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Ferromagnetism in correlated electron systems: Generalization of Nagaoka’s theorem
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Nagaoka’'s theorem on ferromagnetism in the Hubbard model with one electron fewer than half filling is
generalized to the case where all possible nearest-neighbor Coulomb interéttitodensity-density interac-
tion V, bond-charge interactioiX, exchange interactiofr, and hopping of double occupanci€s) are
included. It is shown that for ferromagnetic exchange couplig Q) ground states with maximum spin are
stable already at finite Hubbard interactidi>U . For nonbipartite lattices this requires a hopping amplitude
t<0. For vanishing= one obtaindJ.—« as in Nagaoka’s theorem. This shows that the exchange interaction
F is important for stabilizing ferromagnetism at fintte Only in the special casE=t is the ferromagnetic
state stable even fd¥=0, provided the lattice allows the hole to move around loops.

[. INTRODUCTION hopping or ofU=c, or both, was necessary to prove the
stability of ferromagnetism. One may therefore ask if there

The single-band Hubbard model was originally intro- exist other, simple mechanisms leading to itinerant ferromag-
duced as a model for ferromagnetism of itinerantnetism that are not contained in the Hubbard model. There
electrons:=3 The model is given by are two important candidated) band degeneracy, as it ex-
ists in 3d-transition metals, andii) a nearest-neighbor ex-
change interaction, which is always present in a fermionic
system with a Coulomb interaction. Here we discuss only the
latter, since the effect of band degeneracy will be discussed
where éiT(, (ci,) creates(annihilatey an electron with spin separately?
o=1,], n,=¢ &, is the number operator, andj) de- In solids the exchange part of the Coulomb interaction
notes nearest neighbors. This is the simplest possible corré*Heisenberg exchangg” between orbitals at neighboring
lation model for electrons on a lattice. However, rigoroussites is usually ferromagnetic. However, since their overlap
evidence for itinerant ferromagnetism in this model is veryis small, this interaction may be quite weak. Nonetheless, it
limited. One of the most important results is Nagaoka'swill not be strictly zero. This direct exchange interaction,
theorem? which states that if the Hubbard repulsithis ~ denoted byF below, provides a natural way for stabilizing
infinite, the ground state has maximum total spin on certairierromagnetic statés. Of course, other features of the
lattices in the case of precisely one hole. The physicamodel, in particular the hopping the structure of the lattice,
mechanism behind Nagaoka’s theorem is the following. Ifand the electron density, are also important factors concern-
U=o, the ground state dfl) is macroscopically degenerate. ing the stability of ferromagnetism in the ground state.

This degeneracy is lifted by the motion of the hole since itis In this paper, we are concerned with rigorous criteria for
energetically favorable for it to move in a background of ferromagnetic ground states in the presence of Heisenberg
fully aligned spins(provided the lattice allows for motion of exchanged-. To clarify the origin of this exchange term, it is
the hole around loofs A simpler proof of Nagaoka's theo- Wworthwhile to review the steps that originally led to the Hub-
rem was later given by Tasakiwho also showed that addi- bard model, and to retain, in a systematic way, Coulomb
tional density-dependent interactions do not alter this resultinteraction terms beyond the on-site repulsidn This is

Several other mechanisms leading to ferromagnetism iglone in Sec. Il, and a model Hamiltonian with all nearest-
the Hubbard model have been discussed since %téeb’ neighbor interactions is derived. In Sec. Il we state suffi-
proved that the ground state is ferromagnetic for bipartitecient stability conditions for ferromagnetic ground states in
lattices with different numbers of sites in each sublatticethe case of one hole in a half-filled band. In particular, it
Mielke® and TasaKi proved the stability of ferromagnetism turns out that if the direct exchange is ferromagnetic
for special lattices with flat band8. Recently, (F>0), and even iff=0 in a special case, the on-site re-
Miller-Hartman® studied ferromagnetism at low particle pulsionU need only be larger than a finite valug, thereby
density in dimensiond=1. He included next-nearest- generalizing Nagaoka’'s theorem to finite The details of
neighbor hopping in such a way that the band has twdhe proof, using a method employed previously for the case
minima. At low density, the on-site repulsidh generates a of half-filling,** are deferred to the Appendix. Section IV
ferromagnetic exchange coupling between particles in theseontains our conclusions.
two pockets.

Clearly, it is still a long way to a true understanding of
itinerant ferromagnetism in solids. It is quite obvious that the
single-band Hubbard model is nogganericmodel for ferro- Let us first review the derivation of effective models for
magnetism. So far, either the assumption of a special kind ametallic ferromagnetism. The general electronic model ex-

P'Hubbard:_t< (6?0.61'0."' HC)+U2I ﬁiTﬁiL! (1)

ijyo

Il. DERIVATION OF THE MODEL
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pected to describe ferromagnetic phase transitions in transsents hopping of double occupancies. We note thatRhe

tion metals was introduced by Hubbdrdt is given by the
electronic Hamiltoniat?

aBuvat AT A A
Uij%un Ciacrcjﬁg-’cnva’cm,u.o- .

,\ A 1
H= 2 tiOJ{CiTaUCjao'—i_E 2
i ijmn

2
Here, ¢!

1o (Ciae) creategannihilateg an electron with spin
o in a Wannier orbitale localized at sitei. The first term
describes the hopping between two sitegand contains the
kinetic energy and the ionic potentiél,,,(r). The second
term describes théscreenefl Coulomb interaction between
electrons,V{r—r').1® The matrix elements, expressed in

the Wannier basis, arésE1)
@ H 1 2 H
tij:<'01|_ﬁV +Uion(Nj ), (3a

iRk =(ia,j BIVed T —1")mu,nv).

So far no approximation was made. The Hamiltoni@h

(3b)

term in(4) can be expressed in terms of spin operators as a
Heisenberg interaction,

F X

(ij)oo’

1.
SS]--I——ninj

Zhifi), ©

f:;rgf:;rg,f:igrej(,:—ZFE (
(i)
whereS =13 ..¢! 7,6, andr are the Pauli matrices.

While the on-site interactiotJ usually has the largest
numerical value, the other matrix elements are certainly not
zero. Hubbard's estimatksor transition metals are, for ex-
ample,U~10 eV,V~2-3 eV,X~ 1 eV, andF,F'~ 3 eV,
and the hopping amplitude typically ranges between 0.5
and 1.5 eV. Even if nearest-neighbor interacti@ms very
small, they can be qualitatively important if they have differ-
ent symmetries than thd term and thus can lift degenera-
cies.

The model (4) was essentially derived already by
Hubbard! Extensions of the actual Hubbard modé) by
some or all of the terms in Edq4) have received much at-
tention since then. For example, Campbell, Gammel, and
Low!’ presented a detailed investigation of the phase dia-

contains infinitely many parameters. For simplicity it is 9ram ofHyy in dimensiond=1, and discussed the relative
therefore often assumed that the essential physics of th@agnitude of its parameters for real materials. On a mean-

problem is captured by a singke band, whereby all other
bands are neglected. More precisely, all other bandprare
jectedonto one singleeffective shand. This approximation

field level, the effect of the terms i(¥) on the stability of
ferromagnetism was studied by HirsthFurthermore, exact
solutions are possible in the special cas& eft. In this case

requires the existence of a band gap above the effectivie number of doubly occupied sites is a conserved quantity,

band. Then the deviation of the parametgrandv;,, from
their multiband values can be determined, in principle, b
perturbation theory.

The restriction to a single band entails considerable sim-
plifications: Orbital indices may be dropped in E¢®) and

and the exact ground state solution can be obtained in a wide

yange of parameterS=?? For X=t and V=F=F'=0 the

model was recently solved exactly in one dimensiotf,
while for X=t=—-V=F=F' a solvable supersymmetric
model is obtained®>?®The caseX=t will play a special role

(3); furthermore, all matrix elements depend only on thein our analysis, too.

separation of the lattice sitéand not on direction Since the

Criteria for the stability of ferromagnetic ground states of

matrix elements are expected to fall off quickly with dis- the Hamiltonian(4) were recently derived for the case of
tance, one usually retains only the first few of them. Thughalf-filling (one electron per sil¢*'*~**The ferromagnetic

hopping is restricted to nearest-neighbor siiesand j:
—t=t;;. It is also natural to assume th&t=v;;; is the

states are then found to be insulating. To gain insight into the
more general problem dfinerant ferromagnetism we will

largest matrix element of the Coulomb interaction. Keeping?oW investigate a half-filled bandith one hole as in Na-

only t andU one obtains the Hubbard model, E@).

gaoka’s work! Thus we consider a finite lattice with sites

However, there are other terms that can be of appreciab@nd fix the total number of particleslt=L — 1. The number

size! These are thetwo-site terms of the interaction:
V=vjjij , X=vjiij , F=vjj; , F'=vy; ,» wherei andj are

of nearest neighbors is denoted By We consider lattices
with at leastZ nearest-neighbor bonds between any subset of

nearest neighbors. Keeping these terms one obtains the fdfittice sites and the set of remaining sites. For example, all

lowing single-band model:

Hn=Huuobarat VX il +X > (E,85,+ H.c)
Iy (ihe

X(ﬁi,g-i-ﬁj,g)-l-l: 2 6?06;0,&0'6](7
(ilyoo’

+F'<Z> (e.e & &+ H.e,
ij

(4)

where Hpupparais defined in(1) and ;== ;. HereV is

crystal lattices with periodic boundary conditions fulfill this
requirement.

IIl. FERROMAGNETIC GROUND STATES

_ The Hamiltonian Hyy commutes with the total spin
S=3,S. The eigenvalues & are denoted bB(S+1). In
the following we will be concerned only with saturated fer-
romagnetic states with largest possible eigenvalue
Sna=N/2=(L—1)/2. There are 3+ 1=L such states
with the same energy eigenvalue.

We are interested in the following questidoinder which

the density-density interaction between nearest neighborsjrcumstances do the ground states ofy\Hhave maximum
X is the bond-charge interaction giving rise to correlatedspin? For the pure Hubbard moddii.e., V=X=F=F’
hopping, F is the exchange interaction discussed in the In-=0), Nagaoka’s theoretrstates that fot) =%, t<0 (t#0

troduction (ferromagnetic in nature iF>0), andF’ repre-

if the lattice is bipartit¢ the ground states hav@=S,,,.
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TABLE |. Sufficient conditions for ferromagnetic ground states with one hole.

Case Condition ot Condition on lattice Condition on
) , bipartite lattice: t arbitrary
la F>0, X#t U=Ue any lattice nonbipartite lattice: t<0
. bipartite lattice: t arbitrary
> >u® o X
16 F>0, X#t u=U¢ any lattice nonbipartite lattice: t<0
. . bipartite lattice: t#0
> >u® —— )
2 F>0, X#t U>Ug lattice with loops nonbipartite lattice: t<0

This statement can be generalized to arbitrary densityenergy describing the paramagnetic stafeandwidth
density interactionV.® These results require the lattice to ~Z|t|), as well as the threshold energies for the onset of a
satisfy a certain connectivity conditiGAAs pointed out by charge-density wave or phase separation-Z[V|),
Tasaki’ this connectivity condition is fulfilled if the lattice #-pairing superconductivit} (~Z|F’|), and a spin-density
has a certain loop structure. Therefore we will refer to suctwave[ ~(X—t)?/F]. Note, however, that these terms do not
lattices as “lattices with loops.” For example, these includeenter separately, but appear in combinations; i.e., the effects
the square, triangular, simple cubic, body-centered-cubidnterfere as should be expected.
face-centered-cubic, and hexagonal close-packed lattices, but We remark that the above conditions axficientcondi-
not the one-dimensional or the Bethe lattfce. tions. The occurrence of ground states with maximum spin
The main result of this paper is a generalization of Na-outside the above parameter region is not ruled out. For ex-
gaoka’s theorem to finite values of the Hubbard interactiorample, it may still be possible to find ferromagnetic ground
U. In the Appendix we derive the following conditions for states even foX#t, F=0, andU <. It is interesting to
ferromagnetic ground states. note that the values fdd . appearing in Eq(6) are the same
The ground states of i, with one hole (i.e., NL—1) as those for the case of half-fillinqmo hole.** The bound
have maximum total spin=SS,,,=(L—1)/2 and are non- U, for half-filling was recently improved by de Boer and
degeneratdapart from (2Sy,,+ 1)-fold spin degeneradyin ~ Schadschneidéf.

the following cases. As shown in the Appendix, the ferromagnetic ground
Case 1. On any lattice, if #0, t<0, and (a) ¥*t and  states are the same as those discussed by Nafaekathe

uU>U®, or (b) X=t and U=U®, wave function withS*=S,,,, corresponds to a band filled
Case 2. On lattices with loops, if %<0, F=0, and  with spin-up electrons, with the hole at the top of the band,

u>u®. as illustrated in Fig. 2. <0, the band maximum is at the
In both cases 0 is allowed if the lattice is bipartite. ~ origin, ~and the corresponding wave function is

These results are summarized in Table |. The constant®/o)=2ao|1), where
u® andu® are given by

. 1 Lo
X—1)2 X —1)2 ak(,:—Z expikR;)Ci,,
ulM=z| 2|t|+ V—F—2|t|‘+( = ) +‘F’—( S ) ) L
(6a and
(2) F ' ¢l a
U=z 20t|+|v—5—2Jt]|+[F'[]. (6D =11 &l0y=11 & o)

Hence, if F>0, ferromagnetic ground states are stable on
any lattice for U larger than afinite critical value. For
F—0" we haveU")—, thus yielding Nagaoka’s condi-
tion for the pure Hubbard model. This shows that the Heisen-
berg interactiorF, which is neglected in the Hubbard model,
provides an obvious mechanism for stabilizing ferromagnetic
ground states at finité). Note that sinceX andt are ex-
pected to be of the same order of magnitude, the sensitive
dependence off, due to the term X—t)%/F, may cancel
from UV, and values of the order df;~12 eV are pos-
sible. The dependence btf; ont,V,F is depicted in Fig. 1. . . . .
The caseX=t is special, since in this case the stability of 0 01 02 03 04 05
ferromagnetism can be achieved either By-0 or by F/nl
F=0 andt<O0 if the lattice has loops.

The critical COUP””QSUQ) and U((;Z) are sums of terms, FIG. 1. Critical valueU vs exchange interactidf for different
each of which corresponds to a typical energy scale. Thisg, v, X, andF’=0. ForU>U, the ground state is ferromagnetic.
means that the on-site interactibhhas to be larger than the See Table | for details.

U, /27
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teractions. Therefore this second theorem also does not apply
to the HamiltonianHy, Eq. (4), where thenondiagonal
exchange interactioR >0 (which is always present as part

of the Coulomb interactionplays a crucial role. The role of

nondiagonal interactions for the stability of ferromagnetism
was already discussed in Ref. 28.

(a) 2Zn

&
[wn]

IV. CONCLUSIONS

We presented a generalization of Nagaoka’s theorem to a
Hubbard model with all nearest-neighbor interactions. For
271 ¢ . this model, with one hole in a half-filled band, we derived
b 2Zn t ' ' 1 rigorous, sufficient conditions for the stability of saturated
ferromagnetism in the ground state. The ferromagnetic
ground state is found to be stable on any lattice provided the
next-neighbor exchande is ferromagnetic and the Hubbard
repulsion U is larger than a critical valudJ <o, with

o 0 ' U.~1F for F>0*. If F=0, only the special cas¥=t
(unlikely to be fulfilled exactly in real materiglsields a
ferromagnetic ground state on lattices with loops.

The ferromagnetic ground state is an itinerant state with

27 nonzero kinetic energy. The proof of its stability cannot be

easily extended to doping beyond a single hole. Of course,

x 0 T this would be highly desirable since a single hole is irrel-

evant in the thermodynamic limit. However, the ground

states of the model with next-neighbor interactions are diffi-
FIG. 2. The figure illustrategfor d=1) that the ferromagnetic cult to obtain for finite hole densities, since in this case

ground state corresponds to a band filled with spin-up electronsimple eigenstates of the Hamiltonian are not known, such

(indicated by arrows from which a single electron has been re- that the present methods can be applied only in special

moved at the top of the bar(dpen square (a) t>0 (with a hole at  cgged?

k=), (b) t<0 (with a hole atk=0). To be able to explain ferromagnetism in more detail, it is

clear that more ingredients are needed than those contained

is the filled spin-up band. Fdr>0 a bipartite lattice is re- in the single-band Hubbard model with nearest-neighbor

quired and the band maximum is at wave ved@defined  hopping. Of greatest interest is the case of band degeneracy

by ec+o=—€k; €.g., for a hypercubic lattice we have where the present methods can be appliedtoo.

Q=(m,m,...,m). In this case the wave function is

|¢0>:éQT|T>- All 2SSt 1 ground states can be obtained ACKNOWLEDGMENTS

from | ¢,) by global SU2) rotations; i.e., the state
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Hartmann, and A. Schadschneider. M.K. and R.S. gratefully
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If F>0, our criteria permit ferromagnetism in any spatial Sonderforschungsbereich 341 of the Deutsche Forschungsge-

dimension. In particular they hold in dimensida-1. Thisis ~ Meinschaft.
not in conflict with the Lieb-Mattis theoref which rules
out ferromagnetism for any continuum model withdisper- APPENDIX: DETAILS OF THE DERIVATION

sion and a symmetric interaction potential d=1. In a To derive the sufficient conditions for ferromagnetic

Bloch bas!s & dispersion corres_pon_dg to |_nf|n|te_ly many ground states stated in Sec. Il we rearrange the Hamiltonian
bands as in(2), whereas the HamiltoniaHy in (4) is ob-  (4) a5 a sum of positive semidefinite terms. This enables us
tained by a projection ontoneof these bands, as discussed 1, construct a lower bound on the ground state energy. If this
in Sec. Il. Hence the modeH) is quite different from the |qyer hound coincides with the eigenvalue of a trial state,
initial multiband HamiltonianH in (2); in particular there this state is an exact ground state(d§.2%3° Here we con-
does not exist a potential energy in a continuum model thagjder a wave function of the form

gives rise to exactly the terms appearing in the truncated

HamiltonianHyy . Therefore the Lieb-Mattis theorem does -

not apply to the single-band Hamiltonid4) in d=1. In the WOF; a;Cji[1),

Appendix of Ref. 28 Lieb and Mattis proved a second theo-

rem, using the occupation number formalism, which pre-whereIT):HiéiTTIO) is the state with all sites occupied by
cludes ferromagnetism id=1 in the case of next-neighbor spin-up electrons. The coefficierdas# 0 will be determined
hopping and purely density-dependéint., site-diagonalin- below. | ¢) is a state wititN=L —1 particles. Since it is an
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eigenstate of? with eigenvalueS ., it is a representative Aij=a 1(Ci Ciy +Cj Cj1) + aka(Cy &y +Ci Cjp),
of the subspace witls=S,,,,. It is sufficient to consider a
state of this form, because whenever this state is a ground A
state, so are its @+ 1)=L global SU2) rotations. Bij=Ci Ci1 +\3Cj Cj; .
We introduce the operators

ISijO':(l_ﬁifo')(eia_}—)\léjo-)(l_ﬁj—g—)i Here )\1: Sgn@:), )\22 Sgn(x—t), )\3: Sgn(F’_|X_t/
R a?), and a#0 is an arbitrary, real parameter. Furthermore,
Qije=Ni—o(Cig T N1Cje)Nj 4, we introduce

N é,é]+3a,aj+f),a]+f)1al if V>2|t|+(F+a2|X—t|)/2,
i~ L(pi—pp2+2(dig+dg) if V<2lt|+(F+a?X—t))/2,
where@ = (1—;;)(1—f;)), Bi= (M, —1y))?, andalzﬁ”ﬁil are the projectors onto an empty, singly, and doubly occupied
site, respectively. It is straightforward to verify thidf,, can be written as

Hyn= 2 {ME PIJUPEU_}—Q;GUQHU)_‘_|X_t|Ai-}-Aij+||E,|éiTjéij +|\~/|<2> ﬁiﬁUZ ﬁiTﬁil_ZIE(Z) é'éj, (A1)
ij 1]

where
grop X A2
= o (A2a)
F=F—oa?X—t|, (A2Db)
~ F+a2|X—t|
V=V ————-2ft], (A2c)
IX tl

U=uU-z| 2t|+|V|+

+] F/ [, (A2d)

and an overall constant was dropped.
Let us consider the terms A1) one by one. The first term is positive semidefinite. qu,¢¢0> 0, B|]|¢0) 0, and
Q,JU|¢O> 0, the action of this term ofy) is given by

(ijymo

m(; Isijo |]u|‘r/f0>_|t| E (1 n| o’)(l nj U)(CIU+)\lcjo)(cla+)\lCJU)amCmT|T>
ijyo

_|t| 2 (CIT+)\lCJT)(CIT+)\lCJT)(a C T+aj ]T)|T>

(ijyo

=|t| 2 (a+Xqa))(Cit + NG 1)

ijyo

Thus, if a;=— sgn()a; for all nearest neighboréj), we  Note that the filled spin-up band can be expressed as

find that|«,) has zero eigenvalue and hence is a ground statl ) = HkakT|O> The (noninteracting band structure is given

of this term. Let us consider the case0 first. Then we by €= —tZexdik(R;—R;)]. Thus fort<0 the hole at

must havea;=a;, and the resulting wave function is k=0 is created at théand maximumwhere €, o= Z|t|.
This is shown in Fig. &).

1 Next considet>0. Thena;= —a; must hold for all near-
| ko) = EZ Citl 1) =ak=oil1), est neighborgij). This is only pOSSIb|e if the lattice is bi-

partite, i.e., if any two nearest neighbors are located on dif-
ferent sublatticegé and.%. In this case the wave function

where becomes

. 1 . . . .
akﬁﬁZ explikR;)Ci, - lho) = \/—<2 Ci1— i;ﬁCiT)H):ak—QTH)- (A3)
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Here Q is defined by expQ(R;—R;)]=—1 for nearest Case la. %t, F>0, U>U®Y. In this case we choose
neighborg(ij) or, equivalently, bye, o= — €. This implies ?=(1-€)F/|X~t|>0 with 0<e 3 to be specified later.
that the band maximum is &=Q for t>0, and this is the ThenU in Eq. (A2) becomes

state in which the hole is created, as shown in Fi).ZThe
two cases are related by a gauge transformatjga- —C;,,

on one of the sublattices, which effectively reverses the sign U=u —Z[2|t| +V—F—2|t|+ F
of t. 2

From now on we choose the coefficierds as just de- 2(X—1)2
scribed,|¢o) thus being a ground state of the first term in a>{F’,—— ' }
(Al). If the lattice is not bipartite, this requirds<0. (The (1-eF

trivial caset=0 can also be included heye.
Turning to the positive semidefinit® term in (A1), we ~ Using (1—€) '<1+2e we obtain the bound
observe that fo=0 it annihilates ), which in this case
is a ground state of this term. Now considé«<0, in which ~ , 2(X—1)? )
case|y,) is an eigenstate o ;;,(); with eigenvaluez/2. UBU_Z[ZHH V_F_Z|t|‘jL max(F —F F )
We now show that this is the lowest possible eigenvalue for
N=L—1. Consider states with a fixed configuration
{pi=0,1} of P singly occupied sited==;p;. The possible
(integey values ofP are O<P=<L.
(i) P=L. This case is impossible fod=L— 1.
(i) 1I=P=<L-1. In this case we have

_1+)2
- Mqu—u@— ;[F2+8(X—t)2],

€2 F

(A4)

whereU(" is defined in Eq(6). SinceU—U{M>0 by as-

sumption, it can be seen from E@4) thatU is positive if
<<.2,> Q'J> E (pi— pJ E (1- 513 P € is chosen small enough. For example,

i.e., 2 is bound from below by the number of bon¢i§) F(U—UW
with p;#p;. Consider the set of sites with;=1. By our €= min ( c) }
definition of a lattice at the end of Sec. Il, these sites are Z[F?+8(X—-1)%]'2
connected to at lea& sites withp;=0. Hence()=Z2/2.

(if) P=0. Then, sinceN=L—1, the number of lattice indeed yields U>0. Furthermore, from Eq. (A2),

sites L must necessarily be odd, and there must b = .F>0. Hence the present choice @f yieldsU>0 and
(L+1)/2 empty and I —1)/2 doubly occupied site¢There £~ g Therefore only states witS=S,,,, are ground states
are no singly occupied sitgsConsider states with a fixed of Fi

NN -

configuration of doubly occupied sit¢d;=0,1}. We have Case 1b. Xt, F>0, U=U®, with UL as defined in

Eq. (6). In this caseJ=U—U{?=0 andF=F>0. Again,
Q>22 [di(1—dj)+dj(1-di)]= 22 (1= 3y, d) only states withS=S,,,, are ground states df .

(i . ,
Except fo:a factor of 4, this is the same problem as above, Case 2. %<0, F=0,U>U®, for alattice with loops.
. ' ) . In th f i ite lattice th i
with {p;} replaced by {d.}. Therefore in this case (In the case of a bipartite lattice the above-mentioned gauge

transformation may be applied to include the cts®.)
(W=22>212. We know that ¢,) is a ground state dfi for U>0 and
Thus, summarizing the cased)-(iii), we obtain that it is lower in qu]er t?]an any state WII\‘III\"l doubly occupied
O0=7/2. Hence ) is a ground state of th@ term for any 9y y y P

S|tes Hence no ground state HNN can have doubly occu-
V, since it is always an eigenstate with the lowest possiblé
cigenvalue. pied sites. Among the states without double occupancies

Finally, | o) is_clearly a ground state of the remaining those withS=S,,,, are the lowest in energy; this follows

. . . . from the P term in (A1) by a proof completely analogous to
terms in (A1) if U=0 andF=0, since it has no doubly .+ of Tasak? In Nagaoka’s basié’ all off-diagonal matrix
occupied sites and maximum spin.

elements of the® term are negative. Furthermore, it is rep-
So far we proved thato) and its global S(P) rotations resented by an irreducible matrix since the lattice has loops;

are among the ground statesHb{,N if U=0 andF>0 (and , it satisfies the connectivity condition defined in Ref. 27.
t<0 if the lattice is not bipartite Clearly, if F>0 (and It foIIows directly from the Perron-Frobenius theorérthat,
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