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Abstract. - We present a self-consistent strong-coupling scheme to evaluate the single-particle 
Green’s function for the two-dimensional Hubbard model in the spin density wave state. We 
analyse the single-quasi-hole properties including its dispersion and spectral weight. Novel 
incoherent contributions to the spectral function resulting from multi-spin-wave processes are 
found and compared to similar results for the t-J model and small Hubbard clusters. 

Introduction. - The vicinity of antiferromagnetism and superconductivity in the layered 
high-temperature superconductors has stimulated research to understand the properties of 
carriers doped into an antiferromagnetic (AF) insulating state in two dimensions. In strong- 
coupling approaches the competition between AF ordering of localized-spin degrees of 
freedom and the delocalization of doped holes is the key issue. For the t-J model exact 
diagonalization [ l ,  21, cumulant [3], and spin polaron methods [4] have given evidence that a 
quasi-particle picture for the coherent motion of a hole is still applicable. However, a 
significant reduction of the quasi-particle weight and a correspondingly large redistribution 
of spectral intensity into the incoherent part of the single-particle propagator is found in all 
these studies. Similar results are reported for the Hubbard model in the intermediate- 
to-strong-coupling regime [5,61. 

Less extensively studied are the elementary excitations in the weak-coupling limit of the 
Hubbard model. In this case the spin density wave (SDW) state can be taken as a starting 
point to explore the single-particle dynamics. In this letter we will focus on the properties of 
a single hole doped into the SDW state. In this case the hole motion is accompanied by 
multi-spin-wave excitation processes which reduce the quasi-hole’s spectral weight and 
strongly renormalize the bandwidth and the single-particle gap. The quasi-hole’s dispersion 
is found to be very flat along the magnetic-Brillouin-zone (MBZ) boundary contrary to results 
obtained for the t-J model. 
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SDW spin dynamics. - The starting point for our calculations is the SDW representation 
of the Hubbard model on a square lattice at half-filling[7] 

Here, U;: creates a SDW quasi-particle in the conduction or valence band for I = + 1 or - 1, 
respectively, and HU is the residual Hubbard interaction. The mean-field dispersion for the 
upper and lower SDW band is given by Ek = ? d m  in terms of the tight-binding energy 
Ek = - 2t(cos(k,a) + cos(k,a)) and the magnetic SDW energy gap A. The primed 
summation is restricted to the MBZ. The magnitude of A follows from the gap equation 
1/U = (1/N) 2' l/Ek which is the Hartree-Fock(HF) self-consistency condition for the 
staggered magnetization (S,(Q))  in the broken-symmetry state. Q = (z, x )  is the square 
lattice nesting wave vector. Due to the doubling of the unit cell the SDW quasi-particles are 
restricted to the MBZ, i.e. to momenta where Ek < 0. They are related t o  the bare-fermion 
operators ci: of the original Hubbard model by the linear transformation a,& = vLc2, + 
+ l m ~ ' c L + g ,  with vi = [(l + kk/Ek)/2]1'2. To facilitate the transformation to physical 
operators the SDW quasi-particles are extended t o  the Brillouin zone (BZ) by the 
prescription akt = Zaa~... leading to the modified fermionic algebra [ai,, ai:?,]+ =
= dll ,  d,,, (8kk '  + 1 5 8 k k ' +  Q ) .  This formal step allows to express c l ,  = v ~ a ~ + ,  for all 
k e  BZ. 

The broken spin rotational invariance of the SDW state implies the existence of gapless 
collective spin excitations. In order to calculate these Goldstone modes we consider the 
transverse dynamical spin susceptibility 

k 

1 =  21 

including Gaussian fluctuations around the HF  ground state. x + - (q ,  q' , w )  is a symmetric 
2 x 2 matrix with respect to the momentum indices since it is finite only if q = q' or q = 
= q' ? Q due to Umklapp scattering. Summing the RPA bubble series leads t o  

(3) 

where [ 1 - Uxo ( q ,  q' , U)]-' is a matrix inverse in momentum space. The bare particle-hole 
susceptibility x o  is calculated with the HF  c-electron propagator matrix whose diagonal and 
off-diagonal components are given by 

x i p i ( q ,  q ' ,  w )  = %xo(q,  i i ,  w)[ l  - Uxo(ii, Q ' ,  w r ,  
4 

The corresponding matrix elements of x o  are 

- ( E k  + E k + q ) m k , k + q  

Ulk, k + q mk, k + q 
] * (5)  i 2 ] = C '  xo(q, Q ,  w )  I x 0  (q + Q ,  q ,  w 2  - ( E k  + E k  + Q + i? 

In (5 )  we have introduced the coherence factors mk, k' = U,++ vk; + v i  v& and lk, k '  = v; vk'; + + v i  vi. To extract the collective spin dynamics we resort to a strong-coupling expansion 
assuming U>>t. This procedure has previously been shown [7] to reproduce the results of 
linear-spin-wave theory for the 2D AF Heisenberg model of localized spins with an exchange 
constant J = 4t2 /U .  The analysis of [7] can also be extended to finite doping [8,9] but in this 
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Fig. la). - Self'-energy correction from the coupling to transverse spin fluctuations in the RPA ladder series. 
b )  NC scheme for the self-energy. The wiggly line represents the RPA ladder series of a). 

letter we concentrate on the half-filled case. The transverse susceptibility in this limit 
explicitly displays undamped propagating spin waves: 

] (6) 

with the spin wave dispersion w q  = 2 J d m  and B = ? 1. The coupling t o  these 
low-energy spin wave modes is assumed t o  be the dominant source for the renormalization of 
the single-particle properties. We will go beyond previously applied lowest-order one-loop 
calculations [9-111 and evaluate the electronic self-energy in a self-consistent non-crossing 
(NC) scheme. 

-2J(1 + sq/4t)  x;-=k, Q ,  w )  I - [  x i - " (q  + Q ,  q ,  w )  

xiJRpi(q, q ,  w )  U/t>>.>1 1 [ x K ( q  + Q ,  q, w )  1 -  w 2  - w i  + iq [ 

AF' polarons in the SDW state. - We focus on the renormalization effects due to 
multiple-spin-wave shake-offs. For this purpose we consider the Dyson equation for the 
single-particle propagator which arises from the exchange of a single RPA ladder carrying 
the spin wave excitation. This is shown diagrammatically in fig. la). Using the c-electron 
representation of the Hubbard model the self-energy is expressed as 

+GO_",(kl + Q - q ,  k2 - q ,  is!, - i w u ) x 6 K ( q  + Q ,  q ,  i w u ) l .  (7 )  

Here we use the standard finite-temperature notation where w ,  = 2vxT and E~ = (2p + 1) xT 
are Matsubara frequencies. Accounting for all possible Umklapp contractions (7) consists of 
four equations in which each of the two momentum vectors kl and k2 takes on only the two 
values k and k + Q, respectively. The two terms on the r.h.s. denote the allowed internal 
combinations of momenta compatible with the Umklapp vector Q. 

The motion of the SDW quasi-particles is expected to be strongly coupled to the spin wave 
excitations. Therefore, instead of the single RPA boson exchange we replace the bare 
propagator G:' in eq. (7) by the JiLlly dressed Green's function G,". Diagrammatically this 
procedure is equivalent to a summation of all NC diagrams for the self-energy as shown in 
fig. l b ) .  This replaces eq. (7) by a set of four non-linear coupled integral equations for the 
single-particle propagators. 

To reduce the mathematical complexity of the NC equations, we introduce two sim- 
plifications: firstly, the formal limit of U >> t is taken using the transverse spin susceptibility 
in the form given in eq. (6) and replacing the transformation coefficients wl by their large U 
value, i.e. l/fi. Secondly, we consider a single hole which is inserted into the SDW state at  
half-filling. This approximation should properly describe the case of very low doping. In this 
limit we transform from the c-fermion to the a-fermion representation. After some 
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elementary algebra the strong-coupling version of the NC equations takes on the simple 
form 

U 
E 2 0.4- 
- -  

I 

0.2 

-xi"(q + Q, q + Q, iwY)lGL;'(k - q ,  i ~ , ~  - iw,), (9) 

where 2;" (k, ie , )  and G;'' (k, i ~ / ~ )  are the momentum diagonal components of the a-fermion 
self-energy and the dressed a-Green's function for band indices 1, 1' = 2 1. 

Starting from the HF propagator the iterative solution of eq. (9) leads to a vanishing 
interband self-energy and a vanishing interband Green's function. This leaves only the two 
equations (8) for the intraband Green's function to be solved. Since both the kernel of this 
integral equation and the bare SDW Green's functions are spin independent, one may replace 
G!; by G:' on the r.h.s. of eq. (8). Finally, in the limit of a single hole introduced into the 
SDW ground state our model is particle-hole symmetric [lo]. This is reflected by the 
symmetry relation for the spectral functions A;' - (k, w )  = A," (k, -CO), where 
A: ' (k, w) = - Im[G:'(k, w + iq)]/7r. Indeed, explicit insertion of this particle-hole trans- 
formation into (3.2) verifies that the two equations are equivalent. 

We are thus left with only a single integral equation, e.g. for the valence band propagator. 
We perform the necessary frequency summations and proceed via an analytic continuation to 

8 b)  - 
- 

- - 

0 It 

Fig. 2.  

Fig. 2. - Single-hole spectral function for U = 4 and the two momenta (kx, ky)  = (0,  0) (a)) and 
(kx, k y )  = ( x / 2 ,  x / 2 )  (b))  on a 16 x 16 lattice. Energies are given in units of t. 
Fig. 3. - Same as in fig. 2 for U = 6. 
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Fig. 4. Fig. 5. 
Fig. 4. - Quasi-particle properties for U = 4 on a 24 x 24 lattice along a closed triangular path in the 
MBZ. The upper panel shows the NC quasi-particle dispersion (0) as compared to the SDW dispersion 
(0) E ( k )  for 24 = U. The lower panel shows the corresponding quasi-particle weight factor. 
Fig. 5. - Comparison of the quasi-particle properties for U = 4 in a 16 x 16 lattice resulting from a 
single iteration of eq. (lo), ie. the one-loop level (o), us. the NC (0) solution. 

the retarded quantities. In the zero-temperature limit we obtain 

where x = w + i?. This expression represents the central equation for our self-consistent 
treatment of a spin polaron in the SDW state. 

Results and discussion. - We have solved eq. (10) by iteration on finite lattices up to 
24 X 24 sites. The frequency mesh size was on the order of 1000-2000 points. Typically up to 
20 iterations were necessary to obtain convergence. In all calculations an imaginary part i? of 
1/2 of the frequency spacing was introduced as an artificial broadening. 

Results for the single-hole spectral function are shown in fig. 2 and 3 for the two momenta 
(k, , k, ) = (x/2, n/2) and (k,, k,) = (0,  0) on a 16 x 16 sites lattice. Two moderate values for 
the Hubbard U have been chosen which, however, still justify the use of the strong-coupling 
limit in the self-consistent NC polaron scheme. Besides the renormalization of the quasi-hole 
peak the figures display a considerable shift of spectral weight into a spin wave shake-off 
structure below the quasi-hole energy and into the upper Hubbard band. Similar incoherent 
spectral weight is found in the one-hole spectrum of the t-J model only on the low-energy side 
of the quasi-hole peak, since the upper Hubbard band is removed by the strict exclusion of 
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Fig. 6. - Finite-size scaling for the quasi-particle weight factors x ( ( x / 2 ,  r / 2 ) )  and x((0,  0)) and for half of 
the valence bandwidth WIZ. N is the linear lattice size, U = 4. 

doubly occupied sites. This is the result of both exact diagonalization studies and approx- 
imate NC calculations [4]. On the other hand the incoherent low-energy continuum is missing 
in earlier calculations which have been performed in the SDW state using only a one-loop 
approximation [ 101. This approach lacks the relevant transfer of spectral weight resulting 
from the multiple-spin-wave excitations. In this sense our self-consistent polaron scheme 
interpolates between these two limits. But the physical situation in both cases is quite 
different. In the t-J limit of the Hubbard model a spin wave emission leads t o  mobility of a 
hole inserted into the AF ordered background while in the SDW case spin waves cause a 
mass enhancement of the SDW quasi-particles. 

The loss of spectral weight into the incoherent part is much stronger for the zone centre 
holes than for holes on the boundary of the MBZ. This behaviour is made more explicit in 
fig. 4 which shows the quasi-hole’s spectral weight factor x(k) and its dispersion for momenta 
along a closed path in the MBZ. A comparison to the HF  SDW dispersion demonstrates the 
significant band narrowing of the polaron band. Most striking is the result that the 
degeneracy of the HF  bands along the MBZ boundary is barely lifted. Although not clearly 
visible in the figure the energy maximum of the quasi-particle band occurs at  k = ( x ,  0). This 
is a result which arises only on the multiloop level, since for the one-loop calculation the 
maximum does appear at k, = (x/2, ~ / 2 )  [lo]. 

While it seems generally accepted for the t-J model that the maximum is at k ,  = 
= ( x / 2 ,  x/2), this issue is much more subtle for the Hubbard model. Quantum Monte Carlo 
calculations on small clusters with finite hole concentrations have found no evidence for hole 
pockets near k,  and a Fermi surface whose shape is hardly changed when compared t o  the 
Fermi surface of the non-interacting tight-binding band [ 121. Lanczos diagonalization studies 
on a 4 x 4 Hubbard cluster have found near degeneracy between k,  and ( x ,  0) but in slight 
favour for the maximum to occur at (x, 0) [5] in agreement with the self-consistent NC 
calculation. 

The differences between the one-loop and the self-consistent NC calculation are 
demonstrated in fig. 5 which shows the large changes in the bandwidth and the quasi-hole’s 
spectral weight near the centre of the MBZ. The upward shift of the valence quasi-particle 
band (and the analogous downward shift of the conduction band) also reveals the strong 
renormalization of the band gap. Interestingly, the gap is reduced in the self-consistent NC 
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scheme while it even grows on the one-loop level. Moreover, we find a non-linear dependence 
of the effective gap on the Hubbard U when it is increased beyond U = 6t. This signals that 
vertex corrections which renormalize the bare coupling to an effective U,, need to be 
included in this regime. 

The effects of fmite lattice sizes are shown in fig. 6, where the spectral-weight factors for 
different momenta and the width of the valence band are plotted vs. the inverse linear size of 
the lattice. Both scale approximately inversely proportional to the linear size of the lattice. 
Quantitatively, e.g. for U = 4t, the bandwidth extrapolates to W = 1.85t as compared to the 
SDW bandwidth WSDw = 2.81t and the spectral-weight factors extrapolate to x( (x /2 ,  x/2)) = 
= 0.8 and ~ ( ( 0 ,  0)) = 0.51 in the infinite lattice limit. 

In conclusion we have analysed the single-particle properties in the SDW state using a 
non-crossing scheme. A straightforward extension to the weak-coupling limit and an analysis 
for the renormalization of the spin wave excitations is currently in progress. 
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