With (14)-(18) the derivation of the Raman scattering 
intensity from spin fluctuations is complete. Clearly, the 
complexity of the vertex function and the susceptibility 
requtres a numerical evaluation, The calculations were 
carried out in a two step procedure: first we have deter- 
mined the irreducible kernel of the dynamical spin sus- 
ceptibility, i.e. the bare particle hole propagator  given 
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in (17), and the analytic continuation of the vertex func- 
tion from (t5). The relevant momentum space summa- 
tions were performed on discrete lattices with system 
size of 40 x 40 sites. We found this to result in an accept- 
able suppression of finite size effects. In all these calcula- 
tions the hopping integral t was used as the energy unit 
and the chemical potential was fixed at # =  -0 .3  which 
is a typical value for a weak coupling one-band Hubbard 
model description of the high temperature superconduc- 
tors for hole doping concentrations near 15% [22]. The 
input frequency to the vertex function was set to co~ = 5.0 
which is reasonable for a typical laser frequency, if we 
assume a hopping energy t-~400 meV. Having obtained 
the vertex function and the spin susceptibility we carried 
out the final momentum sum and the convolution inte- 
gral over the two-spin fluctuation loop as a second step. 
We evaluated the convolution integral by a Riemann 
sum with a frequency spacing small compared to k B T/h. 
In all numerical steps a finite imaginary i8 (with ~ 
kB T/h) was kept in the energy denominators to obtain 
a sufficiently smooth behavior of Vq, )~(q, co), and 
I(A co, T). 

V .  R e s u l t s  a n d  d i s c u s s i o n  

Since the total Raman intensity is controlled by both, 
the spin fluctuations and the vertex function, we eluci- 
date separately their relative influence. We focus on the 
role of the paramagnons first and set the Raman vertex 
to a constant. The spectrum obtained for Vq = 1 is shown 
in Fig. 4. It displays the Raman intensity Eq.(14) as a 
function of the inelastic frequency shift for various values 
of the Hubbard interaction U at a fixed temperature 
T=0.1. For our convenience we divided out the Bose 
factor, but the inset shows the same plot with the Bose 

factor included. Figure 4 shows just the bare results for 
the diagram Fig. 1 in arbitrary units. Since even experi- 
mental data are most commonly presented in arbitrary 
units due to difficulties in obtaining absolute Raman 
intensities, we avoid here the complications of converting 
the results into real cross sections for photon counts 
or energy flux densities. This conversion which involves 
the multiplication of I(A co, T) with powers of the incom- 
ing and outgoing photon frequency [23], however, leaves 
the low frequency behavior unchanged. 

Close to the AF transition the paramagnon excita- 
tions will soften in the vicinity of Q where most of the 
spectral weight is concentrated. As the momentum sum 
in (14) samples this region of the phase space one expects 
an enhancement of the low frequency spectral weight 
in the intensity. This explains the increasing intensity 
in Fig. 4 as U increases towards the magnetic instability, 
which for # =  -0 .3  occurs near U~2.4.  The similar be- 
havior is obtained when the filling is changed by lower- 
ing the chemical potential. Since I(A 6o)/(1 + n(A co)) is the 
imaginary part of a correlation function this quantity 
must vanish proportional to A co (or at least with an 
odd power of A co) for A co ~ 1. The bare two-paramagnon 
Raman spectrum extends over the frequency scale of par- 
ticle-hole excitations of twice the tight binding band- 
width. The spectrum, however, is naturally cut off by 
the maximum Raman frequency shift A (/)max = COl which 
is equivalent to photon absorption. Finally let us point 
out that the lack of polarization dependence here is mer- 
ely a consequence of using a constant Raman vertex 
function. 

Figure 5 shows the influence of temperature assuming 
again Vq-1 for a fixed value of U=2.35. We find two 
competing effects to be relevant: first the overall intensity 
increases with temperature. This may seem surprising 
since the spin susceptibility near the wavevector 

N = 40, g = -0.3, T = 0.1 
Ramanvertex set to 1 

_ ' 0 . 2 4 . ,  ' , , ' ,  ~ /  

0.18- I 0.16 , 

0 t 1 i 

0 I 2 3 
Raman shift Am 

Fig. 4. Raman intensity divided by the Bose factor i +n(A o) for 
fixed temperature T=0.1 and different Hubbard U parameters for 
a constant vertex function Vq-1. The inset shows the same plot 
with the Bose factor included. All energies are in units of the hop- 
ping matrix element t 

'~ ~ 0.12- 

~ 0.06- 

N = 40, U = 2.35, ~ = -0.3 

0.42- Rarnan vertex 
0.36- set to 1 

~ it ~ T  

~ 0.30- / 
m ~O 

m 0.24 
~ ~ =0.3 o_ ~aaO.18-. ,  , "-. ~.~'~ , , l ; / \ , ,  ""-..... .......... 

a , " ..... 
"--- .  0.2 ...... 

0.06- F.T--;  
0 i i t 

0 I 2 3 
Raman shift Am 

Fig. 5. Raman intensity (divided by the Bose factor as in Fig. 4) 
as a function of the photon frequency shift for U=2.35, y=-0 .3  
at different temperatures for a constant vertex function Vq- 1 
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-~0.00012- 
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(0 

c~ 

T = 0.1, U = 2.0, g = -0.3 

f "A 
o BIg 
o B Ig 
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0 1 2 3 
Raman shift Am 

Fig. 6. Raman intensity (divided by the Bose factor) evaluated with 
the full vertex function for different scattering geometries of Alg, 
Big, and Bzg symmetry. The dashed and dotted lines are merely 
a guide to the eye connecting data points of the same symmetry 

Q = (zc, re) is expected to be enhanced at low temperature. 
However, the In 2 T divergence of Zo at half filling is weak 
and cut off by a finite chemical potential away from 
half filling. In fact, Im zo(Q, co) increases with increasing 
temperature for frequencies c0__< 2 I#[ due to a kinematic 
gap in the spectral weight [-24]. Here, however, the main 
effect arises from the temperature dependence of the Bose 
factor difference in the integrand of the convolution inte- 
gral. Away from the very low temperature limit T~ A co 
we find the convolution integrand and hence the intensi- 
ty to increase with temperature due to the Bose factor 
difference. As a second effect the relative contribution 
of the low frequency peak in Fig. 5 in the spin fluctua- 
tions is enhanced as the temperature is lowered. This 
can be understood in terms of a quasi critical slowing 
down of AF paramagnons. Using a phenomenotogical 
form for the spin susceptibility it is exactly this concept 
of critical softening which has been used in [5] to de- 
scribe the linear low frequency behavior of the Raman 
intensity. 

Now we turn on the effect of the vertex function. 
Figure 6 shows a typical result for the total Raman in- 
tensity, including the full vertex diagrams of Fig. 2, for 
a fixed temperature T= 0.1 and U--2.0. The three curves 
correspond to the polarizations of the different scattering 
geometries which are now distinguished by the vertex 
function. The differences follow from the symmetry coef- 
ficients of the vertex function listed in Table 2. The first 
obvious effect of Vq from this figure is the strong suppres- 
sion of high frequency Raman shifts for all polarizations. 
This is not a trivial effect simply attributed to the high 
frequency falloff of the vertex. Rather this property can 
be traced back to destructive interference effects between 
the four diagrams in Fig. 2 which contribute to the vertex 
function. Vq is a rapidly varying function of its frequency 
arguments containing spikes and logarithmic singulari- 
ties characteristic for the density of states of the 2d tight 
binding band. In particular the diagram Fig. 2 b and its 

exchange counterpart Fig. 2c tend to partially cancel, 
nevertheless much less effective than commonly antici- 
pated for simple metals [25] where the coupling of the 
light to the current is generally ignored. Figure 6 shows 
that with the full vertex function a pronounced scattering 
intensity is still maintained at low frequencies. It is this 
low frequency region where the spectral intensity from 
the scattering off the spin fluctuations is concentrated. 
Since the vertex function is independent of U and only 
weakly dependent on temperature and filling, the quali- 
tative features discussed with respect to Figs. 4 and 5 
for Vq ~ 1 will be superimposed also when the full vertex 
function is taken into account. 

A second result which follows from this figure is the 
marked difference of the partial contributions of the 
three independent polarization geometries to the total 
Raman intensity. It is interesting to note that relative 
sizes for the Axg, Big, and B2g symmetries, respectively, 
depicted in Fig. 6 roughly correspond to the intensity 
ratios found in the doped cuprates. This applies in partic- 
ular to the small B2g contribution which is a direct conse- 
quence of the vanishing symmetry coefficient Me(k) in 
(15a) for the coupling to the inverse mass tensor. The 
slow rise of the scattering intensity as A co increases 
beyond the low frequeny peak is mainly due to the 1/co s 
prefactor in the intensity and has no particular relevance. 

VI. Conclusions 

Based on the Hubbard model we have provided a micro- 
scopic analysis of Raman scattering from spin fluctua- 
tions. Our results show an increase of the low frequency 
scattering intensity controlled by two factors: the dy- 
namics of spin-pair modes near Q = (~z, re) and the high 
frequency behavior of the Raman vertex function. We 
have demonstrated the relevance of spin fluctuations on 
the low energy Raman cross section by varying the on- 
site correlation strength, i.e. the Stoner enhancement fac- 
tor, and the temperature. The enhanced contribution at 
low frequencies is expected and consistent with the ex- 
perimental observation that the two-magnon peak of the 
AF cuprate parent compounds broadens and moves to 
lower frequencies for the doped materials leaving behind 
a remnant low frequency feature even for the supercon- 
ducting samples with a high T~ [17]. Within our ap- 
proach the Raman vertex function is treated on a micro- 
scopic level. The vertex proved to be important for the 
spectral intensity since its nontrivial frequency depen- 
dence effectively suppresses the high energy cross section. 
In addition, we find the symmetry properties of the ver- 
tex function to result in intensity ratios for the different 
scattering geometries which are comparable with experi- 
mental findings. It is, however, unlikely that the magnetic 
scattering is in any way connected to the electronic back- 
ground continuum. Clearly, we singled out only the 
dominating contribution to the magnetic Raman scatter- 
ing, and other processes present in the correlated elec- 
tron system may be responsible for the unusual Raman 
response of the cuprates. Finally, our approach also al- 
lows for an extension to the spin density wave state of 
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the H u b b a r d  model  at half-filling, where - besides the 
resonant  scattering across the energy gap of  the insulator  
[26] - i t inerancy effects on the t w o - m a g n o n  feature may  
be c o m p a r e d  to the k n o w n  results for Heisenberg antifer- 
romagnets .  
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