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Superconductor-insulator phase transition in the boson Hubbard model
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We investigate the superconductor-insulator phase transition in the two-dimensional boson Hubbard
system with short-range interactions. Fluctuations of both the phase and the amplitude of the superfluid
order parameter are included in the determination of the phase diagram at zero and Rnite temperatures.
The mean-field phase boundary is compared to quantum Monte Carlo results. We also calculate the
frequency-dependent conductivity in the vicinity of the phase transition and find it universal at the mul-
ticritical point.

I. INTRODUCTION

Strong-coupling problems continue to be the focus of
theoretical and experimental efforts in the last decade.
Especially, puzzles in low dimensions and in the presence
of disorder have attracted much attention recently.
Parallel with the intensive thrust toward cracking the fer-
mionic problems, there is an increasing appreciation of
the relevance of the bosonic issues as well. This origi-
nates in part from the numerous experimental systems,
the essence of which is adequately captured by bosonic
physics, and in part from the many unresolved theoreti-
cal challenges.

The most intriguing experimental examples are helium
in disordered media, such as in Vycor' and aerogel, and
disordered superconductors, of the homogeneously disor-
dered or granular variety. The central phase transition
in all of these systems is the (superconductor or
superAuid)-to-insulator transition. This interest was fur-
ther fueled by the recent discovery of a possibly universal
critical resistance right at the phase boundary, which
separates the insulating and superconducting phases in
these systems. Besides these, a very recently emerging
field is that of the quantum spin glasses. A great part of
the attention to these systems is due to the fact that a
large variation in types of randomness, geometry, and
symmetry classes is accessible both experimentally and
theoretically. '

At the same time, the ordered systems still hold many
new surprises when longer-range interactions are includ-
ed. These typically introduce frustration in the system
and lead to unexpected new phases. Early on, it was real-
ized that a coexistence of off-diagonal long-range order
and diagonal long-range order may arise, leading to an
exotic new phase, the "supersolid" regime in XXZ-type
models. Also, numerous types of frustrated Heisenberg
models were introduced as they are expected to provide
further insights into the nature of doped high-
temperature superconductors. The many complexities of
their phase diagrams have been explored just recent-

ly. ' "Simultaneously, data became available on genuine-
ly new types of ordered systems as well. Complex new
spin systems are argued to support some of the theoreti-
cally predicted exotic phases. ' Also, advances in litho-
graphic techniques enable experimentalists to create
large-scale Josephson-junction arrays in the truly quan-
tum regime and to study genuinely new, quantum phase
transitions.

This revival was induced in no small part by the
comprehensive work of Fisher et al. ' They provided ar-
guments to determine qualitatively the phase diagram of
the strongly correlated boson system, the so-called "bo-
son Hubbard model. " Motivated by earlier work, ' they
introduced several scaling arguments to determine the
critical exponents in one dimension and to give bounds
on them in higher dimensions. Many of their predictions
have been borne out by numerical studies' ' and often
compared favorably with experimental data as well. '
However, analytic studies of the disordered models in
higher dimensions have proved to be quite prohibitive to
date. As mentioned above, a further intriguing experi-
mental finding was that of a possibly universal resistance
at the insulator-superconductor transition. This issue
was recently attacked by calculating the resistivity at a
special point of the phase boundary in the ordered mod-
el. ' In that work several models related to the original
one were studied which are expected to be in the same
universality class. Recently, careful numerical studies on
the disordered systems have provided further evidence in
favor of a universal resistance at the transition, even
though the actual value is quite different from the experi-
mental numbers. ' '

In our work we concentrate on some questions which
were left open in previous studies. Up to now, only a
qualitative sketch of the phase diagram has been present-
ed analytically. As several numerical studies of the phase
diagram are available, a quantitative analytic determina-
tion of the phase boundaries and comparison with the
data are clearly called for. This is what we perform in
Sec. II, using the "coarse-graining" approximation. ' We
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find a surprisingly good—better than 10%—quantitative
agreement between quantum Monte Carlo (QMC) data
and our results for the phase boundary. In Sec. III we
calculate the frequency-dependent conductivity of the full
boson Hubbard model in the vicinity of the transition
everywhere along the phase boundary. At the rnulticriti-
cal point, we find a conductivity independent of the pa-
rameters of the original model. Section IV summarizes
our results. The calculational details are given in the Ap-
pendixes.

II. COARSE-GRAINING PHASE DIAGRAM

We start with the boson Hubbard (BH) model on a
two-dimensional square lattice with on-site Coulomb in-
teractions only:

Here 4; (4;) creates (annihilates) a charged boson on
lattice site i and the chemical potential p ~ 0 controls the
total number of bosons, g;R;=g; 4&; 4;. The hopping
term is restricted to bonds between nearest-neighbor
sites. In the absence of disorder, the boson system is ei-
ther insulating or superconducting at T=0. The phase
diagram can be sketched by starting with J=0.' In this
limit every site is occupied by an integer number of bo-
sons. For n —1 &p/V & n, the boson occupation number
is pinned at the integer value n. In this regime the system
has an energy gap V against particle-hole excitations and
hence a vanishing compressibility. Thus this state is a
Mott-type insulator. Reintroducing J & 0, the gain in ki-
netic energy by hopping the bosons around reduces and
eventually overcomes the cost of the on-site repulsion.
Therefore one expects that the energy gap will decrease
with increasing J and correspondingly the insulating re-
gion on the p/V-vs-J/V plane takes a lobelike shape,

both of them vanishing at a critical value of J/V, where
the boson states become extended. ' ' Being at T=O,
the system then certainly turns into a superfluid in this
parameter region.

The critical phenomena related to the zero-
temperature insulator-superconductor transition are
driven by density fluctuations at a generic point of the
phase boundary, with exponents computed in Ref. 3. At
the tips of the lobes, however, the density is pinned at its
commensurate value. Thus the phase fluctuations dorn-
inate and the critical behavior is that of an XYmodel in
d +1 dimensions. '

In the following we show how the phase diagram can
be mapped out quantitatively on the mean-field level.
For this purpose we express the partition function of the
boson Hubbard model as a coherent-state path integral
in imaginary times 0(~(P=1/T (in units where
k~ =6=1):
Z = 4,*. N;exp —S0+S& (2a)

S,= f 'dry[+, '(a,—~)e, +-,' Ve,*e,(C;C,—1)],0

(2b)

S,=——f d~ g(4,'N +c.c. ) .J
2 0 (, . )

(2c)

The complex c-number fields 4;(r) satisfy the periodic
boundary condition 4;(P )= 4&;(0 ).

We choose the action S0 to involve on-site terms only,
and the hopping part will be treated as a perturbation.
The standard procedure is to decouple the latter by a
Hubbard-Stratonovich (HS) transformation. ' As the or-
der parameter for superfluidity manifests itself only in
this hopping term, expanding in it is the correct way to
build a Ginzburg-Landau effective action. Explicitly, we
use

exp( —S, )= f 2)xq(r)X)x~ (~)exp n. f dr+~ x(q)r~ —+ f dr g+~Jq[xq (r)4q(r)+c. c. ]0

Following the steps of the coarse-graining procedure ' we perform a cumulant expansion of e ' to leading order in the
auxiliary HS fields x,.(~). The expectation value (x; ) is linearly related to (4; ), and the HS fields therefore serve as an
order-parameter field for superfluidity. For the determination of the phase diagram, it is already sufficient to obtain the
effective action to quadratic order in the order-parameter fields. The partition function to this order is given by

Z=Z =Zo f 2)x (~)2)x*(r)exp —~ f d~g~ ( x)q~ r+m. f dr f dr'$ Jqxq(r)x (~')G(~ r'), (4—)
P P

q q

where we have introduced the correlation function

G (r r') = (4,'( )r4;(~'—) )o= f 2)4'Xl@4,'(r)4;(r')exp( —So)= 1

0

and Z0 is the partition function for J=0. For a cubic lattice in d dimensions, the kinetic-energy dispersion is given by
d

Jq =J g cos(q„),
@=1

where we set the lattice constant equal to unity. For the calculation of the correlation function G (w) with the N action



SUPERCONDUCTOR-INSUI-ATQR PHASE TRANSITION IN THE. . .

Eq. (2b), we restrict the paths to Gaussian fluctuations in the "sombrero potential, " i.e., around the saddle point @oof
the action So, which is determined by I@ol =—,+p/V. This approximate evaluation of G(r) is most accurate for
p/V)) 1, that is, the steeper the minimum valley in the sombrero potential, i.e., for large boson numbers when charge
fluctuations on a single site are small. We parametrize the boson fields by @(r)= [Idol+ A (~)]e''". Then the quadra-
tic part of the action for the phase and amplitude Auctuations around the saddle point takes the form

~o~=—
2

I+ol'+l@ol f «I2VI&ol &'«)+~[leal+2& (r)]~~(r) j .

In this representation the values of the phase which differ by integer multiples of 2m are equivalent; thus, the path in-
tegral for G(r) also includes a summation over winding numbers as well,

yo+2mn
G(r—r')= g f dq, f 2)@f n~ e*(r)e(r')exp( —SP) .

Z0„— qO

Here we have dropped the site index as the different sites
are decoupled by the HS transformation. As the phase
and amplitude Auctuations are coupled, we have to calcu-
late three separate contributions to the correlation func-
tion G(r):

G(.)—l~, l'&' "'-"")
+Idol&[a(r)+~(0)]e'(+" +' '))0

+ & ~ (~)~ (0)e ('"-'{'}))
All three correlation functions can be straightforwardly
computed with the quadratic action of Eq. (7). For brevi-
ty, we give here explicitly the result for the pure phase
correlator only and present the complete expressions for
the other correlation functions in Appendix A. %'e get

a, ( [Ie,l'+ /p], ~)
~3(~IC'OI', q)

(10)
Here q =exp( 2n /PV) an—d 83(z, q) is the Jacobi theta

2.0-

1.5-

function defined by

(12)

The corresponding mean-field boundary to the superAuid
phase is then determined from

0=1—Jq .G„=o= 1—Jd f dr G(r) .
0

(13)

The (imaginary) time integral of the correlation function
G(r) can be analytically performed by applying
Liouville's identity for the 8 functions or alternatively
by the Poisson summation formula. The algebraic steps
for the calculation of G(co„) are outlined in Appendix 8

T 1
V 175.

83(z, q)=1+2 g cos(2nz)q"
n=1

which appears in Eq. (10) as a consequence of the
winding-number summation. The analytic properties of
the 6 function guarantee the P periodicity of G(r).
Given G(r), the partition function in the coarse-graining
approximation is

Z Z0 d xq QPp exp & e/qop &q ~p
1
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FICx. 1. Coarse-graining phase boundary for the Bose Hub-

bard model at the different temperatures V/T =100 (solid line),
10 (dashed line), and 5 (dotted line) between the Mott-insulating
(MI) and superconducting (SC) phases. d is the dimension of
the lattice.

FIG. 2. Comparison between the phase boundaries with
(solid line) and without (dotted line) the inclusion of amplitude
fluctuations for a fixed temperature T/V =

75 .
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was also shown that the inclusion of Ohmic resistive pro-
cesses enhances the phenomenon even further. ' As this
reentrant behavior was invoked to account for the pro-
nounced dip in the temperature dependence of the resis-
tivity in samples close to the superfluid-insulator transi-
tion, this issue should merit further investigation. Util-
izing independent methods, such as QMC, is called for to
decide whether or not fluctuations around the saddle
point suppress this feature of the mean-field approxima-
tion.
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FIG. 3. Superconducting transition temperature vs dJ/V for
difFerent values of the chemical potential.

III. CONDUCTIVITY NEAR THE
INSUI.ATOR SUPERCONDUCTOR TRANSITION

The coarse-graining approximation scheme that led us
to derive the effective Ginzburg-Landau action [Eq. (4)]
allows also for an explicit evaluation of the frequency-
dependent conductivity. For the longitudinal component
on the imaginary frequency axis 0„„(ice),we apply the
general formula

for the phase correlator.
In Fig. 1 we plot the resulting phase boundary in the

p/V-vs-J/V plane for different temperatures. For the
lowest temperature, we clearly recognize the first two
Mott-insulating lobes. In the zero-temperature limit, the
superconducting phase extends in a cusplike shape down
to a value of J, which vanishes linearly with temperature
for all integer values of p/V. The critical values of J/V
at the tips of the lobes follow an envelope function which
scales as —I/~4o~ . For d =2 the coarse-graining result
for the critical value is given by J, /V =0.139. QMC cal-
culations on the same model' yield J, / V=0. 13, a
surprisingly good agreement. Also, the asymmetric
shape of the lobes is very similar to what was recently
found in QMC calculations for the d =1 BH chain. ' '

The asymmetry and in particular the downtilt of the
lobes are actually enhanced by the amplitude fluctua-
tions. This is shown in Fig. 2, where we compare the
phase diagrams with and without the inclusion of ampli-
tude fluctuations. %'e may contrast this result also to the
analogously obtained results for pure quantum phase
models. There the phase boundary appears perfectly
periodic with respect to external offset charges, which
play the same role as the chemical potential in the BH
model. "

With increasing temperature the superfluid phase is ex-
pected to shrink, and indeed the lobelike structures are
smoothened and the phase boundary is shifted to larger
critical values of J/V. At the tips of the lobes, however,
the temperature dependence is nonmonotonic. This is
more clearly displayed in Fig. 3, which reveals the reen-
trant features at low temperatures. This behavior is the
same as found in some early works on quantum phase
models for Josephson-junction arrays. ' Recently, it

I

(14)

(In this section we explicitly display fi in all formulas in
order to introduce later on the quantum unit of resistance
R =h/4e .) The functional derivatives in Eq. (14) are
with respect to a component of the vector potential in
one of the space directions, say, x. The vector potential
A is introduced by the usual Peierls description, which
adds a phase factor to the hopping between nearest-
neighbor sites:

J, .~J exp i f A dl
Ac

(15)

where e*=2e is the charge of the lattice bosons. Using
the functional-integral representation of the partition
function from Eq. (2), it is straightforward to perform the
derivatives, yielding the familiar result' '

e„;„=— g(N,*@;+„+c.c.),J
2X (17a)

Rewriting o.„„explicitly in terms of the momentum and
time-dependent Bose fields leads to

(16)
The kinetic energy associated with links oriented in the x
direction, e;„, and the paramagnetic current density
operator j; are given in terms of the c-number Bose fields
by

4 2
cr„„(ice)= g Jz&@&(0)@k(0))——g J f dwe'"'sink sinq &Nj, (w)N~(r)@q(0)4 (0))
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The frequency-dependent conductivity is then obtained by the usual analytic continuation ico~cu+I', 6. Clearly, if the
bracket approaches a finite value as co~0, then the real part of o „„(co)will contain a 5-function contribution implying
a state with zero resistance.

The required correlation functions are most conveniently obtained if we use a generating functional by adding a ficti-
tious time-dependent field term to the kinetic energy part of the action

fiPS,[4]~—I drg[JI, +vq(r)]4Pr)4i(r) .
0

(19)

Since the additional term only shifts the kinetic energy, the HS decoupling and coarse-graining procedure can still be
performed with straightforward changes and the correlation functions follow from functional differentiation of the par-
tition function of Eq. (3):

1 5Z
& e;(0)@„(0)& = Z vg

(20a)

S2Z'~
& 4 *(r)e„(r)C,"(0)e (0) &

= (20b)

While the result for the kinetic energy is immediately found to be

JqG„
2PN 1—JqG„

(21)

the result for the N correlation function is considerably more complex. We find

gp . 5q G„ 1 1+JgG (co„+co) 1+JgG (a)„—co)~e™4'k ~ ek ~ eq 0 C'q 0
0

(22)

As a special property of the effective Ginzburg-Landau
action, the momentum dependence of the correlation
functions in Eqs. (21) and (22) is entirely determined
through the tight-binding dispersion Jk. As we show in
Appendix C, it is precisely this property which allows us
to verify the natural expectation that inside the Mott
phase there should not be a 5-function contribution at
zero frequency.

We can therefore focus on the finite-frequency behav-
ior of the conductivity in the close vicinity of the
insulator-superconductor transition. Here it is sufficient
to perform a gradient expansion in the Ginzburg-Landau
action. We expand G„ to second order in frequency and
introduce the coefficients ak, bk, and ck by writing

notationshortHere we introduced the
Ag =(bg/4+aqcq)'~ .
The result [Eq. (24)] reveals a charge excitation gap

6=bolco for particle-hole excitations in the Mott insula-
tor. On the phase boundary where ak o vanishes and for
frequencies close above the Mott-Hubbard gap, only
small momenta contribute to the sum in Eq. (24). Hence
o. „can be evaluated explicitly to leading order in
co—b )0. In two dimensions we find

2 J2
Reo„„(co)=Rq ' +sin (k„) z z 3 (1 3bj, A&)

Jk CkAk

X [5(co—2A q )+5(co+2 A q ) ] .
(24)

1—JqG„=aq bqi co„cq(i—co„)—
BG(z)ak=1—JkG =o~ az z=0

(23a)

(23b)

Q2
Reer„(co)

~ pB=Rq '—1— (1+—,'bob )8(co—b, ),
(25)

a'G(z)c =—J az2 z=0

With the temporal gradient expansion, we can immedi-
ately perform the Matsubara frequency summations in
Eqs. (21) and (22) by standard finite-temperature tech-
niques. Omitting the algebraic details, we obtain, for the
real part of the conductivity at T=0 after analytic con-
tinuation to the real-frequency axis,

which agrees with the leading-order results of Refs. 18
and 28. At the particle-hole symmetric points of the
phase boundary where the transition occurs at fixed in-
teger densities to the delocalized super Quid, the
coefficient bk vanishes. This is demonstrated in Appen-
dix B as a special property of the boson-field correlation
function G(r). As a consequence, o„„ is gapless at the
tip and given by the universal number o*=(vr/8)R ' in
agreement with the results obtained by other
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groups. ' ' ' This universal number is unique to two di-
mensions and is a direct consequence of the vanishing
"engineering" dimension of the conductivity. If we apply
the same analysis to dimensions dA2, we find o * to van-
ish for d )2 and to be infinite in one dimension. The
universal conductivity does not depend on the coeScients
of the gradient expansion and is therefore insensitive to
whether or not amplitude fluctuations of the boson fields
are included in the effective Ginzburg-Landau action.

IV. CONCLUSION
In conclusion, we have provided an explicit calculation

for the mean-field phase boundary between the Mott-
insulating and superAuid phases of the short-range boson
Hubbard model. The path-integral formulation of the
coarse-graining procedure allows the treatment of phase
and amplitude fluctuations on equal footing. As the criti-
cal properties of the quantum phase transition are
governed by the density fluctuations at a generic point
and by the phase fluctuations at the multicritical point,
the simultaneous treatment of both of these contributions
can only provide a complete picture. One expects an im-
provement in the quantitative agreement with other
methods, e.g. , quantum Monte Carlo results, and indeed
we find that the two sets of data differ by less than 10%.
We also computed the general expression for the
frequency-dependent conductivity at zero temperature.
We found a universal conductivity at the particle-hole
symmetric multicritical point, in agreement with earlier

I

work. We found that its value remained unaffected by
the inclusion of the amplitude fiuctuations. Qualitatively,
new charge-ordered phases will appear if finite-range
Coulomb interactions are included. The related super-
solid phenomena, however, require different mean-field
techniques, and we are currently investigating those, to-
gether with the effects of truly long-range 1/r Coulomb
interactions.
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APPENDIX A

The calculation of the (4"(r)&b(0) ) correlation func-
tion involves also mixed amplitude and phase fluctuations
as indicated in Eq. (9). With the action Eq. (7), they can
be explicitly calculated and expressed in terms of Jacobi
8 functions similar to the pure phase correlator. The two
required mixed correlation functions are given by

([A(7.)+A(0)]e'('P" 'r' ']) =—(e'['P" ~' ')) in' m. ~e ~
+—,qa

0 0 Vip i g 3 0 P
2

a2
( ( ) (o) ""' ""') =( ""' "'"&o'4~+, ~' PV 2 13 V' ~,(~~+,~', q) a~' ' '

13
'

(Al)

Here q =exp( —2m. /P V) is the same argument of the 0 function as used in Eq. (10).
APPENDIX B

(A2)

The Fourier transform of the Bose-field correlation function G(r) is most conveniently calculated by applying the
Poisson summation formula. It allows us to rewrite the Jacobi theta functions as

2~'
vr~@o~, exp V I dx exp(i2vrx ~40~ )exp(i2nxm)exp

m =—oo

1/2

2772

v

PV
2mm =—&n

exp — ( ~40~ —m ) (B1)

We consider here only the phase correlator of Eq. (10) and evaluate

G(co„)= J dr 83 m. /No/ +—,exp
83(7r 4o, exp( 2m /PV)}—

Vw
exp — 1—— exp(ice r) . (B2)2 P

oo VG (co„)= ~@0~ g exp
m =—oo

V
0'm

Applying Poisson's formula to both theta functions in Eq. (B2)makes the integral straightforward and the result is

1—exp[ —/3V(y +—,
' )] ~ p

V(q) +—,
' )—ice„

exp (B3)

Here we used the short notation y = ~%0~ —m =—,'+p, /V —m. This form clearly emphasizes the special role for in-
teger values of p/V, at which G(co„=0) diverges like 1/T in the low-temperature limit. This divergence is responsible
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for the T=0 cusps in the phase boundary between the different lobes. The periodicity with respect to p/V, however, is
not perfect because of the ~4o~ prefactor, which is responsible for the downtilt and the shrinking of the lobes with in-
creasing p, i.e., increasing number of bosons. The amplitude correlators add similar structured but more involved
terms to G(co„).

Equation (B3) also allows one to extract the properties of the coefficients in the temporal gradient expansion used in
Sec. III for the calculation of the frequency-dependent conductivity. We find, e.g., for the linear coefFicient bk that
BG(z)/t)z~, 0 diverges near integer values of p/V=n and that it vanishes for p/V=n+ —,'. At these points on the
phase boundary, tr „(co) is gapless. All these results still hold when the amplitude correlators are included in G (co„).

APPENDIX C

The general formula for the frequency-dependent conductivity in Eq. (18) shows that the weight of the 5 function,
which appears at co=0 after the analytic continuation to the real-frequency axis, vanishes if

—g J cos(k )(@$0)C&i,(0))=—g J sin (k„)f d r(@q( r) tI&i(r)@i (0)4&i(0)) .N „ N„o (Cl)

In order to show that this relation holds, we perform a partial integration' with respect to cos(k„). Since the correla-
tion functions —evaluated by functional di6'erentiation of the coarse-graining partition function —depend on the
momentum only through Jk, we have

—g J cos(k )(@i",(0)@i,(0))=—g J sin (k„) (tIik(0)@i,(0)) . (C2)

Applying Eq. (18), the interchange of partial and functional differentiation yields

CG az'~ n I Sz'Z (4q (0 )N k (0 ) )—
g U (0 ) QJ Q (0 ) f d

U=o k k v=0
= f d1.Z (@k(r)@i,(r)@i', (0)@i,(0) ) .

0
(C3)

From this result Eq. (Bl) immediately follows, proving the absence of a 5(co) contribution to the conductivity in the
Mott phase.
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