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Abstract. This study provides an algebraic background for the formal
derivation of greedy-like algorithms. We propose Kleene algebra as a
particularly simple alternative to previous approaches such as relation
algebra. Instead of converse and residuation we use modal operators that
are definable in a wide class of algebras, based on domain/codomain or
image/pre-image operations. By abstracting from earlier approaches we
arrive at a very general theorem about the correctness of loops that cov-
ers particular forms of greedy algorithms as special cases.
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1 Introduction

This study is concerned with algebraic derivations and correctness proofs of
greedy-like algorithms that use a simple loop to calculate a global optimum.
We present a fairly general correctness criterion and give sufficient criteria when
iteration in a discrete partially ordered problem domain correctly implements the
general algorithm scheme. Proper greedy algorithms are further specializations
in which the loop steps are driven by an additional local optimality criterion.

Earlier work (e.g. [1,2]) has used relation algebra and other algebraic for-
malisms (e.g. [4]). We show that modal Kleene algebra allows a particularly
simple, concise and more general treatment, avoiding the concepts of converse
and residual, as used in relation algebra, and exhibiting the derivation structure
more clearly.

The central correctness conditions require that certain optimality criteria
semi-commute with certain program statements to achieve global optimality.
These semi-commutation properties, of the same shape as confluence properties
in rewriting systems, can be expressed without converse using modal operators
as in dynamic logic; these can be added to Kleene algebra in a simple way.
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2 Looping for Optimality

Greedy algorithms solve certain optimization problems, proceeding in a stepwise
fashion without backtracking. At each step there is a set of choices from which
a greedy algorithm always takes the one that seems best at the moment, i.e., it
works locally without lookahead to the global optimum to be achieved eventually.
Instances of this scheme are shortest path and minimum spanning tree problems
in graphs, the construction of Huffman codes and scheduling problems. Of course,
the greedy approach only works for certain types of problems: as is well-known
from hiking in the mountains, always choosing the steepest path will rarely lead
to the highest summit of the whole area. The central correctness requirement
for the greedy scheme is that

a local choice must not impair reaching the global optimum.

In this and the following section we derive, within the framework of relational
algebra, general conditions under which a loop satisfies this principle; later we
abstract to Kleene algebra. It turns out that local optimality is inessential; so
we obtain a more general class of loops that we call greedy-like.

We start with a specification relation T that connects inputs to admissible
outputs and a relation C that compares outputs and captures the notion of
(global) optimality. The derivation will exhibit our precise requirements on C.

A relation R improves T w.r.t. C if it always relates inputs to outputs that
are at least as good as those prescribed by T , in formulas

∀ x, y, z : xTy ∧ xRz ⇒ y C z , or, equivalently, T ;̆R ⊆ C ,

where ; denotes relational composition and T˘ is the converse of T . Since ∅
trivially improves T , we are interested in the greatest improvement and define
it by the Galois connection

X ⊆ GIMP(T,C)
def⇔ T ;̆X ⊆ C . (1)

Using a residual, this could be expressed as GIMP(T,C) = T \̆C. However, we
will not need any special properties of residuals.

An implementation of specification T that always produces optimal solutions
then is a relation that refines and improves T . So we define

OPT(T,C)
def
= T ∩ GIMP(T,C) .

We now consider a loop program

W
def
= while P do S

def
= (P ; S)∗ ; ¬P .

Here the loop condition P is represented by a subidentity P ⊆ I, where I is

the identity relation, and ¬P def
= I − P is its relative complement. We want to

calculate a sufficient criterion for W to be a refinement of OPT(T,C), i.e., for



W ⊆ T , (2) W ⊆ GIMP(T,C) , (3)

where we defer the treatment of (2) to the next section.
Spelling out the definitions in (3) results in T˘; (P ; S)∗ ; ¬P ⊆ C. We

abstract a bit and try to answer the question when, for Q ⊆ I, we have

U ; V ∗ ;Q ⊆ C . (4)

A standard result from regular algebra (see (15) in Section 5) is the semi-
commutation property W ; X ⊆ Y ; Z ⇒ W ; X∗ ⊆ Y ∗ ; Z. Hence (4)
can be established given the conditions

U ; V ⊆ C ; U , (5) U ;Q ⊆ C , (6)

since then

U ; V ∗ ;Q ⊆ C∗ ; U ;Q ⊆ C∗ ; C = C+ .

If we now assume C to be transitive, which is reasonable for a comparison rela-
tion, we have C+ ⊆ C and can draw the desired conclusion.

How can we, in turn, establish (5) and (6), at least in our special case?
Translating back we get the proof obligations

T ;̆ P ; S ⊆ C ; T˘, (7) T ;̆ ¬P ⊆ C . (8)

Let us interpret these conditions. (7) means that every pass through the loop
body preserves the possibility of obtaining a solution that is at least as good as
all possible solutions before. (8) means that upon loop termination no possible
solution is better than the termination value.

3 Iterating Through the Problem Domain

We now decompose the specification relation T into the iteration of a set E of
elementary steps between elements of the problem domain. We admit, as initial
approximations, arbitrary inputs but as outputs only terminal elements from
which no further elementary steps are possible. Therefore we assume now that
T has the special shape

T = exhaustE
def
= E∗ ; ¬pE = while pE do E , (9)

where the domain of a relation R is, as usual, defined by

pR
def
= R ; R̆ ∩ I . (10)

Such a problem structure is found, e.g., in matroids and greedoids [6,7] where
it is additionally assumed that T is a discrete strict-order and that all terminal
(or maximal) elements, the bases, have the same height (also known as rank or
dimension) in the associated Hasse diagram.



We try to calculate an implementation that traverses the problem domain
without backtracking, i.e., using elementary steps only forward. This suggests
trying P ;S ⊆ E. Now, by monotonicity of the star operation, proof obligation
(2) can be fulfilled if additionally we can achieve ¬P ⊆ ¬pE or, equivalently,
pE ⊆ P . Sufficient conditions for these properties are

P ; S ⊆ E p(P ; S) ⊇ pE . (11)

These are reasonable requirements, since they prevent that the iteration blocks
at a non-terminal element. They imply even p(P ; S) = pE.

Next, we deal with proof obligation (8), assuming (9). We calculate

T ;̆ ¬pE ⊆ C ⇔ ¬pE ; T ⊆ C˘ ⇔ ¬pE ; E∗ ; ¬pE ⊆ C˘ ⇔
¬pE ; (I ∪ E ; E∗) ; ¬pE ⊆ C˘ ⇔ ¬pE ⊆ C .

Step one employs properties of converse. Step two uses (9). Step three unfolds
the star. Step four uses distributivity, ¬pE ; E = ∅ and idempotence of ¬pE.

So (8) is established if C is reflexive on terminal elements. This holds, in par-
ticular, if C is fully reflexive, i.e., a pre-order. But in some applications one may
choose to leave C partially reflexive. E.g., when constructing a Huffman code,
the non-terminal elements are proper forests, for which a comparison relation is
not given as easily as for the terminal elements, which are single code trees.

As for proof obligation (7), it is a generic condition that has to be considered
individually in each case. Our derivation can be summed up as follows.

Theorem 3.1 Suppose that T = exhaustE and that C is reflexive on ¬pE and
transitive. Then (7) ∧ (11) ⇒ while pE do S ⊆ OPT(T,C) .

So far we still have a general scheme that does not specifically mention greed-
iness. But we can refine S further to choose in every step a locally optimal
element. To this end we need another pre-order L and stipulate

S ⊆ GIMP(E,L) . (12)

This now provides a truly greedy algorithm, the correctness of which is already
shown by Theorem 3.1. It corresponds to Curtis’s “Best-Global” algorithm [2].

4 From Converses to Modalities

The central step in the above derivation, viz. exhibiting conditions (7) and (8),
uses only regular algebra. It is an interesting question whether the whole deriva-
tion can be ported to Kleene algebra by eliminating the converse operation in
some way. This would generalize the result to a much wider class of models.

In the above formulas converse is used only in a very restricted way reminis-
cent of the relational formulation of a general diamond (or confluence) property:

R̆ ; S ⊆ T ; U˘. (13)

To bring (8) into this form, just compose the right hand side with I .̆



This observation is the key to success if one also remembers modal correspon-
dence theory (see e.g. [12]), according to which the above formula is equivalent
to each of the modal Geach formulas

〈R〉[T ]P ⇒ [S]〈U〉P , 〈S〉[U ]P ⇒ [R]〈T 〉P . (14)

Now we are in good shape, since the modal operators 〈X〉 and [X] can be defined
as predicate transformers in Kleene algebra, cf. [11].

We shall use many instances of these formulas. Since one can
easily confuse the rôles of the relations involved in the modal for-
mulation, we shall illustrate these formulas by the type of diagram
shown on the right hand side. When read as a confluence-type di-
agram, the solid arrows and their end points symbolize given ele-

•

•

T
>>

•

U
``

•
R

``

S

>>

ments and relations between them, whereas the dotted ones stand for a quantifier
stipulating existence of a further element and appropriate relations to given
elements. If one of the arrows is an identity, the diagram shrinks to a triangle.

5 Abstracting to Modal Kleene Algebra

We now abstract from the relational setting to the more general formalism of
modal Kleene algebra.

First, a Kleene algebra (KA) [8] is a structure (K,+, ·, ∗, 0, 1) such that
(K,+, ·, 0, 1) is an idempotent semiring and ∗ is a unary operation axiomatized
by the (Horn) identities

1 + aa∗ ≤ a∗ , (∗-1) b+ ac ≤ c⇒ a∗b ≤ c , (∗-3)

1 + a∗a ≤ a∗ , (∗-2) b+ ca ≤ c⇒ ba∗ ≤ c , (∗-4)

for all a, b, c ∈ K. Here, ≤ denotes the natural ordering on K defined by a ≤ b
iff a + b = b. An important property that follows from these axioms is the
semi-commutation law

ab ≤ ca ⇒ ab∗ ≤ c∗a . (15)

A special case of this establishes (4). A KA is ∗-continuous if for all a, b, c we
have ab∗c =

∑
i∈INab

ic.
A Kleene algebra with tests (KAT) [9] is a KA with a Boolean subalgebra

test(K) ⊆ K of tests or predicates, in which 1 is the greatest element, 0 is the
least element and · coincides with the meet operation. In a KAT K one again

defines while p do a
def
= (pa)∗¬p for p ∈ test(K) and a ∈ K.

Finally, a Kleene algebra with domain (KAD) [3] is a KAT with an additional
operation p : K → test(K) such that for all a, b ∈ K and p, q ∈ test(K),

a ≤ pa a , p(pa) ≤ p , p(ab) = p(apb) . (dom)

Let us explain these axioms. As in the algebra of relations, multiplication with
a test from the left or right means domain or range restriction, resp. Now first,
since pa ≤ 1 by pa ∈ test(K), monotonicity of multiplication shows that the first



axiom can be strengthened to an equality expressing that restriction to the full
domain is no restriction at all. The second axiom means that after restriction the
remaining domain must satisfy the restricting test. The third axiom serves to
make the modal operators below well-behaved w.r.t. composition. An important
consequence of the axioms is that p preserves arbitrary existing suprema [11].

Examples of KADs are the algebra of concrete relations, where p coincides
with the operation defined in (10), the algebra of path sets in a directed graph
(see e.g. [10]) and Kleene’s original algebra of formal languages.

In a KAD, the (forward) modal operators diamond and box are defined by

〈a〉p def
= p(ap) , [a]p

def
= ¬〈a〉¬p ,

resulting in a modal Kleene algebra. This is adequate, since it makes the diamond
coincide with the inverse image operator. The third axiom in (dom) implies

〈ab〉p = 〈a〉〈b〉p , [ab]p = [a][b]p . (16)

The modal operators for a test q are given by

〈q〉p = qp , [q]p = q → p
def
= ¬q + p . (17)

For the above-mentioned connection between confluence-type formulas and
the Geach formula we introduce the following notion. A KAD with converse is
a KAD K with an additional operation ˘ : K → K that is an involution,
distributes over +, is the identity on tests and is contravariant over ·, i.e., satisfies
(ab)̆ = b̆ ă . One can show (see again [3]) that over a KAD with converse the first
two axioms of (dom) imply the Galois connection

〈ă 〉p ≤ q ⇔ p ≤ [a]q . (18)

It follows that in a KAD with converse all predicate transformers λp . 〈a〉p are
universally disjunctive, i.e., preserve all existing suprema (and that all predicate
transformers λp . [a]p are universally anti-disjunctive, i.e., transform all existing
suprema into corresponding infima). This generalizes to KADs that also pro-
vide a codomain operation, since there one can also define the backward modal
operators and replace 〈ă 〉 by the backward diamond of a.

Moreover, using (17) and the shunting rule from Boolean algebra we get,
even in KADs without converse, for tests p, q, r

p ≤ [r]q ⇔ 〈r〉p ≤ q . (19)

Finally, using the star induction axioms, one can show the following induction
principle for the diamond operator (cf. [3]):

〈a〉p+ q ≤ p ⇒ 〈a∗〉q ≤ p . (20)



6 Properties of Modal Operators

Our previous relation-algebraic derivation can now be mimicked more abstractly
at the level of predicate transformers over an arbitrary KAD. In particular, we
do not need the carrier of the algebra to be a complete Boolean algebra as in
the case of relation algebra. Although the particular case of greedy algorithms
can be treated in the weaker system of power allegories (see [1,2]), we can even
avoid residuals and converse.

Assume a KAT (K, test(K),+, ·, 0, 1,∗ ). By a predicate transformer we mean
a function f : test(K) → test(K). It is disjunctive if f(p+ q) = f(p) +f(q) and
conjunctive if f(p · q) = f(p) · f(q).

Let P be the set of all predicate transformers and D the set of strict and
disjunctive (and hence monotonic) ones. Under the pointwise ordering

f ≤ g def⇔ ∀ p . f(p) ≤ g(p)

P forms a lattice in which the supremum f ⊕ g and infimum f � g of f and g
are the pointwise liftings ⊕ and � of + and ·, resp.

We now concentrate on the modal predicate transformers 〈 〉 and [ ] from
KAD. For the rest of the paper we will work as much as possible at the point-
free level. To smoothen the notation, we will denote composition of predicate
transformers by mere juxtaposition.

In a KAD with converse the test-level Galois connection (18) implies the
predicate-transformer-level cancellation laws and Galois connection

〈ă 〉[a] ≤ 〈1〉 ≤ [a]〈ă 〉 , (21)

〈ă 〉f ≤ g ⇔ f ≤ [a]g . (22)

We will now give an abstract proof of equivalence of the Geach formula (14)
and the confluence property (13). We do this in KADs that are extensional (or
separable as they are called in dynamic algebra), i.e., satisfy

a ≤ b ⇔ 〈a〉 ≤ 〈b〉 . (23)

Note that only the direction from right to left must be required, the other one
holds in KAD by monotonicity.

Theorem 6.1 In an extensional KAD with converse,

ă b ≤ cd̆ ⇔ 〈b〉[d] ≤ [a]〈c〉 .

Proof. (⇒) We calculate
ă b ≤ cd̆ ⇔ 〈ă b〉 ≤ 〈cd̆ 〉 ⇔ 〈ă 〉〈b〉 ≤ 〈c〉〈d̆ 〉 ⇔
〈b〉 ≤ [a]〈c〉〈d̆ 〉 ⇒ 〈b〉[d] ≤ [a]〈c〉〈d̆ 〉[d] ⇒ 〈b〉[d] ≤ [a]〈c〉 .

The first step uses (23). The second step employs (16). The third step applies
(18). The fourth step uses monotonicity. The fifth step follows by (21).
(⇐) Let 〈b〉[d] ≤ [a]〈c〉. Then 〈b〉 ≤ 〈b〉[d]〈d̆ 〉 ≤ [a]〈c〉〈d̆ 〉. Now the proof contin-
ues like for (⇒), read upside down. ut



The Geach formula has the desired interpretation even in KAs without con-
verse. To understand this, think of KA elements as describing sets of computation
paths leading from initial to final states. The modal operators forget the inter-
mediate states and hence induce a relation-like view of the KA elements, and so
the Geach formula carries over its meaning to the more general setting.

It should also be noted that the dual formula ab̆ ≤ c̆ d cannot be treated
in the same way; it requires a KA with codomain rather than domain and the
corresponding backward modal operators. So greatest flexibility is achieved in
KAs with both domain and codomain.

A special case of the Geach formula deals with the domain operator. Its
relational definition (10) implies pR ⊆ R ; R̆ , admitting a certain relaxation
of domain constraints. Using the Geach formula, this translates into the modal
Kleene formula 〈pa〉[a] ≤ 〈a〉, which holds in all KADs, not only in extensional
KADs with converse. An easily verified consequence is

ab ≤ b ⇒ 〈pa〉[b] ≤ 〈a〉[b] . (24)

7 Looping for Optimality in Kleene Algebra

We can now replay our previous derivation in the more abstract setting of KAD.
Specifications and implementations are now simply elements of a KAD K with
complete test algebra test(K).

A difference to the relational setting is that we cannot carry over GIMP
directly, since in general KADs residuals need not exist. But for our derivation
there is no need to internalize the concept of greatest improvement; rather we
use a characterizing predicate in which the right hand side of (1) is replaced by
the corresponding modal formula and c now plays the rôle of C:

IMP(x, t, c)
def⇔ 〈x〉 ≤ [t]〈c〉 . (25)

Now we need to find a sufficient criterion for IMP(while p do s, t, c), which
spells out to 〈(ps)∗¬p〉 ≤ [t]〈c〉.

As in Section 2, we abstract and want to achieve, for v ∈ K and q ∈ test(K),
that 〈v∗ q〉 ≤ [t]〈c〉, which by (20) is implied by 〈v〉[t]〈c〉p + qp ≤ [t]〈c〉p, in
equivalent point-free notation

〈q〉 ≤ [t]〈c〉 ∧ 〈v〉[t]〈c〉 ≤ [t]〈c〉 . (26)

The second conjunct, in turn, follows from

〈v〉[t] ≤ [t]〈c〉 , (27)

provided 〈c〉〈c〉 ≤ 〈c〉. In this case we call c weakly transitive. This is a much
weaker requirement than transitivity cc ≤ c. To see this, view the Kleene ele-
ments again as sets of computation paths. If c consists of paths with exactly two
states each (i.e., is isomorphic to a binary relation on states) then cc consists of



paths with exactly three states, and so cc ≤ c holds only if cc = 0. But c is still
weakly transitivity if it is transitive considered as a binary relation.

The full KA specification reads KAOPT(x, t, c)
def
= x ≤ t ∧ IMP(x, t, c),

analogously to Section 2 and yields the proof obligation, abstracted from (2),

while p do s ≤ t . (28)

Assume now, as in (9), that t = exhaust e = e∗ ; ¬pe. The same derivation
as in Section 3 yields that the following abstraction of (11) is sufficient for (28):

ps ≤ e ∧ p(ps) ≥ pe . (29)

Next we note that (27) and the first conjunct of (26) spell out to

〈ps〉[t] ≤ [t]〈c〉 , (30) 〈¬p〉 ≤ [t]〈c〉 . (31)

Again, (29) implies (31) if 〈¬pe〉 ≤ 〈c〉. Then we call c weakly reflexive on ¬pe.
Summing up, we have the following KA variant of Theorem 3.1:

Theorem 7.1 Suppose that c is weakly reflexive on ¬pe and weakly transitive
and that t = exhaust e. Then (29) ∧ (30) ⇒ KAOPT(while pe do s, t, c) .

In [1,2] it is pointed out that under certain circumstances the above proof
obligations will not succeed for the full c. Rather one has to add “context infor-
mation”, restricting c by intersecting it with an element of the form d d̆ . E.g.,
the relation perm, holding between lists that are permutations of each other, can
be expressed as bagify bagify ,̆ where bagify transforms lists into bags. Although
an element of the shape d d̆ can be mimicked by a predicate transformer when
the backward modal operators are available, we offer an alternative here. Using
the Geach formula again, we calculate, in an extensional KAD,

x ≤ dd̆ ⇔ 1̆ x ≤ dd̆ ⇔ 〈x〉[d] ≤ [1]〈d〉 ⇔ 〈x〉[d] ≤ 〈d〉 .

So the context restriction yields another conjunct in the proof obligations.

8 Classifying Greedy Algorithms

We now demonstrate that modal Kleene algebra is indeed convenient for fur-
ther applications. We demonstrate this in an abstract reconstruction of Curtis’s
classification of Greedy algorithms in [2] to which we also refer the reader for
concrete examples of the various types of algorithms. The modal operators again
lead to considerably more concise proofs than the original relational ones.

Throughout this section we assume the following. First, c and l are pre-orders
that model global and local comparison, respectively. Second, t = exhaust e
is the construction operation that completes initial approximative solutions to
terminal ones using elementary steps e. Third, g ≤ e is supposed to be a greedy
step that satisfies, analogously to (11) and (12),

pg = pe , (32)

IMP(g, e, l) , i.e., 〈g〉 ≤ [e]〈l〉 (⇔ ĕ g ≤ l) . (33)



In the following theorems we will always list the conditions both in modal no-
tation as obtained by the Geach formula from Theorem 6.1 and in the one of
KADs with converse and illustrate them by diagrams.

Immediately from Theorem 7.1 we obtain the following description of the
first class of greedy algorithms:

Theorem 8.1 (Best-Global) KAOPT(exhaust g, t, c) follows from

•

•

c
>>

•

t
``

•
t

``
g

>> 〈g〉[t] ≤ [t]〈c〉 (⇔ t̆ g ≤ ct̆ ) . (34)

The next class is characterized by

Theorem 8.2 (Better-Global) KAOPT(exhaust g, t, c) follows from

•

•

c
>>

•

t
``

•
t

``

l

>> 〈l〉[t] ≤ [t]〈c〉 (⇔ t̆ l ≤ ct̆ ) . (35)

This condition says that for any pair of local choices the locally better one has
a completion at least as good as any completion of the locally worse one.

Proof. We show that the assumptions imply condition (34) of Theorem 8.1.

〈g〉[t] ≤ [e]〈l〉[t] ≤ [e][t]〈c〉 = [pe][t]〈c〉 .

The first step uses (33), the second one (35) and the third one the definition of
t = exhaust e. But by (19) and (32) this is equivalent to the claim. ut

The third class of greedy algorithms has a more elaborate set of preconditions.

Theorem 8.3 (Best-Local) If we assume ∗-continuity, KAOPT(exhaust g, t, c)
follows from

•
l //•

•
en

``

gn

>>
∀ n ∈ IN : 〈gn〉 ≤ [en]〈l〉 (⇔ ∀ n ∈ IN : (en)̆ gn ≤ l) , (36)

•
l //•

•
e

``

l¬pe

>>
〈l¬pe〉 ≤ [e]〈l〉 (⇔ ĕ l¬pe ≤ l) , (37)

•

•
¬pel //

c
>>

•

t
``

〈l〉[t] ≤ [¬pe]〈c〉 (⇔ ¬pel ≤ ct̆ ) . (38)

Here the local choice is made depending on the history of choices before. The
first of these conditions says that each step produces an approximation to the
final optimum that is optimal among the approximations that can be obtained
with the same number of elementary steps. The other two conditions state that
once the sequence of greedy steps finishes, completions of other approximations
cannot improve the result any more.



Proof. First we note that, by an easy induction using idempotence of tests, in
particular 〈¬pe〉 = 〈¬pe〉〈¬pe〉, condition (37) generalizes to

n ≥ 0 ⇒ 〈l〉〈¬pe〉 ≤ [en]〈l〉 . (39)

The proof proper is performed by showing that the assumptions imply condition
(34) of Theorem 8.1, i.e., 〈g〉[t] ≤ [t]〈c〉.

Using ∗-continuity we get [
∑

n∈IN e
n¬pe] =

⊙
n∈IN[en¬pe], so that the claim

reduces to
∀ n ∈ IN : 〈g〉[t] ≤ [en][¬pe]〈c〉 .

For n = 0, we use idempotence of tests and (19) to see that

〈g〉[t] ≤ [¬pe]〈c〉 ⇔ 〈¬pe〉〈g〉[t] ≤ [¬pe]〈c〉 .

Now we calculate, using (32),

〈¬pe〉〈g〉[t] = 〈¬pg〉〈g〉[t] = 〈¬pgg〉[t] = 〈0〉[t] = 〈0〉 ,

and the claim is shown.
For fixed n > 0 we split the greedy step g into the part g p(gn−1) that admits at
least n−1 further greedy steps, and its relative complement g ¬p(gn−1), and show

separately 〈g p(gn−1)〉[t] ≤ r and 〈g ¬p(gn−1)〉[t] ≤ r, where r
def
= [en][¬pe]〈c〉.

For the first part we calculate

〈g〉〈p(gn−1)〉[t] ≤ 〈g〉〈gn−1〉[t] ≤ [en]〈l〉[t] ≤ [en][¬pe]〈c〉 .

The first step uses gn−1t ≤ t and (24). The second step joins powers and uses
(36). The final step employs (38).

For the second part we want to use (24) again and so have to replace ¬p(gn−1)
by a positive domain expression. We calculate, for arbitrary i,

¬p(gi) = ¬(p(gi pg) + p(gi ¬pg)) = ¬p(gi pg)¬p(gi ¬pg) = ¬p(gi+1)¬p(gi ¬pg) .

Using only the ≥ half of this equality and shunting we obtain

¬p(gi+1) ≤ ¬p(gi) + p(gi ¬pg) ,

and an easy induction shows ¬p(gn−1) ≤
∑

i<n−1p(g
i ¬pg). By disjunctivity of

〈 〉 our claim is thus established if 〈g〉〈p(gi ¬pg)〉[t] ≤ r for all i < n − 1. We
calculate

〈g〉〈p(gi ¬pg)〉[t] ≤ 〈g〉〈gi ¬pg〉[t] = 〈gi+1〉〈¬pe〉[t] ≤
[ei+1]〈l〉〈¬pe〉[t] ≤ [ei+1][en−i−1]〈l〉[t] ≤ [en][¬pe]〈c〉 .

The first step uses gi ¬pgt ≤ t and (24). The second step joins powers and
uses (32). The third step employs condition (36). The fourth step uses (39) and
n > i+ 1. The final step joins powers and employs condition (38). ut

The final class of algorithms is given by



Theorem 8.4 (Better-Local) Under ∗-continuity, KAOPT(exhaust g, t, c) fol-
lows from

•

•

l
>>

•

e
``

•
e

``

l pe

>> 〈l〉〈pe〉[e] ≤ [e]〈l〉 (⇔ ĕ l pe ≤ lĕ ) , (40)

•
l //•

•
e

``

l¬pe

>>
〈l〉〈¬pe〉 ≤ [e]〈l〉 (⇔ ĕ l¬pe ≤ l) , (41)

•

•
¬pel //

c
>>

•

t
``

〈l〉[t] ≤ [¬pe]〈c〉 (⇔ ¬pe l ≤ ct̆ ) . (42)

This essentially says that for any two local choices and any one-step extension
of the locally worse one there is a locally better one-step extension of the locally
better one.

Proof. We show that condition (35) of Theorem 8.2 is satisfied. First, using
antitonicity of [ ] and distributivity, we obtain

(40) ∧ (41) ⇔ 〈l〉(〈pe〉[e]⊕ 〈¬pe〉[1]) ≤ [e]〈l〉 ⇒
〈l〉(〈pe〉[e+ 1]⊕ 〈¬pe〉[e+ 1]) ≤ [e]〈l〉 ⇔ 〈l〉[e+ 1] ≤ [e]〈l〉 .

Now dualization of (15) together with the equivalence in (14) allows us to infer
〈l〉[e∗] = 〈l〉[(e + 1)∗] ≤ [e∗]〈l〉, from which by condition (42) we get 〈l〉[t] =
〈l〉[e∗][t] ≤ [e∗]〈l〉[t] ≤ [e∗][¬pe]〈c〉 = [t]〈c〉. ut

Curtis’s classification is completed by showing the following relationship be-
tween the algorithm classes:

Best-Global2: ck

Better-Globaldl Best-Local3;

Better-Local

Except for the relation between Better-Local and Best-Local this was was es-
tablished by the proofs of the previous theorems.

Theorem 8.5 The Better-Local conditions imply the Best-Local conditions.

Proof. It suffices to show (36). This is done by induction on n. For n = 0 the
claim follows from 1 ≤ l. For the induction step we calculate

〈gn+1〉 ≤ [en]〈l〉〈g〉 ≤ [en]〈l〉〈pg〉〈g〉 ≤
[en]〈l〉〈pg〉[e]〈l〉 ≤ [en][e]〈l〉〈l〉 ≤ [en+1]〈l〉 .

The first step splits a power and uses the induction hypothesis. The second step
uses a domain law. The third step employs (33). The fourth step uses (32) and
(40). The last step joins powers and uses transitivity of l. ut



9 Conclusion

We have shown that a concise algebraic derivation of a general greedy-like algo-
rithm can be obtained in the framework of Kleene algebra. The more pristine
framework avoids detours through residuals and leads to a simpler correctness
proof than in [2,4].

The treatment has exhibited an interesting relation with semi-commutation
properties as known from rewriting and allegories [5]. The connection to KA has
already been explored in [13].

Omitting converse has led us into the interesting and very well-behaved alge-
bra of predicate transformers. In it we can prove properties such as 〈a∗〉 = 〈a〉∗
that cannot even be expressed in dynamic logic. We are therefore convinced that
this algebra will have many further applications; for an example see [11].
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sion on greedy algorithms. Helpful remarks were provided by R. Backhouse, H.
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10. B. Möller: Derivation of graph and pointer algorithms. In: B. Möller, H.A. Partsch,
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