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The two-dimensional antiferromagnetic spin-~2’- Heisenberg model on a square lattice is considered

in the presence of randomly distributed vacancies and magnetic impurities. We calculate the
configurationally averaged spin excitations of the system in the limit of small impurity concentra-
tions. We apply linear spin-wave theory to the host and use the exact T matrix for the impurity
sites. Results for the spin-wave spectrum are presented. These include resonant scattering effects,
the renormalized spin-wave dispersion, and the spin-wave damping.

1. INTRODUCTION

The common feature of all the high-T, cuprate super-
conductors is the presence of two-dimensional CuO,
planes. Their electronic properties are attributed to holes
that are doped into hybridized O 2p, , and Cu 3dx2_y2 or-

bitals in these planes. For the undoped parent com-
pounds, it is widely accepted to describe the relevant elec-
tronic states of these planes in terms of the so-called
Mott-Hubbard insulator. In the insulating state, the
low-energy, electronic degrees of freedom are essentially
reduced to localized spins 1, arising from the 3(1’)62*})2 an-

tibonding orbitals, which are exactly half-filled in this
case. The spins are coupled via the antiferromagnetic ex-
change interaction. The magnetic properties of these sys-
tems are well described by a two-dimensional (2D)
Heisenberg quantum antiferromagnet.""? One of the keys
to an understanding of the cuprate superconductors may
be the interplay between the antiferromagnetic back-
ground and the mobile carriers, which are introduced
upon doping. This includes the rapid destruction of
long-range antiferromagnetic order as a function of dop-
ing, which is followed by the onset of superconductivity
at intermediate hole concentrations.

From the above, it is evident that investigations of the
2D spin system will contribute to a better understanding
of the cuprates. Current topics in this field include quan-
tum effects in the ground state and the excitation spec-
trum of the pure two-dimensional Heisenberg antifer-
romagnet.>* In this paper, we will focus on a different
aspect, namely, the response of the spin system to a ran-
dom distribution of magnetic defects and static holes that
are introduced into the CuO, planes. The latter case is of
direct experimental interest, as the substitution of non-
magnetic Zn, or Al and Ga (Ref. 5) for Cu in YBa,Cu;0,
(Refs. 6 and 7) or La,CuO, (Refs. 5 and 8) samples pro-
vides explicit examples for static holes. In addition, the
problem of arbitrary spin-4 magnetic impurities in a 2D
antiferromagnet is also included in the model we intro-
duce in Sec. II, and it is complementary to the earlier
treatment of magnetic impurities in 3D ferromagnets.” !°
In addition, the problem of randomly distributed vacan-
cies in the Heisenberg antiferromagnet is interesting be-
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cause the vacancies may be viewed as mobile carriers in
the limit of a vanishing bandwidth. Recently, Bulut
et al.'! have studied the vacancy problem for a single va-
cancy introduced into the 2D square lattice. They fo-
cused on the spin correlations in the immediate neighbor-
hood of the vacancy and compared results obtained
within linear spin-wave (LSW) theory to exact diagonali-
zation studies on small clusters. They find LSW to be
surprisingly accurate and show, e.g., that the magnetiza-
tion on sites next to the vacancy is actually enhanced rel-
ative to the pure host value.

The paper is organized as follows. In Sec. II, we intro-
duce the model and apply the LSW theory to derive the
spin excitations from Dyson’s equation for the spin-wave
propagator as outlined in Sec. III. To account for the
disorder, we perform a configurational average over the
impurity positions. In the limit of small defect concen-
trations, the self-energy is calculated from the single im-
purity scattering T matrix. In particular, the real space
transform of the 7 matrix can be used to evaluate the
spin-correlation functions, which were considered in Ref.
11 for a nearest-neighbor site of a vacancy. In Sec. IV we
present our results for the spin-wave spectrum at various
defect concentrations and different coupling strengths.
The spectra contain typical resonance features reflecting
the local symmetry of the impurity potential. Addition-
ally, we discuss the spin-wave damping and a nontrivial
renormalization of the spin-wave dispersion due to reso-
nant scattering. We conclude in Sec. V.

II. THE MODEL

The aim of this paper is to describe the spin excitations
of a perturbed two-dimensional Heisenberg quantum
spin-1 antiferromagnet. The perturbation we are in-
terested in consists of a random distribution of defect
spins on the sites of the 2D square lattice. These defect
spins are coupled to the pure host spins by an exchange
energy J—J, where J is the unperturbed coupling con-
stant. The symmetry of the perturbation is assumed to be
that of the square lattice. For the Hamiltonian, we fol-
low the standard procedure and perform a sublattice rota-
tion.!? This amounts to transforming all spins on one of
the two sublattices of the antiferromagnet by S*—S "
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and by S*— —S? The resulting Hamiltonian is given by

H=H gy +Hipp, »

HAFM l ZS + = (Si+Sj+ +Si—*sj_)
2 (u)
__J 1 gho+yog
Higy=—2 3 3 | —SiSj+(87s +8,757)| . @D
2850 2
Here H ,p) is the Hamiltonian of the pure host. The

summation ¢ij ) is assumed to range over all next-nearest
neighbor bonds of the square lattice. The lattice vectors
R, in the perturbing Hamiltonian H,,, are the random
positions of the impurity sites. The index j (/) represents
the four next-nearest neighbors of the impurity. We
define the concentration of the defects by ¢ =(1/N )ERI’

where N is the total number of lattice sites. For J =J,
the impurity spins are decoupled from the lattice, thus,
leading to effective vacancies within the host.

The spin excitations of the Hamiltonian in Eq. (2.1)
will be evaluated within the LSW theory.!> Although a
quantitative description of the spin dynamics of two-
dimensional spin-1 antiferromagnets requires a better
treatment, it is well accepted that the LSW theory pro-
vides a good description of their gualitative features.*
Within the LSW approach, the momentum space repre-
sentation of Eq. (2.1), apart from irrelevant additive con-
stants, is found to be

H=3 3 AR AK)
k
L s SRR 0909, (k) AK)
8N R, kK, j

(2.2)

Above, we have used that the coordination number of the
square lattice is 4, and that the spin quantum number s is
equal to L. The vectors k label points in the reciprocal
space. Note that due to the sublattice rotation, the Bril-
louin zone is determined by the Brillouin zone of the
square lattice, i.e, k,,k, €[ —7/2a,7/2a ], where a is the
lattice constant, and not by the magnetic Brillouin zone.
In Eq. (2.2), we introduced a 2X2 matrix notation. The

operator vector A(k) is defined by
ay

aT_k

Ak)= , 2.3)

where the so-called spin-wave operators al and a are the
k-space transforms of the linearized Holstein- Prlmg\koff
representations of the spin operators. 4 The matrix E(k)
is given by

[
7k 1
Y= +[cos(ak,)+cos(ak,)] .

E(k)=

>

(2.4

Finally, the impurity part of the Hamiltonian contains
the matrix ¥;(k). It is given by
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. 1 eik-rj
v,(k)= ST , (2.5)
where r; are the vectors pointing from an impurity site to

its four next-nearest neighbors. For further reference, we
assume j =1,2,3,4 to label these sites in a counter-
clockwise direction. Note that within the above repre-
sentation the impurity potential as given by Eq. (2.2) is
factorized regarding the dependence on k and k'.

III. THE SPIN EXCITATIONS

In this section, we solve for the relevant Green’s func-
tion of the Hamiltonian given by Eq. (2.2). As usual, our
aim will not be to evaluate this Green’s function for a
given, fixed set of impurity positions. Instead, what we
are interested in is the Green’s function that will arise
from an ensemble average over randomly located defects
at a given concentration ¢c. We apply the finite tempera-
ture formalism and consider the imaginary time propaga-
tor matrix

9Bk, 7)=—{T,{ A%k, 7)[4(k,01°}) . 3.1

The Greek indices refer to the components of the vector
defined in Eq. (2.3). The brackets { - - - ) imply not only
the trace over the statistical operator, but also, a
configurational average over the impurity positions. The
latter will be achieved using the standard method of Refs.
15 and 16. Within this approach the averaged dressed
spin-wave propagator is obtained by the Dyson equation
for 9(k,w,),

Ok, 0,)=8y(k,0,)+ Gk, 0,3k, 0,0k e,) . (3.2

Here ﬁ(k,a),,) is the self-energy for spin waves scattering
off impurities represented by the perturbing part Hj,,, of
Eq. (2.2). Note that due to the impurity averaging, the
self-energy is k diagonal. The bosonic Matsubara fre-
quencies are given by w, =27nT, where T is the tempera-
ture and n is an integer number. The matrix elements of
the unperturbed Green’s function QO(k ®,) are deter-
mined by'?

J+i

Gk, 0, )= G2k, —w, )= ——n
(iw, ) —(g)?

92k, 0, )= (Ko, )= —— K (3.3)

0 i ad'] 0 tad’] (ia)n)z—(sk)z

The unperturbed spin-wave dispersion is given by
=J(1—y3)!2 The bare 9y(k,w,) is diagonalized in

the standard way by the Bogoliubov ‘transformation. 2
To determine the self-energy f.(k,co,, ), we introduce
the second approximation used in this paper. Namely,
we restrict ourselves to the dilute limit. In this limit,
only diagrams to lowest, linear order in the defect con-
centration have to be included within the averaging pro-
cedure, as shown in Fig. 1. This is equivalent to treating
the on-site scattering process exactly and neglecting all
correlations between different impurity sites. The result-
ing integral equation will become algebraic because of the
factorization of the impurity scattering potential into a k-
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FIG. 1. (a) The Dyson equation for the spin-wave propagator
§, @0 is the bare propagator, and $ is the self-energy. (b) Dia-
grams for the self-energy. Scattering off a specific impurity is
represented by a full circle attached to a dashed line.
Configurational averaging is symbolized by a cross.

and a k’-dependent part. We obtain

S(k,0, )——czz (e, 9,(k),
?j,(w,,)zlajﬂrzto,jm o, A (0,) , (3.4)
A _ .7 ) At
to,jm(@,)=— ZN EV (k) Sk, 0, 9], (k)

The remaining equation for the exact single-site 7 matrix
't\ﬂ(w,,) can be diagonalized with respect to the indices
j,1=1,2,3,4 for the sites next to the impurity, by trans-
forming into S-, P-, and D-symmetric channels with
respect to the scattering site. After straightforward alge-
braic manipulations, we find

J
s >

I=S,P,,P,,D

S(k,w,)= #HKE (w,)®, (k). (3.5
Above, we have introduced the S, P, and D representa-
tions of the single-site scattering T matrices. Within our
2X?2 formulation, these matrices are found to be diago-
nal. For the different channels, their elements are given
by

tiw,)=t¥(—w,)
1
DH2F (0, + 1S Gy —w,)
J

14T (Gl

t},]](wn)Zt,%lz(—w,,)

2 2
1
1+(J/4 (G (—w,)—G3(—w,)]
tiMw,) =t —o,)
1
(3.6)
H~(J/4)E Y G (—w,)

J
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The irreducible parts of the T matrices in Eq. (3.6) are ex-
pressed in terms of the lattice Green’s functions G;;(w,)
and Fj;(®,). These are defined as the Fourier transforms
of the diagonal and off-diagonal elements of the unper-
turbed spin-wave propagators, respectively,

Gylo )= 3 Vgl w,)
N k
ik(r;—
Fyl - 2 2k, , 3.7

All of the lattice Green’s functions are related to elliptic
integrals of the first and the second kind.!”"!® Explicit ex-
pressions for the corresponding causal Green’s functions
are evaluated in the Appendix A. Note that the matrices
t;(w,) are diagonal because all lattice Green’s functions
that appear in the off-diagonal elements of the irreducible
parts of the t;(w, )’s are zero.

The matrices G\v;(k) in Eq. (3.5) are the S-, P-, and D-
like linear combinations of the 'Gj(k) matrices, respective-
ly. They are given by

Ws(k)=1[9,(k)+V,(k)+73(k)+V4k)],

W5 (K)=1[F,(K)£9,(k)—93(k) F,(K)] ,

Using Eq. (2.5), it is evident that the elements of the
above 2X2 matrices W;(k) consist of the usual square
harmonics, i.e., cos(akx)icos(aky) and sin(ak,)
tsin(ak,). In contrast to the 1,(w,)’s the off-diagonal
elements of the coupling matrices W,(k) are nonzero.
Thus, the self-energy matrix Sk, ®,) is not diagonal in
the above representation.

Before turning to the discussion, we would like to point
out one particular property of the S channel for the case
of J=J. With the expressions given in the Appendix and
with Eq. (3.6), the causal scattering T matrix, which is

obtained from the analytic continuation of t5(w, ) to the
real axis, can be evaluated to be
1,y ,22 = 1
ts (w)=t5(—w)=—=
JoloGylw)—1]+1—
=1 frF=J
o[wGyw)—1] ’
(3.9

where all energies are measured in units of J. Equation
(3.9) shows that the self-energy will develop a 1/ singu-
larity at small w for J—J. This is related to the fact that
the S-like scattering states of the spin waves have a
nonzero projection onto the states of the central spin. If
J=J, this spin is completely decoupled from all other
spins. Thus, the relevant spin operator commutes with
the Hamiltonian leading to a zero-frequency mode.
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IV. RESULTS AND DISCUSSION

Given the self-energy as calculated from the single-site
scattering T matrix, we can invert Dyson’s equation, Eq.
(3.2), to obtain the configuration averaged spin-wave
propagator matrix. Its components contain all the infor-
mation about the renormalized spin excitations. Explicit
comparison to the spin-wave spectrum of the pure host is
conveniently carried out in an operator representation
that diagonalizes the Hamiltonian in the absence of any
impurities. This is achieved introducing the operators blt
and b, by the canonical Bogoliubov transformation

A(k,a))=—$lm9},1(k,w)

Z—le 1
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by Uy Uk |
bT—k ol R Ay, (4.1)
with the coefficients u, and v, determined from
1 1
2= | - 2 1,2
Uy 5 (1——7/%)1/2 y Uk 1 Ug . (4.2)

For the remainder of the discussion, we focus on the 11-
component of the spin-wave propagator §}!(k,®, ) in the
b representation for different impurity concentrations.
After analytic continuation to the real frequency axis, the
spectral function of $,(k,w) is given by

T o—g—3ik0)+ [k w))*/[ot+e+IPko)]

Here, ﬁb(k,a)) is the canonical transform of 3(k,w). In
the pure host limit ¢ =0, the self-energy vanishes, and
A (k,w) is a single § function at the spin-wave energy g
for given momentum k. At small but finite ¢, the energies
of the spin waves are shifted, and they acquire a finite
lifetime in the forward momentum channel due to repeat-
ed scattering from individual impurities.

In Figs. 2 and 3, we plot two examples for Im$}!(k,w)

Imp. conc. é_% 75% 15%

-10

Im GyyJ

-15

20 |- k,=7/4, k,=m1/4

e e e A S L B B L L
e b e e b b

_25.|..I..

-

w/J

FIG. 2. Imaginary part of the diagonal element of the spin-
wave propagator matrix at fixed momentum for various impuri-
ty concentrations and J =J /2.

(4.3)

or, equivalently, the spectral function at fixed momentum
k=(m/4a,m/4a) as a function of frequency. In Fig. 2,
we have chosen a case where the impurity spin is coupled
to its neighboring spins with half of the pure host value,
i.e., J=J/2. The spin-wave peak moves to lower ener-
gies with increasing impurity concentration and is con-
siderably broadened. For large enough values of ¢, addi-
tional structure appears in the spectral function, which
arises from resonances in the S-, P-, and D-scattering
channels at the impurity sites. Due to their local nature,

Imp. conc. 2% 7.5% 15%

7
/
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Im G,,J

-15

-20

ke=m1/4, k,=71/4

LA By B S B L B N N R B B BB B

o v b b e e b

—25 s L 1 L L s L | | . L L
0 0.5

w/J

o

FIG. 3. Same as Fig. 2, for J=J.
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the energy of these resonances is independent of k. To il-
lustrate the effect on the spin-wave spectrum, we have
chosen the momentum such that the unperturbed excita-
tion energy lies close to one of these resonances. Essen-
tially no spectral weight appears outside the band
O<w<J. Figure 3 shows the behavior of the spectral
function for J=J, which corresponds to impurity spins
that are decoupled from their surrounding and, thus, act
as vacancies. Note that for the momentum chosen in this
case the spin-wave peak moves to higher energies with in-
creasing c. However, for the larger defect concentrations
greater than or approximately equal to 10%, to which we
extend the results of our dilute limit calculation, spin-
waves are no longer well defined in the frequency range
close to the resonant structures. In fact, in this frequency
range both have comparable spectral weight and become
hardly distinguishable in the spectral function.

As in all spectra for J=J, there is also a sharp peak
outside the magnon band near w=0. Its spectral weight
is determined by the defect concentration. This peak
arises from the zero-frequency mode of the decoupled
free spin at the impurity site as pointed out in connection
with the T matrix of Eq. (3.9). For the exact impurity-
averaged spin-wave spectrum, this would lead to a &
function at w=0. Our calculation, however, approxi-
mates the configurationally averaged Green’s function
only to leading order in the impurity concentration. As
an artifact of this approximate treatment, the “free-spin”
pole is shifted away from »=0. Summing up, higher-
order contributions in powers of ¢ would remedy this
deficiency.

From the position of the dominant peak in the spectral
function 4 (k,w), we can deduce the spin-wave disper-
sion by mapping out the peak position as a function of
momentum. The results are collected in Fig. 4 for mo-

0.8 - I
0.6 - m
1S - i
3 - 4
0.4 - n
0oz / -
WA Imp. conc. 0%, 7.5%, 15% )

o v

0 1 2 3

ke=k,=k

FIG. 4. Spin-wave dispersion for various impurity concentra-
tions. The dispersion for the pure host is included as a refer-
ence.
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menta along the diagonal of the Brillouin zone with
k. =k,. The dispersion of the pure system is included as
a reference. At long wavelengths, the dispersion main-
tains its linear k dependence with a reduced spin-wave
velocity v;. For low-impurity concentrations, v, is ap-
proximately given by v,=(1—ac)J/(2)!/2. From our
analysis, we find a=3.1. For concentrations of ¢ % 5%,
corrections quadratic in ¢ modify this result. Close to the
top of the magnon band, the spin-wave energies are shift-
ed to higher energies. This is an immediate consequence
of the presence of the local S, P, and D resonances ap-
pearing at intermediate energies. As mentioned above,
for larger concentrations, the spin waves and the reso-
nances are not clearly separated in this energy range.
This explains the discontinuity in the curves of Fig. 4
reflecting the criterion to plot the position of the peak
carrying most of the spectral weight in 4 (k,®). Outside
the resonance regime, the identification of the spin-wave
peak is unique. Figure 5 shows the width of the peak as
defined by the imaginary part of the self-energy at the
peak position, which is mapped out in Fig. 4. It is a mea-
sure of the relaxation rate out of a given momentum state
due to impurity scattering. The damping vanishes at the
magnon band edges, i.e., for «=0 and w=/J, and it is
largest for intermediate values close to the resonant fre-
quencies.

Finally, we would like to mention a simple way to re-
move the low-frequency spectral weight that appears for
J=J due to the free-spin mode. For that purpose, we
have treated a generalization of our model by adding a
term Hy = —uB ER[S,Z to the Hamiltonian equation (2.1).

Here, B is a fictitious magnetic field that is used to freeze
out the vacancy spin carrying the magnetic moment pu.
We find!® the P and D channels of the self-energy to be
unchanged, but there is one additional channel which
mixes with the former S channel. In the limit of uB >>J,
the free-spin excitation is shifted to high energy. In this

0.2

0.1

magnon width J

0.05

FIG. 5. Spin-wave damping for various impurity concentra-
tions.
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Imp. conc. 7.5%
T T T T T

Im G,,J

Ke=71/4, k,=11/4

~15 s n 1 L 1 L L | ) L | PR
0 0.5 1
w/J

FIG. 6. Imaginary part of the diagonal element of the spin-
wave propagator matrix for finite B field. Comparison of
“frozen” vs “free” defect spin in the case of J=J.

case, and for w <<uB, the scattering T matrix in the S
channel as compared with Eq. (3.9) changes into

J=J Go()(w)

tMo)=tH—w) = (4.4)

G op(w)—1

The above expression no longer has the 1/w singularity.
This is shown in Fig. 6, where the dotted curve refers to
the corresponding spectrum for B =0. The rest of the
spectrum and in particular the position of the spin-wave
peak remain unchanged.

V. CONCLUSION

To summarize, we have studied the influence of mag-
netic impurities and vacancies on the spin excitations of a
2D quantum antiferromagnet. We applied LSW theory
and evaluated the spin-wave propagator to leading order
in the defect concentration. Our results for the renormal-
ization of the spin-wave spectrum should be accessible to
neutron scattering and other experiments that probe
magnetic excitations of the high-T, compounds with
respect to impurities and vacancies introduced into the
CuO, planes. Comparing our findings with the impact of
mobile holes on the magnetic correlations in the planes,
in particular, the spin-wave stiffness, it is obvious that
static holes are less effective in suppressing magnetic or-
der. This is due to the mobile holes disrupting the anti-
ferromagnetic order via the direct correlations between
their motion and the spin background. It is only in the
limit of very low doping concentration, where localiza-
tion effects play a role, that our results may be relevant
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for hole-doped samples as well. Finally, we would like to
remark that our approach could be extended to include
corrections beyond LSW theory and contributions due to
higher orders in the defect concentration as well as their
interplay.

Note added in proof. After completing this work we
became aware of an additional publication on single de-
fects in two-dimensional quantum antiferromagnets,
treating the case of one isolated ferromagnetic bond.?!

ACKNOWLEDGMENTS

We thank N. Bulut, H. Monien, D. J. Scalapino, and J.
R. Schrieffer for helpful discussions. This work was sup-
ported by the National Science Foundation under Grant
No. DMR 89-18307 and EPRI Grant No. RP-8009-18.
One of us (W.B.) gratefully acknowledges support by the
Max-Planck-Gesellschaft.

APPENDIX

The calculation of the scattering T matrix in Sec. III
involves the evaluation of the pure host Green’s functions
G(w,) and F;;(w,), as defined in Eq. (3.7) and, in partic-
ular, their analytic continuation to the real frequency
axis. The analytic properties of the host Green’s func-
tions are intimately related to those of the lattice Green’s
function of the two-dimensional square lattice.!” We
enumerate counterclockwise the nearest-neighbor sites of
an arbitrary central site ry by r;,r,,r;5,14. For these five
lattice sites, there are four nonvanishing independent
host Green’s functions, which we denote by Gy, Fyg,
G,;, and G;,. Measuring energies in units of the ex-
change energy J, we restrict ourselves to frequencies
lo| =1 inside the magnon band since the host Green’s
functions are purely real outside the magnon band and,
hence, no spectral weight appears for |w|>1. The four

(causal) Green’s functions are given by!®»?° (for
—l<w<l):
2 [ 1+ 2
Golw)=—= |-——2 | (K[(1—e»)'?]+iK(lo])} ,
T |l—w
(A1)
Filw)=(0—1)Gplw)—1, (A2)
172
G21<m)=—%if—“’ (K[(1—0) 2] —2E [(1—0?)'72]
—i[K(lo])—2E(lo])]} , (A3)
G31(0)=(3—40%)G (@) +4(1+w)—2G, () . (A4)

K and E denote the complete elliptic integrals of the first
and second kind. The Green’s functions for larger dis-
tances can be generated from Egs. (A1), (A2), and (A3)
with the recursion relations of Morita.!®
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