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Antiferromagnetic spin fluctuations in a two-dimensional metal, such as doped high-T, supercon-
ductors, lead to a pseudogap in the electronic spectrum. In the spectral function weight is shifted
from the single quasiparticle peak of the Fermi-liquid regime to the incoherent particle and hole
backgrounds, which evolve into the upper and lower Mott-Hubbard bands of the antiferromagnetic
insulator. Precursors of these split bands show up as “shadow bands” in angle-resolved photoemis-

sion spectra.

I. INTRODUCTION

A striking feature of high-temperature oxide supercon-
ductors is the proximity of antiferromagnetism and su-
perconductivity in nearby regions of the phase diagram
with different doping concentrations. The superconduct-
ing compounds show metallic behavior in their normal
state with short- or intermediate-range antiferromagnetic
(AF) spin correlations that persist into the superconduct-
ing state. Taking the point of view that the effective
(screened and correlated) on-site electron-electron
Coulomb repulsion U in these materials is smaller than
the bandwidth, an appropriate starting point is to take
the electrons as being itinerant. In this framework, anti-
ferromagnetism is described as a spin-density wave
(SDW), which arises, e.g., from the Fermi surface nesting
of the half-filled two-dimensional square lattice with
nearest-neighbor hopping. In the regime relevant for the
superconducting cuprates with strong short-range AF
spin fluctuations, the density of states near the Fermi en-
ergy is suppressed, leading to a pseudogap. With increas-
ing spin-correlation length the pseudogap evolves into the
SDW gap that extends over the entire Fermi surface and
the system becomes an AF insulator.

Extending our previous analysis of the pseudogap,' in
this paper we discuss the evolution of the one-particle
spectral function from the Fermi-liquid regime to the
case of intermediate-range antiferromagnetic order. The
specific model that we consider is the single-band Hub-
bard model on a square lattice. Starting from the large
doping limit with weak spin correlations, we can address
two questions related to the evolution of antiferromagne-
tism as we move towards half-filling: (1) how do the anti-
ferromagnetic spin fluctuations build up as reflected in
the spin susceptibility x(q,w). (2) Given a phenomeno-
logical form for ), what are the consequences of the AF
fluctuations for the fermionic single-particle spectrum.
In this paper we focus on the latter question and explore
how a model for x(q,») motivated by experiment leads to
single-particle properties that are directly measurable by,
e.g., photoemission and inverse photoemission experi-
ments.

From neutron-scattering experiments on
La, §sSr ;sCuO, (Ref. 2) and YBa,Cu;0¢ s (Ref. 3), as
well as from NMR measurements,* the presence of anti-
ferromagnetic spin fluctuations in these materials has
been well established. We know that the magnetic struc-
ture factor

S(q,a))=—~——~1—_ﬁlm)(”(q,w) (1)
—e

1
and the spin susceptibility Y are peaked near the AF
wave vector Q=(m,7). The inverse of the width of the
peak is a direct measure of the spin-spin correlation
length. The direct determination of the correlation
length is complicated because in the superconducting
samples the central peak at Q appears to be symmetrical-
ly split into two adjacent maxima® introducing some un-
certainty for the actual peak width. The splitting may be
either due to discommensurations leading to the forma-
tion of domains, in each of which the magnetic order is
still commensurate with the underlying lattice or an in-
commensurate SDW.

Since this complication has little effect on our results
we take x(q,w) to be peaked at Q={(m, 7). The leading-
order effect of the spin fluctuations on the fermionic spec-
trum at zero temperature is given by the one-loop contri-
bution to the self-energy in Fig. 1.
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FIG. 1. Leading-order contribution to the self-energy from
AF spin fluctuations and its two time-ordered Feynman dia-
gram components.
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Here, G(k,) is the single-particle propagator in the ab-
sence of interactions and U is the on-site Coulomb energy
of the repulsive Hubbard model. Since we use a phenom-
enological susceptibility as input, the Hubbard U will be
absorbed into an effective coupling constant. To this or-
der all single-particle properties then follow from the
propagator

G,(k,0)=[w—ek)—3k,w)] ", 3)
e(k) is the dispersion of the noninteracting tight-binding

J

x(q,0)=—A%*T) >

r r
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band
e(k)= —2t[cos(k,a)+cos(k,a)] (4)

that models the partially filled antibonding band of the
CuO, planes with an effective hopping matrix element ¢
and lattice constant a.

II. MODEL SUSCEPTIBILITY

The model susceptibility' that we will consider in (2) is
given by

Q=(£tm=*m) (qx _Qx )2+r2 (q)’ _Q)’ )2+r2

The enhancement of the susceptibility at the AF wave
vectors Q is simply represented by the Lorentzians cen-
tered at the four corners of the Brillouin zone, which are
normalized to unity by a (I')=m/arctan(27/I'). The in-
verse of their width I' is a measure of the spin-spin corre-
lation length and A is a coupling constant, whose value is
determined below.

The frequency dependence of Y is not crucially impor-
tant for the purpose of our analysis. Since we are focus-
ing on the paramagnetic phase with only short-range spin
correlations it is reasonable that the spin fluctuations can
be modeled by a distribution of dispersionless propaga-
ting bosons. For simplicity we chose the frequency distri-
bution g () to be linear up to a cutoff w, that determines
the characteristic scale for spin fluctuations

2 o

=——06(w—w,) . (6)
o @o

g ()

Since w, is small compared to the SDW energy gap (of or-
der the Hubbard U) that opens up at half-filling® the re-
sults of our analysis are not sensitive to the detailed form
of g(w). Qualitatively similar results are obtained for a
phenomenological susceptibility’ that has been used to
explain and fit the data from NMR and NQR experi-
ments or for a form of the susceptibility that has been
used to fit the data from neutron scattering experiments.’
Results from a random-phase-approximation (RPA) cal-
culation are planned to be presented elsewhere.?

For our model susceptibility it is instructive to evaluate
first the simple static limit g(w)=0(w) at half-filling
(u=0), with an infinite spin-spin correlation length corre-
sponding to I'=0. In this limit the susceptibility reduces
to four & functions at the corners of the Brillouin zone,
ie.,

x(qo)=imA*(0): 3

Q=(tm tm)

8(q—Q) . )

The corresponding self-energy in this limit is given by

_1 (AU)?
2 w+e(k)+idsgn[e(k)] ~

Solving for the poles of G, (k,w) we find the two quasipar-

2ok,0) (8)

2v
(v) d (5)
fg v w*—v*+id v

f

ticle bands E(k)=+t[e*(k)+A?]'"/? split by the gap
A=(%)l/27& U, reflecting the broken symmetry of the anti-

ferromagnetic insulator. Correspondingly, the spectral
function

A(k,0o—p)=(1/7)|ImG,(k,0)| 9)
has two &-function contributions
=1 &(k) _
A (k,0)=1 1+E(k) 8(w—E(k))
(k)
+i1-8X
L1 E(K) S(w+E(k)) (10)

for the upper and lower SDW or Mott-Hubbard bands,
respectively. The result for the gap can in fact also be
used to adjust the coupling constant A in order to match
the result from the gap equation

1 1
U % Vie(k)*+A?

that is obtained by a self-consistent Hartree-Fock calcula-
tion in the presence of the SDW.® The prime on the
momentum sum indicates that the summation is restrict-
ed to the magnetic Brillouin zone, e.g., for U =4t we find
A=0.2.

III. SPECTRAL FUNCTION AND PSEUDOGAP

To investigate the interesting regime where the spin-
spin correlation length is of order of 3—4 lattice spacings
we have to evaluate the self-energy (2) numerically even
for the simple model susceptibility that we chose. We
separately evaluate the spectral functions for weak and
moderate hole doping, depending on whether the position
of the chemical potential satisfies either (a) —A <p <0 or
(b) u < —A, where A is the value of the SDW gap that we
obtain in the limit I' -0 as discussed above. For the in-
termediate regime there will be no true gap in the single-
particle spectrum but instead a pseudogap will be present
that sharpens as we approach the antiferromagnetic insu-
lator.
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Figure 2 shows the evolution of the spectral function
with increasing spin-spin correlation length for
u= —0.3A corresponding to a hole doping concentration
8 less than about 8%. For I'=1.0 the susceptibility
x(q,) is almost flat in q and AF correlations play essen-
tially no role. This is the usual situation for a conven-
tional Fermi-liquid metal, and as in Fig. 2(a) the spectral
function is dominated by a single-quasiparticle peak plus
an incoherent background from the particle and hole
continua. With decreasing I' the quasiparticle peak
looses spectral weight to the incoherent pieces that begin
to dominate the spectral function [Figs. 2(b) and 2(c)].
Two broad peaks develop, separated approximately by
2A=2AU /2! as the precursors of the upper and lower
SDW bands. Nevertheless, the quasiparticle at the chem-
ical potential persists for all finite values of I' and its
spectral weight, as determined by the quasiparticle resi-
due
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remains finite but becomes very small for longer-range
spin correlations. For a correlation length of about 20
lattice spacings the quasiparticle peak carries only 1% of
the total spectral weight. It is in this sense that the sys-
tem remains a Fermi liquid, although its properties are
far from conventional, as becomes most obvious from the
spectral functions in Fig. 2. In particular, while the sys-
tem may respond at long wavelengths and low frequen-
cies as a Fermi liquid, the typical wavelength involved in
pairing in high-7, materials is £y~ 12 A in the a-b plane.’
Also, the typical pairing frequencies are of order the
spin-wave energy J =~ 1200 K.!° Thus, the quasiparticles
are not well defined in the regions they are required and
an alternative approach to constructing a pairing theory
must be developed.

The shift of spectral weight to the incoherent parts of
A (k,w) can be best understood by splitting the one-loop
Feynman diagram for the self-energy into its two time-
ordered components as in Fig. 1. The forward scattering
(in time) diagram describes the conventional dressing of
the particle and may be referred to as the magnetic pola-
ron contribution. The backward-scattering (in time) dia-
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Evolution of the spectral function A4 (k,w) with increasing spin-spin correlation length for (AU)*=1.96,

p=—0.5~ —0.3Agpw, and momenta k close to k;. (a) [=1.0; (b) [ =0.3; (c) [ =0.05; (d) I =0.01. Energies are measured in units

of z.
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gram involves an intermediate state with a hole below the
Fermi surface and two electrons in the same momentum
and spin state above the Fermi surface. This Pauli-
principle-violating diagram exactly cancels a vacuum
fluctuation diagram, with a particle in the same momen-
tum and spin state as the added particle. Thus, this vacu-
um fluctuation is suppressed. Since vacuum fluctuations
lower the energy of the system, their suppression in-
creases the energy, and hence, the self-energy contribu-
tion from the backward-scattering diagram is positive for
particles (and negative for holes). We note that this is
also the origin of the spin-bag pairing attraction, since
particles can mutually reduce their positive self-energy
contributions from spin fluctuations, as represented by a
crossed line diagram in the particle-particle channel as
discussed in Ref. 1.

The qualitative behavior 2(k,w) is indicated in Fig. 3.
In the conventional Fermi-liquid regime [Fig. 3(a)] Z is
essentially k independent and we find one solution of
o—¢e(k)—ReZ(k,w)=0 leading to a single-quasiparticle
peak in A (k,w). In the pseudogap regime with finite
range AF spin correlations the suppression of vacuum
fluctuations becomes important, as described above, and
the real part of 2 has now a large positive (negative) con-
tribution for particles (holes) from the ‘backward-
scattering” diagram in Fig. 1. This change in the self-
energy then leads to  five  solutions  of
o—e(k)—ReZ(k,w)=0, as indicated in Fig. 3(b). Al-
though there is a sharp crossover from a situation with
one quasiparticle solution to (three and ) five solutions of
w—e(k)—ReZ(k,w)=0, the spectral function still
changes smoothly due to the presence of the imaginary
part of 2. In Fig. 3(b) the solutions 1 and 5 correspond

(a) a)—s(T(.)
ReX ¢4

—/ co—;

v

FIG. 3. Qualitative behavior of the real part of the self-
energy in the (a) Fermi liquid and the (b) pseudogap regime.
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to the developing upper and lower SDW bands, solution
3 still describes the quasiparticle that was present in the
weakly correlated Fermi liquid limit in Fig. 3(a). The
solutions 2 and 4 are accompanied by a large imaginary
part of 2 and contribute only to the incoherent back-
ground of the spectral function.

Near half-filling the Fermi surface is almost perfectly
nested, and most scattering events with momentum
transfer close to Q will scatter an electron injected above
the Fermi surface to below the Fermi surface. Further-
more, if a vacuum fluctuation hole is present, due to the
strong enhancement of the susceptibility around Q these
processes tend to dominate, leading to the dominance of
the self-energy diagram with the backward propagating
intermediate line.

The shift of spectral weight to the incoherent parts of
A (k,w) is responsible for the formation of the pseudogap
in the density of states per spin as given by the momen-
tum space average of the spectral function

N)=+S 4ke) . (13)
N k

For a fixed value of u the hole doping & is then deter-
mined by integrating the density of states up to the chem-
ical potential

1-6=2[" Nwdo. (14)

As shown in Fig. 4 the pseudogap develops around w=0,
which is the position of the chemical potential at half-
filling. If at finite hole doping the short-range spin order
is incommensurate, i.e., if the peak in y(q,®) is shifted to
Q*=Q—Aq~2k,, where k, is the Fermi momentum of
the noninteracting U=0 case, the center of the pseudo-
gap will move downward to the position of u. For larger
hole doping concentrations the pseudogap is less well
developed.

It is important to note that for nearly commensurate
spin order, the pseudogap is still centered around w=0,
while the chemical potential moves downward into a re-
gion with a large density of states. Thus, instead of hav-
ing a small density of states at the Fermi energy, the
pseudogap formulation leads to a large density of states
for moderate doping levels. This is consistent with a stat-
ic susceptibility that grows with hole doping as seen in ex-
periment.'!

Figure 5 shows the evolution of the spectral function
for the case where u < —A. Here, the Fermi momentum
along the diagonal of the Brillouin zone was fixed to
k,=0.9(m/ 2,7/2) and the spectral functions are plotted
as a function of o for fixed momentum
k=0.95(7 /2,7 /2) above kf. The position of the chemi-
cal potential 4 < —A corresponds to a larger hole doping
concentration §, as in Fig. 2, and for the parameters
chosen § is about 20%. In this case the quasiparticle
peak of the Fermi-liquid regime evolves into the renor-
malized quasiparticle within the lower SDW band. In ad-
dition, a second peak is formed out of the incoherent par-
ticle background, which evolves into the coherent quasi-
particle of the upper SDW band.
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IV. PHOTOEMISSION
AND INVERSE PHOTOEMISSION

The formation of the upper and lower SDW bands in
the crossover regime with finite-range spin correlations
should be observable by angle-resolved (AR) photoemis-
sion and inverse photoemission spectroscopy. These ex-

periments directly measure the spectral function
A (k,0—p) multiplied by a thermal Fermi factor. In the
Fermi-liquid regime the quasiparticle peak of A4 (k,w)
defines a single energy E (k) for each value of k in the first
Brillouin zone, as sketched along the diagonal k=(k_,k,)
in Fig. 6(a).

When an SDW is present, k is mixed with k+Q by ex-
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change Bragg scattering, such that the energy eigenstates
|y, ) no longer have a sharp momentum,

|bys ) =ui k) +sv, [k+Q), ui+vi=

The energy spectrum of the |¢,, ) states is shown in Fig.
6(b), where the states denoted by a heavy line carry large

@ [ ftel
- —/2 /2 T k; ky
(b) e

—n \/\/ n.
_ B kel
/2 /2 Ke= ky
—
Q

(c)

FIG. 6. (a) Single-quasiparticle band E (k) in the Fermi-
liquid regime along the diagonal of the first Brillouin zone. (b)
Quasiparticle (heavy line) and shadow band (light line). (c) Fer-
mi sea and its mirror images in the second magnetic zones. The
large square represents the first Brillouin zone and the smaller
squares represent the first and second magnetic zones, respec-
tively.

A. P. KAMPF AND J. R. SCHRIEFFER 42

weight ui > + and the states denoted by a light line carry
a small weight v < 1. Thus, if one creates a hole of ener-
gy E (k) in the lower band by photoemission, one will ob-
serve the emitted electron having momenta k with proba-
bility 7 and k+Q with probability 1—u}. Hence, the
Bragg scattering leads to a ‘“‘shadow band” displaced by
Q as shown in Fig. 6(c).

If the AF spin-correlation length is finite, these effects
persist with Q being replaced by a sum over q~Q.
Furthermore, the same effects occur for the upper band
and the unoccupied part of the lower band, and should be
seen in angle-resolved (AR) inverse photoemission spec-
tra. We note that ug ~v§ ~ 1 near the edge of the pseu-
dogap *A, while the intensity vZ of the shadow band de-
creases strongly for energies greater than +2A from the
gap center.

V. FINITE TEMPERATURES

A separate issue that can be addressed is the line shape
and width of the quasiparticle peak that is observed in
AR photoemission experiments.'? For the purpose of a
qualitative comparison, we extend our analysis to finite
temperatures and introduce the temperature Green’s
function

G(k,z)= L 15)
z—e(k)+p—2(k,z)
The corresponding self-energy is to one-loop order evalu-
ated at the discrete set of fermionic Matsubara frequen-
cies iw, =i(2n +1)mw/B. B is the inverse of the tempera-
ture, B=1/kzT. T is given by'?

S 1 »do
S(k,io,)=30—=3 [ ““ZImy(q,0)
Nq o
v 1= fy_qtn(w)
[0, —¢g tp—o
fx—qtn(w)

lw, —g_gtpto
(16)

where fy_ 4=/ (g, q—p) and n (o) denote the Fermi and
Bose functions, respectively. The spectral function
A (k,w) is determined by the discontinuity of the Green’s
function across the real axis and is given by

1 I'k,w)

7 [w—e(k)—ReZ(k,0)*+(k,w)? ’

(17)

Ak,o—p)=

where the quasiparticle lifetime I'(k,®) is determined by
the imaginary part of the self-energy,

Im3(k,0—u)= —sgn(o—p)I(k,0) . (18)

AR photoemission experiments measure A (k,o
—p)f (w—up). Ideally, in the photoemission process the
momentum parallel to the surface is conserved when the
photoelectron leaves the crystal. Aligning the crystal
surface parallel to the CuO, planes therefore allows one
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FIG. 7. Angular-resolved photoemission spectra for momen-
ta along the diagonal of the Brillouin zone k, =k, =k close to
the Fermi momentum k.

to directly determine the initial in-plane momentum
state.!? Using the phenomenological model susceptibility
we can evaluate A4 (k,w) for different momenta close to
the Fermi momentum k, for a moderate spin-spin corre-
lation length of about three to four lattice spacings. Fig-
ure 7 shows the corresponding photoemission signals as
the quasiparticle peak disperses through the Fermi level.
The line shape that arises within our treatment may be
compared with the experimental data by Olson et al.'?
after subtracting the background contribution from
secondary photoelectrons. The predicted line shape is
very similar to the experimental results. The experimen-
tal data therefore do not unambiguously require the pres-
ence of a cusplike singularity, as recently suggested by
Anderson'* in the context of a Luttinger liquid descrip-
tion of the normal-state properties of cuprate supercon-
ductors. Rather, the available data are consistent with an
interpretation in terms of a Fermi-liquid based theory of
a highly correlated metal.!®

The experimental AR photoemission data have been
fitted by a series of equally spaced Lorentzians with a k-
independent width scaling linearly with binding energy.
However, the finite angular acceptance of the spectrome-
ter already leads to an energy broadening of about 100
meV.!® Despite the high resolution achieved so far, the
photoemission experiments therefore cannot reveal any
information about the quasiparticle lifetime or ImX
within an energy range of ~1000 K around the Fermi
level. Hence, the present photoemission data cannot
serve as a test for any theoretical concept addressing the
low-energy physics.

VI. CONCLUSION AND SUMMARY

In this paper we have shown how antiferromagnetic
spin fluctuations lead to qualitative changes in the spec-
tral function of a metallic system. Spectral weight is
shifted from the quasiparticle peak of the conventional
Fermi-liquid metal to the incoherent particle and hole
backgrounds that develop into sharp coherent peaks with
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increasing spin-spin correlation length. These peaks can
be viewed as the precursors of the valence and conduc-
tion band of the antiferromagnetic insulator that are fold-
ed back into the magnetic zone when long-range spin or-
der sets in.

The antiferromagnetic fluctuations lead to a pseudogap
in the density of states that sharpens to become the SDW
exchange gap as the system becomes antiferromagnetical-
ly ordered. The origin of the pseudogap and the changes
in the spectral function arise from the backward-
scattering diagram contribution to the self-energy that
describes the exchange suppression of vacuum fluctua-
tions that lower the ground-state energy in the absence of
an added carrier and hence raise the energy to insert a
particle or a hole. This effect dominates over the pola-
ronlike effect if the Fermi surface is close to nesting and
the spin susceptibility is strongly peaked close to the AF
wave vector Q, favoring scattering events with large
momentum transfer.

While the SDW approach discussed above is appropri-
ate for weak coupling, local-moment formation becomes
important for large U, leading to a Mott-Hubbard gap
whose characteristic energy 2Ayy is independent of spin
order on neighboring sites. While this gap is frequently
referred to as a charge gap,'*!” it can equally well be
viewed in a one-band model as arising from the exchange
interaction of the added electron or hole, with the local
moment as follows from the identity

U U
Un”n,l=—2—(n11+n,-l)2—?(nm+n,-l)

U
=_7(ni1_n,-l)2+7(nm+nil) . (19)

In this limit, multiple-scattering diagrams must be in-
cluded to take account of both, the on-site spin order and
the suppression of local AF order surrounding the added
particle, as discussed above. We are currently studying
how local moments and local AF order can be simultane-
ously included within a diagram approach.

Angle-resolved photoemission experiments provide a
direct test of the presence of the “shadow bands”. Thus
far such experiments performed on the cuprate supercon-
ductors in the normal state have focused on mapping out
the Fermi surface, following the position of the quasipar-
ticle peak for different momenta k until it disperses
through the Fermi surface at k,. For sufficiently strong
AF spin fluctuations its mirror image will show up at the
same binding energy at a momentum k+Q. In addition,
AR inverse photoemission experiments can in principle
detect the same effects for the unoccupied parts of the
lower and the upper band.
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FIG. 6. (a) Single-quasiparticle band E (k) in the Fermi-
liquid regime along the diagonal of the first Brillouin zone. (b)
Quasiparticle (heavy line) and shadow band (light line). (c) Fer-
mi sea and its mirror images in the second magnetic zones. The
large square represents the first Brillouin zone and the smaller
squares represent the first and second magnetic zones, respec-
tively.



