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We present a self-consistent strong coupling scheme to evaluate the single-particle 
Green's function for the two dimensional Hubbard model in the spin-density-wave 
state. We analyse the single quasihole properties including its dispersion and its 
spectral weight factor. Significant incoherent contributions to the spectral function 
are found resulting from multi spin wave processes in accordance with similar results 
for the t - J model and small Hubbard clusters. 
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1. I N T R O D U C T I O N  

The vicinity of antiferromagnetism and superconductivity in the layered high 
temperature superconductors has stimulated research to understand the properties 
of carriers doped into an antiferromagnetic (AF) insulating state in two dimensions. 
In strong coupling approaches the competition between AF ordering of localized 
spin degrees of freedom and the delocalisation of doped holes is the key issue. For 
the t - J model exact diagonalization, 1 cumulant, 2 and spin-polaron methods 3 
corroborate a Fermi-liquid picture of the single hole states at half filling. The 
quasihole bandwidth, however, is strongly renormalized by a factor approximately 
p~-oportional to J / t  for J < t. Moreover, the quasihote spectral weight Z ,,, a (J / t )  ~, 
with c~,/3 ,,~ 1, is significantly reduced from unity. This corresponds to a large 
redistribution of spectral intensity into the incoherent part of the single particle 
propagator.  Similar results are found for the Hubbard model in the intermediate 
to strong coupling regime. 5,4 

Less extensively studied are the spectral properties of the elementary excitations 
in the weak coupling limit of the Hubbard model. In this case the spin-density-wave 
(SDW) state is an appropriate starting point to explore the single particle dynamics. 
Similar to the t - J model, holes which are doped into the SDW state give rise to 
frustration effects on a length scale of the order  of the magnetic coherence length 
~SDW.6-8 In this paper we focus on the dynamical properties of a single hole doped 
into the SDW state. In this case the hole motion is accompanied by multi spin wave 
excitation processes which reduce the quasihole's spectral weight and renormalize 
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the bandwidth and the single particle gap. 

2. S D W  S P I N  D Y N A M I C S  

The start ing point of our analysis is the SDW representation of the Hubbard 
model on a square lattice at half filling a

zt l H = l E k a k a k ~  + Hv (1) 
ka,l=:t:l 

Here, a ~  creates a SDW quasiparticle in the conduction or valence band for l 
+1 or - 1 ,  respectively, and Hv is the residual Hubbard interaction. The mean 
field dispersion for the upper and lower SDW band is given by E k = =t=[e~ + 
A2] 1/2 in terms of the tight binding energy ek = -2t(cos(k~a) + cos(kva)) and the 
magnetic SDW energy gap A. The primed summation is restricted to the MBZ. 
The magnitude of A follows from the gap equation 1/U = 1 r -~ ~ k  1 /Ek  which is 
the Hartree-Fock (HF) self-consistency condition for the staggered magnetization 
(Sz(Q)) in the broken symmetry state. Q = (r,~r) is the square lattice nesting 
wave vector. Due to the doubling of the unit cell the SDW quasiparticles are 
restricted to the MBZ, i.e. to momenta where e k < 0. They are related to the bare 
fermion operators c ~  of the original Hubbard model by the linear transformation 

- -  VkCk, ~ + lOVklC~+Q~ with v~ = [(1 § lek/Ek)/2]l/2. 
The broken spin rotational invariance of the SDW state implies the exis- 

tence of gapless collective spin excitations. In order to calculate these Goldstone 
modes we consider the transverse dynamical spin susceptibility Xa-~(q, ql, t) = 
i(TS~t(t)S~t,~(O)) including RPA fluctuations around the HF groundstate. Here 
a = 4-1 and X~'-~(q,q' ,  t) is a symmetric 2 x 2 matrix with respect to the momen- 
tum indices which is finite only if q = qr or q = q'  4- Q. Summing the RPA bubble 
series leads to 

~-~ ' - , ( 2 )  XRPA(q,q,w) = ~X~-~(q ,~ l ,W)[1  UX~-~(~t,q',w)] -1 
el 

where [1 - UX~-~(~I, q~,~)]-I is a matrix inverse in momentum space. The bare 
particle-hole susceptibility X~ -~  is calculated with the HF c-electron propagators. 

To extract the collective spin dynamics we resort to a strong coupling expan- 
sion assuming U >> t. This procedure has previously been shown 6,7 to reproduce 
the results of linear spin wave theory for the 2D AF Heisenberg model of localized 
spins with an exchange constant J = 4t2/U. In this limit the transverse suscep- 
tibility X~s -~ - X~-P~A[V/t>>I is found to display undamped propagating spin wave 
excitations: 

) ~ } - ~ ( q +  Q , q , ~ o ) J  - oj2 - ~ +iv  

with the spin wave dispersion Wq = 2J[1 - (eq/4t)2] ~/2. The coupling to these 
low energy spin wave modes is assumed to be the dominant source for the renor- 
malization of the single particle properties. We will go beyond previously applied 
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Fig. 1. a) One-loop self-energy correction from the coupling to transverse spin 
fluctuations in the RPA ladder series, b) NC scheme for the self-energy. The 
wiggly line represents the RPA ladder series of a). 

lowest order one loop calculations 7'9' lo and evaluate the electronic self-energy in a 
self-consistent non-crossing (NC) scheme. 

3. A F - P O L A R O N S  IN T H E  S D W  STATE 

The SDW quasiparticles couple strongly to the spin wave excitations. There- 
fore, we focus on the renormalization due to multi spin wave shake-off which is 
described by the NC diagrams of Fig. 1 for the self-energy. Accounting for all 
possible Umklapp contractions in the c-electron representation, or equivalently all 
inter- and intra-band processes in the a-electron picture the NC approximation 
consists of four coupled integral equations. To reduce this complexity we consider 
the formal limit of U >> t. Using the transverse spin susceptibility of (3) and work- 
ing in the a-electron representation with the transformation coefficients v~ replaced 
by their large U value, i.e. 1/~'2, the strong coupling version of the NC equations 
reads 

l l  ~ U 2 ! - - a e r  . - T  
q, v 

/a 2 ~ j ~ ( q  + Q, q, iw.)] G - ~ - l ( k -  q, ic, - i w , )  (4) 

= - T U  

X j ~ ( q +  Q , q +  Q,iw~)] GZ_-J (k - q, ie, - iw,) (5) 

Here wv = 2 u r T  and c t, = (2t~ + 1)~T are Matsubara frequencies. E~V(k, iet, ) and 
G~ z' (k, ie~,) are the momentum diagonal components of the a-fermior~ self-energy 
and the dressed a-Green's function, respectively, for band indices l, l' = +1. Starting 
from the HF propagator the iterative solution of (5) leads to a vanishing interband 
Green's functions. This leaves only (4) for the intraband Green's function. Since 
both, the kernel of this integral equation and the bare SDW Green's functions are 
spin independent one may replace GZjz by G~ z on the r.h.s, of (4). Finally, in the 
limit of a single hole particle-hole symmetry leads to the relation 9 A j  1 - t (k ,  w) = 

11 A~ (k , -w)  for the spectral functions A~Z(k, w) = - I m [ G ~ l ( k ,  o3 + irl)]/Tr. There- 
fore, we are left with only a single integral equation e.g. for the valence band 
propagator. We perform the required frequency summations and proceed via an 
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Fig. 2. Single-hole spectral function for U = 6 and for the two momenta k = (0, 0) 
and k = (~r/2, 7r/2) on a 16 • 16 lattice. Energies are given in units of t. 

analytic continuation to the retarded quantities. In the zero temperature limit we 
obtain 

2 J ]  f ~ o  ,A~I  - l ( k _  q,w,) 
E ; 1 - I ( k ' z )  = U2 E '  ( 1 + - - ,  aw - - - - , 7 - -  4- 

qr wq J0 Wq+O2 + z  

2J) f~/_ A-1 -1~ k ,,~ - - -  dJ ~" L - q ,  w ) (1 mq ~ ~ q  ~ - - - - - ~  j , (6) 

where z = w + iT. This expression represents the central equation for our self- 
consistent treatment of a spin polaron in the SDW state. 

4. R E S U L T S  A N D  D I S C U S S I O N  

Results for the single hole spectral function obtained from an iterative solution 
of (6) are shown in Fig. 2 on a 16 • 16 sites lattice. A moderate value of U has 
been chosen which, however, still justifies the use of the strong coupling limit in 
the self-consistent NC polaron scheme. Besides the renormalization of the quasihole 
peak the figure display a considerable shift of spectral weight into a spin wave shake- 
off structure below the quasihole energy and into the upper SDW band. Similar 
incoherent spectral weight is found in the one hole spectrum of the t - J model 
only on the low energy side of the quasihole peak since the upper Hubbard band is 
removed by the strict exclusion of doubly occupied sites. This is the result of both, 



                                                          333 

- 2 . 0 - ~  

-2 .5  - \ 

~-3 .o-  

- 3 . 5 -  

- 4 . 0 -  ~ 'Q  
(3 

0 .9 -  ~ 

0.8- ~  9 
t,l \ 

0.7- ~ 
\ 
ID \ 

o.6- ~ 

J 
e~ 

l -  

Lo 
oDc~ 

~5 
O 

o o ooo.. ~ _ t o  . - o ' ~  

,,,,r 

(z/2,z/2) (0, 0) (z, O) (~/2,z/2) 

Fig. 3. Quasiparticle properties for U = 4t on a 24 x 24 lattice along a closed 
triangular path in the MBZ. The upper panel shows the NC quasiparticle dispersion 
( .)  as compared to the SDW dispersion (o) E(k)  for 2A = U. The lower panel shows 
the corresponding quasiparticle weight factor. 

exact diagonalization studies 1 and approximate NC calculations. 3 On the other 
hand the incoherent low energy continuum is missing in earlier calculations which 
have been performed in the SDW state using a one-loop approximation only. 9 This 
approach lacks the relevant transfer of spectral weight resulting from the multiple 
spin wave excitations. In this sense our self-consistent polaron scheme interpolates 
between these two limits. But the physical situation in both cases is quite different: 
In the t - J limit of the Hubbard model a spin wave emission leads to mobility of 
a hole inserted into the AF ordered background while in the SDW case spin waves 
cause a mass enhancement of the SDW quasiparticles. 

The loss of spectral weight into the incoherent part is strongest at the MBZ 
center. This is evident from Fig. 3 which shows the quasihole spectral weight 
factor z(k) and the dispersion along the irreducible wedge of the MBZ for U = 4t 
on a 24 • 24 lattice. A comparison to the HF SDW dispersion demonstrates a 
significant band narrowing of the polaron band. Most striking is the result that  the 
degeneracy of the HF bands along the MBZ boundary is barely lifted. Although 
not clearly visible in the figure, the energy maximum of the quasipartiele band 
occurs at k = (lr,0). This is a result which arises only on the multi-loop level 
since for the one-loop calculation the maximum does appear at kp = (~/2,71-/2). 9 

While it seems generally accepted for the t - J model that  the maximum is at 
kp = (~r/2,~r/2) this issue is much more subtle for the Hubbard model. Quantum 
Monte Carlo calculations on small clusters with finite hole concentrations have 
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found no evidence for hole pockets near kp and a Fermi surface whose shape is 
hardly changed when compared to the Fermi surface of the noninteracting tight 
binding band. 11 Lanczos diagonalization studies on a 4 x 4 Hubbard cluster have 
found near degeneracy between kp and (Tr, 0) but in slight favor for the maximum 
to occur at (Tr, 0) 5 in agreement with the self-consistent NC calculation. 

Finite size analysis for the linear lattice sizes N = {8, 12, 16, 20, 24} indicates 
linear scaling in 1IN for z(k) and the renormalization of the bandwidth W. Quan- 
titatively, e.g. for U = 4t, the bandwidth extrapolates to W = 1.85t for N --4 oc as 
compared to the SDW bandwidth WSDW = 2.81t and the spectral weight factors 
extrapolate to z((Tr/2, 7r/2)) = 0.8 and z((0, 0)) = 0.51 in the infinite lattice limit. 

In conclusion we have analysed the single-particle properties in the SDW state 
using a noncrossing scheme. Extensions including the weak coupling limit and an 
analysis of the renormalization of the spin wave excitations are currently in progress. 
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