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Abstract  
Acoustic emission analysis is a nondestructive technique frequently used to assess the integrity of 

fiber reinforced plastics. Pattern recognition techniques have shown great potential to identify 

microscopic failure mechanisms in plate-like structures. Because every assignment of an acoustic 

emission signal to a respective failure mechanism is possibly associated with an error, one key 

question is the reliability of the assignment method. It is useful to distinguish between the 

uncertainty of the assignment and the false assignment of an acoustic emission signal to a group of 

signals. The first is owed to statistical effects and the reliability of the classification method itself. 

The second is caused by false conclusions or disputable assumptions on the source mechanisms. 

The present study will focus on the first aspect. For this purpose, we propose a model based 

algorithm that estimates the uncertainty of a feature based pattern recognition approach based on 

cluster validity indices. Further, we demonstrate the application of the algorithm to experimental 

acoustic emission data obtained from a double cantilever beam specimens with unidirectional 

layup of carbon fiber reinforced polymer. Based on previous investigation we use a pattern 

recognition approach to distinguish between different failure mechanisms like matrix cracking, 

interfacial failure and fiber breakage based on the frequency features of the acoustic emission 

signals. We consider the influence of dispersion and attenuation effects during propagation of 

Lamb-waves on the extracted acoustic emission features. This is done by investigating the 

influence of source-sensor distance by test sources like pencil lead breaks and piezoelectric 

pulsers. Using the model based algorithm it is possible to calculate the uncertainty of the pattern 

recognition results as a function of source-sensor distance. It is found that dispersion effects of 

Lamb-waves do not seriously affect the distinction between microscopic failure mechanisms for 

source-sensor distances up to 375 mm. We demonstrate that the spatial distribution of acoustic 

emission sources has a larger impact on the uncertainty of assignment than the absolute source-

sensor distance. Applying the proposed algorithm to the current experimental setup, we obtain an 

uncertainty of classification below 7 % for source-sensor distances below 375 mm. Attenuation is 

quantified to be 0.165 dB/mm for the A0-mode and 0.047 dB/mm for the S0-mode. Within the 

source-sensor distance of 375 mm this causes severe attenuation of the signal amplitude and thus 

prohibits detection of weak acoustic emission signals long before the uncertainty of the 

classification method reaches 10 %. 

 

1 Introduction  

Fiber reinforced composites show an extraordinary potential for application as 

light-weight structure materials due to their high strength-to-weight and high 

stiffness-to-weight ratio. Most of the time the investigation of material failure of 

fiber reinforced composites by conventional nondestructive techniques occurs 

offline, i.e. after loading and unloading of the specimen. In contrast, acoustic 

emission (AE) analysis is a powerful nondestructive technique for online 

monitoring of material failure during loading of the specimen [1]. Here, 

microscopic internal displacements like crack generation or crack propagation 

cause stress-waves that are detectable as transient acoustic waves. Within a plate-

type specimen, these acoustic waves are symmetric (Si) and antisymmetric (Ai) 

Lamb-wave modes, as well as shear-horizontal (SHi) modes. 

 

In addition to the activity of acoustic emission, the position of the acoustic 

emission source and the type of acoustic emission source are key aspects to 

enhance the understanding of material failure. While source localization in carbon 

fiber reinforced polymers (CFRP) still has to overcome the problem of anisotropic 

acoustic signal propagation and geometrical complexity [1-3], unsupervised 

pattern recognition techniques have already demonstrated their suitability to 

identify particular source mechanisms in CFRP [4-12].  

 

The basis for these feature based pattern recognition approaches is the concept of 

feature extraction. Thus, typical features are calculated from the recorded acoustic 
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emission signal (i.e. peak frequency, see also section 3) to parameterize the signal. 

Pattern recognition algorithms are then applied to search cluster structures in 

subsets of these features [13]. In general, the outcome of the pattern recognition 

process is a classification of acoustic emission signals based on their similarity to 

each other. The correlation of one group of acoustic emission signals to a 

particular source type is a separate task. 

One problem common to all unsupervised pattern recognition approaches is the 

evaluation of the clustering result. For the case of acoustic emission analysis, the 

following two errors can occur: 

 

1) A group of acoustic emission signals is assigned to the wrong source type 

2) An acoustic emission signal is assigned to the wrong group 

 

In literature, various methods are established to assign a group of AE signals to a 

particular source type [4-12]. In our previous publications [11,12,14-16] we use 

finite element modeling of acoustic emission signals for various source 

mechanisms validated in a variety of experimental configurations to perform this 

task.  

 

However, a prerequisite for valid source identification is a statistically meaningful 

group of signals. If no distinction between the acoustic emission signals can be 

made based on their feature values, any subsequent discussion of the underlying 

source type is disputable. Since the exact assignment of one particular signal to 

one mechanism is by definition unknown, it is useful to express the error of the 

classification procedure as uncertainty of the assignment. 

 

Within the present investigation we present a numerical method that is capable to 

quantify this uncertainty of assignment. We demonstrate how this method is used 

to calculate the uncertainty of assignment for an experimental dataset. We 

consider the influence of dispersion and attenuation effects during propagation of 

Lamb-waves on the extracted acoustic emission features and elaborate the 

experimental factors that cause an increase in the uncertainty of classification. 

 

2 Pattern recognition 

Since a comprehensive description of the pattern recognition method used in this 

investigation was previously reported in [11], we only give a brief summary in the 

following.  

The presented method was inspired by the work of Anastassopoulos et al. and 

Günter et al. [17, 18] and is based on an exhaustive screening taking into account 

all combinations of signal features extracted from the recorded acoustic emission 

signals. For each possible combination of signal features an investigation of the 

classification performance of the k-means algorithm is evaluated ranging from 

two to ten classes. The numerical degree of cluster separation of each partition is 

calculated utilizing the Davies–Bouldin (𝐷𝐵) and Tou ( 𝑇𝑂𝑈) indices, 

Rousseeuw’s silhouette validation method (𝑆) and Hubert’s Gamma statistics (𝛾) 

[19-22]. Since the various cluster validation methods are comprehensively 

described in the authors’ original work, their definition is not repeated in the 

following. 
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In the spirit of [17, 18] the individual rating of each cluster validation technique is 

cumulated based on a voting scheme and is evaluated for the number of clusters 

with best performance. This is defined as the best partitioning for the given 

feature combination. This methodology can be used as an automated evaluation of 

the number of natural clusters and their partitions without previous knowledge 

about the cluster structure of acoustic emission signals.  

 

The assignment of a group of acoustic emission signals to a source mechanism is 

achieved by a comparison to acoustic emission signals calculated by a finite 

element modeling approach. Since this is beyond the scope of the current 

investigation, we summarize the correlation between particular microscopic 

failure mechanisms and the respective acoustic emission source configuration 

briefly. The following correlation between micromechanical failure modes and 

acoustic emission source properties (notated in brackets) for fiber reinforced 

polymers is used: 

• Interfiber fracture (matrix cracking or interfacial failure, in-plane) 

• Fiber-Matrix Debonding (interfacial failure, in-plane and out-of-plane) 

• Fiber-Matrix Pull-Out (interfacial failure, in-plane and out-of-plane) 

• Interply delamination (matrix cracking or interfacial failure, out-of-plane) 

• Fiber fracture (fiber breakage, in-plane) 

A precise description of the implementation of the particular source types in finite 

element models is found in Ref. [15, 16]. The description of mesoscopic failure 

modes (e.g. fiber bridging) is beyond the scope of the proposed acoustic emission 

source models. The suitability of the proposed method for a variety of specimen 

geometries and loading conditions has been demonstrated using artificial, as well 

as experimental datasets [11, 12, 14, 15]. 

 

2.1 Definition of the uncertainty of assignment  

As discussed in [11] the purpose of the pattern recognition technique is the 

detection of the natural clusters, which are defined as numerically best separation 

of the dataset investigated. However, the detection of natural clusters does not 

imply a classification error suitable for statistically significant identification of 

particular failure mechanisms in a material. Naturally, clusters will always have 

some overlap relative to each other, which causes ambiguous assignment of 

signals at the border between to clusters. Thus, a measure for the uncertainty of 

assignment during the classification process is required.  In the following, the 

values of cluster validity measures 𝐷𝐵, 𝑇𝑂𝑈, 𝑆 and 𝛾 shall be used for this 

purpose.  

 

In order to establish an analytical correlation between the cluster validity 

measures and the uncertainty of assignment we investigate artificially generated 

datasets. Following the approach of Milligan [23] and the refinement by Qiu and 

Joe [24] we generate datasets according to the implementation within the software 

package “R” by Qiu et al. [25]. We use the measure of the degree of separation 𝐽 

as introduced by [26]. The measure 𝐽 is based on the separation of two clusters 

generated from two univariate normal distributions N(0, 1) and N(0,A) [26]. For 

the values of A = 8, A = 6 and A = 4 the measure of the degree of separation 

ranges from “well-separated” (𝐽 = 0.342), “separated” (𝐽 = 0.213) to “close” (𝐽 = 

0.010) as shown in the scatter plots in figure 1. 
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The proposed pattern recognition method can identify the number of clusters 

accurately down to J = 0.010 [11]. Since the internal structure of the artificial 

datasets are initially known this allows a direct quantification of the misclassified 

cluster members of the test data sets. 

 

 

Figure 1: Visualization of cluster structure for degree of separation of J = 0.342 (a), J=0.213 (b) 

and J=0.010 (c). 

 
As measure of the mismatch between two partitions the Rand index is applied 

[27]. In statistics, the Rand index is used as a direct measure of the percentage of 

decisions that are correct and thus is a direct measure of the classification error. 

Next we consider the correlation between the calculated cluster validity measures 

𝐷𝐵, 𝑇𝑂𝑈, 𝑆 and 𝛾 and the Rand index.  

 

To this end, we investigated a number of artificial datasets with varying degree of 

separation 𝐽 between -0.45 and 0.45. The number of objects in each cluster was 

randomly chosen within the range [50, 200] which reflects reasonable variation of 

the cluster sizes. Table 1 summarizes the remaining parameters used in the study. 
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Number of clusters 2  3 5 

Number of features 5  4  5  6 5 

Number of partitions generated 16 22 105 22 16 

Table 1: Overview of settings used for generation of artificial datasets. 

 
In the following we discuss the case of 3 clusters and 5 features to establish the 

correlation between the cluster validity measures and the Rand index. 

Subsequently, we study the influence of the number of features and the number of 

clusters in sections 2.2 and 2.3, respectively. 

 

In figures 2a - 2d values of the Rand index are plotted as a function of the four 

cluster validity measures investigated. Since all cluster validity measures are by 

definition linked to the quality of the partition a correlation to the Rand index is 

expected. Here, 𝐷𝐵 indicates a partition of high quality by a numerical minimum, 

while 𝑇𝑂𝑈, 𝑆 and 𝛾 maximize their values for high cluster separation.  

 

The scatter in figures 2a - 2d indicates that there is no direct analytical correlation 

between a particular cluster validity measure and the Rand index. This is owed to 

the statistical distribution of clusters elements, which can cause nearly identical 

values of 𝐷𝐵, 𝑇𝑂𝑈, 𝑆 or 𝛾 for two partitions, while the respective number of 

correct classifications is still different for both partitions. 

 

We use a five-parameter logistic function to fit the cluster validity measure c to 

the Rand index. This was found to yield the best fit of the data points among the 

class of sigmoidal growth functions. 

 

𝑅𝐴𝑁𝐷 = 𝐴𝑚𝑖𝑛 +
𝐴𝑚𝑎𝑥−𝐴𝑚𝑖𝑛

(1+(
𝑐

𝑐0
)

−ℎ
)

𝑠       (1) 

 

The boundary conditions of the Rand index with lower limit of 𝐴𝑚𝑖𝑛 = 0 and 

upper limit of 𝐴𝑚𝑎𝑥 = 1 reduce the number of fit parameters by two. The 

resulting fit including the 95% prediction band is shown in figures 2a – 2d. Fit 

parameters 𝑐0, h and s are shown in the respective inset. 
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Figure 2: Rand Index as a function of cluster validity statistics. Plots include results of fit model 

and their corresponding 95% prediction band. Diagrams are shown for Davies-Bouldin index (a), 

Tou index (b), Hubert’s Gamma coefficient (c) and Rousseuw’s Silhouette value (d).  

 

As indicated by the values of the adjusted least square errors (adj. R2), the various 

cluster validity measures show different performance in their correlation to the 

Rand index value. Best performance was observed for  𝑆 and 𝛾. A strong 

correlation was found for  𝐷𝐵 while the size of the 95 % prediction band for  𝑇𝑂𝑈 

was found to be insufficient for further usage with an experimental data set. 

The reason for the different performance of the cluster validity measures is their 

different sensitivity to outliers and statistical scatter within the datasets [11, 13, 

18]. Here, 𝑆 and 𝛾 show less sensitivity to such effects, translating into less scatter 

of their numerical values. The value of 𝐷𝐵 is affected more and the value of  𝑇𝑂𝑈 

suffers drastically from outliers and minor changes in the dataset. 

 

In the following subsections we will discuss the influence of the number of 

features and the number of clusters using exemplarily the fit parameters for the 

values of 𝑆 only. 
 

2.1.1 Influence of number of features 

Next we investigate the influence of the number of features selected for the 

classification process on the fit parameters of equation (1). We vary the number of 

features between four and six keeping the number of clusters constant at three. As 

seen from figure 3 for Rousseuw’s silhouette value 𝑆, there is a significant impact 

on the fit parameters when the number of features is varied. The same impact was 

also observed on the remaining cluster validity measures 𝐷𝐵, 𝑇𝑂𝑈 and 𝛾. Since 

the fit parameters for the cases with four, five and six features are not identical 

within their error margins an individual set of fit parameters is recommended for 

each number of features. Visually this is expressed by the different slopes and 

shifts of the fit functions in figure 3. 
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Figure 3: Rand Index as a function of Rousseuw’s Silhouette value for artificial partitions with 

four, five and six features including results of fit model.  

2.1.2 Influence of number of clusters 

In analogy to the investigation in section 2.2 we now study the influence of the 

number of clusters. To this end, we vary the number of clusters between two and 

five, keeping the number of features constant as five. The result of the 

investigation is shown in figure 4 for Rousseuw’s silhouette value 𝑆. Within the 

margin of error the values of the fit parameters are identical. Similar behavior was 

also observed for the remaining cluster validity measures 𝐷𝐵, 𝑇𝑂𝑈 and 𝛾. This 

indicates, that the number of clusters is not a relevant quantity for the correlation 

between the chosen cluster validity measure and the Rand index. This behavior 

can be expected, since all cluster validity measures investigated are by definition 

independent of the number of clusters (see original work [19-22]).  

 

Figure 4: Rand Index as a function of Rousseuw’s Silhouette value for artificial partitions with 3 

and 5 clusters including results of fit model.  
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2.2 Calculating the uncertainty of assignment for an experimental 
dataset 

Up to this point artificial datasets were used to establish a correlation between the 

Rand index and cluster validity measures. The calculation of the first requires a 

reference partition with the known assignment of each signal to the respective 

cluster. Since this assignment is unknown for experimental datasets, a direct 

application of the Rand index is not possible. Instead, it is possible to calculate the 

cluster validity indices for any partition of an experimental dataset. Based on the 

outcome of the previous sections we use only the values of 𝐷𝐵, 𝑆 and 𝛾. The 

value of 𝑇𝑂𝑈 will not be used further in the investigation, since the adjusted least 

square error of the fit procedure from section 2.1 was not found to be sufficient. 

 

In the first step we calculate the cluster validity indices for the partition of the 

experimental dataset. The corresponding Rand index is then calculated from 

equation (1) using the fit parameters for the number of features used in the 

experimental dataset. The calculated value of the Rand index is then defined as 

uncertainty of assignment. For an improved interpretability, we calculate the mean 

value of all Rand index values obtained for the individual cluster validity 

measures. This is further used as uncertainty of assignment. 

 

Since the algorithm to relate the Rand index and a cluster validity measure c is 

based on the structure of the artificial datasets, the experimental datasets must 

have similar structure to yield correct values for the uncertainty of assignment. 

One possibility to investigate if the experimental dataset is reasonable close to the 

artificial dataset is a comparison of their feature distributions as shown in figure 5. 

The figure 5-a shows the univariate distribution of one of the features of an 

artificial dataset with 3 clusters as generated by the approach of Qiu and Joe [24-

26]. This is now compared to the feature distribution of the experimental datasets 

as used in the following sections. Many times, experimentally used features span 

only certain intervals (e.g. frequency ranges, percentages, etc.) and have upper 

limits or lower limits. Before a comparison of the dataset structure is made, it is 

thus suitable to remove those limitations by performing a normalization of the 

feature values followed by a principle components analysis [13]. It is worth 

noting, that the latter does not change the cluster validity measures, but can alter 

the visual appearance of the feature distribution range significantly. Therefore we 

compare the distribution of the first principle component feature in figure 5-b to 

the feature distribution of the artificial dataset in figure 5-a. Both show an 

univariate distribution in reasonably close agreement to each other. This 

comparison is made for each of the features. If those also show sufficient 

agreement, the structure of the datasets is considered to be similar enough to yield 

appropriate values for the uncertainty of assignment. 
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Figure 5: Univariate feature distribution for first feature of an artificial dataset with 3 clusters (a) 

and feature distribution of first principal component feature of experimental dataset (b).  

3 Experimental 

In this section, we describe the experimental setup to obtain acoustic emission 

signals from testing of double cantilever beam (DCB) specimens. The specimens 

investigated are made from the prepreg system Sigratex CE 1250-230-39. The 

curing cycle follows the standard procedure recommended by the material 

supplier. All six specimens were prepared with unidirectional stacking sequence 

and outer dimensions of 570 mm × 40 mm × 6.4 mm (length × width × thickness) 

as seen in figure 6. These dimensions are substantially larger than commonly used 

standards like e.g. ASTM D 5528. Here, the goal is the generation of acoustic 

emission sources within a well-controlled distance to the detecting sensor. The 

chosen specimen geometry with 570 mm length is more than two times larger 

than the typical size of 125 mm to 250 mm length and thus provides a crack 

propagation length of approximately 275 mm. For load introduction, two 

aluminum blocks of 80 mm × 40 mm × 19 mm (length × width × thickness) were 

glued to the specimen using Stycast 2850. All experiments were carried out on a 

Zwick 1464 spindle driven machine with constant crosshead-speed of 5.0 

mm/min. 

For detection of acoustic emission signals, two multi-resonant sensors (model 

WD) were mounted on the specimen using suction cup holders. To provide 

suitable acoustic transmission, medium viscosity silicone paste (type Baysilone) 

was used. All signals were detected using a PCI-2 acquisition system with 40 dB 

preamplification, 35 dB threshold level, 10 MSP/s sampling rate and 10/80/300 

(Peak-definition-time/Hit-definition-time/Hit-lockout-time) trigger settings. 

Bandpass settings were chosen to be 20 kHz to 3 MHz. All acoustic emission 

signals were localized using a localization algorithm based on the arrival time 

difference of the acoustic emission signals. Since the progress of damage in the 

DCB specimen will cause splitting of the specimen into two beams, the Lamb-

waves propagating in the split beam will be different from those propagating in 

the remaining part of the specimen. To analyze the accuracy of the localization 

procedure we performed ten load-hold cycles during one experiment and 

conducted pencil lead breaks (PLBs) in the damaged state at each hold cycle. The 

localization results did not show any significant deviation to the source positions 

found in the undamaged state.  

 

For investigation by pattern recognition, only localized signals of the sensor 

mounted on the undamaged part of the beam were taken into account. The 

features extracted from the signals are summarized in table 2. It is worth noting, 
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that the features in table 2 are not meant to provide a comprehensive list for 

characterization of acoustic emission signals. The selected features are based on 

the conclusions of previous investigations [15,16] and are considered suitable for 

further analysis by our pattern recognition approach. Their definition is based on 

the basic properties derived from the signal in time domain 𝑈(𝑡) and in frequency 

domain �̃�(𝑓). 𝑁𝐴𝐸 are the number of threshold crossings in time domain, 𝑡𝐴𝐸 is 

the duration of the signal. The features 𝑁𝑝𝑒𝑎𝑘 and 𝑡𝑝𝑒𝑎𝑘 refer to the number of 

threshold crossings and the time of the maximum signal amplitude, respectively. 

The feature 𝑓𝑝𝑒𝑎𝑘 defines the frequency position of maximum intensity, while the 

definition of 𝑓𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 is given in table 2. The definition of the different Partial 

Power features is noted in table 2 as well.  
 

AE feature Definition 

Average Frequency [kHz] 〈𝑓〉 = 𝑁𝐴𝐸 𝑡𝐴𝐸⁄  

Reverbaration Frequency [kHz] 𝑓𝑟𝑒𝑣 =
𝑁𝐴𝐸 − 𝑁𝑝𝑒𝑎𝑘

𝑡𝐴𝐸 − 𝑡𝑝𝑒𝑎𝑘
 

Initiation Frequency [kHz] 𝑓𝑖𝑛𝑖𝑡 = 𝑁𝑝𝑒𝑎𝑘 𝑡𝑝𝑒𝑎𝑘⁄  

Peak-Frequency [kHz] 𝑓𝑝𝑒𝑎𝑘  

Frequency centroid [kHz] 𝑓𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 =
∫ 𝑓∙𝑈(𝑓)𝑑𝑓

∫ �̃�(𝑓)𝑑𝑓
  

Weighted Peak-Frequency [kHz] 〈𝑓𝑝𝑒𝑎𝑘〉 = √𝑓𝑝𝑒𝑎𝑘 ∙ 𝑓𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 

Partial Power 1 [%] ∫ 𝑈2(𝑓)𝑑𝑓
𝑓2

𝑓1

∫ 𝑈2(𝑓)𝑑𝑓
1200𝑘𝐻𝑧

0𝑘𝐻𝑧

  

 

PP1: f1 = 0 kHz; f2 = 150 kHz 
PP2: f1 = 150 kHz; f2 = 300 kHz 
PP3: f1 = 300 kHz; f2 = 450 kHz 
PP4: f1 = 450 kHz; f2 = 600 kHz 
PP5: f1 = 600 kHz; f2 = 900 kHz 
PP6: f1 = 900 kHz; f2 = 1200 kHz 

Partial Power 2 [%] 

Partial Power 3 [%] 

Partial Power 4 [%] 

Partial Power 5 [%] 

Partial Power 6 [%] 

Table 2. Definition of AE features. 

 

In addition to mechanical loading, one specimen was investigated using acoustic 

emission test sources as seen in figure 6. Pencil lead breaks were applied at the 

top and the edge of the plate at different source-sensor distances. Also, one WD 

sensor was used as piezoelectric pulser to generate test signals at different source-

sensor distances. These test sources cause three characteristic types of test signals 

as shown in the Choi-Williams distributions in figures 7-a to 7-c for a source-

sensor distance of 280 mm [28]. To identify the individual wave modes, we added 

superimposed Lamb-wave dispersion curves in figures 7-a to 7-c calculated for 

the density and elastic coefficients Cij as given in table 3 and plate thicknesses of 

6.4 mm and 40mm. 
 

Material property Value 

Density 1550 [kg/m³] 

C11 133.5 [GPa] 

C12 = C13 7.3 [GPa] 

C22 = C33 12.9 [GPa] 

C23 8.8 [GPa] 

C44 2.1 [GPa] 

C55 = C66 6.1 [GPa] 

Table 3. Material properties used for dispersion curve calculation. 
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Pencil lead breaks at the top of the plate generate strong A0-modes as shown in 

figure 7-a. Due to the intensity of the A0-mode the initial part of the signal is not 

resolved well in the Choi-Williams distribution. A decrease of the coefficient 

scale by a factor 1000 reveals the initial part of the signal and allows identification 

of the S0-mode and the S2-mode in the beginning of the signal. 

In contrast, the pencil lead break at the side surface of the plate excites a S2-mode 

in the frequency range between 220 kHz and 400 kHz as seen in figure 7-b. The 

contribution in the Choi-Williams distribution at 120 kHz does not fall into the 

range of the Lamb-wave modes calculated for the 6.4 mm plate thickness. The 

contribution observed at 120 kHz propagates faster than the respective 

antisymmetric modes and exhibits frequency content, which is below those 

calculated for the S0-mode. One possible explanation for this contribution is the 

propagation of a S2-mode excited along the 40 mm thick y-direction of the 

specimen. The frequency position and arrival time is in good agreement with the 

dispersion curve calculated for a plate thickness of 40 mm. 

Finally, the signal of the WD pulser shown in figure 7-c exhibits a combination of 

a strong S2-mode, superimposed by a weaker S0-mode and an A2-mode.  

 

Using these three types of test sources with distinctly different modal composition 

and frequency ranges, it is possible to investigate the signal propagation of 

different Lamb-wave modes in this specimen geometry experimentally. 

 

 
Figure 6: Scheme of experimental setup used for generation of AE test sources (left) and for 

fracture mechanics experiment (right).  
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Figure 7: AE signals of different acoustic emission test sources evaluated at 280 mm source-sensor 

distance. Graphs show Choi-Williams distribution for signal of top surface pencil lead break (a), 

side surface pencil lead break (b) and WD-pulser (c). 
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4 Results and Discussion 

In this section, we apply the algorithm developed in section 2 to calculate the 

uncertainty of assignment of our pattern recognition approach [11] in application 

to experimental data. We discuss the origin of the obtained clusters in terms of the 

modal composition of the acoustic emission signals. The impact of the source-

sensor distance on the uncertainty of assignment is elaborated. In the last 

subsection we relate our findings to the influence of attenuation as measured in 

our specimens.  

4.1 Relation between cluster structure and source-sensor distance 

We applied the pattern recognition method presented in [11] to the experimental 

data obtained from testing of large double cantilever beam specimens. Analogous 

to our previous investigations on double cantilever beam specimens with 

dimensions in accordance with ASTM D 5528 [12] the pattern recognition 

approach is able to detect three distinct clusters. From all the features of table 2 

the features Partial Power 1, Partial Power 2, Partial Power 4, Peak-Frequency 

and Weighted Peak-Frequency were selected by the algorithm described in [12] to 

yield the natural clusters, as shown in figure 8. Based on this previous 

investigation and conclusions from other previous work we attribute the three 

clusters to the occurrence of matrix cracking, interfacial failure and fiber breakage 

as marked in figure 8 [11, 12, 14-16]. 

 

As explained in section 3, three types of acoustic emission test sources were 

applied at source-sensor distances between 80 mm and 280 mm. The signal 

features Partial Power 2 and Weighted Peak-Frequency were calculated from the 

obtained test signals and their data points are superimposed in figure 8 to those 

from double cantilever beam testing. 

 
Figure 8: Comparison of position of signal features from AE test sources and measurement data 

from DCB test. 

 
As mentioned in section 3, each of the three acoustic emission test sources excites 

a unique combination of symmetric and antisymmetric modes. This translates into 

a unique feature range as seen in figure 8.  
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It has been shown in [16], that there are at least three parameters that influence the 

ratio of Lamb-wave modes and shear-horizontal modes present in acoustic 

emission signals: 

 

1) The source microstructure (e.g. the source type) 

2) The depth position of the source within the plate 

3) The distance between the source and the point of detection 

 

There is a remarkable coincidence of the feature range of the Weighted Peak-

Frequency of the pencil lead breaks at the top surface with the cluster attributed to 

matrix cracking. Since the depth position of these pencil lead breaks is constant 

and the source type is identical, this feature range is solely attributed to the change 

in source-sensor distance. As demonstrated by FEM-simulations of acoustic 

emission signals of matrix cracking [14-16], changes in the depth of the source 

position can also cover the full range of Partial Power 2 up to 50 % as observed 

for the experimental signal features. Since matrix cracking is expected to occur 

not only located at the medial plane of the plate but also inside the beams such 

changes in the depth of the source positions are expected. 

 

The feature range of signals of pencil lead breaks at the edge of the plate coincides 

well with the cluster attributed to interfacial failure. Here, both feature ranges 

(Partial Power 2 and Weighted Peak-Frequency) are well reflected by the signals 

detected at different source-sensor distances. Since interfacial failure is expected 

to occur mostly at the medial plane of the specimen, this behavior is also in 

agreement with the experimental observation. In addition to the effect of source-

sensor distance, there is a natural variability to the microstructure of acoustic 

emission source types correlated to interfacial failure. This is likely to cause the 

additional extension of the cluster related to interfacial failure as seen in figure 8. 

 

For the signals attributed to fiber breakage, part of the associated cluster is 

covered by the feature values of signals from the WD pulser. Here the change in 

source-sensor distance causes a significant shift in the feature values Partial 

Power 2 and Weighted Peak-Frequency. However, the position of the WD pulser 

at the surface of the specimen is not identical to the depth position of fiber 

breakage. The latter is expected to occur dominantly within the specimen at the 

positions of high bending moments. The respective change in depth position 

towards the medial plane of the specimen would translate into higher 

contributions of symmetric modes, which would cause higher values of Weighted 

Peak-Frequency and lower values of Partial Power 2. This effect has also been 

demonstrated by FEM-simulations of fiber breakage in previous work [14-16].  

 

We want to point out, that we do not suggest using pencil lead breaks as test 

sources to emulate matrix cracking or piezoelectric pulser to emulate fiber 

breakage. Instead, those test sources should be used to excite distinct ratios of 

Lamb-wave modes as described in section 3. If those are representative for a 

particular failure mechanism will strictly depend on their position, the specimen 

geometry and stacking sequence. 

 

One consequence of these observations is that the size of the clusters and their 

overlap will depend on the distance between source and sensor. This is owed to 

dispersion and attenuation effects during signal propagation. The influence of 
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source-sensor distance on the extracted features was validated experimentally by 

signals of an identical test source. Naturally, the overlap of clusters will govern 

the uncertainty of the assignment of an acoustic emission signal to a particular 

failure mechanism. Thus we investigate the change in the cluster validity 

measures for different source-sensor distances to obtain the respective uncertainty 

of assignment. 

4.2 Uncertainty of assignment as function of source-sensor distance 

In order to evaluate the source-sensor distance for the loading of the double 

cantilever beam specimens, the x-position of the acoustic emission signals was 

localized in the geometry according to figure 6.  The density of source positions 

was calculated using the software program Density Ville [29]. In figure 9 the x-

position is plotted as gray-scale density diagram as a function of time for one 

representative specimen. Superimposed is the measured force-time curve of the 

respective experiment. Clearly, the majority of the acoustic emission signals in 

double cantilever beam testing originate from positions close to the crack tip. 

Only few signals are localized significantly ahead of or behind the position of the 

crack tip. The density diagram also reveals that the crack progress is not 

completely continuous, but consists of subsequent jumps of the crack front. 

Using the localized acoustic emission source position, the distance to the detecting 

sensor can be calculated. 

 

 
Figure 9: Force time curve and AE source density for one representative specimen. 

 

In the following, we distinguish between two approaches to investigate the 

influence of the source-sensor distance on the uncertainty of the assignment. As 

shown in figure 10, the experimental datasets were evaluated based on their 

source-sensor distance. As first approach the signals were analyzed cumulatively. 

Thus, the first subset of the dataset is localized close to the sensor and has a small 

width distribution of source positions. The next subset of the dataset is farther 

away and has an increased width distribution of source positions. The subsets are 

chosen in steps of 500 signals until the full dataset size is reached. Thus, for each 

specimen around 3500 to 4000 subsets of the complete dataset were investigated. 
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As second approach the subsets of the dataset are chosen to be of equal size of 

500 signals. Their mean x-position is shifted for each subset until the maximum 

distance to the sensor is reached. In this configuration around 3000 to 3500 

subsets of the complete dataset were investigated for each specimen. 

 
Figure 10: Scheme for calculation of cluster validity indices as function of source-sensor distance. 

 

For each subset of the whole dataset, the Davies-Bouldin Index, Rousseuw’s 

Silhouette value and Hubert’s Gamma coefficient are calculated based on the 

features Partial Power 1, Partial Power 2, Partial Power 4, Peak-Frequency and 

Weighted Peak-Frequency as defined in table 2. The result for both approaches 

are shown for one representative specimen in figure 11-a and 11-b, respectively. 

Using equation (1) and the fit parameters of figure 2, the uncertainty of 

assignment can be calculated for each of the cluster validity measures 𝐷𝐵, 𝑆 and 𝛾 

according to the description of section 2.2. The result is shown in figure 11-c and 

11-d for the shifted and cumulative approach, respectively.  

 

 

Figure 11: Calculation of cluster validity indices as function of distance for shifted (a) and 

cumulative (b) approach and their respective uncertainty of assignment for shifted (c) and 

cumulative (d) approach. 
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For the shifted approach, no clear trend of the cluster validity measures or their 

respective uncertainty of assignment is observed as a function of the source-

sensor distance. This leads to the conclusion, that the source-sensor distance 

below 375 mm does not have a critical impact on the uncertainty of assignment of 

one acoustic emission signal to a particular cluster.  

In contrast, the cumulative approach reveals an increased uncertainty of 

assignment with increasing width distribution of the source positions. Here, the 

width distribution of sources within the specimen seems to influence the accuracy 

of the source identification procedure significantly. This effect was found in all 

six double cantilever beam specimens. The respective findings are summarized in 

table 4. The values of the uncertainty of assignment based on the cluster validity 

measures 𝐷𝐵, 𝑆 and 𝛾 are reported for the width distribution below 140 mm and 

below 275 mm only. In addition, their mean value is given. It was found, that an 

increasing width of source distributions causes an higher uncertainty of 

assignment in all specimens. Their individual values range from 1.6 % to 7.1 %. 

 

 uncertainty of assignment (width of 

source distribution < 140mm) 

uncertainty of assignment (width of 

source distribution < 275mm) 

specimen DB S G MEAN DB S G MEAN 

A 0.073 0.032 0.083 0.064 0.100 0.039 0.068 0.069 

B 0.036 0.006 0.023 0.022 0.019 0.010 0.058 0.029 

C 0.045 0.009 0.068 0.040 0.066 0.015 0.131 0.071 

D 0.015 0.007 0.056 0.026 0.019 0.010 0.055 0.028 

E 0.012 0.009 0.038 0.020 0.027 0.010 0.062 0.033 

F 0.020 0.007 0.020 0.016 0.025 0.013 0.030 0.023 

Table 4. Uncertainty of assignment for width of source distribution < 140 mm and width of source 

distribution < 275 mm. 

 

4.3 Influence of attenuation 

In order to investigate the influence of attenuation we applied pencil lead breaks at 

source-sensor distances between 80 mm and 280 mm at the top of the specimen as 

shown in figure 6. The signal amplitude in dBAE (dB amplitude corrected by 

preamplification factor and gain settings) is shown in figure 12. Since the 

equipment used has a saturation level of 97 dBAE the amplitudes of the A0 mode 

measured at 80 mm distance were not taken into account for linear regression. The 

attenuation is evaluated as -0.165 ± 0.008 dB/mm for the A0-mode and -0.047 

± 0.005 dB/mm for the S0-mode, respectively. Since the attenuation measurement 

is in the near-field of the source, the current value is attributed to geometric 

spreading [30,31]. It is worth noting, that an extrapolation to larger distances has 

to consider the different contributions of geometric spreading, thermoelastic 

dissipation, modal and frequency dispersion during signal propagation [30,31]. 

Since those have distinctly different contributions as function of propagation 

distance, a linear extrapolation of the current values can only be considered as 

worst case.  
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Figure 12: Attenuation measurement of fundamental Lamb-wave modes in unidirectional CFRP 

using pencil lead breaks at the top of the plate. Measurement of A0-mode at 80 mm was not taken 

into account for linear regression. 

 
Generally, for a typical threshold level between 25 dBAE and 35 dBAE and 

saturation range between 100 dBAE and 120 dBAE the dynamic measurement range 

available lies within 65 dBAE and 95 dBAE. Using the attenuation level of -0.165 

dB/mm of the A0-mode this translates into a distance between 393 mm and 

575 mm before the incident signal falls below the detection threshold. These 

distances are only valid for an acoustic emission source with high signal strength, 

i.e. between 100 dBAE and 120 dBAE. The majority of acoustic emission signals 

originating from material failure in carbon fiber reinforced plastics is typically 

between 50 dBAE and 60 dBAE and may fall below the threshold level already at 

distances less than 151 mm. 

 

5 Conclusion 

Using the relation between cluster validity measures and Rand index values we 

established an approach to estimate the uncertainty of assignment of a pattern 

recognition result.  

Since the approach presented is based on artificial datasets, we would like to point 

out the two requirements for direct application of the proposed method: 

 

1) The structure of the experimental dataset has to be compatible with the 

structure of the artificial datasets. 

2) The number of features and number of clusters has to be identical to those 

used to obtain the associated fit parameters. 

 

If the cluster structure does not coincide with the artificial dataset, the reported fit 

parameters will only yield an approximation. However, the method can still be 

applied if artificial datasets are generated that have a similar structure as the 

experimental dataset.  

If the above requirements are fulfilled, the presented approach allows 

quantification of the uncertainty of assignment for any pattern recognition 

approach or other classification method applied to any experimental dataset.  That 

way, this approach can be used as a tool for the community to assess the statistical 
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significance of any assignment of the experimental dataset before considering 

further steps of validation. 

 

In the current investigation the application of the method was demonstrated using 

acoustic emission signals of large double cantilever beam specimens. Applying an 

established pattern recognition method, we were able to distinguish between three 

types of signals associated with matrix cracking, interfacial failure and fiber 

breakage. The uncertainty of the assignment to the respective clusters was 

calculated by equation (1) using the fit parameters of figure 2 and the cluster 

validity measures of the experimental dataset partition.  

 

The formation of clusters in feature space and their relation to the underlying 

Lamb-wave modes was investigated. Using pencil lead breaks and a piezoelectric 

pulser on the top and pencil lead breaks on the side surface of the specimen we 

were able to investigate the influence of the source-sensor distance 

experimentally. It was demonstrated that part of the distribution in feature space is 

solely caused by the varying source-sensor distance. Other contributions arise 

from the source microstructure or the depth position of the source. 

 

We were able to quantify the uncertainty of assignment of the partitions of the 

experimental datasets as a function of source-sensor distance. It turned out, that 

the source-sensor distance is not a critical parameter for the accuracy of source 

identification. Instead, the width distribution of the source positions was found to 

cause an increased uncertainty of assignment. Based on the calculated uncertainty 

of assignment for source-sensor distances below 375 mm we conclude that such 

source-sensor distances still allows meaningful source identification procedures.  

 

Further, we found that the maximal source-sensor distance for low amplitude 

signals in CFRP may be limited to a range even below 115 mm. For larger 

distances it is likely, that some of the acoustic emission signals fall below the 

detection threshold. Similar, for high amplitude signals we estimate the maximal 

source-sensor distance to be in the range up to 575 mm.  

 

Based on these findings we conclude that the limiting factor for meaningful 

pattern recognition approaches will be the acoustic attenuation rather than the 

increase in overlap of the cluster structure due to increased source-sensor 

distances.  
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