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Nagaoka’s theorem on ferromagnetism in the Hubbard model with one electron fewer than half filling is
generalized to the case where all possible nearest-neighbor Coulomb interactions~the density-density interac-
tion V, bond-charge interactionX, exchange interactionF, and hopping of double occupanciesF8) are
included. It is shown that for ferromagnetic exchange coupling (F.0) ground states with maximum spin are
stable already at finite Hubbard interactionU.Uc . For nonbipartite lattices this requires a hopping amplitude
t<0. For vanishingF one obtainsUc→` as in Nagaoka’s theorem. This shows that the exchange interaction
F is important for stabilizing ferromagnetism at finiteU. Only in the special caseX5t is the ferromagnetic
state stable even forF50, provided the lattice allows the hole to move around loops.

I. INTRODUCTION

The single-band Hubbard model was originally intro-
duced as a model for ferromagnetism of itinerant
electrons.1–3 The model is given by

ĤHubbard52t (
^ i j &s

~ ĉis
† ĉ js1 H.c.!1U(

i
n̂i↑n̂i↓ , ~1!

where ĉis
† (cis) creates~annihilates! an electron with spin

s5↑,↓, n̂is5 ĉis
† ĉis is the number operator, and̂i j & de-

notes nearest neighbors. This is the simplest possible corre-
lation model for electrons on a lattice. However, rigorous
evidence for itinerant ferromagnetism in this model is very
limited. One of the most important results is Nagaoka’s
theorem,4 which states that if the Hubbard repulsionU is
infinite, the ground state has maximum total spin on certain
lattices in the case of precisely one hole. The physical
mechanism behind Nagaoka’s theorem is the following. If
U5`, the ground state of~1! is macroscopically degenerate.
This degeneracy is lifted by the motion of the hole since it is
energetically favorable for it to move in a background of
fully aligned spins~provided the lattice allows for motion of
the hole around loops4!. A simpler proof of Nagaoka’s theo-
rem was later given by Tasaki,5 who also showed that addi-
tional density-dependent interactions do not alter this result.

Several other mechanisms leading to ferromagnetism in
the Hubbard model have been discussed since then.6 Lieb7

proved that the ground state is ferromagnetic for bipartite
lattices with different numbers of sites in each sublattice.
Mielke8 and Tasaki9 proved the stability of ferromagnetism
for special lattices with flat bands.10 Recently,
Müller-Hartmann11 studied ferromagnetism at low particle
density in dimensiond51. He included next-nearest-
neighbor hopping in such a way that the band has two
minima. At low density, the on-site repulsionU generates a
ferromagnetic exchange coupling between particles in these
two pockets.

Clearly, it is still a long way to a true understanding of
itinerant ferromagnetism in solids. It is quite obvious that the
single-band Hubbard model is not agenericmodel for ferro-
magnetism. So far, either the assumption of a special kind of

hopping or ofU5`, or both, was necessary to prove the
stability of ferromagnetism. One may therefore ask if there
exist other, simple mechanisms leading to itinerant ferromag-
netism that are not contained in the Hubbard model. There
are two important candidates:~i! band degeneracy, as it ex-
ists in 3d-transition metals, and~ii ! a nearest-neighbor ex-
change interaction, which is always present in a fermionic
system with a Coulomb interaction. Here we discuss only the
latter, since the effect of band degeneracy will be discussed
separately.12

In solids the exchange part of the Coulomb interaction
~‘‘Heisenberg exchange’’! between orbitals at neighboring
sites is usually ferromagnetic. However, since their overlap
is small, this interaction may be quite weak. Nonetheless, it
will not be strictly zero. This direct exchange interaction,
denoted byF below, provides a natural way for stabilizing
ferromagnetic states.13 Of course, other features of the
model, in particular the hoppingt, the structure of the lattice,
and the electron density, are also important factors concern-
ing the stability of ferromagnetism in the ground state.

In this paper, we are concerned with rigorous criteria for
ferromagnetic ground states in the presence of Heisenberg
exchangeF. To clarify the origin of this exchange term, it is
worthwhile to review the steps that originally led to the Hub-
bard model, and to retain, in a systematic way, Coulomb
interaction terms beyond the on-site repulsionU. This is
done in Sec. II, and a model Hamiltonian with all nearest-
neighbor interactions is derived. In Sec. III we state suffi-
cient stability conditions for ferromagnetic ground states in
the case of one hole in a half-filled band. In particular, it
turns out that if the direct exchange is ferromagnetic
(F.0), and even ifF50 in a special case, the on-site re-
pulsionU need only be larger than a finite valueUc , thereby
generalizing Nagaoka’s theorem to finiteU. The details of
the proof, using a method employed previously for the case
of half-filling,14 are deferred to the Appendix. Section IV
contains our conclusions.

II. DERIVATION OF THE MODEL

Let us first review the derivation of effective models for
metallic ferromagnetism. The general electronic model ex-
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pected to describe ferromagnetic phase transitions in transi-
tion metals was introduced by Hubbard.1 It is given by the
electronic Hamiltonian15

Ĥ5(
i j

t i j
a ĉias

† ĉ jas1
1

2 (
i jmn

v i jmn
abmnĉias

† ĉ jbs8
† ĉnns8ĉmms .

~2!

Here, ĉias
† ( ĉias) creates~annihilates! an electron with spin

s in a Wannier orbitala localized at sitei . The first term
describes the hopping between two sitesi , j and contains the
kinetic energy and the ionic potentialU ion(r ). The second
term describes the~screened! Coulomb interaction between
electrons,Vee(r2r 8).16 The matrix elements, expressed in
the Wannier basis, are (\[1)

t i j
a 5^ iau2

1

2m
¹21U ion~r !u ja&, ~3a!

v i jmn
abmn5^ ia, jbuVee~r2r 8!umm,nn&. ~3b!

So far no approximation was made. The Hamiltonian~2!
contains infinitely many parameters. For simplicity it is
therefore often assumed that the essential physics of the
problem is captured by a singles band, whereby all other
bands are neglected. More precisely, all other bands arepro-
jectedonto one singleeffective sband. This approximation
requires the existence of a band gap above the effective
band. Then the deviation of the parameterst i j andv i jmn from
their multiband values can be determined, in principle, by
perturbation theory.

The restriction to a singles band entails considerable sim-
plifications: Orbital indices may be dropped in Eqs.~2! and
~3!; furthermore, all matrix elements depend only on the
separation of the lattice sites~and not on direction!. Since the
matrix elements are expected to fall off quickly with dis-
tance, one usually retains only the first few of them. Thus
hopping is restricted to nearest-neighbor sitesi and j :
2t[t i j . It is also natural to assume thatU[v i i i i is the
largest matrix element of the Coulomb interaction. Keeping
only t andU one obtains the Hubbard model, Eq.~1!.

However, there are other terms that can be of appreciable
size.1 These are thetwo-site terms of the interaction:
V[v i j i j , X[v i i i j , F[v i j j i , F8[v i i j j , where i and j are
nearest neighbors. Keeping these terms one obtains the fol-
lowing single-band model:

ĤNN5ĤHubbard1V(̂
i j &

n̂i n̂ j1X(
^ i j &s

~ ĉis
† ĉ js1 H.c.!

3~ n̂i2s1n̂ j2s!1F (
^ i j &ss8

ĉis
† ĉ js8

† ĉis8ĉ js

1F8(̂
i j &

~ ĉi↑
† ĉi↓

† ĉ j↓ĉ j↑1 H.c.!, ~4!

whereĤHubbard is defined in~1! and n̂i5(sn̂is . HereV is
the density-density interaction between nearest neighbors,
X is the bond-charge interaction giving rise to correlated
hopping,F is the exchange interaction discussed in the In-
troduction~ferromagnetic in nature ifF.0), andF8 repre-

sents hopping of double occupancies. We note that theF
term in ~4! can be expressed in terms of spin operators as a
Heisenberg interaction,

F (
^ i j &ss8

ĉis
† ĉ js8

† ĉis8ĉ js522F(̂
i j &

S ŜiŜj1 1

4
n̂i n̂ j D , ~5!

whereŜi5
1
2(ss8ĉis

† tss8ĉis8 andt are the Pauli matrices.
While the on-site interactionU usually has the largest

numerical value, the other matrix elements are certainly not
zero. Hubbard’s estimates1 for transition metals are, for ex-
ample,U'10 eV,V'2–3 eV,X' 1 eV, andF,F8' 1

40 eV,
and the hopping amplitudet typically ranges between 0.5
and 1.5 eV. Even if nearest-neighbor interactionsare very
small, they can be qualitatively important if they have differ-
ent symmetries than theU term and thus can lift degenera-
cies.

The model ~4! was essentially derived already by
Hubbard.1 Extensions of the actual Hubbard model~1! by
some or all of the terms in Eq.~4! have received much at-
tention since then. For example, Campbell, Gammel, and
Low17 presented a detailed investigation of the phase dia-
gram of ĤNN in dimensiond51, and discussed the relative
magnitude of its parameters for real materials. On a mean-
field level, the effect of the terms in~4! on the stability of
ferromagnetism was studied by Hirsch.18 Furthermore, exact
solutions are possible in the special case ofX5t. In this case
the number of doubly occupied sites is a conserved quantity,
and the exact ground state solution can be obtained in a wide
range of parameters.19–22 For X5t and V5F5F850 the
model was recently solved exactly in one dimension,23,24

while for X5t52V5F5F8 a solvable supersymmetric
model is obtained.25,26The caseX5t will play a special role
in our analysis, too.

Criteria for the stability of ferromagnetic ground states of
the Hamiltonian~4! were recently derived for the case of
half-filling ~one electron per site!.14,19–22The ferromagnetic
states are then found to be insulating. To gain insight into the
more general problem ofitinerant ferromagnetism we will
now investigate a half-filled bandwith one hole, as in Na-
gaoka’s work.4 Thus we consider a finite lattice withL sites
and fix the total number of particles atN5L21. The number
of nearest neighbors is denoted byZ. We consider lattices
with at leastZ nearest-neighbor bonds between any subset of
lattice sites and the set of remaining sites. For example, all
crystal lattices with periodic boundary conditions fulfill this
requirement.

III. FERROMAGNETIC GROUND STATES

The Hamiltonian ĤNN commutes with the total spin
Ŝ5( iŜi . The eigenvalues ofŜ

2 are denoted byS(S11). In
the following we will be concerned only with saturated fer-
romagnetic states with largest possible eigenvalue
Smax[N/25(L21)/2. There are 2Smax115L such states
with the same energy eigenvalue.

We are interested in the following question:Under which
circumstances do the ground states of Hˆ

NN have maximum
spin? For the pure Hubbard model~i.e., V5X5F5F8
50), Nagaoka’s theorem4 states that forU5`, t,0 (tÞ0
if the lattice is bipartite! the ground states haveS5Smax.
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This statement can be generalized to arbitrary density-
density interactionV.5 These results require the lattice to
satisfy a certain connectivity condition.27 As pointed out by
Tasaki,5 this connectivity condition is fulfilled if the lattice
has a certain loop structure. Therefore we will refer to such
lattices as ‘‘lattices with loops.’’ For example, these include
the square, triangular, simple cubic, body-centered-cubic,
face-centered-cubic, and hexagonal close-packed lattices, but
not the one-dimensional or the Bethe lattice.4

The main result of this paper is a generalization of Na-
gaoka’s theorem to finite values of the Hubbard interaction
U. In the Appendix we derive the following conditions for
ferromagnetic ground states.

The ground states of Hˆ NN with one hole (i.e., N5L21)
have maximum total spin S5Smax5(L21)/2 and are non-
degenerate@apart from(2Smax11)-fold spin degeneracy# in
the following cases.

Case 1. On any lattice, if F. 0, t<0, and (a) XÞt and
U.Uc

(1) , or (b) X5t and U>Uc
(2) .

Case 2. On lattices with loops, if X5t, 0, F50, and
U.Uc

(2) .
In both cases t. 0 is allowed if the lattice is bipartite.
These results are summarized in Table I. The constants

Uc
(1) andUc

(2) are given by

Uc
~1!5ZS 2utu1U V2F22utuU1 ~X2t !2

F
1UF82

~X2t !2

F U D ,
~6a!

Uc
~2!5ZS 2utu1UV2

F

2
22utuU1uF8u D . ~6b!

Hence, if F.0, ferromagnetic ground states are stable on
any lattice for U larger than afinite critical value. For
F→01 we haveUc

(1)→`, thus yielding Nagaoka’s condi-
tion for the pure Hubbard model. This shows that the Heisen-
berg interactionF, which is neglected in the Hubbard model,
provides an obvious mechanism for stabilizing ferromagnetic
ground states at finiteU. Note that sinceX and t are ex-
pected to be of the same order of magnitude, the sensitive
dependence onF, due to the term (X2t)2/F, may cancel
from Uc

(1) , and values of the order ofUc;12 eV are pos-
sible. The dependence ofUc on t,V,F is depicted in Fig. 1.
The caseX5t is special, since in this case the stability of
ferromagnetism can be achieved either byF.0 or by
F>0 andt,0 if the lattice has loops.

The critical couplingsUc
(1) andUc

(2) are sums of terms,
each of which corresponds to a typical energy scale. This
means that the on-site interactionU has to be larger than the

energy describing the paramagnetic state~bandwidth
;Zutu), as well as the threshold energies for the onset of a
charge-density wave or phase separation (;ZuVu),
h-pairing superconductivity21 (;ZuF8u), and a spin-density
wave@;(X2t)2/F#. Note, however, that these terms do not
enter separately, but appear in combinations; i.e., the effects
interfere as should be expected.

We remark that the above conditions aresufficientcondi-
tions. The occurrence of ground states with maximum spin
outside the above parameter region is not ruled out. For ex-
ample, it may still be possible to find ferromagnetic ground
states even forXÞt, F50, andU,`. It is interesting to
note that the values forUc appearing in Eq.~6! are the same
as those for the case of half-filling~no hole!.14 The bound
Uc for half-filling was recently improved by de Boer and
Schadschneider.22

As shown in the Appendix, the ferromagnetic ground
states are the same as those discussed by Nagaoka;4 i.e., the
wave function withŜz5Smax corresponds to a band filled
with spin-up electrons, with the hole at the top of the band,
as illustrated in Fig. 2. Ift,0, the band maximum is at the
origin, and the corresponding wave function is
uc0&5â0↑u↑&, where

âks5
1

AL(i exp~ ikR i !ĉis ,

and

u↑&5)
i
ĉi↑
† u0&5)

k
âk↑
† u0&

TABLE I. Sufficient conditions for ferromagnetic ground states with one hole.

Case Condition onU Condition on lattice Condition ont

1a F.0, XÞt U.U c
(1) any lattice

bipartite lattice:
nonbipartite lattice:

t arbitrary
t<0

1b F.0, XÞt U.U c
(2) any lattice

bipartite lattice:
nonbipartite lattice:

t arbitrary
t<0

2 F.0, XÞt U.U c
(2) lattice with loops

bipartite lattice:
nonbipartite lattice:

tÞ0
t,0

FIG. 1. Critical valueUc vs exchange interactionF for different
t, V, X, andF850. ForU.Uc the ground state is ferromagnetic.
See Table I for details.
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is the filled spin-up band. Fort.0 a bipartite lattice is re-
quired and the band maximum is at wave vectorQ defined
by ek1Q52ek ; e.g., for a hypercubic lattice we have
Q5(p,p, . . . ,p). In this case the wave function is
uc0&5âQ↑u↑&. All 2Smax11 ground states can be obtained
from uc0& by global SU~2! rotations; i.e., the state

ucM&5~Ŝx2 iŜy!Muc0& ~7!

has Ŝz5Smax2M , where M50, . . . ,L21. The states
$ucM&% have the same energy eigenvalue.

If F.0, our criteria permit ferromagnetism in any spatial
dimension. In particular they hold in dimensiond51. This is
not in conflict with the Lieb-Mattis theorem28 which rules
out ferromagnetism for any continuum model withk2 disper-
sion and a symmetric interaction potential ind51. In a
Bloch basis ak2 dispersion corresponds to infinitely many
bands as in~2!, whereas the HamiltonianĤNN in ~4! is ob-
tained by a projection ontooneof these bands, as discussed
in Sec. II. Hence the model~4! is quite different from the
initial multiband HamiltonianĤ in ~2!; in particular there
does not exist a potential energy in a continuum model that
gives rise to exactly the terms appearing in the truncated
HamiltonianĤNN . Therefore the Lieb-Mattis theorem does
not apply to the single-band Hamiltonian~4! in d51. In the
Appendix of Ref. 28 Lieb and Mattis proved a second theo-
rem, using the occupation number formalism, which pre-
cludes ferromagnetism ind51 in the case of next-neighbor
hopping and purely density-dependent~i.e., site-diagonal! in-

teractions. Therefore this second theorem also does not apply
to the HamiltonianĤNN , Eq. ~4!, where thenondiagonal
exchange interactionF.0 ~which is always present as part
of the Coulomb interaction! plays a crucial role. The role of
nondiagonal interactions for the stability of ferromagnetism
was already discussed in Ref. 28.

IV. CONCLUSIONS

We presented a generalization of Nagaoka’s theorem to a
Hubbard model with all nearest-neighbor interactions. For
this model, with one hole in a half-filled band, we derived
rigorous, sufficient conditions for the stability of saturated
ferromagnetism in the ground state. The ferromagnetic
ground state is found to be stable on any lattice provided the
next-neighbor exchangeF is ferromagnetic and the Hubbard
repulsion U is larger than a critical valueUc,`, with
Uc;1/F for F→01. If F50, only the special caseX5t
~unlikely to be fulfilled exactly in real materials! yields a
ferromagnetic ground state on lattices with loops.

The ferromagnetic ground state is an itinerant state with
nonzero kinetic energy. The proof of its stability cannot be
easily extended to doping beyond a single hole. Of course,
this would be highly desirable since a single hole is irrel-
evant in the thermodynamic limit. However, the ground
states of the model with next-neighbor interactions are diffi-
cult to obtain for finite hole densities, since in this case
simple eigenstates of the Hamiltonian are not known, such
that the present methods can be applied only in special
cases.12

To be able to explain ferromagnetism in more detail, it is
clear that more ingredients are needed than those contained
in the single-band Hubbard model with nearest-neighbor
hopping. Of greatest interest is the case of band degeneracy
where the present methods can be applied, too.12
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APPENDIX: DETAILS OF THE DERIVATION

To derive the sufficient conditions for ferromagnetic
ground states stated in Sec. III we rearrange the Hamiltonian
~4! as a sum of positive semidefinite terms. This enables us
to construct a lower bound on the ground state energy. If this
lower bound coincides with the eigenvalue of a trial state,
this state is an exact ground state of~4!.29,30 Here we con-
sider a wave function of the form

uc0&5(
j
aj ĉ j↑u↑&,

where u↑&5) i ĉi↑
† u0& is the state with all sites occupied by

spin-up electrons. The coefficientsajÞ0 will be determined
below. uc0& is a state withN5L21 particles. Since it is an

FIG. 2. The figure illustrates~for d51) that the ferromagnetic
ground state corresponds to a band filled with spin-up electrons
~indicated by arrows!, from which a single electron has been re-
moved at the top of the band~open square!. ~a! t.0 ~with a hole at
k5p), ~b! t,0 ~with a hole atk50).
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eigenstate ofŜz with eigenvalueSmax, it is a representative
of the subspace withS5Smax. It is sufficient to consider a
state of this form, because whenever this state is a ground
state, so are its (2S11)5L global SU~2! rotations.

We introduce the operators

P̂i j s5~12n̂i2s!~ ĉis1l1ĉ js!~12n̂ j2s!,

Q̂i j s5n̂i2s~ ĉis1l1ĉ js!n̂ j2s ,

Âi j5a21~ ĉi↓ĉi↑1 ĉ j↓ĉ j↑!1al2~ ĉ j↓ĉi↑1 ĉi↓ĉ j↑!,

B̂i j5 ĉi↓ĉi↑1l3ĉ j↓ĉ j↑ .

Here l15 sgn(t), l25 sgn(X2t), l35 sgn(F82uX2t/
a2), andaÞ0 is an arbitrary, real parameter. Furthermore,
we introduce

V̂i j5H êi êj13d̂i d̂ j1 p̂i d̂ j1 p̂ j d̂i if V.2utu1~F1a2uX2tu!/2,
1
2 ~ p̂i2 p̂ j !

212~ d̂i êj1d̂ j êi ! if V,2utu1~F1a2uX2tu!/2,

whereêi5(12n̂i↑)(12n̂i↓), p̂i5(n̂i↑2n̂i↓)
2, and d̂i5n̂i↑n̂i↓ are the projectors onto an empty, singly, and doubly occupied

site, respectively. It is straightforward to verify thatĤNN can be written as

ĤNN5(̂
i j &

F utu(
s

~ P̂i j sP̂i j s
† 1Q̂i j s

† Q̂i j s!1uX2tuÂi j
1Âi j1uF̃8uB̂i j

† B̂i j G1uṼu(̂
i j &

V̂i j1Ũ(
i
n̂i↑n̂i↓22F̃(̂

i j &
Ŝi–Ŝj , ~A1!

where

F̃85F82
uX2tu

a2 , ~A2a!

F̃5F2a2uX2tu, ~A2b!

Ṽ5V2
F1a2uX2tu

2
22utu, ~A2c!

Ũ5U2ZS 2utu1uṼu1
uX2tu

a2 1uF̃8u D , ~A2d!

and an overall constant was dropped.
Let us consider the terms in~A1! one by one. The first term is positive semidefinite. SinceÂi j uc0&50, B̂i j uc0&50, and

Q̂i j suc0&50, the action of this term onuc0& is given by

utu (
^ i j &s

P̂i j sP̂i j s
† uc0&5utu (

^ i j &ms
~12n̂i2s!~12n̂ j2s!~ ĉis1l1ĉ js!~ ĉis

† 1l1ĉ js
† !amĉm↑u↑&

5utu (
^ i j &s

~ ĉi↑1l1ĉ j↑!~ ĉi↑
† 1l1ĉ j↑

† !~ai ĉi↑
† 1aj ĉj↑

† !u↑&

5utu (
^ i j &s

~ai1l1aj !~ ĉi↑1l1ĉ j↑!u↑&.

Thus, if ai52 sgn(t)aj for all nearest neighborŝi j &, we
find thatuc0& has zero eigenvalue and hence is a ground state
of this term. Let us consider the caset,0 first. Then we
must haveai5aj , and the resulting wave function is

uc0&5
1

AL(i ĉi↑u↑&5âk50↑u↑&,

where

âks5
1

AL(i exp~ ikR i !ĉis .

Note that the filled spin-up band can be expressed as
u↑&5)kâk↑u0&. The ~noninteracting! band structure is given
by ek52t(^ i j &exp@ik(Ri2Rj )#. Thus for t,0 the hole at
k50 is created at theband maximum, where ek505Zutu.
This is shown in Fig. 2~a!.

Next considert.0. Thenai52aj must hold for all near-
est neighborŝ i j &. This is only possible if the lattice is bi-
partite, i.e., if any two nearest neighbors are located on dif-
ferent sublatticesA andB. In this case the wave function
becomes

uc0&5
1

AL S (
iPA

ĉi↑2 (
iPB

ĉi↑D u↑&5âk5Q↑u↑&. ~A3!
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Here Q is defined by exp@iQ(Ri2Rj )#521 for nearest
neighborŝ i j & or, equivalently, byek1Q52ek . This implies
that the band maximum is atk5Q for t.0, and this is the
state in which the hole is created, as shown in Fig. 2~b!. The
two cases are related by a gauge transformationĉis→2 ĉis
on one of the sublattices, which effectively reverses the sign
of t.

From now on we choose the coefficientsai as just de-
scribed,uc0& thus being a ground state of the first term in
~A1!. If the lattice is not bipartite, this requirest<0. ~The
trivial caset50 can also be included here.!

Turning to the positive semidefiniteV term in ~A1!, we
observe that forṼ>0 it annihilatesuc0&, which in this case
is a ground state of this term. Now considerṼ,0, in which
caseuc0& is an eigenstate of(^ i j &V̂i j with eigenvalueZ/2.
We now show that this is the lowest possible eigenvalue for
N5L21. Consider states with a fixed configuration
$pi50,1% of P singly occupied sites,P5( i pi . The possible
~integer! values ofP are 0<P<L.

~i! P5L. This case is impossible forN5L21.
~ii ! 1<P<L21. In this case we have

V[K (̂
i j &

V̂i j L >
1

2(̂i j & ~pi2pj !
25

1

2(̂i j & ~12dpipj
!;

i.e., 2V is bound from below by the number of bonds^ i j &
with piÞpj . Consider the set of sites withpi51. By our
definition of a lattice at the end of Sec. II, these sites are
connected to at leastZ sites withpj50. HenceV>Z/2.

~iii ! P50. Then, sinceN5L21, the number of lattice
sites L must necessarily be odd, and there must be
(L11)/2 empty and (L21)/2 doubly occupied sites.~There
are no singly occupied sites.! Consider states with a fixed
configuration of doubly occupied sites$di50,1%. We have

V>2(̂
i j &

@di~12dj !1dj~12di !#52(̂
i j &

~12ddidj !.

Except for a factor of 4, this is the same problem as above,
with $pi% replaced by $di%. Therefore in this case
V>2Z.Z/2.

Thus, summarizing the cases~i!–~iii !, we obtain
V>Z/2. Henceuc0& is a ground state of theV term for any
Ṽ, since it is always an eigenstate with the lowest possible
eigenvalue.

Finally, uc0& is clearly a ground state of the remaining
terms in ~A1! if Ũ>0 and F̃>0, since it has no doubly
occupied sites and maximum spin.

So far we proved thatuc0& and its global SU~2! rotations
are among the ground states ofĤNN if Ũ>0 andF̃>0 ~and
t<0 if the lattice is not bipartite!. Clearly, if F̃.0 ~and
Ũ>0), these are the only ground states, since then only
states with maximum spin minimize theF̃ term. This will be
used below, when we prove thatall ground states ofĤNN
haveS5Smax in the cases listed in Table I.

Case 1a. XÞt, F.0, U.Uc
(1) . In this case we choose

a2[(12e)F/uX2tu.0 with 0,e< 1
2 to be specified later.

Then Ũ in Eq. ~A2! becomes

Ũ5U2ZF2utu1UV2F22utu1
eF

2 U
1 maxS F8,

2~X2t !2

~12e!F
2F8D G .

Using (12e)21<112e we obtain the bound

Ũ>U2ZF2utu1U V2F22utuU1 maxS F8,
2~X2t !2

F
2F8D

1eS F2 1
4~X2t !2

F D G5U2Uc
~1!2

eZ

2F
@F218~X2t !2#,

~A4!

whereUc
(1) is defined in Eq.~6!. SinceU2Uc

(1).0 by as-
sumption, it can be seen from Eq.~A4! that Ũ is positive if
e is chosen small enough. For example,

e[ minS F~U2Uc
~1!!

Z@F218~X2t !2#
,
1

2D
indeed yields Ũ.0. Furthermore, from Eq. ~A2!,
F̃5eF.0. Hence the present choice ofa2 yields Ũ.0 and
F̃.0. Therefore only states withS5Smax are ground states
of ĤNN .

Case 1b. X5t, F.0, U>Uc
(2) , with Uc

(2) as defined in
Eq. ~6!. In this caseŨ5U2Uc

(2)>0 and F̃5F.0. Again,
only states withS5Smax are ground states ofĤNN .

Case 2. X5t,0, F50,U.Uc
(2) , for a lattice with loops.

~In the case of a bipartite lattice the above-mentioned gauge
transformation may be applied to include the caset.0.)

We know thatuc0& is a ground state ofĤNN for Ũ.0 and
that it is lower in energy than any state with doubly occupied
sites. Hence no ground state ofĤNN can have doubly occu-
pied sites. Among the states without double occupancies
those withS5Smax are the lowest in energy; this follows
from theP term in ~A1! by a proof completely analogous to
that of Tasaki.5 In Nagaoka’s basis,27 all off-diagonal matrix
elements of theP term are negative. Furthermore, it is rep-
resented by an irreducible matrix since the lattice has loops;
i.e., it satisfies the connectivity condition defined in Ref. 27.
It follows directly from the Perron-Frobenius theorem31 that,
in every sector with fixedŜz, the ground state is unique and
is given by a linear combination with strictly positive coef-
ficients of the basis vectors. These ground states are just the
states$ucM&% of Eq. ~7! and all haveS5Smax.
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