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Abstract
Many experimental findings in the materials family of cuprate superconductors are converging towards an

electronic picture which involves strong local Coulomb correlations. Characteristic normal state properties
appear to be beyond the conventional framework of Landau’s Fermi liquid theory. Spin correlations among
the charge carriers are discussed as a possible source for the intricate electronic properties. The low energy
physics is determined by the charge and spin dynamics in Cu02 layers which all cuprate superconductors have
in common despite their otherwise complex composition. Strong short range Coulomb repulsion between the
charge carriers in these planar units imply magnetic ordering phenomena among the Cu spins. Depending on
the doping controlled carrier concentration the cuprate compounds are either antiferromagnetic (AF) insulators
or correlated metals with short range spin correlations extending also into the superconducting state.

The purpose of this article is twofold: In the first part we review results of basic experiments which probe
the magnetic correlations in the Cu02 planes. Particular emphasis is given on neutron and Raman scattering,
nuclear magnetic relaxation, and a selected set of experiments which contain information about the nature
of the superconducting state. Based on these experiments the evolution of the spin dynamics from the AF
insulator into the doped metallic regime will be discussed. On the other hand we give an overview of current
phenomenological and microscopic approaches in the context of purely electronic Hubbard type models which
focus on the role of AF spin fluctuations. This includes the results for single particle properties as well as for
the dynamic spin susceptibility. Special attention is given to the discussion of spin fluctuation exchange as the
possible mechanism underlying high temperature superconductivity.
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1. Introduction

Most noticeable in last years’ research on high temperature superconductors (HTSC) has been the
continuing convergence of experimental data. Improved sample quality and thin film techniques have
allowed for the isolation of many of the key intrinsic physical properties. Also the comparison among
the compounds in the still growing family of cuprate superconductors has helped to discriminate
between sample specific and general physical properties. For example the discovery of the p- [4021
or n-type [4781 infinite layer materials with T~near 90 K has once more supported the notion that
the important physics is entirely determined by two dimensional Cu02 layers common to all cuprates,
although it may still be regarded as an open question whether the superconductivity is a single plane
property or essentially a three dimensional phenomenon.

The 2D physics of mobile charge carriers with strong Coulomb interactions has attracted an
enormous amount of theoretical work since the (by that time unexpected) discovery of layered
high-Ta superconductors [361. First principles calculations [167,386,2621 have yielded microscopic
parameter sets for the cuprate compounds which have revealed the need to deal with strong electronic
correlations. Unusual frequency and temperature dependences of susceptibilities or transport quantities
[221,306] and the low dimensionality seem to require new or modified theoretical concepts No
consensus has yet been reached on the framework which allows a consistent description of the
normal metallic state — a prerequisite to address the mechanism responsible for superconductivity.

All of the cuprate high-1, materials have in common the existence of a perovskite parent compound
which is insulating and has long range antiferromagnetic (AF) order among local Cu d

9 magnetic
moments. Changing the carrier concentration by ionic substitution or increase of the oxygen content
turns these compounds into correlated metals leaving finite range AF spin correlations still intact
which is suggestive to picture the perovskite derived cuprates as doped magnetic insulators. This,
however, has to be reconciled with a series of data from angular resolved photoemission (ARPES),
positron annihilation, and de Haas—van Alphen measurements unambiguously verifying the existence
of a Fermi surface in the metallic compounds which has turned out to be closely in accordance with
band theory predictions [3091. The dispute whether the correlated metallic state is to be described
as a Fermi liquid or in terms of a novel concept is still left undecided.

Conventional electron—phonon coupling has been widely rejected to be the only origin for HTSC
or the unconventional behavior in the normal state. Still, there is evidence that the phonons probe the
superconducting condensate and alter its properties. But in particular the observed rapid increase of
the quasiparticle lifetime below T~[47] has been interpreted in favour of a dominantly electronic scat-
tering mechanism in the normal state, since electron—phonon scattering would leave the quasiparticle
lifetime unchanged across To..

The often quoted notion of unconventional properties, however, requires some care. If the definition
of a conventional Fermi liquid is based on the existence of a Boltzmann transport equation [101 then
e.g. the temperature dependence of the Hall effect (cx 1/T) [300] or the resistivity (cx T) [185]
provide examples of transport quantities which are not understood in this framework. Still, many of
the characteristic features of HTSC’s are not unique and have been found in other oxide or layered
materials as well [10].

What is special to the cuprate superconductors is that they continuously evolve from magnetic
insulators by changing the concentration of doped carriers. It is the purpose of this article to review
the accompanying evolution of the magnetic correlations and the corresponding theoretical concepts.
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The related theoretical work starts from the observation that the low doped compounds are close to
a magnetic instability. On the other hand it is expected that more heavily doped materials — although
limited to the regime of chemical stability — should behave more like a weakly correlated Fermi
liquid. All experimental results appear consistent with a smooth crossover between these two regimes
by continuous variation of the carrier density.

In chapter 2 we start with some basic notions on the different materials, their structure, and phase
diagrams. Chapter 3 is intended to collect some of the presently available experimental results for
the magnetic properties. Special emphasis is given to neutron scattering, nuclear magnetic resonance
(NMR), magnetic susceptibility, Raman scattering and other selected experiments. We will in chapter
4 continue with phenomenological descriptions which attempt to correlate some of the experimental
results into a coherent picture of the normal state. In the same chapter we will consider effective
microscopic Hubbard models intended to describe the electronic properties of CuO2 layers. All
subsequent theoretical results are obtained from different versions of these Hubbard models.

The theoretical analyses for the normal state are centered around the problem of holes doped
into an AF correlated environment. Separately, we will discuss magnetic ordering phenomena for
the insulators as well as for the doped systems in the presence of static or mobile holes. Selected
theoretical results for the dynamic spin susceptibility are reviewed in chapter 5 in comparison with
experimental data. The results for the magnetic correlations are used to discuss their influence on the
dynamics of the doped charge carriers. Both, analytical and numerical results will be presented with
particular emphasis on single particle properties and the application to the optical conductivity.

The exchange of spin fluctuations is reviewed in chapter 6 as the possible source for pairing and
superconductivity. A lot of theoretical work has been devoted to the search of a possible supercon-
ducting ground state for the Hubbard Hamiltonians with purely repulsive Coulomb interactions. No
conclusive answer has yet been reached, but it has become clear that a magnetic pairing mechanism
will favorably lead to a superconducting order parameter with ~ symmetry. We will discuss some
of the related implications from numerical calculations combined with phenomenological attempts to
determine the pairing state which compares favorably with the experimental data.

2. Materials and structure

2.1. Antiferromagnetic parent compounds

We start with some basic notions on the cuprate materials, their crystal structure, and chemistry.
Rough counting shows that by now about 35 different high T~cuprate superconductors have been
synthesized. Most recently a HgBa2CuO4~~compound was added to the cuprate family [317]. One
of its descendants has raised the confirmed record T~at ambient pressure to 156 K [349]. The
continuing materials science activities make it natural to expect further HTSC compounds to follow.

Despite their compositional complexity all cuprate HTSC materials have in common a layered
structure with different stacking sequences of Cu02 planes. Fig. 1 shows the structure of the parent
compounds for three examples of the most extensively studied materials. In La2CuO4 (henceforth we
will use the common short notation 214 for this material) the unit cell contains a single Cu02 plane
while YBa2Cu3O6 (123 06) has a double layer structure with a two-layer spacing of ‘~ 3.2 A. Even
three or four closely spaced layers are realised in some of the Bi and Tl based cuprate materials.
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Fig. 1. (a) Schematic diagram of the crystal structure of tetragonal La2_~( Sr, Ba)~CuO4. Structural phase transitions are
caused by cooperative rotations of Cu06 octahedra around the [1101 and [110] axes. (From Ref. [2031.) (b) Structure of
YBa2Cu3Oo+~.The arrows indicate the conduction plane regions and the charge reservoir in CuO chains. For the insulating
and antiferromagnetic 06 compound there is no oxygen (01) on the chains. (From Ref. [1891.) (c) Crystal structure of
one of the Bi HTSC compounds. The two-layer Bi2Sr2CaCu2Os+~material is often abbreviated as BSCCO 2212. (From
Ref. [415].)

Layers in between the Cu02 planes are believed to play a minor role for the low energy electronic
properties serving simply as a reservoir to provide additional charge carriers to the Cu02 planes.

The Cu ions in the Cu02 planes form a square lattice with a Cu—Cu distance of 3.8 A. Each Cu
has a bond to four neighboring 0 ions sitting half-way in between the Cu ions. In many cuprates the
planar Cu ions have additional 0 ions located right above or below them at a distance of 2.4 A.
These so called apex oxygens are therefore more weakly bound to the Cu ions as compared to the
planar oxygens. In 214 the oxygens form somewhat elongated octahedra with the Cu ions in their
center. In 123 06 a distinct Cu site is also present between the double layers. As we will see below,
adding oxygen to this compound leads to the formation of Cu—0 chains along these out of plane Cu
sites.

Cuprates generally have a tetragonal crystal structure. At low temperatures many of these materi-
als undergo transformation towards an orthorhombic structure. In 214 this structural transformation
involves a slight tilting of Cu06 octahedra of about 40 into an alternating pattern [462], and in
123 06+X the structural transformation leads to a buckling of the Cu02 planes. Structural changes
have been found in some cases to have a subtle influence on the electronic properties. For the sake
of the intended focus of this review article we will not discuss these issues here and refer instead to
recent proceedings articles e.g. in Ref. [343].

The one aspect for which consensus has been reached is the nature of the long range AF order
in the insulating parent compounds La2CuO4 [437,361], YBa2Cu3O6 [430], or also Bi2Sr2YCu2O8
[3911. Contrary to one electron band structure calculations, which predict that these materials are
nonmagnetic metals [260], the correlated ionic limit is the more appropriate starting point. Consid-
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ering e.g. La2CuO4 valence counting arguments immediately tell us that Cu is expected to be in a 2+
state. The configuration of the Cu

2~ion in the solid is [Ar] 3d9, and therefore contains a single 3d9
hole. Crystal fields lift the degeneracy of the orbitals in the d-shell and 3d

522,2 is the only remaining
partially filled orbital [307]. The uncompensated spin of this orbital is responsible for the local
magnetic moment of the Cu

2+ ion. Due to the superexchange mechanism [322] as mediated across
the neighboring oxygen ions the Cu spins are coupled antiferromagnetically. As we will discuss in
more detail in section 4.2 this is effectively described by an S = ~ Heisenberg model

H=J>Sj.Sj, (2.1)
(ti)

with an exchange constant J. Since the Heisenberg Hamiltonian is restricted to the square lattice of
Cu spins in the planes, a finite albeit small interplanar coupling J’ is required for the appearance of a
three dimensional AF transition at the Néel temperature TN, e.g. for La

2CuO4 at about 300 K [437].
However, since the interplanar coupling is very small [336], the spin correlations are dominantly two
dimensional until a crossover to three dimensional behavior occurs on cooling down to temperatures
very close to TN [74].

While the spin dynamics is governed by the pure Heisenberg model [81], differences in TN and also
in the magnon spectrum arise from anisotropies and different numbers of Cu02 planes per unit cell
in each material. For example the AF coupled bilayers in 123 06 lead to slightly modified magnetic
properties [45] as compared to the single layer 214 compound. The dominant source for in-plane
anisotropy and in- and out-of plane spin wave gaps is the antisymmetric Dzyaloshinskii—Moriya
(DM) interaction [107]

HDM=~D~J.S~XSJ, (2.2)
(ii)

which arises from spin—orbit coupling effects on the superexchange mechanism. The pattern of the
DM vectors D,~is sensitive to deviations from the ideal tetragonal La2CuO4 structure [84]. For
example in the orthorhombic phase with an alternating pattern of the Cu06 octahedra tilted along
the (110) direction the DM interaction induces spin canting out of the Cu02 planes leading to a net
weak ferromagnetic moment [84,418,85,791.

2.2. Phase diagrams

Metals are derived from the insulating compounds by a random partial substitution of out-of-plane
ions or by adding further oxygens. Trivalent La is replaced by divalent Sr or Ba in La2CuO4 (or Y by
Ca in Bi2Sr2YCu2O8). To realize a 2+ state for the Sr dopants charge neutrality requires that electrons
are removed from the Cu02 planes thereby effectively creating mobile holes in the planes. As we will
discuss in more detail in section 4.2 this is realized by changing an equivalent amount of planar 02
ions into an 0 state [116]. Similarly, substituting Nd

3~in Nd
2CuO4 by Ce

4~ions transfers excess
electrons into the planes [424]. In this case, it is generally believed that the electrons transferred
into the planes create locally Cu~which has a closed d-shell configuration and therefore carries no
magnetic moment. Hole and electron doping processes are therefore different microscopically. The
different nature of the charge carriers has been confirmed by the observed sign of the Hall coefficient
in metallic La

2~Sr~Cu04and Nd2_~Ce~CuO4[300].
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Fig. 2. (a) T—x phase diagram for La2~Sr~Cu04and Nd2~Ce~Cu04(taken from Ref. [15] as reproduced in Ref. [1031).
(b) Schematic temperature versus oxygen content phase diagram for YBa2Cu30~~.Both diagrams show insulating—metallic,
magnetic—nonmagnetic and structural boundaries together with the regime of high-temperature superconductivity. (From Ref.
[309].)

In 123 °6+x hole doping is achieved by increasing the oxygen content continuously from 06 to
07. In this material a peculiarity arises in that initially Cu—0 chains start to form in between the
Cu02 bilayers. In order to create n 02 ions along the chains 2n electrons have to be removed from
other parts of the crystals. Most likely these electrons are removed from the Cu02 planes. Due to
subtle details in the chain formation the amount of electronic charge removed from the planes does
not increase linearly with the oxygen content. This gives rise in the T versus x phase diagram of
123 06+X to a so called “60 K plateau” where T~changes only little with the oxygen content. This is
clearly displayed in the phase diagram in Fig. 2b. The highest 7~,is reached near the 07 compound. At
this oxygen content the Cu—0 chains are completed and no further oxygen can be added. Estimates
put the hole doping concentration near 20% in the 07 material [423]. With respect to the value of
T~123 compounds with oxygen contents near 07 are often referred to as optimally doped while the
compounds with T~ 60 K are referred to as underdoped.

As the phase diagrams in Fig. 2 show holes doped into the Cu02 planes appear to be very efficient
in destroying the AF state and already a low hole concentration is sufficient to suppress the Néel
temperature TN. In a simplified picture the extra spins of the added holes frustrate the AF exchange
interaction between the Cu moments forming a singlet state with either of the two adjacent Cu

2~
spins [6,474]. With the disappearance of antiferromagnetism metallic behavior evolves continuously
accompanied by essentially no changes in the Cu—0 bonding pattern. This argues to view the metallic
cuprates as doped Mott insulators [330]. Yet, no well defined boundary can be drawn in the phase
diagram between the insulating and metallic phases [2341. Beyond the critical hole concentration
where Néel order disappears high temperature superconductivity emerges.

The phase diagram in Fig. 2a for the 214 materials is drawn symmetrically for both hole and
electron doping. In these compounds the superconducting transition temperature has a maximum at
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intermediate doping values disappearing again for higher dopings. This defines an optimum composi-
tion at which the highest T~is reached, as well as an under- or overdoped doping region, respectively.
Despite the qualitative similarity between hole and electron doping there is obviously a noticeable
quantitative difference: the electron-doped compounds sustain AF order over a much larger doping
range. This is in part due to the different microscopic doping mechanism as outlined above.

3. Experiments probing magnetic correlations

Since this article focusses on the magnetic properties and AF spin fluctuations in the metallic
cuprates we select in the experimental overview the subset of data which probe specifically the
magnetic correlations. This selection by no means underestimates the importance of the data available
from other experiments such as e.g. photoemission spectroscopy, tunneling, or measurements of
the optical conductivity which will only briefly be addressed at some instances. They have been
summarized in a series of comprehensive review articles (see e.g. Refs. [33,34,144—146]). Rather we
concentrate here on the magnetic phenomena which underly and motivate the theoretical approaches
that will be discussed in subsequent chapters.

3.1. Static magnetic susceptibility

We start by reviewing experimental results for the magnetic susceptibility ~(T) in undoped and
doped compounds. Fig. 3 shows the temperature dependence for series of samples of the 214 and
123 07_X compounds [418,296,187,188]. The Sr free 214 sample in Fig. 3a clearly exhibits a peak at
around 240 K signalling the transition to a long range ordered AF state. This peculiar susceptibility
peak at TN is not a general feature of an isotropic Heisenberg antiferromagnet and rather must be
attributed to result from the Dzyaloshinskii—Moriya interaction [418]. For all the doped samples
this peak is absent. In Fig. 3b the 214 samples with Sr contents 0.15 < x < 0.2 show instead a
broad smooth maximum which moves to higher temperatures with decreasing x until it is no longer
detectable in the temperature range of the experiments.

This general behavior is actually known to occur in the square lattice spin 1/2 Heisenberg antifer-
romagnet where X(T) has a maximum at around a temperature of the order of the exchange coupling
J [299]. However, J is as large as 1500 K for the cuprate materials (see Tab. 1) which is of course
inaccessible to experiment since around these temperatures La2CuO4 starts to decompose. So the
theoretical result for the 2D Heisenberg model unfortunately cannot be verified by a measurement
of x (T) in the undoped antiferromagnets. With increasing Sr doping, however, it appears that x(T)
preserves its general shape and the maximum moves with growing x to lower temperatures when it
becomes visible in the experimental temperature range (see also [465]). The results for the magnetic
susceptibility can therefore be qualitatively understood if one assumes that the Heisenberg exchange
energy is reduced by the presence of doped holes. Furthermore, for the Heisenberg antiferromagnet
x cx 1/J at T = 0, [218] and if the effective exchange coupling is reduced by the doped holes
the magnetic susceptibility should increase with x, at least at low temperatures. This is indeed what
the data show for the 214 material [426]. For x > 0.2 X(T) grows monotonously with decreasing
temperature. In this doping range the maximum is presumably masked by a Curie term which gets
stronger with increasing x. [296]
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Fig. 3. Magnetic susceptibility for (a) undoped La2CuO4 (corrected for core susceptibility) (from Ref. [4181) and sample
series of (b) La2_XSr~Cu04(from Ref. [296]), and (c) YBa2Cuo07...~(from Ref. [187]).

The 123 compounds show a similar evolution of the magnetic susceptibility with decreasing oxygen
content as shown in Fig. 3c. The highest T~samples near 07, however, have an essentially T-
independent Pauli like susceptibility [187,293]. One may be tempted to conclude that AF correlations
are no longer important in this material, but the flattening may be due to other contributions to X(T)
e.g., contributions from the Cu—0 chains [188]. The exchange energy in 123 materials is comparably
large as in the 214 compounds (see Tab. 1) and the temperature range for which ~(T) data are
available may be to small for a conclusive answer. Complementary information is needed from other
experiments.

3.2. Magnetic neutron scattering

The method of choice for the investigation of magnetic ordering phenomena and the spin dynamics
is magnetic neutron scattering. Among various experimental tools neutron scattering experiments are
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unique in the sense that they allow in principle to determine the full frequency, momentum and
temperature dependence of the spin structure factor

S~(q,w)= ~ fdte1~t~e~R(Soa(O)S~(t)). (3.1)
_ R

S~is a component of the local spin density operator at the spatial position R with a e {x, y, z }. The
cross section measured in a magnetic neutron-scattering experiment is related to the spin-structure
factor by [238]

cx ~ ~(&af3 — ~a~p) 5a~(q, w), (3.2)

where o = (Of — w~and q = kf — k, are the energy and momentum transfer of the scattered neutron,
respectively. In isotropic spin systems and of course also in the paramagnetic state only the diagonal
components 5oa (q, to) are finite. For a system with long range magnetic order the Bragg scattering
is given by the to = 0 response to Eq. (3.2) for q equal to the magnetic reciprocal lattice vector.
The directional prefactor (1 — t~) allows to determine the ordered spin direction. The fluctuation—
dissipation theorem relates the spin structure factor to the corresponding dynamical spin susceptibility
by

S(q,w) = (1/ir)[1 +n()]Im~(q,w), n(w) = [1 +exp(—h(O/kBT)1’, (3.3)

where n(w) is the Bose function. The neutron-scattering cross section therefore allows one to de-
termine the structure of the spin order as well as the electronic spin dynamics. In the following we
collect some of the experimental results obtained for undoped and doped cuprate materials.

3.2.1. Spin order and magnons in the AF compounds
While already the bulk susceptibility measurements have shown the Ndel like transition [418],

the occurence of a magnetic Bragg peak in neutron scattering experiments on La2Cu04 (as shown
in Fig. 4) and 12306 has proven convincingly the long range AF order [119,430]. The direction
of the ordered Cu spins has been found to be perpendicular to the crystal c-axis [70,430]. In the
basal plane the Cu spins are oriented at a 45°angle to the Cu—0 bonds [132,430] which in the
orthorhombic phase of La2CuO4 is the direction of the tilt axis for the buckling pattern of the CuO2
layer [42]. The tilting of the octahedra leads to an additional feature unique to the 214 compounds
in the cuprate family: The induced Dzyaloshinskii—Moriya interaction enforces a spin canting in the
direction perpendicular to the basal plane. The canting angle has been determined [418,202] to be
as small as 0.2°but gives rise to a weak planar ferromagnetic moment. The overall AF spin structure
in La2CuO4 is shown in Fig. 5a. No spin canting occurs in the AF compound 12306. The magnetic
ordering wave vector within a Cu02 plane is in this compound in the (1, 1) direction and the Cu
spins in adjacent CuO2 planes are coupled antiferromagnetically as well [430] (see Fig. 5b).

Inelastic neutron scattering measurements of the spin wave spectrum in La2CuO4 [158] and
antiferromagnetic 123 O6+X [336] have shown that the spin ordering is well described by the S =
Heisenberg model. Linear spin wave theory with added quantum corrections proved to be sufficient
to describe the measured spin wave dispersion [1581 and the magnitude of the ordered Cu moment
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Table 1
Experimental values for two different antiferromagnetic cuprate materials. Note that there is a considerable discrepancy in
the results for YBa2Cu3O615 between the most recent results of [357] and earlier reported numbers. The Cu—Cu exchange
energy has been obtained from the spin-wave velocity using the linear spin wave theory results for the 2D Heisenberg
model, i.e c = l.l8v’iJa (see section 5.1.1).

YBa2Cu3O615 [336,339] La2CuO4

Ordered moment (0.64 ±O.O3)1un, (0.47 ±O.O3)~as[357] O.
6ILB [119,205]

TN (415±5) K, (410±3) K [357] 325 K [205]
Spin wave velocity (1.0 ±0.05) eV A (0.85 ±0.03) eV A[3]

(100±20) meV [357] (136±5) meV [3]

of ~ O.6~i
8.In particular the agreement of the values for the exchange coupling constant determined

independently from neutron and Raman scattering, analysed on the basis of the 2D Heisenberg model,
gives convincing evidence for the applicability of this model. Still, more recent neutron data suggest
that AF 123 materials may be more appropriately described in terms of an anisotropic 3D system
[357].

The measured anisotropy gap for zone boundary magnons also allows an estimate for the weak
planar XY anisotropy of the order [336] z~J/J~ iO~.For the bilayer system 123 06+X the coupling
between the two closest layers has been roughly estimated to be 4 ~ 10

2J to 10_I J while the
AF coupling between bilayers is very weak J’ ~ 105J [336,339]. The bilayer coupling causes the
2D-like spin waves to be split into acoustic and optical branches. A search for the optical spin wave
modes in antiferromagnetic 123 06.15 at excitation energies up to 60 meV has so far been unsuccessful
[357]. The reason for this is still unresolved.

For further reference we collect in Tab. 1 some numbers for the 214 and 123 antiferromagnetic
compounds obtained from neutron scattering experiments.

The magnon spectrum has also been monitored in the slightly doped AF state of 123 O6+X com-
pounds. Upon doping the spin wave velocity c softens considerably. Magnons become strongly
overdamped and c vanishes at a critical hole concentration of about 2% holes in the Cu0

2 planes
[336] indicating a complete loss of 3D long range magnetic order.

3.2.2. Spin correlations in doped compounds
Neutron scattering experiments on 123 O6+x [337,362] and La2_~(Ba,Sr)~CuO4[420,157] show

that for small doping (x ~ 0.04 in doped 214) the AF long range order is replaced by commensurate
short range spin correlations. For metallic samples at larger doping concentrations magnetic scattering
has been detected also near optimum compositions, e.g. even in stoichiometric 123 07 magnetic
scattering has been identified using polarised neutrons [278]. The propagating spin wave excitations
are replaced by a broad excitation spectrum which is found to extend up to energies of about 45
meV. [337] Remarkably, experiments have proved that dynamical AF correlations persist even into
the superconducting state [431].

For metallic doping concentrations x > 5% the magnetic Bragg peaks in La2_~Sr~CuO4broaden
and develop a two-peak structure [420,363] at low temperatures T < 100 K. Representative scans are
shown in Fig. 6. This indicates the persistence of finite range AF order in the metallic compounds
but also an incommensuration of the magnetic correlations. Interestingly, in the electron doped
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Fig. 6. Magnetic scattering at T = 35 K for a sample of Lai86Sro14Cu04 with T~= 33 K. The main figure consists of a
series of constant energy scans collected along the momentum trajectory indicated by the dashed line in the inset. (From
Ref. [257].)

214 compounds (Nd, Pr)2_~Ce~Cu04the magnetic correlations remain commensurate at least for
samples with x up to 10% for which neutron scattering data are available [421]. So far, no clean
discommensuration effect has been observed in 123 O6+~.Although, the flat topped magnetic peak
observed in a superconducting sample with x = 0.6 has been suggested to indicate that the same
phenomenon occurs in this material as well [432]. These different behaviors nevertheless show subtle
differences in the spin dynamics in both materials. Unanswered by neutron experiments remains the
issue whether the incommensurate signals arise from an intrinsic change of the spatial magnetic
structure or whether they result from the formation of domains inside which the magnetism remains
commensurate. An alternative explanation relates the different behaviors of doped 214 and 123 °6+x
to band structure effects [226,235]. So it is possible that the incommensurate peak in doped 214
merely reflects the topology of the Fermi surface.

A thorough investigation of q scans with improved resolution [80] has revealed that the incommen-
surate modulation wave vector moves with increasing doping level away from the (IT, IT) point (in
the square lattice notation) along the directions (0, 1) or (1 , 0). ImX (q, to) in doped metallic 214
samples is therefore peaked at the points (IT, IT) + 5(ir, 0) and its equivalent points in the Brillouin
zone. The deviation from the commensurate wave vector scales roughly as [80] 8 ~ 2x. On cooling
the incommensurate peaks get sharper and remain sharp also below 1~.[257] However, for low
energy transfers hu = 3.5 meV the incommensurate modulations disappear almost entirely below 1,.
In the normal state, the peaks considerably broaden as the energy is increased [257], e.g. as shown
in Fig. 6 in the range from 3.5 meV to 15 meV. Provided that the structure factor S(q, to) in the
metallic samples of La1 86Sr014CuO4 is dominated by particle—hole excitations near the Fermi level
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this indicates an unusually rapid energy dependence of the quasiparticle lifetimes [234] consistent
with results obtained from angular resolved photoemission experiments [301].

3.2.3. Doping and temperature dependence of the correlation length ~(x, T)
The momentum width of the magnetic Bragg peaks is a direct measure for the spin—spin correlation

length. Conveniently, the energy integrated measurements of the dynamical spin structure function
yield the instantaneous spin—spin correlation function

50a(q) =fdtoS°’~(q,to)= l~et(SaS~~) (3.4)

Due to the experimentally limited finite energy cutoffs of the integrated spectra, presumably more
reliable data analysis is based on energy resolved spectra. In particular, for metallic samples data
are fit assuming a diffusive spin dynamics and a two dimensional Lorentzian lineshape around the
momentum QAF of the magnetic Bragg peak [257]

ToXox(q, to) = ~ + F
0[~

2 + (q — QAF)2J~ (3.5)

This form is applied to the commensurate (IT, ir) peak or to each split peak at the incommensurate
wave vectors in La

2_~Sr~CuO4and allows one to obtain the correlation length ~(T). In some cases
a Gaussian line profile has been found to provide better fits to the data [432].

Empirically the instantaneous correlations in the so called spin glass regime, intermediate be-
tween long range antiferromagnetism and superconductivity, are well described by the simple relation
[204,120]

~‘(x, T) = ~~
1(x,0) + ~‘(0, T). (3.6)

As shown in Fig. 7a this relation holds in low doped La
2_~Sr~Cu04with x ~ 5%, where the magnetic

peak is commensurate. In Eq. (3.6) ~(0, T) is the temperature dependent correlation length of the
undoped system. The doping dependence of the correlation length in this regime behaves roughly as
1 /~ corresponding to the average separation between the holes in the CuO2 plane as introduced by
the Sr doping [42].

The simple relation Eq. (3.6), however, no longer holds in the metallic regime for x > 5%. Instead,
the magnetic correlation length ~ as established at low hto ‘~ 1 meV becomes considerably larger
than the mean spacing ao/~/~between the carriers where a0 = 3.8 A is the distance between nearest
neighbor Cu atoms in the planes. The deviation from the 1 /\/~behavior gets larger faster with
increasing x. This conclusion is drawn from the Lorentzian fit to a single incommensurate magnetic
peak. The enhancement over the 1/~/~behavior has been interpreted to indicate an excellent screening
of the donor impurities by the charge carriers in the Cu02 planes [4], but it remains puzzling that
the correlation length is increasing with hole concentration.

Still, there is a discrepancy between the numbers quoted for ~ in La2_~Sr~CuO4as reported from
different groups (see Table 2 and Figs. 7b,c). A complication arises from the frequency dependence
of the correlation length as revealed from energy resolved data analysis [432]. This presumably
explains the different results in Fig. 7b and Fig. 7c: ~ in Fig. 7b is obtained for hto ~‘ I meV
and describes the inverse q-width of the peak in Im~(q,to) while ~ in Fig. 7c is the equal time
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Fig. 7. (a) Inverse magnetic correlation length of four La2_~Sr~CuO4samples in the low doping regime. The solid lines are
calculated from Eq. (3.6). (From Ref. [206].) (b) Doping dependence of the correlation length ~ in Lao_~(Sr, Ba)~CuO

4.
~ corresponds to best estimates of full-width at half-maximum of peaks in x”(q, w) at the lowest possible energy (hw I
meV) in the normal state T  T~.The solid line represents ao/~.fl, the mean distance between Ba or Sr dopant ions.
(From Refs. [4,258].) (c) Magnetic correlation length ~ versus Sr concentration x obtained from two-Lorentzian fits to
the incommensurate magnetic peaks of energy integrated data. (From Ref. [420].)

spin—spin correlation length. But generally ~ is found to be of the order of a few lattice spacings in
moderately doped materials. From constant energy scans of the q-width of the susceptibility peak, ~
has been demonstrated to be essentially temperature independent between 20 K and room temperature
[56,336].

3.2.4. to/T scaling
Quite remarkable results have been obtained for the frequency and temperature dependence of

the dynamical susceptibility in low doped samples. The data have been analysed in terms of the
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Table 2
Correlation lengths as obtained from the width of the magnetic Bragg peaks (commensurate or incommensurate) at low
energies. For comparison: the Cu—Cu distance in the planes is 3.8 A. (Note, e.g. that the result for the 214 sample with
x = 0.15 has been obtained from the energy integrated structure factor, while ~ for the x = 0.14 sample was determined by
the half-width half-maximum of inelastic scans at low energies.)

La2_~Sr~CuO4 Sr content x Correlation length ~

0.04 42 A [206]
0.075 (18±1)A [80]
0.14 25 A [257]
0.15 12 A [261]

YBa2Cu3O~1 Oxygen content x Correlation length ~

0.50 (9±2) A [43]
0.51 8.5 A [336,56]
0.60 7.6 A [390]
0.69 5.5 A [336]
0.92 3.3 A [338]

relaxational dynamics Eq. (3.5) where the frequency scale is set by I’ = r0/~
2.Below room

temperature To is found to increase linearly with temperature [157].This in turn implies that the
local susceptibility obtained from the momentum integral around the AF zone center is a homogeneous
function of to/T

I(to,T) = f d2qIm~(q,to)=f(w/T). (3.7)
(IT ir)

The scaling behavior Eq. (3.7) has been verified in the energy range 4.5 meV < to < 12 meV between
10 K and 500 K for nearly metallic La

196Sr004Cu04 [204] and similarly in La195Ba005CuO4 [157].
Local susceptibility data have been demonstrated to follow the simple heuristic form (see Fig. 8a)

I(to,T) =I(to,0)(2/ir)arctan(aito/T-f-a3o.
3/T3+--.). (3.8)

While this behavior is strikingly simple it is equally important to recognize its limitations: the scaling
relation holds in the regime where I (to, 0) is approximately constant, that is for energies 10 meV <
to <40meV [43] and T> 100 K. At higher energy the magnetic signal drops sharply [336,338],
while below 100 K the generic behavior breaks down at low energies where the appearance of a gap in
the spin excitation spectrum starts to interfere. The w/T scaling is clearly an interesting feature of the
spin dynamics in low doped 214 samples, but it has not been found to apply to the superconducting
214 samples.

Similar scaling has also been observed in superconducting 123 °6+x samples with T~near 50 K
[43,390]. However, here the temperature dependence of the susceptibility converges to a universal
function of w/T only at high temperatures. The temperature at which the scaling sets in increases
with decreasing energy transfer as shown in Fig. 8b. The appearance of the temperature as the
relevant energy scale for the spin dynamics may be very significant because of its possible relation to
other normal state properties. Linear temperature dependences of NMR relaxation rates and electronic
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Fig. 8. (a) Normalized q integrated spin susceptibility (x”) in La196Sr00.1CuO4 as a function of the scaling variable w/T.
The solid line results from a fit to the function Eq. (3.8) with a1 = 0.43 and a3 = 10.5. (From Ref. [206].) (b) The
temperature dependence of the momentum integrated dynamical susceptibility Im x in 123 06.6 at a fixed energy transfer
converges to a universal function at high temperatures. The arrows mark the temperature at which the generic behavior sets
in with decreasing energy. (From Ref. [390].)

scattering rates have become hallmark examples of anomalous properties in cuprate materials. For
example the Drude part of the optical conductivity and the dc resistivity have been interpreted in this
way providing a possible basis for a successful normal state phenomenology [130].
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Fig. 9. Low energy part of the spin excitation spectrum Im~(q,a~)in YBaoCuoO66e below (T = 5 K) and above
(T = 75, 150,250 K) the superconducting transition temperature T~= 59 K. A spin-excitation energy gap Eg = 16 meV
clearly persists above T~(from Ref. [337]).

3.2.5. Spin excitation gap
On entering the superconducting state we have noted already that the AF spin correlations continue

to persist. To be more precise this does not hold for low neutron energy transfers where the magnetic
scattering gets suppressed [257]. Well below T~the low energy neutron scattering intensity is shifted
to higher energies opening a spin excitation gap Eg of a few meV. For example a gap value of
Eg = 16meV = 3.2kBTC has been determined in 123 0669 [336]. The apparent gap energies increase
gradually with increasing oxygen content but are always less than the BCS value for the supercon-
ducting energy gap. Such small gap values have been consistently observed also in superconducting
La2_XSrXCUO4 [420,363]. This deserves special attention since from other experimental data and in
particular from optical conductivity measurements [350]consistently much larger gap values have
been reported. Not understood is also the rapid change in the gap size for relatively small changes
in T~in underdoped 123 [142]. But the available energy resolution appears to be sufficient to show
that the spin excitation gap is not sharp in the sense that Imx(QAF, Eg) has a finite slope at the
deduced gap energy [336]. This is in accordance with other experiments which detect low energy
magnetic scattering below T0. It may either imply a pairing state which is different from conventional
s-wave pairing [422], or it may equally well result from localised magnetic impurities which have
been detected at least in La185Sr014Cu04 by specific heat measurements [259].

The gap feature in the spin excitation spectrum starts to develop already well above T~[336,142] in
underdoped 123 material (see Fig. 9). It is unlikely to be a superconducting precursor effect because
it affects the spectrum up to temperatures as high as 2T~ [336]. More likely, the data indicate the
development of a normal state spin excitation gap in underdoped 123. This spin pseudogap will also
reappear in the subsequent discussion of nuclear resonance experiments. A comparable feature has
not been reported from neutron scattering experiments in doped 214 samples.
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3.3. Nuclear magnetic resonance

While the neutron scattering experiments have the virtue to provide functional dependences of dy-
namical susceptibilities on frequency and momentum, it is the special advantage of nuclear resonance
techniques, i.e. nuclear magnetic resonance (NMR) and nuclear quadrupolar resonance (NQR), to
give local, atomic site specific information. The magnetic hyperfine interaction of distinct nuclei at
different crystallographic sites couples the nuclear moments to the spins of the conduction electrons
as well as to the unpaired valence electrons. This leads to shifts in NMR resonance frequencies as a
measure of the uniform susceptibility, and the coupling to the local electron spin dynamics determines
the relaxation of the field aligned nuclear moments in NMR. The availability of several nuclear sites
and the different field directions have provided a large number of complementary data (for recent
reviews see [304,444]).

The analysis of nuclear resonance experiments has commonly adopted the standard hyperfine
Hamiltonian of Mila and Rice [264] for the planar 63Cu (or 65Cu) and ‘~oisotopes’ nuclear spins
63j and 17j respectively. The result of their quantum chemical analysis is written in the form

Hhf = ~ 63liaAaaSia + B 63j S
1 + C ~ ‘

7J~.S
1. (3.9)

ia (ii) (ii)

The first term follows from a direct hyperfine interaction between the Cu nucleus and Cu d-orbitals
at the same site and it is anisotropic, A11 ~ = A~.,~ A~ A1. The second and the third
term describe transferred hyperfine couplings to nearest neighbor electronic Cu spins. B is assumed
isotropic as it arises from a Fermi contact interaction. The oxygen part contains in principle a tensorial
coupling [358] but with the exception of [271] most of the analyses have taken C to be isotropic
[62,272]. Couplings to other nuclei, like e.g.

89Y in the 123 compounds, can be added in a similar
way.

The hyperfine Hamiltonian Eq. (3.9) has proven to be a successful starting point for a consistent
description of NMR experiments. Its applicability implies already two important features for the spin
dynamics in the cuprates: firstly, a one component picture of a local Cu2+ moment strongly hybridised
with neighboring oxygen orbitals applies [265]. This is supported by the similar temperature depen-
dences of the different Knight shift in the normal state as well as by the simultaneous disappearance
of the relaxation rates on planar Cu and 0 sites — and on chain sites in the 123 compounds — below T,,
[407]. It is therefore sufficient to consider a single spin degree of freedom per unit cell, i.e. a single
hybridised band of oxygen ps,.,. and copper dX2_),2 orbitals is relevant for the low energy physics of the
electronic spins. The success of the one component picture has led us to discard earlier suggestions
of two component models for itinerant 0 holes and localized Cu moments [288,287,92].

Secondly, there is no evidence that the itinerancy of the charge carrier spin needs to be incorporated
in the hyperfine Hamiltonian. Although it has been found [4031 that the itinerancy of the carriers
gives rise to additional terms in the Hamiltonian comparable in strength to the transferred hyperfine
coupling, they apparently do not lead to observable deviations from the localised picture. Additional
support has come from experiments which indicate that the hyperfine couplings are almost doping
independent [30,443,464]. This may be due to form factor effects [274], but a thorough investigation
of these issues is still lacking. However, Millis and Monien have also derived expressions for the
Knight shift and the relaxation rates in terms of a band theory model [271]. They have concluded
that these expressions do not differ essentially from the predictions of the Mila—Rice Hamiltonian.
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There are basically three different sets of nuclear resonance experiments providing information
about the spin susceptibility. One of them is the Knight shift aKa of the nuclear Larmor frequency in
an applied magnetic field. In this experiment the external field polarizes the electronic spins leading
to an additional field at the nuclear site. The corresponding shift in the resonance frequency therefore
measures the product of the hyperfine coupling and the static susceptibility

aKa limaF~(q)~(q,~=~). (3.10)
2,a5y~hq-~.O

In Eq. (3.10) a denotes the direction of the applied field, i.e. parallel or perpendicular to the c-axis,
and the superscript indicates the nucleus, y,~is its nuclear gyromagnetic ratio. The q-dependence of
the form factors is determined by geometry and their magnitude follows from the coupling constants
of the hyperfine Hamiltonian Eq. (3.9). Explicitly, for planar oxygen and copper sites they are given
by [272,62,358]

63F~
1,± (q)=Aii,±—2B(cosq~+cosq~), (3.lla)

‘
7Fa(q) = 2Ccos ~ (3.llb)

Zero field NQR studies have also been used to confirm the long range AF order in the undoped
compounds by detecting a finite static hyperfine field of the ordered planar copper moments [463].

The second experimental quantity is the spin lattice relaxation rate T~’.This is the rate at which
the nuclear spin magnetization decays due to the coupling to the conduction electrons. T

1~thereby
measures the local spin fluctuation response at the nucleus for very low Larmor precession energies
of the order of I O~eV . This is orders of magnitude smaller than the characteristic energy scale
for the spin dynamics and can safely be taken to zero. The spin lattice relaxation rate follows from
the golden rule formula [285], and e.g. for a field applied perpendicular to the c-axis it is given by
[272]

h~T~= —~-~- lim ~ (3.12)
e~’° hto qa’

where the sum on a’ is over directions perpendicular to the applied magnetic field. Since NMR
is a local probe the response is averaged over all momenta. In this averaging the form factors for
the different nuclear sites filter out different parts of momentum space. The same quantity is also
measured by NQR without the necessity of applying an external magnetic field.

A magnetic peak in Im~,(q,to) at large momenta near the AF wave vector Q = (ir, ir) enhances
the relaxation rate on Cu while the form factor ‘

7Fa(Q) vanishes for oxygen and the corresponding
relaxation rate 17TI is not enhanced and insensitive to commensurate (or nearly commensurate) AF
fluctuations. This is indeed plausible from the location of the 0 atoms in between two essentially
oppositely aligned Cu moments so that the transferred hyperfine fields cancel at the planar oxygen
sites [151,358,264]. A similar geometrical cancellation occurs at the 89Y nucleus as well [272,62].
The relaxation rates at the Y and the 0 sites are therefore governed by the long wavelength q ‘—i 0
part of the spin susceptibility.

Complementary information on the spin susceptibility is provided by a separate relaxation rate
1 /T2G which arises from an indirect coupling between the Cu nuclear spins. The local magnetic field
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of a nuclear copper spin Ii couples to an electronic spin located at, say, R-, resulting in the spatially
varying spin polarization

ja 1
(5a(1?j)) = h’ 2~~IIexP(tq1~Xs(q)Aq. (3.13)

(Ye) q
The spin polarization likewise interacts with another nuclear spin ‘2 giving rise to an indirect RKKY
coupling. This coupling leads to a transverse relaxation rate for the nuclear Cu spins given by
[403,417]

(~)
2~(h~e)2 [~IA~I4X~(q)- (~>IA~I2Xs(q))2]. (3.14)

The factor c = 0.69 is the natural abundance fraction of the 63Cu isotope. I /T2G is determined from
the real-time Gaussian decay in a spin-echo experiment [305,181,410], and allows an independent
measurement of the static, momentum dependent spin susceptibility.

3.3.1. Knight shift
Together with the anisotropy of the Cu relaxation rates the Knight shift experiments have been used

to fix all the relevant hyperfine coupling constants [272]. They can be found tabulated e.g. in [289].
All data are consistent with the assumption of doping independent coupling constants [445]. With
the knowledge of these constants Knight shift data allow to determine the temperature dependence of
the uniform static susceptibility. However, the total experimentally observed susceptibility is the sum
of various contributions: the spin susceptibility Xs, a paramagnetic van Vleck orbital term (referred
to as the chemical shift), and a core diamagnetic contribution [304,444]. But since only the spin part
of x is commonly expected to be temperature dependent it can be obtained from the total Knight
shift by subtracting its T = 0 value, K~(T)= K(T) — K(0). In addition, only the spin part K

5 of
the Knight shift is related to the density of states at the Fermi energy and hence affected by the
transition to the superconducting state [304]. For example the observed constancy of

63Kii across
the superconducting transition implies that the spin part of the Knight shift 63Ksii vanishes. This
allows us to conclude that there is a coincidental cancellation of two hyperfine coupling constants,
i.e. Au + 4B = 0, [449,30,404].

As we have noted already for the bulk susceptibility data, in the normal state of the T~= 90 K
123 material and also in other optimum doped materials [326] Xs is Pauli like and temperature
independent (see Fig. 10). In the superconducting state the spin Knight shift for planar Cu sites has
been found [30] not to follow the simple Yosida function [467]

Y(T) =f dE (—s) N(E) (3.15)

as it does in a weak-coupling BCS singlet superconductor. In Eq. (3.15) N(E) is the density of
states and f is the Fermi distribution function. Rather, the Knight shift below T~is better described by
strong coupling behavior [311]. Testing various assumptions for the gap symmetry and its temperature
dependence, the data are compatible with both, s- or d-wave symmetry [287] or a mixed s+id state
[227,2281 which is also allowed from symmetry arguments [216]. The data cannot discriminate



A.R Kampf/Physics Reports 249 (1994) 219—351 241

3.0 La Sr0 ,4CUO~ 100

I ,‘~2CuO7
—

~ •~Yaoo1~~ ~ 0 0 0 0 2DS=1I2AFH.~~
• 0 J=O.13eV.T~750K 0

HIlcaxis -

12 - Z
- ...—

T~ ---- a-
0.6 :~ La,~5Sr0075CuO4 ~-‘ . ~.

--~--~ ~

02
0 100 200 300 0 100 200 300

T (K) T(K)

Fig. 10. The closed symbols show the temperature dependence of the planar Cu( 2) NMR Knight shift 63 K for 12307
[data from [30]], with the magnetic field parallel (K~,solid squares) and perpendicular (Ka~b,s) to the c-axis. The solid
line is a guide to the eye showing the very nearly constant Knight shift Kz,,b in the normal state. The open symbols show
corresponding data for the 60 K material 123 O6.M (open squares, o) [data from [445]]. (Figure taken from Ref. [444].)

Fig. 11. Temperature dependences for the spin susceptibility in different HTSC materials, along with the theoretical
susceptibility of the 2D S = 1/2 Heisenberg model (from Ref. [268]).

between these possibilities, although K~appears to have a nonvanishing slope at low T. Left open
remains the possibility for another temperature dependent, possibly orbital contribution. Generally,
for all fits the zero temperature value of the energy gap exceeds the BCS weak coupling limit. One
important result of the Knight shift measurements is the rapid drop below T~since this has allowed
us to identify the spin pairing to occur in a singlet state [406,30].

In striking contrast Xs’ as obtained from the copper Knight shift, is dramatically suppressed in
oxygen depleted 123 0664 [445,407] (see Fig. 10). Similar behavior is observed on the other nuclear
sites as well [11,407]. In fact, when appropriately scaled 17 K and 63 K have even identical temperature
dependences [407], once again emphasizing the validity of the one-component spin—fluid picture.
Furthermore, there is little or no change in K5 at T~.Above T~the decrease in Xs with decreasing T
agrees with the bulk susceptibility measurements [293], which in turn then proves to be dominated
by the physics of the electron liquid in the CuO2 planes. This is also supported by the scaling of the89y Knight shift with the bulk susceptibility [11].

Spin susceptibility data from the Knight shift as well as bulk susceptibility measurements have
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been collected by Millis and Monien [268] as shown in Fig. 11. The plot underlines that underdoped
123 is special, in the sense that its spin susceptibility Xs extrapolates to zero at zero temperature. This
may be viewed as the signature for the opening of a spin excitation gap at low temperatures. It is
also noteworthy that Xs in doped 214 compounds apparently extrapolates to a finite zero temperature
value. Clearly, there are differences in the magnetic properties of 123 and 214 materials, and as
concluded in [268] there is presumably no spin-gap phenomenon in La2 _~Sr~Cu04.

3.3.2. Spin—lattice relaxation rate
Since the hyperfine couplings are known from the Knight shift measurements direct quantitative

information on ImXs (q, to) at low frequencies is obtained from the relaxation rates. We first consider
the relaxation rate at the planar oxygen sites. The marked differences in the magnetic properties
that are observed for the Knight shift between 12307 and 06.63 material continue to hold for the
relaxation rates, too. For the 07 compounds as well as in all other near optimum T~compounds [326]
the Korringa behavior T1 T = const — valid for noninteracting electrons — holds on the oxygen sites
(see Fig. 12). This has been naturally explained above by form-factor filtering of large-momentum
AF spin fluctuations growing with decreasing temperature.

For noninteracting electrons and with isotropic and q independent hyperfine coupling constants a
universal relation between (T1T)’ and the spin Knight shift is satisfied,

1/T1TK~= ~hy~kB/,4 5. (3.16)

This so-called Korringa relation is verified to hold in all optimally doped compounds for the planar
oxygen nuclei [151,165,166], albeit with an enhanced value for the Korringa ratio S. This follows
from the temperature independence in the normal state of both, ‘

7T
1 T and 17 K. The temperature

dependences of Cu and 0 relaxation rates are found to be identical between 20 K and 110 K in
123 07, i.e. up to a temperature well above T~demonstrating the existence of another characteristic
temperature T* [151]. The susceptibilities below this temperature and also in the superconducting
state are therefore suppressed with the same temperature dependence at all q, since otherwise the
scaling between ‘

7T
1 and

63T
1 would be disturbed.

In the oxygen deficient T~= 60 K 123 compound the planar oxygen spin—lattice relaxation rate
develops the same temperature dependence as the spin susceptibility obtained from the oxygen Knight
shift [11,13]. This implies that the Korringa relation is no longer satisfied. Instead, the different
behavior ‘

7T
1T’

7K
5 = const holds down to the superconducting transition temperature [466,407]. As

is true for the spin Knight shift, the relaxation rate traverses the vicinity of T0 smoothly and nearly
featureless [449], as shown in Fig. 12a. The striking temperature dependence of (‘

7T
1 T) —1 is again

a signature for the development of a spin-excitation gap at low temperatures, following an argument
given by Millis and Monien [271]. This argument is based on the total-moment sum rule which
implies that

(S
2) ~>fdto

1
1
1~ImX(q,to) (3.17)

is close to S( S + 1) and cannot be strongly temperature dependent. The sum rule requires that the
loss in low frequency spectral weight of Im~(q, to) as inferred from the decrease of

17T~’with
decreasing temperature has to be compensated by shifting spectral weight to higher frequencies. This
spectral weight shift leads to the opening of a spin pseudogap.
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The planar Cu relaxation rates are similar in all materials and they are strikingly different from the
oxygen rates discussed above. As a result of the strong local spin fluctuations on the copper sites the
Cu relaxation rate is enhanced by an order of magnitude over the oxygen rate and its temperature
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dependence does not follow the Korringa law [407,151,449,464]. In 123 07, 1/(63T
1T) continues to

rise with decreasing temperature until T~is reached where the rate sharply drops. As shown in Fig.
1 2b the behavior is again different in the 60 K 123 superconductor. Here, I/ (

63T
1 T) goes through a

broad maximum at around 150 K and continues to drop with decreasing temperature showing only a
weak anomaly at TL.. Once again, this is consistent with the opening of a spin-excitation gap in the
underdoped 123 material.

Early on it was suggested that for all superconducting cuprates high-temperature relaxation rate
data, i.e. for T well above T~,are best fit by the linear relation [464,178,179]

(
63T

1)~=a+bT, (3.18)

with temperature independent constants a and b. Deviations from this behavior start to develop below
about 150 K. Eq. (3.18) indeed seems to hold in double layer materials, but for the single-layer
La2.~Sr~Cu04superconductor the relaxation rate has subsequently been found to be closer to a
Curie—Weiss like temperature dependence [212,298],

(
63T

1Ty’ =C/(T+O), (3.19)

with constants C and 6 varying with the Sr concentration. Also, the data for the Cu spin—lattice
relaxation rate in La2_5Sr~Cu04for various dopings x do not allow an unambiguous identification of
a maximum close above T~[298] as a possible signature for a spin-excitation gap (see Fig. 12c).
This is an indication that there are possibly subtle differences in the spin dynamics between the multi-
and single-layer materials. Similar evidence arises from the different high-temperature behaviors of
the Cu relaxation rate: while 1/

63T
1 continues to grow linearly with T in 12307 [179] it saturates in

La2~Sr,~Cu04to a constant, doping independent value around 300 K [180].
In the superconducting state the copper relaxation rate in 123 compounds approaches an approxi-

mate T
3 behavior below 40 K [211,177], clearly distinct from an exponential temperature dependence

expected for an s-wave BCS superconductor. Both 63T’ and ‘7T~depend on magnetic-field strength
in the NMR experiments but low-field data have confirmed the T3 behavior at low temperatures [254]
which is expected for an orbital pairing state with d-wave symmetry.

3.3.3. Absence of coherence peaks
A separate important feature in the spin lattice relaxation rate data on all nuclear sites is the

absence of a coherence Hebel—Slichter peak [159] in the superconducting state [448,177,151,251].
Instead of rising, as it does in conventional low T~superconductors [159], the relaxation rate is
rapidly suppressed below T~[177]. The Hebel—Slichter peak has been a common signature of
conventional BCS singlet, s-wave superconductors. It is essentially an effect of the singular nature
of the superconducting density of states which is not suppressed by the type II coherence factors
associated with nuclear relaxation [352].

In the light of its importance for our understanding of conventional superconductors the absence of
the coherence peak in cuprate superconductors bears an important clue to the electronic correlations
and the pairing. An s-wave superconductor can yield T~’similar to the ones observed in the cuprates
provided that a large temperature dependent pair-breaking mechanism is active and the gap ratio
2zl(0)/k~T

0 is large [87,162,219]. In Eliashberg strong coupling theory the coherence peak — in
NMR as well as in the optical conductivity — may disappear for sufficiently strong coupling to
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phonons [9,7] or a featureless bosonic mode suggested in the phenomenological hypothesis of the
marginal Fermi-liquid [219,232,233] (see the brief discussion in section 4.1.1). While also a d-wave
gap function leads to a substantially reduced coherence peak the peak feature itself is still present
[287,65]. Also for this pairing state inelastic pair-breaking processes and enhanced gap ratios are
necessary to explain the abrupt drop of the relaxation rate on entering the superconducting state in
the near-optimum T~compounds.

3.3.4. Spin gap
The spin gap phenomenon has attracted a lot of attention in the literature and we may add here a few

more comments. The magnetic susceptibility decreasing with decreasing temperature and the normal-
state maximum in the temperature dependence of Cu relaxation rates are characteristic anomalies
in underdoped 123 materials (as well as in the similarly underdoped but stoichiometric YBa2Cu4O8
compound [477] and in BiSr2Ca2Cu2O8 [446]). As discussed above this is taken as evidence for a
gap to low-lying spin excitations developing in the normal state. The same phenomenon of a spin-
pseudogap has also been observed in neutron scattering (see section 3.2.5). When first mentioned in
the literature [449] suggestions have been made that the spin gap which appears already significantly
above T~results from precursive superconducting pair formation [449,445]. A scenario, however,
where the superconducting transition is viewed as Bose condensation of preformed Cooper pairs is
not supported by experiment. Measurements of the work function have shown that the behavior of
the chemical potential at and below T~is not compatible with what is expected for Bose condensation
[332]. The nature of the transition is in fact much closer to BCS behavior with modifications arising
from the anomalously short coherence length in the cuprate superconductors.

Further conclusive evidence against a superconducting precursor effect as the origin for the anoma-
lous spin gap has come from measurements on Zn substituted 123 ~ [12]. While the Zn substitution
for Cu substantially reduces the superconducting transition temperature, the homogeneous spin sus-
ceptibility Xs and hence the spin gap feature is only weakly modified proving that it is of a different
origin.

It is important to stress again that the spin-gap behavior disappears for the optimally doped 123 07
compound and does not occur for overdoped 123 materials [164]. In these compounds the gap
for charge and spin excitations opens at the same temperature T~.The existence of apparently two
different temperatures for the onsets of the gaps for spin and charge excitations in the underdoped
region has been speculated to result from the separation of spin and charge [292].

However, another possible hint to the origin of the spin gap in underdoped 123 compounds may
be inferred from the similar features observed in other underdoped double- [152]and triple-layer Bi
and Tl based cuprates [166] and a comparison to the single layer La2_~Sr~Cu04superconductors.
All double layer compounds show a common magnetic behavior which is implied by the

89Y NMR
data [152].Neutron scattering has already provided evidence for strong AF bilayer correlations
[432]. A detailed comparison of the relaxation rates at Y and 0 sites in YBC 0663 [409] has shown
distinct temperature dependences. The 89Y relaxation rate decreases more steeply than the 170 rate
with decreasing temperature: Since Y nuclei are located in between the two adjacent Cu0

2 planes of
a bilayer this result suggests that the AF bilayer correlations become stronger at lower temperatures.
If this is the correct interpretation then the origin of the spin gap is not an intrinsic property of
the planar spin dynamics but rather results from the AF coupling of layers which is stronger in the
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oxygen-deficient compounds closest to the composition of the insulator [268,269]. The open question
remains whether the intra-bilayer coupling is strong enough to explain the observed spin-pseudogap
feature.

We mention that a different point of view has been taken by Sokol and Pines who argue that the
appearance of a spin gap is not related to the presence of CuO2 bilayers. Rather it is suggested to
reflect a crossover in the spin dynamics from an overdamped to a quantum disordered regime [380].

3.3.5. Anisotropy of 1 /T~below T~
Another set of experiments has employed the anisotropies of the relaxation rates with respect to

the direction of the applied magnetic field. For Cu one distinguishes
63T~

1j’and
63T

1~for magnetic
field directions parallel or perpendicular to the crystal c-axis, respectively. For planar oxygen sites
two different rates Ta and Tb are considered when the field is in the CuO2 planes parallel or per-
pendicular to the Cu—O—Cu bond, respectively [405]. While the anisotropy ratio of Cu relaxation
rates

63R 63 T~/63T~’is temperature [31,407] and field [27,253] independent in the normal state,
a nonmonotonic temperature dependence has been found in the superconducting state of 12307
[31,408,253].

Low field experiments have proven that the anisotropy is not an artifact resulting from the presence
of the applied magnetic field [408,253]. As the temperature is lowered through T~an initial drop
of the anisotropy ratio is followed by a rise at lower temperatures eventually exceeding the ratio in
the normal state (see Fig. 13). Isotopic substitution of 63Cu has allowed to identify the relaxation
mechanism above 30 K to be almost purely magnetic and not electric quadrupolar in origin [408]. At
lower temperature additional relaxation mechanisms appear — most likely caused by oxygen motion
[4081 or impurities [176]. The unusual temperature dependence of the anisotropy ratio and the
magnetic origin of the nuclear relaxation suggest a temperature dependent anisotropy of Xs (q, to)

below T~indicative of an anisotropic gap function favoring a d~2~,2symmetry of the superconducting
state [65,242] (see also section 6.3.2).

3.3.6. Transverse spin—spin relaxation rate 1/T2G
The complementary measurements of 1 /T2G for the Cu nuclear moment have provided further

insights into the different spin dynamics of underdoped and fully oxygenated 123 materials. With
respect to the Cu spin—lattice relaxation rate the underdoped 123 and similarly also the two-layer
compound YBa

2Cu4O8 [477] have appeared to be special because of the development of a spin-
excitation gap well above T0. But as has been revealed by the I /T2G data, the spin dynamics in the
underdoped compounds is distinctly different also above the spin gap temperature when compared to
the data for 123 069. Most noticeable, the ratio T1 T/T~Qis approximately constant in 12307 above

150 K [181,380]. On the contrary, in 123 0663 it is the ratio T1T/T2G which is nearly constant
above ‘-~ 200 K [410]. This difference has recently received special attention [380]. It has been
interpreted to indicate that the spin dynamics in underdoped and fully oxygenated 123 are to be
described with two different dynamical 2, z = 1 and z = 2, respectively [380].

Finally, we mention another significant result for the transverse relaxation rate in the superconduct-
ing state. The data for YBa2Cu4O8 in Fig. 14 show that the absolute value of I /T2G barely changes
below T0 [1841. This is consistent with the prediction of an RPA like theory of AF spin fluctuations

2 The dynamical exponent z relates the characteristic energy and length scales for the spin dynamics according to a,
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Fig. 13. Planar Cu spin—lattice relaxation rate anisotropy ratio
63R (in the figure denoted by W

06/W~)versus reduced
temperature T/TC in a weak magnetic field: YBa2Cu4O8 in B = 0.58T (.) and YBa2Cu3O7 in B = 0.44T (A). The arrows
indicate the value of

63R above T,,. (Figure taken from Ref. [27], the data for YBa
2Cu3O7 are from Ref. [407].)

Fig. 14. Temperature dependence of the transverse spin—spin relaxation rate 1/
63T2G in YBa

2Cu4O8 (o) and YBa2Cu3O998
(s). The solid curves are the results of an RPA like calculation of Bulut and Scalapino [64] for a s- and d-wave
superconducting gap function, respectively (S and D in the figure). (Figure reproduced from [184].)

for a superconducting gap function with d~2.~,2 symmetry [64]. The inverse transverse relaxation
rate squared, Eq. (3.14), measures a momentum average of X

2 ( q) which is dominated by momenta
q ~ Q. Contrary to an s-wave gap, a d-wave gap will not suppress X(q) around (ir, ir) [64] which
offers a possible explanation for the barely reduced l/T2G below T~.

3.4. Raman scattering

In this chapter we will selectively discuss results for electronic and magnetic light scattering in
doped and undoped cuprates. Although detailed information has been collected by Raman scattering
techniques about the lattice dynamics we will not discuss phonon properties in this article and
refer instead to the recent review articles on this topic in [71,419]. In passing we mention that
phonon frequency shifts between the normal and the superconducting state have allowed accurate
measurements of the energy gap yielding gap ratios 2z1(0) /kBTC near 4.95 in the YBa

2Cu3O7 system
[136]. In addition, as recently suggested, phonon linewidths do offer an as yet unexplored opportunity
to test the symmetry of the gap function in the superconducting state [129].

Certainly, the distinction between a wide variety of origins for features in the Raman intensity is not
clear in many cases and offers a pertinent problem for the understanding and correct interpretation
of the light scattering data. As is true for the results from other experiments, well established
is the Raman light scattering in the insulating and antiferromagnetic materials. Raman techniques
have proven to be a valuable tool in exploring the collective spin excitations in support of the
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picture obtained from the neutron scattering experiments we have discussed in section 3.2. On the
other hand the Raman background continuum observed in metallic as well as insulating cuprates has
received special attention since it appeared to contain valuable information on the electronic excitation
spectrum. Despite many efforts to resolve the origin of the Raman continuum no consensus has yet
been reached on whether it is an intrinsic property of the charge carriers in cuprate materials.

Before we discuss experimental results we will briefly outline some basics for electronic Raman
scattering. In the light scattering process incoming photons couple to the charge or current density of
the electronic system. The coupling to the electrons leads internally to the creation of particle—hole
or collective charge- or spin-excitations. Information about the electronic excitations is contained in
the frequency shift and the polarization of the reemitted photon. Light scattering probes the q ~ 0
response so that only single long-wavelength or multiple excitations with total momenta summing to
zero are accessible.

Microscopically it is the vector potential A of the transverse electromagnetic photon field which
couples to the motion of the electrons by introducing a Peierls phase factor into the kinetic energy

~ = —t exp ~ JA . dl~c~c1~+ h.c. + H10~. (3.20)
(tj),o I

c~.(c~,,)destroys (creates) an electron of spin o- on site i of the lattice and H101 represents the
interaction term of the correlated electron system which is probed in the light scattering experiment.
Since the photon field is a weak perturbation H~0can be expanded to second order in A. In performing
the spatial Fourier transformation we introduce the components of the current operator

Jq = ~ ~—ck~q/2~yck_q/2,U, (3.21)

and the components of the “inverse mass tensor”

T~ ~ ~~~C~+q/2,UCk_q/2(T. (3.22)

Both, j and ~t3 are here written for simplicity for a single band with dispersion Ek. For a free
electron dispersion T~

1~is proportional to the familiar density operator. To second order in A we then
obtain the effective Hamiltonian

H~
0=H~°—~ ~ Tq~+q2Aa_q1A’~_q2. (3.23)

qa qI,q2,a,/3

The Raman scattering cross section is proportional to the transition rate R which is obtained
by applying Fermi’s Golden Rule. The inelastic scattering rate R is obtained from second order
perturbation theory for transitions with energy and momentum transfer i~to= to, — Wf and q = k, — kf,
respectively, between the incoming and outgoing photon. Following the derivation of Shastry and
Shraiman a convenient way to express the transition rate R in terms of a susceptibility may be
obtained in the form [359]

R(q,~to)= [1 + n(~w)]~~ (~)
4fdtet~Kr~(q,o),~(_q,t)1), (3.24)
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where n(z~to)= (e~/T — 1)1 is the Bose distribution function. Since the wavelength of light in
the optical range is large compared to the lattice spacing of the crystal and all length scales of the
electronic system, the momentum transfer q of the photon to the electrons can safely be neglected.

The matrix elements of the effective Raman scattering operator A~!(q) between initial and final
eigenstates i) and If) with energy eigenvalues  ~and Ef, respectively, of the correlated electron
system are given by [359]

(fIic!(q) i) = ~ e~e~(f~rr+ A~f~f~(q)Ii), (3.25)

(f~Jj~jaI3(q)Ii) = ~ ((fIi~fIv)(~‘IJ_k,‘) + ~j~’) K I.Jkf I) ~ (3.26)
\ EpEjtoj EpEj+tof )

From the electron—photon coupling Eq. (3.23) there are two contributions to A~!(q),a direct scattering
term from the coupling to the “inverse mass tensor” and a resonant contribution A~13(q) from the
coupling to the current, which involves virtual intermediate states ~)with energy E~of the correlated
electron system. e~and ef are unit vectors for the polarizations of the incoming and outgoing photon,
respectively.

For further reference we fix the notation for the photon polarizations in different scattering geome-
tries. Since the notations in the literature for the polarizations in 123 and BSCCO 2212 materials are
rotated by 450 with respect to each other [384] it is convenient to relate the polarization vectors of the
incoming and outgoing photons to the Cu—O bonds in the Cu0

2 planes. The different combinations
of e~and ef shown in Fig. 15 define the three major scattering geometries with Aig, Big and B2g
symmetry.

Eqs. (3.25) and (3.26) demonstrate the complexity of the Raman response of an itinerant correlated
electron system. Generally, the Raman intensity involves density—density, four-current and mixed
current—density correlations and it is difficult to disentangle specific contributions, e.g. the magnetic
contributions from spin fluctuations. Due to the general form Eq. (3.24) Raman data are frequently
analysed in terms of the Bose factor and the imaginary part of an appropriate response function

R(z~to)= [1 + n(z~to)]Im~(q 0, ~to,T). (3.27)

3.4.1. Two-magnon scattering
In the AF insulators the electric field of the incoming photon can couple to a two-spin flip process

[114] exciting two magnons of opposite momenta q and —q, respectively. The standard scattering
Hamiltonian describing the interaction of the spin pairs with the photon pairs is given by [303]

HR = ~(E1~~ . n~)(E0~. n~)S1.S~, (3.28)

(ii)

where E11~and E00 are the electric field vectors for the incident and scattered photons, respectively.
n11 is a unit vector connecting lattice sites i and j. If the coupling HR allows only for two-spin flips on
nearest-neighbor sites (ij) then Raman light-scattering intensity from this process will appear in Big
symmetry only for a spin system described by the spin 1/2 square lattice Heisenberg antiferromagnet.
In this symmetry and within linear spin-wave (LSW) theory the excitation of a pair of zone-boundary
magnons leads to a high frequency peak at w2~,~ 2.7J [303]. Strong two-magnon scattering has
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Fig. 15. Polarizations of the incoming (ei) and outgoing (e
1) photons in different scattering geometries. The orientation

of the photon polarization vectors is shown relative to the Cu—O bonds in the planes.
Fig. 16. Light scattering spectra for La2CuO4 in B19, Aig and B2g geometries. All spectra were excited with 4880 A laser
light. (From Ref. [373].)

indeed been observed in Big geometry for cuprate antiferromagnets. With the LSW theory results
values for the exchange coupling energy have been extracted from the energy of the two-magnon
peak. For example J= llOOcm’ = 136meV for La2CuO4 [243] and J=950cm’ ~ 117meV for
12306 [244], reasonably close to the numbers obtained in neutron scattering experiments (see Tab.
1).

Weaker two-magnon Raman scattering is also observed in Aig and B24 scattering geometries
[373,393,376]. The nonvanishing A14 intensity implies that in terms of the square lattice Heisenberg
model finite exchange couplings exist also between diagonal next-nearest-neighbor (nnn) sites. The
weak but finite B2g intensity possibly results from nnn two-spin flip pairs created by longer range
terms which are missing in the spin—photon coupling Hamiltonian Eq. (3.28) [256]; nnn two-spin
flip terms are also made possible by the quantum fluctuations in the two-sublattice antiferromagnetic
state which are strong due to the low dimensionality and the small spin 1/2. Quantum fluctuations
lead to a spectral lineshape of the two-magnon peak whose width is significantly broader and whose
tails extend up to energies 8J — very different from the spectra of the two-magnon approximation
in LSW theory [245,373]. Singh et al. have taken quantum fluctuations into account by expansions
around the Ising limit of the 2D Heisenberg model [373]. The resulting moments of the two-magnon
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Fig. 17. Schematic picture for the two-spin flip light scattering process in a Cu0
2 plane: (a) Initial configuration. (b) The

incoming photon is absorbed creating a charge transfer excitation from a Cu to an 0 orbital. (c) Exchange process. (d)
Charge transfer from 0 to Cu emitting the outgoing photon. (Figure reproduced from [256].)

spectra have been found to agree very well with experiments and have allowed a more accurate
determination of the exchange coupling constants, e.g. J = (1030 ±50)cm’ is found from this
analysis applied to the data for La2CuO4 [373].

A simple picture for the two-spin flip scattering in a CuD2 plane can be obtained if the microscopic
process is decomposed into individual electron hoppings as visualized in Fig. 17. The incoming photon
couples to, say, an up-spin electron on a Cu site inducing a charge transfer to a neighboring oxygen
orbital. This is followed by an exchange process with a separate neighboring Cu spin. Finally, a
down-spin electron hops back to the initial Cu site emitting the outgoing photon. Altogether this
sequence has created a pair of flipped nearest-neighbor Cu spins while the photon has in fact been
coupled to the charge transfer excitation from a Cu to an oxygen orbital.

When holes are doped into the antiferromagnet the two-magnon feature in the Raman intensity
rapidly weakens and the peak’s center of gravity moves to lower energy [243] as might be expected
from the spin disordering effect of the doped carriers [246]. A sequence of 123 O6+X samples with
different oxygen contents has shown that a remnant of the magnetic spin-fluctuation component of the
light scattering is still present in the metallic and superconducting samples (see Fig. 18). Local spin
correlations on some short time scale do therefore coexist with superconductivity [246]. In particular,
a two-spin fluctuation peak has been observed by Lyons et al. in a T~= 60 K sample simultaneously
with a superconducting gap opening at low energies [246]. A more rapid disappearance of the two-
magnon peak has been reported by Reznik et al. but it has been confirmed to be still present in
superconducting samples with lower T~values [329]. Stronger two-magnon peaks in metallic 123
samples are argued to arise from oxygen deficient surface layers [329].

The sensitive dependence on the frequency of the incoming photon has shown that the two-magnon
scattering is of resonant nature [237,329]. Only when the incident photons are at resonance with the
charge-transfer gap energy of the insulators (see section 4.1.1) is the two-magnon peak observed in
Ran-ian scattering. This indicates that it arises from the resonant coupling of the light to the current
density Eq. (3.26) and hence the resonance is an effect of intermediate transitions to high-energy
states [91]. The disappearance of the two-magnon peak upon doping in the metallic regime therefore
does not necessarily imply the disappearance of short range AF spin correlations. Rather, it may be
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Fig. 18. Light scattering spectra for 123 O~+~obtained in the three relevant scattering geometries B19, A19 and B29. (a)
Antiferromagnetic insulator with 8 = 0, (b) T~= 60 K superconductor with 8 = 0.6, and (c) Tc = 90 K superconductor with
8=1. (From Ref. [246].)

caused by the weakening of the resonant enhancement at finite doping concentrations due to the loss
of spectral intensity for charge-transfer excitations [91,329]. As schematically shown in Fig. 17 this
excitation involves a hole hopping from a Cu d-orbital to a nearest-neighbor oxygen p-orbital.

The change with doping in the two-magnon scattering intensity is different in the electron doped
superconductor Nd2_~Ce~CuO4where the two-magnon peak clearly does not disappear in a wider
metallic composition range [425,395]. This is consistent with the previously discussed observation
that the long range antiferromagnetism persists to considerably larger doping concentrations in the
electron doped 214 materials as compared to hole doped 214 (see section 2.2).

3.4.2. Electronic background continuum
Although probably not related to the magnetic properties a discussionof the Raman experiments has

to include the large background intensity observed in all high T~cuprates. This most notable feature
in the normal state of superconducting samples has been found to be nearly frequency and also
temperature independent in stoichiometric compounds [392,383]. It extends from very low energy
transfers hto < kBT [379] up to 1 eV at all major plane polarised symmetries [383]. The large
energy range of the featureless Raman background suggests that it is electronic in origin but cannot
purely result from magnetic or two-phonon excitations. Additional evidence for the electronic origin
comes from asymmetric Fano lineshape of certain phonons since electron—phonon coupling leads to
an antiresonance only ifboth the continuum and the phonons are Raman active. However, the Raman
continuum is not restricted to the metallic and superconducting compounds and it is observed to be
comparably strong in the insulating antiferromagnets [327,3281. So it is unlikely that the Raman
continuum in its entire range is caused by the scattering of light from conduction electrons which
would suggest a close resemblance in its doping dependence to the infrared conductivity; however,
this is not observed. In fact, the background intensity does not scale with the concentration of doped
holes [213].

If the Raman intensity is divided by the Bose factor from Eq. (3.27) the response function
responsible for the Raman background is found to behave as
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Im~(q~0,w,T)~~ ~ (3.29)

lfl Aig and B2g scattering geometries [384,329]. So in these symmetries the temperature is the only
relevant energy scale for the response function, reminiscent of the w/T scaling behavior in the
magnetic neutron scattering in low doped compounds (compare section 3.2.4). Again, the appearance
of the temperature as the relevant low energy scale is distinct from a conventional metal where
the Fermi energy sets this scale. The to/T scaling behavior of the Raman response has been taken
as the starting point for the marginal Fermi liquid phenomenology [130] (see section 4.1.1). A
different behavior is, however, observed in Big geometry with a temperature independent slope in the
linear low frequency part of the response function [384,248,329]. It is interesting that the Raman
continuum persists also in the overdoped La2_5Sr5CuO4 compound with x = 0.34 [394] which is
not superconducting and more likely behaves as a conventional metal [401]. The Raman background
continuum can therefore not serve to answer the question whether the charge carriers in the cuprates
form a Fermi liquid or not.

So far there is no satisfactory explanation of the Raman background in optimally doped as well
as insulating compounds. The insensitivity to doping and also the incomplete low frequency gap-like
redistribution below T~may favour an interpretation in terms of defect induced localised states more
or less present at all doping concentrations [329]. Nevertheless conduction electrons do contribute
to the low energy continuum intensity where gap like structures are formed in the superconducting
state.

3.4.3. Energy gap
Raman gap spectroscopy in 12307 has generally found a distribution of gap values for different

scattering geometries [149,89,248]. They have been assigned to a large gap anisotropy with mean gap
energies ranging from zl 3kBT~to zi 5.5kBTC [149]. Another intriguing result is the almost ideal
superconducting spectrum found in BSCCO 2212 at Big symmetry while in all other symmetries low
energy scattering extending to zero frequency is observed suggesting a continuum of electronic states
inside the gap [385,89]. The incompleteness of the gap formation and the polarization dependence
of the gap feature may require both, an anisotropic gap function and additional localised states not
participating in the pairing.

3.5. Transport, impurity effects

While the experimental techniques we have focused on so far are direct probes for the magnetic
correlations we will in the present chapter collect some examples for other distinguished properties
of the cuprates which are related to the presence of AF spin fluctuations. Not all of them are
rigorous but nevertheless suggestive to be of magnetic origin. They indicate that some of the normal
state properties which are referred to as unconventional are most likely related to short range spin
correlations in the doped compounds.

3.5.1. Spin gap and resistivity
One of the anomalous properties found in NMR and neutron scattering experiments is the apparent

spin-excitation gap in underdoped 123 compounds. Interestingly, the maximum in (
63T

1 T) - ~, which
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we may refer to for our convenience as a spin-gap phenomenon, is directly accompanied by features in
the dc-resistivity and the optical conductivity. In the material YBa2Cu4O8 (referred to as YBCO 124)
— which is a stoichiometric, metallic compound with a planar hole content comparable to the 60
K 123 superconductor — the in-plane resistivity Pab decreases faster than linear below the spin-gap
temperature TD 160 K [59]. This temperature is obtained from the Cu spin—lattice relaxation rate
[477] shown in Fig. 19. Above TD the resistivity increases linearly with temperature in a temperature
range of several hundred K; this is one of the most intriguing transport properties observed in
essentially all optimally doped cuprate superconductors [33]. Since (637~~T) — is governed by the AF
spin fluctuations near Q = (ir, ir) the connection between the spin gap and the drop in the resistivity
suggests that a major part of the resistivity results from large-q magnetic scattering. Because of a loss
in spectral weight for the spin fluctuations due to the spin-excitation gap the magnetic scattering is
reduced below

7’D and the resistivity therefore decreases. An analogous correlation of the appearance
of the spin-excitation gap with deviations from the T-linear resistivity as well as deviations from
the often observed I /T dependence of the Hall coefficient [300]has been recently reported for
underdoped 123 compounds [183].
A similar phenomenon is observed in the planar infrared conductivity of underdoped 123 com-

pounds. Here, o-( to) shows a remarkably similar temperature dependence to the 170 NMR relaxation
rate for frequencies in the region of the superconducting energy gap [88,340]. With these closely
related temperature dependences of both charge and spin degrees of freedom the spin gap opening in
the underdoped compounds has its counterpart in the development of a 500cm~absorption threshold
in the real part of o-( to) well above Tc. While the similarities in the superconducting state between
the to —~ 0 quantity l/T

1T and o1(w) for frequencies to ~lare also well known in BCS theory —

in particular both quantities have the same coherence factors — the remarkable feature in 123 06.6 is
that the same single temperature dependence appears for all relevant frequencies to ~ 2i.1 [88] tying
spin and charge dynamics close together. Theoretical concepts which rely on the separation of spin
and charge excitations are not supported by these experimental results.

3.5.2. Impurity doping with nonmagnetic ions
Ionic substitution serves as another experimental tool to obtain information about the magnetic

correlations and their relation to superconductivity. Local defects can be created on the Cu sites in
particular by the replacements with nonmagnetic Zn or Ga ions. In 123 compounds Ga

3~favourably
replaces Cu2~ions on the CuO chains which has only a minor effect on the superconductivity
[458]proving that the chains do not play an essential role for the electronic properties. Zn ions,
however, do preferentially enter the Cu0

2 planes without adding an excess of charge carriers [12,459].
Zn (3d’°4s

2)is divalent and its d-shell is completely filled. Zn therefore creates local static vacancies
when doped into the AF parent compounds and the antiferromagnetism is weakened by diluting the
number of magnetic moments. Accordingly the Ndel transition temperature is initially suppressed
linearly with increasing Zn concentration [460,205 1 as shown in Fig. 20. This physical situation is
appropriately described by a randomly diluted 2D Heisenberg antiferromagnet. As we will see in
section 5.1.3 in linear spin wave theory the spin wave velocity softens linearly with the (small)
vacancy concentration [50] at a rate comparable to the experimentally observed reduction in TN.

It is also remarkable that the rate of the suppression of the Néel temperature with Zn substitution
is very similar to the situation when electrons are doped into the antiferromagnet Pr

2CuO4 [2051 by
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Fig. 19. (a) Connection of NMR magnetic probes, Cu Knight shift and l/T1T, to the planar resistivity in YBa2Cu4O8.
(From Ref. [59].) (b) Comparison between the Cu02 plane conductivity 0ia(w) in the gap region [o = 250cm~
(squares) and 500cm’ (.)J and the NMR Korringa product, 1/T1T for 170 in a Tc = 62 K 123 O~+~sample (A~).
(Figure taken from Ref. [340].)

substituting Ce for Pr as is also shown in Fig. 20. The doped electrons presumably create locally
nonmagnetic Cu~with a 3d’°configuration, i.e. the same d-shell configuration as for a doped Zn

2~
ion. This leads to the same magnetic dilution effect for low electron doping concentrations.

A nonmagnetic dopant like Zn creates locally a static vacancy in the antiferromagnet which has total
spin (S~~)= 0 and hence the vacancy creates a net uncompensated spin S = 1/2. This generates an
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Fig. 20. Ndel temperature as a function of the concentration of doped electrons or holes in 214 samples, together with the
dependence on the Zn concentration in Zn doped LaiCuO4. (From Ref. [205].)

effective local moment. Zn doped materials therefore exhibit a Curie—Weiss behavior in the magnetic
susceptibility as observed in La2XSrXCul_)Zn)O4 [461]. This local moment may be viewed to be
localized on a small number of Cu sites surrounding the static vacancy.

Zn doping also has a detrimental effect on the superconductivity. T~is suppressed to zero in
La1 85Sro,15Cu1_1,Zn~O4by the substitution of less than y = 3% Zn on the Cu sites [458,461,229]. Even
more striking is that as little as 0.31% Zn substitution makes the superconductor YBa2Cu3O695 gapless
[49]. Because of the Zn-doping induced local moment it has been suggested that the suppression
of superconductivity arises from a magnetic pair breaking effect [460,12]. However, an analysis of
the

63Cu NMR linewidth in Zn doped 12307 [447] has shown that the Abrikosov—Gorkov magnetic
pair-breaking mechanism [11 is too weak to account quantitatively for the rapid T~suppression.
Alternatively, the effect may arise dominantly from strong potential scattering from the Zn impurity
sites [447]. In order for this mechanism to be an effective pairbreaker the orbital pair wave function
is required to have a symmetry different from s-wave according to Anderson’s theorem [16].

3.5.3. Quasiparticle lifetime
It is generally agreed that the normal state conductivity of high-temperature superconductors

(HTSC) in the frequency range below 300cm_i can be described by a Drude term o(co) =

(w~/4ir)/(r’ — ito) with a roughly constant plasma frequency to,, = (4irne2/m*)h/2 and an inelastic
scattering rate r~ that decreases fairly linearly with temperature [350,131,190]. In to,,, n is the
density of conduction electrons with effective mass m*. The behavior of r has emerged as one
of the characteristic features in phenomenological descriptions of the normal state charge dynamics.
High-quality microwave surface-impedance measurements have subsequently been performed by Bonn
et al. [47,48] to determine the temperature dependence of the inelastic scattering rate also in the
superconducting state. A rapid suppression of r~, much faster than a linear temperature dependence,
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Fig. 21. (a) Estimate for the quasiparticle scattering rate in YBa
2Cu3O7 as obtained from the quantity ne

2 /m*on close
below T~.The open circles are extracted from microwave data and the solid square at 95 K is derived from the normal
state resistivity. (From Ref. [47].) (b) The temperature dependent part of the quasiparticle scattering rate obtained by
subtracting a low temperature limiting value of 7 x lO’°s’.Here, the temperature dependence of the normal-fluid has been
taken into account. The nearly straight line on a semi-log scale indicates that the scattering rate varies as exp(T/Th). (From
Ref. [48].)

has been observed in 12307 below T~.
An estimate for the quasiparticle scattering rate has been obtained from a two-fluid model analysis

of the low-frequency conductivity [47—49].In the two-fluid model the real part of the conductivity
is divided into the two terms

to27 r(T) \Reo-(to,T)=cr
5(T)+o-~(T)=—~-(x,(T)S(0)+x~(T) I . (3.30)

41r\ 1+to
2r2j

The first term is the superfluid response which is related to the London penetration depth A via
x~(T) = A2 (0)/A2 (T). The second term in Eq. (3.30) is the normal fluid component which has been
modeled here by a simple Drude response [49]. x~(T)+ x, (1’) = 1 in the clean limit, which is
appropriate for HTSC where the electronic mean-free path is large compared to the coherence length
in the superconducting state. An estimate for r~ is therefore provided by plotting ne2/m*cr~(T)
versus temperature for the low-frequency microwave data in the few GHz range. Fig. 21a shows the
corresponding result obtained by Bonn et al. [47].

Even though the neglect of the temperature dependence of the normal-fluid density x, (T) leads to
an uncertainty in identifying the ratio ne2/m*o,, (T) with the quasiparticle scattering rate the rapid
drop in this quantity below T~evidently tells that r~ falls much faster than linearly with temperature.
In a subsequent analysis the temperature dependence of x,, (T) has been taken into account and the
scattering rate has been found to follow an approximate exponential law, r~’cx exp(T/To) in the
temperature range between 15 and 84 K with T

0 ~ 12 K [48] (see Fig. 21b). Quinlan and Scalapino
have noted that the temperature dependence of r’ may also be viewed to be close to a power law
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T3 behavior between T~/2and T~[323]. The significance of the rapid decrease of r~ below T~is
that it strongly argues for an electronic origin of the dominant scattering process in the normal state.
Below T~the superconducting gap opens up in the excitation spectrum and the electronic scattering
process is considerably suppressed explaining the drop in the quasiparticle scattering rate.

3.6. Gap anisotropy: hints for d~2_~~2symmetry

As we will discuss in chapter 6 a pairing interaction mediated by the exchange of AF spin
fluctuations will most likely lead to an anisotropic gap function with d

52_~,2symmetry. The line nodes
in this gap function imply observable consequences for the properties of the superconducting state. A
number of experiments have been found compatible with a ~ pairing state. A direct experimental
proof for line nodes is not yet available. But a conclusive experiment with a SQUID arrangement for
a cuprate superconductor in contact with a conventional superconductor known to have an s-wave gap
has been suggested recently [370]. First results from this difficult experiment have been reported and
are found to support the d-wave hypothesis [457]. A refinement of these experimental results is still
needed for a conclusive answer. Without this explicit test for nodes in the gap function on the Fermi
surface a distinction from a highly anisotropic yet nodeless gap may remain ambiguous. However,
an interpretation in terms of a d-wave gap appears very natural for recent penetration depth [153],
thermal conductivity [469] and photoemission data [360] and also for a recently discovered, very
peculiar phenomenon which has been called the paramagnetic Meissner effect [57]. Some of these
data will be discussed in the next three chapters.

3.6.1. Angular resolved photoemission spectroscopy (ARPES)
Due to recent remarkable progress in photoemission spectroscopy with energy resolution down to
10 meV an angular resolved gap spectroscopy has become possible in HTSC materials. The high

transition temperature is accompanied by energy gap values around 20 meV so that a measurement
at least of bounds for the energy gap by photoemission techniques has become meaningful. This
possibility is unique to HTSC and is inapplicable to low T~superconductors where the gap is an order
of magnitude smaller.

In the Bi 2212 superconductor ARPES experiments have been able to demonstrate a large planar
anisotropy of the energy gap in the superconducting state [450,3601. Spectra for two momenta, chosen
to lie on the Fermi surface of the normal state, are shown in Fig. 22. One k value is chosen along the
diagonal of the Briulouin zone (kB), the other along the (1,0) direction (kA). The opening of the
energy gap at kA is clearly observed on cooling through T~while only minor changes are observed at
kB. This suggests that the energy gap is strongly anisotropic and very small — if finite at all — along
the diagonal of the Brillouin zone. The observed anisotropy agrees with what is expected for a d~2_y2

gap function of the form Ak = Ao[cos(k~a) — cos(k~a)].The photoemission data, however, cannot
tell whether or not A,, has line nodes on the Fermi surface.

A separate feature visible in Fig. 22 is the appearance of a dip below T~in the data for momentum
kA. Similar features are observed in other cuprates in the superconductor—insulator—superconductor
(S—I—S) tunneling conductance where the energy of the dip is found to scale roughly as 3A if the
energy gap A is identified with the peak voltage in the conductance [472]. An explanation for this
dip feature has been suggested by Coffey and Coffey in terms of quasiparticle decay effects in the
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Fig. 22. ARPES spectra for Bi2Sr2CaCu208~9recorded at k-space locations as illustrated in the inset. The spectral changes
below T~are caused by the opening of the superconducting gap. The change at A is clearly visible (large gap) while the
change at B is hardly visible (small or null gap). (From Ref. [360].)

Fig. 23. Temperature dependence of the penetration depth A(T) for a clean single crystal of 123 06.95. Plotted is
i~A(T)= A(T) — A(l.3K) in the low temperature regime. The strong linear behavior is what is expected for a su-
perconductor with line nodes in the gap function. (From Ref. [153].)

superconducting state [86]. These decay effects are sensitive to the order parameter symmetry and a
3A scaling is predicted for a d~2_92state in ARPES as well as S—I—S tunneling data.

3.6.2. Penetration depth
In a d-wave superconductor the density of states has a linear energy dependence in the gap region.

This gives rise to characteristic power law behaviors in thermodynamic properties instead of the
exponential low temperature dependence of a nodeless s-wave superconductor. But in the search for
the power laws which could identify a d-wave superconductor the intrinsic temperature dependences
are often masked by impurity or other extrinsic effects which prevent an unambiguous conclusion for
the gap symmetry. High precision experiments on very clean samples are therefore needed.

One such measurement may have been performed by Hardy et al. for the penetration depth A using
microwave techniques for a high-quality single crystal of the 7~,= 90 K superconductor 12306.95
[153].A strong linear temperature dependence has been found for i~A (T) = A( T) — A(0) extending
from approximately 3 to 25 K as shown in Fig. 23. This is particularly remarkable because all possible
non-s-wave singlet pairing states with line nodes in the gap function have this linear temperature
dependence. This has been proved by Annett et al. [20] for a superconductor with tetragonal or
orthorhombic symmetry and a spherical or cylindrical Fermi surface topology.



260 A.P Kampf/Physics Reports 249 (1994) 219—351

The results of Hardy et al. differs from earlier reported results on thin films for which a
dependence has been obtained at low temperatures (see e.g. Refs. [20,19]).The linear temperature
dependence in the high-quality single crystal data of Hardy et al. is suggestive of line nodes in a
clean d-wave superconductor. The T2 term observed in thin films is most likely due to the influence of
defects. The possible defect origin of the T2 term has been nicely demonstrated by doping a 123 0695
single crystal with 0.15% Zn [2].In the Zn doped sample a T2 contribution has been found to appear
at the lowest temperature. This suggests that the linear temperature dependence of i~A (T) is intrinsic
to pure crystals whereas the T2 behavior would be due to defects [2].

3.6.3. Paramagnetic Meissner effect (Wohlleben effect)
In some polycrystalline Bi based HTSC the very peculiar but reproducible effect has been observed

that in low fields of about 10—100 mOe the dc field-cooling Meissner signal becomes paramagnetic
[57,58] as shown in Fig. 24. In the same samples which show this paramagnetic Meissner effect3
(PME) anomalies in the low-field microwave absorption occur. Since there is no evidence in these
samples for magnetic impurities the PME must be due to the appearance of orbital magnetic moments.
Granularity is a general characteristic of the samples and suggests that the PME is related to the
network of weak links between individual superconducting grains. It is known that a network of
Josephson junctions can lead locally to spontaneous circular currents provided that the Josephson
coupling energy is negative at some Josephson contacts between the grains. This means that the
Cooper pairs acquire a phase shift ir in the tunneling process between two linked superconducting
grains. Spontaneous orbital currents are created in loops which contain an odd number of contacts with
a negative Josephson coupling [220]. The existence of these so-called iT-junctions would therefore
naturally explain the PME in granular Bi-based compounds; also the anomalies in the microwave
absorption have been shown to find a simple explanation presuming the existence of ir-junctions in
a network of weak links [370].

As proposed by Sigrist and Rice IT-junction contacts can arise if d-wave superconductivity is
realised in the individual grains [370]. In a tunneling junction the tunneling probability is strongly
peaked for electron wavevectors perpendicularto the junction interface, and the Josephson supercurrent
depends on the phase difference of the superconducting order parameter across the junction. Due to
the sign change of the d~2_~,2order parameter around the Fermi surface in the 1St Brillouin zone 0-
or ir-junctions can be realised depending on the position of the tunneling contact with respect to the
axis of an appropriately aligned single crystal of the superconducting material [143,370]. Based on
this idea the experimental setup shown in Fig. 25a has been used by Wollman et al. [457] for the
first attempt of a direct test of the orbital pairing state in a YBa

2Cu3O7 single crystal.
Maintaining phase coherence around the SQUID loop in Fig. 25 requires the constraint condition

95a )b+2ir~/~O+ôab0 (3.31)
to be satisfied for the gauge-invariant phase differences (ba and çb,, across the junctions on the a and b
faces of the 12307 crystal, respectively. ~TI’= ~Pext+ U is the total flux in the loop with self-inductance
L, which includes both, the externally applied flux ‘I’ext and the flux from the circulating supercurrent
density J. Since Pb has an s-wave gap function the shift parameter

8ab determines whether the phase

In honour of the late Dieter Wohileben the paramagnetic Meissner effect is now frequently referred to as the Wohlleben
effect.
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Fig. 24. Zero-field-cooled (ZFC) and field-cooled (FC) susceptibilities as a function of temperature for a melt-processed
Bi 2212 sample exhibiting the paramagnetic Meissner effect in very low fields. (From Ref. [58].)

of the 123 order parameter is the same or different at the junction faces a and b. If the 123 07
superconductor has an s-wave gap, too, then ‘

5a6 = 0. But for a d~2_~2symmetry the gap function has
the form A(k) = zio[cos(k~a) — cos(k

5a)] which changes sign between the junction faces a and b.
This would lead to an intrinsic phase shift

8a6 = ir. The modulation of the maximum supercurrent I~
with the external flux is sensitive to the phase shift as shown in Fig. 25b. For example in the limit of
a vanishing self-inductance I, is given by

Ic = 2io1 cos(ir~ext/~o+ 8ab) I. (3.32)

The measurements by Wollman et al. [457] of the resistance versus applied magnetic flux at
different bias currents have given preliminary evidence that the phase shift ôab in the 12307 single
crystal is of order ir consistent with the hypothetical d

52_~2 pairing state. Further refinements of
this difficult experiment will certainly give the opportunity for an unambiguous determination of the
pairing state in high-temperature superconducting cuprates bearing an important hint for the pairing
mechanism.

4. Phenomenological concepts and microscopic models

While the antiferromagnetism in the insulating parent compounds is well understood in terms of a
Heisenberg model and its material specific extensions, the various experiments described in chapter
3 have furthermore provided evidence for the presence of AF spin fluctuations persisting also in
the doped, metallic and superconducting compounds. In this chapter we will outline some of the
theoretical concepts which have led to consider microscopic Hubbard like models for the correlated
electrons and their magnetic correlations in cuprate materials. These are the models for which we will
review in chapter 5 some of the results and theories attempting to understand selected normal state
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Fig. 25. (a) Experimental configuration of YBa2Cu3O7—Pb corner dc-SQUIDS. (b) Predicted modulation of the SQUID’s
critical current versus applied magnetic flux cP (in units of the flux quantum cPo) for the s-wave and d~2_~2-wavepairing
states. The two principal axes for the two order parameters are also indicated in a polar graph. (From Ref. [457].)

properties. However, for a smooth transition from the experimental to the more theoretical chapters
we start by discussing some phenomenological aspects first.

4.1. Phenomenologies of the normal state

4.1.1. Marginal Fermi liquid phenomenology
As a guiding idea for a consistent picture of the normal state properties it was recognized early on

that anumber of experimental data can be explained by an anomalous linear frequency and temperature
dependence of the quasiparticle scattering rate. For example a linear dependence for the imaginary
part of the self-energy has been the central part of the marginal Fermi-liquid (MFL) phenomenology
[130]. It follows from the key assumption that the quasiparticles scatter from an unspecified boson

4

“ The boson in the MFL phenomenology has been called “marginon” by some authors.
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with an excitation spectrum which is structureless over an energy range T < u < Wc [130], where
w~is an ultraviolet frequency cutoff. Explicitly, a simple model for the boson spectrum of the form
[232]

tanh(w/T)B,,,,3. = 1 + (~/t~c)
2 (4.1)

has been assumed — originating from either charge or spin excitations. A one-loop calculation for the
self-energy from the coupling to the “marginon” with the spectrum Eq. (4.1) leads to a result which
is conveniently approximated by [232]

~MFL(W,T) =-irA [~ln (-TrT-l-iw) +iirT]. (4.2)

A is a coupling constant. The imaginary part of Z~FL has the desired asymptotic forms

Iir2AT forw<<T,
Im £MFL(V, T) 1.. irAto for T << w <<ZOL)c. (4.3)

Most importantly, the energy scale for particle—hole fluctuations is set by the temperature only and
in particular, the “marginon” spectrum and the resulting self-energy are momentum independent.
However, charge and spin density are conserved quantities and their response functions require
therefore a q2 dependence at low momentum. To account for this requirement the boson spectrum
needs to be modified for long wavelengths and Eq. (4.1) is valid only for v~q>[w max(w,T)]’/2
[217]. But this restriction does not lead to important consequences for the self-energy [217].

The microscopic origin has not been specified in the original MFL hypothesis, but it has pointed to a
common electronic origin of different normal state phenomena. Some of the immediate consequences
of the hypothesis for the normal state include [439,234]

(i) the quasiparticle peak width in the single-electron spectral function should vary linearly in
I — EF near the Fermi energy EF as approximately verified in angular resolved photoemission
experiments within the available energy resolution [301],

(ii) a linear tunneling conductance, and
(iii) a linear temperature dependence of the resistivity.
The last two features are indeed observed in the corresponding normal state experiments. (See e.g.
Ref. [33] for a discussion of resistivity data and e.g. Refs. [148,210] for the tunneling conductance.)

The Raman background continuum in metallic cuprates was one of the basic motivations for the flat
and featureless “marginon” spectrum but, as discussed in chapter 3, its appearance in the insulators as
well as in overdoped non-superconducting materials has raised doubts whether the Raman continuum
is an intrinsic feature which is connected to the dynamics of the metallic charge carriers.

Since the MW hypothesis does not assume any momentum dependence for the response functions
there is no obvious way how to consistently explain the NMR data whose interpretation has naturally
been based on large q AF spin fluctuations. In particular, it is not clear whether a plausible alternative
explanation can be offered for the different spin dynamics at the Cu and at the 0 nucleus. For
the understanding of the neutron scattering data, however, the MFL picture has been extended to
include band structure effects [235]. It has been recognized that band structure alone, especially
in two dimensions, can give rise to strong momentum dependence in the magnetic structure factor
[240,368,308,62]. A combination with MW frequency dependence for the response function [235]
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has been offered as an explanation forneutron scattering data as an alternative to magnetic correlations
for a system near an ordered AF phase.

An extension of the MFL phenomenology has been proposed by Zimanyi and Bedell to include
large q momentum structure into the theory arising from antiferromagnetic spin fluctuations [476].
In the spirit of the original MW hypothesis the AF—MFL theory is based on an anomalous spin
correlator

Im~(q,w) ~ Xo (~+ B 2 tanh(w/T) O(~— Wc)~. (4.4)
\~W0 [1+(q—Q)2~2] I

Here it is assumed that anomalous spin fluctuations in the vicinity of the AF wavevector Q = (ir, ir)
are the origin of the “marginon”. The strength of the spin correlations is measured by the numerical
constant B, while ~ indicates their correlation length. When compared to the original MW ansatz
Eq. (4.4) has been suggested to provide an improved correspondence with experimental data, in
particular with Cu and 0 relaxation times in NMR experiments. By applying renormalization-group
techniques this extended MFL scheme has been found to be capable of interpreting qualitatively
further experimental results, including the doping dependence of the resistivity and the magnetic
susceptibility [476].

It has clearly been the merit of the MW phenomenology to recognize for the first time that a
number of the unusual normal state properties in cuprate materials can be qualitatively understood
in terms of a single correlated electron fluid which differs from the conventional low temperature
properties of a Fermi liquid. All what appeared left to do was to search for the origin of the “marginon”
with a bosonic spectrum as in Eq. (4.1). Many experimental and theoretical results continue to be
interpreted in this way. But the question whether or not the normal state in metallic cuprates can be
described in a Fermi liquid framework with appropriate modifications has not yet found a commonly
accepted answer.

An entirely novel concept for the normal state of the HTSC’s has been proposed by Anderson
[14,17]. In this picture the electrons are supposed to form a Luttinger liquid in which the excitations
decompose into holons, carrying charge e and spin S = 0, and spinons, carrying charge 0 and spin
S = 1/2. This phenomenon of the separation of charge and spin excitations is known to occur e.g.
in the ID Hubbard model or in soliton excitations in polyacetylene [382]. To the knowledge of the
author virtually all calculations to date on the Hubbard, t—J or related models in 2D have shown no
evidence for the deconfinement of charge and spin of the elementary excitations (see, however, the
recent high-temperature expansion results of [319] for the t—J model) and the excitations are most
likely the conventional ones, carrying charge ±eand spin S = 1/2. For an extended discussion of the
Luttinger liquid picture for HTSC we refer the reader to the announced forthcoming book by P.W.
Anderson.

4.1.2. Nearly antiferromagnetic Fermi liquid
In a more conventional framework and originally intended to explain the NMR experiments in

123 07 Millis, Monien and Pines (MMP) [272] have developed a phenomenological model for the
low energy spin dynamics in the normal state. Their phenomenology has provided a useful model
form to parametrise the data from Knight shift and spin lattice relaxation rate measurements and it
has allowed even quantitative fits to the available experimental data. The NMR phenomenology relies
on a spin susceptibility strongly peaked at the commensurate AF wavevector Q = (ir, ir). Based on
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this assumption Pines [311] has introduced the concept of a nearly AF Fermi liquid (NAFL). Very
low frequency, diffusive paramagnon modes required by MMP to explain the NMR experiments are
suggested to be strongly coupled to the quasiparticles and thereby also responsible for the unusual
charge response of the metallic cuprates. Since the NMR based NAFL concept has found a wider
extension to other normal state properties and the pairing mechanism for superconductivity we will
outline below in detail the original NMR analysis.

MMP start with the assumption that for the understanding of the magnetic relaxation phenomena
it is sufficient to consider the coupling of the nuclei to a one-component spin fluid with strong AF
correlations. The central part of the MMP analysis of NMR data is a model form for the imaginary
part of the spin susceptibility

Imx(q,w) =ir(w/F)~o(T) +Im~AF(q,w). (4.5)

x is decomposed into a long wavelength part containing the uniform susceptibility Xo of Fermi-
liquid-like quasiparticles and a short wavelength contribution from commensurate AF correlations
between spins located on the copper sites. Due to the proximity to an AF ordered phase a mean field
expression is argued to be a reasonable ansatz for XAF~

xAF(q,w) = ~ , (4.6)1 Jqx(q,w)

where ,~ (q, w) is the susceptibility of a noninteracting spin system and Jq a momentum dependent
exchange coupling. The ultrasmall energy probed by NMR experiments and the short wavelength
of AF spin correlations centered around Q allow to expand x( q, t0) to lowest order in w and in

= q — Q. Assuming that the real and imaginary part of ,~>are at low energy related by

lim Im~(q,w)=ir-~-Re,~(~,w=0)~ (4.7)
(U~0

with a characteristic energy f’~of spin fluctuations at wavevector ~, MMP obtain the small w,
expansion in the form

ImXAF(~,w — 0) = (1 + [~]2)2±(w/wsF)2~ (4.8)

Here, ~ is the spin—spin correlation length and 1 /~roughly sets the wave vector at which the AF part
starts to dominate the spin susceptibility over the quasiparticle contribution [289]. eo~~is a typical
energy scale for the AF paramagnons,

(OSF = (EQ/IT) (~~/~)2. (4.9)

Combined with the quasiparticle part of the spin susceptibility, Imx may be written in the form —

dropping the ~ dependences of I’~and ~

ImX(~,w—~O)=Ir~~(1+~~’~2). (4.10)

Eq. (4.10) displays explicitly the four unknown quantities to be adjusted to the NMR experiments:
the uniform spin susceptibility of the CuO2 planes, an electronic energy scale F for spin fluctuations,
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an amplitude factor /3 as a measure for the enhancement of the susceptibility at q ‘-.~ Q over its
long wavelength value, and the AF correlation length ~/a in units of the lattice constant. MMP have
further chosen to postulate a specific temperature dependence for the correlation length,

(~(T)\1
2(~(0)\

1
2 TX 411

(. )
giving a complete framework for a quantitative description of NMR experiments.

Using the Mila~-RiceHamiltonian [264] Eq. (3.9) for the coupling between the electronic spins
and the nuclear moments the MMP analysis has been applied to NMR data obtained in 12307 [272],
123 06.63 [289]and La

185Sr015CuO4 [273].We collect some of the implications following from the
quantitatively consistent description of the data in terms of the MMP ansatz:

(i) The characteristic energy scale hWSF for spin fluctuations is very small, hws~< kBT, and the
more antiferromagnetic the system is, the lower is the paramagnon energy. Over a substantial
temperature range

tos~varies linearly with temperature. The remarkably small WSF has been
argued to define the energy region near the Fermi surface where the thermal lifetime Tqp of
the quasiparticles from the scattering by paramagnons varies like 1 /T2 as in a conventional
Fermi liquid, while above this energy the lifetime behaves as Tqp 1 /T.

(ii) A huge enhancement of XAF (Q) /xo is required even in the stoichiometric 123 07 material
and the enhancement is as large as 50 in 123 0663 and larger than 100 in La

185Sr015CuO4 at
temperatures closely above Tc [273] (see Fig. 26c).

(iii) The correlation length as modeled by Eq. (4.11) is found to be strongly temperature dependent
from room temperature down to near Tc when it starts to saturate.

Generally, the AF spin correlations are found to be much stronger in La185Sr015 CuO4 than in the
metallic 123 compounds. At Tc the MMP analysis stops and modifications are required below T~.An
application of the MMP equations to the superconducting state is found to be not consistent with
available experimental data [31]. Also, we note that below room temperature, the MMP parametri-
sation form of the peak in ~(q,.~o)near q ~ Q breaks down in underdoped 123 since there is a spin
gap rather than Lorentzian behavior [330]. In the normal state the MMP phenomenology is nev-
ertheless quantitatively successful. The magnitude and the temperature dependence of the quantities
introduced to parametrise the phenomenological MMP susceptibility have, however, also pointed to
its limitations. In this respect, a comparison to the results obtained in neutron scattering experiments
on the same compounds is instructive. Although, it has to be kept in mind that the MMP analysis
addresses only the w —~ 0 limit of the susceptibility and cannot straightforwardly be extended to finite
frequencies, say 10 meV, typically probed by the neutrons.

The most noticeable discrepancy between the MMP analysis of NMR data and the neutron scat-
tering experiments concerns the correlation length. The magnitude of ~ obtained from the NMR
phenomenology is larger than the lengths observed in magnetic neutron scattering [42,339,157].
Also the temperature dependence shown in Fig. 26a contradicts the neutron results which indicate
the temperature independence of ~ below room temperature [120,206]. Furthermore, from the ap-
plication to relaxation rate data in La2_~Sr~CuO4[326] it has been concluded that any appreciable
departure from the commensurability of the AF fluctuations can be ruled out on the basis of the
MMP description; yet, the neutrons have found the AF correlations to be clearly incommensurate
[80,257] in moderately doped 214 compounds. Another difference between the MMP analysis and
neutron scattering data concerns the frequency dependence of the susceptibility. Neutron data observe
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Fig. 26. Results from the MMP analysis of NMR data for (a) the temperature dependence of the correlation length ~,

(b) the spin fluctuation frequency W5F, and (c) the AF enhancement XAF(Q)/xo in 12307 (squares), 12306.63 (.), and
Lal.ssSro.ISCuO4 (x). (From Ref. [273].)
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a peak in the frequency dependence of ImX which is at an order of magnitude larger energy than
the results of the MMP analysis [432].

In order to examine ifand how some of the discrepancies can be removed Millis and Monien (MM)
have reanalysed the NMR phenomenology in more detail [271] also testing a Gaussian for the AF
enhancement peak in Imx (q, w) which leads to considerably smaller values of the correlation length.
But they have also concluded that data for relaxation rate ratios still favour a temperature dependent
correlation length over a constant ~ instead of a temperature dependent AF enhancement factor /3.
This attempt has left the disagreement with neutron data unresolved. Still the possibility remains
that neutron scattering experiments have not been performed at low enough frequency to detect the
temperature changes in ~ required to fit the NMR measurements. Equally possible is that the MMP
form of the spin susceptibility does not apply to the frequency range probed in neutron scattering
experiments. A possible way out may be the AF—MFL model for the spin correlator Eq. (4.4) which
combines the anomalous frequency dependence of the marginal-Fermi-liquid phenomenology with
the spin-fluctuation enhancement near Q = (ir, ir) [476]. Also, for an analysis of NMR data in
underdoped 123 the spin excitation gap needs to be built into a phenomenological ansatz for the spin
susceptibility.

Given a model form for the spin susceptibility which accounts for the NMR data one may go
one step further and use it as input for calculations of transport properties which rely on magnetic
scattering. Moriya et al. have calculated the contribution to the electrical resistivity from quasiparticle
— spin fluctuation scattering [286]. Their result — originally derived for an s—d exchange interaction
[435] — has been provided in a very convenient form which involves the convolution of spectral
densities for particle—hole and spin excitations (ImX) [286]. Monien et al. [273] have combined
the formula of Moriya et al. with the results of the NMR phenomenology. The knowledge of the
dynamical spin susceptibility from experimental data then allows one to calculate the quasiparticle—
paramagnon scattering contribution to the dc resistivity from

R(T) ~~fdw 2Im~AF(q,w). (4.12)

This result for the resistivity is appropriate for a direct insertion of the low frequency MMP model for
ImXAF of the NMR phenomenology. The result implies that as long as the characteristic energy (

0SF

for AF paramagnons varies linearly with temperature the resistivity is linear in T, too [273].Still, the
MMP analysis has found significant deviations from linearity of ws~(T) at low temperatures as shown
in Fig. 26b. But since kBTC > hoSF at these temperatures the authors argue that the corresponding
crossover to quadratic behavior of R(T) will not be seen in the normal state resistivity data. So
the precise form of R(T) in this formulation depends on the variation of WSF or equivalently of
the correlation length ~ with temperature. If the mean field form for ~(T) Eq. (4.11) holds the
linear temperature dependence of the resistivity follows [273,286]. The caveat remains that the MMP
temperature dependence of ~ is not in agreement with the neutron data.

An extension to calculate also the optical conductivity o- (w) from the phenomenological MMP
description has been performed by Arfi within the memory function formalism [21]. While the
experimental data of Ref. [350] can be roughly fitted within this scheme below w 30 meV, modi-
fications to the phenomenological susceptibility are clearly required at higher frequencies. Separately,
quasiparticle lifetime effects have been found to markedly influence the frequency dependence of the



A.R Kampf/Physics Reports 249 (1994) 219—351 269

conductivity and their inclusion considerably improves the comparison to the data [277].
A similar attempt to correlate the experimental result for ~(q, &) with the resistivity has been based

on the magnetic neutron scattering data [43]. Using again the Moriya et al. formula Eq. (4.12) it
is obvious that the w/T scaling behavior found for the local susceptibility in lightly doped materials
(see chapter 3.2.4) implies a linear resistivity. Though very suggestive, so far the w/T scaling has
been reported for low doped materials only and the connection between the dynamic susceptibility
and the cleanest linear resistivities in optimally doped compounds [33] still needs to be established.

4.2. Microscopic models

Without doubt, phenomenologies serve as a valuable guide to correlate the various intricate normal
state properties. The unresolved challenge remains to derive the essential features from a minimal
microscopic model which also contains all the ingredients to capture the mechanism for the super-
conducting pairing instability itself. The rapid suppression of the quasiparticle lifetime below T~[47]
has supported the belief that the origin of superconductivity and the dominant scattering source of
the charge carriers result from purely electronic interactions. In this chapter we describe the corre-
sponding microscopic, correlated electron models that most of the subsequent theoretical calculations
are based on.

4.2.1. Three-band-Hubbard model
Already early on it was suggested that a good starting point to describe the CuO2 planes is a

three-band model composed of 3d~2_~2orbitals on the Cu sites and
2Px,,’ orbitals on the 0 sites

[116,438]. In an ionic picture for the parent compounds Cu2~is in a [Ar] 3d9 configuration and the
single d-shell hole is in a d~2~2orbital which is highest in energy among the five d-orbitals due to
crystal field effects [127].Oxygen Px and p

3. orbitals directed along the x and y axis of the CuO2
planes (see Fig. 27) are filled with two electrons each in the 2p

6 configuration of the 02_ ions.
Hence, the CuO

2 unit cell is considered to have three orbitals containing altogether five electrons in
the undoped insulating compounds.

Starting from a picture of itinerant electrons or holes their kinetic energy may be represented by
the hopping Hamiltonian (in hole notation)

Ho=>(ed — da) n~+ ~(e,, — ~)n~ + ~ ~ + h.c.)
Or icr (i,j)cr

+ ~ t~j~(ppj’cr+h.c.). (4.13)
(j,j’

Here, the index i denotes the Cu sites and j the 0 sites. d~.(d,~)and p~.(p3~)are the creation
(annihilation) operators for holes with spin o in the copper d3.2_~2-and oxygen p~~-orbitals,re-
spectively. e,, and

6d are the local energy levels in these orbitals,
1a is the chemical potential, and

n~?cr= p~p~and n~= d,~djcrare the number operators for holes in the given orbital. The Cu—0 and
0—0 hybridizations are determined by the hopping matrix elements

= —t~0_0(—1)°’, t~?j~= t0_0(—1)~iJ’, (4.14)
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Upd,tpd

Fig. 27. A simplified view of the electronic structure of the Cu02 planes showing the orbitals, hopping transitions and
interactions for a Hubbard model Hamiltonian. The appropriate phase factors (+—) for the hopping are also indicated.
(Figure reproduced from ReL [1671.)

where the phase factors with the exponents a~1and f3~rtake into account the d- and p-symmetry of
the Cu and 0 orbitals, respectively, between which the holes hop [474] as indicated in Fig. 27. The
hopping Hamiltonian Eq. (4.13) gives rise to three bands and with five electrons per unit cell two
bands are filled and one band is left half-filled. A large hybridization t,,d splits these bands into a
filled bonding band with mainly Cu character, a filled nonbonding band, and a half-filled antibonding
band with mainly 0 character.

The simple band picture would imply that e.g. stoichiometric La2CuO4 has a half-filled antibonding
band and therefore should be a metal as is found in LDA bandstructure calculations [307]. Instead,
as we know, La2CuO4 is an antiferromagnetic insulator underlining that it is crucial to include strong
local Coulomb repulsions — in particular on the localized d-orbitals. This is described by the additional
Hubbard coupling terms in

H1 = ~ Ud n~n~+ ~ U~n~tz~,+ ~ Ui.. ~ (4.15)

1 ~i,j)cr(r’ 3

Besides the Coulomb repulsion on the Cu sites also the equivalent term on the 0 sites is included
together with a nearest-neighbor Coulomb repulsion between holes on adjacent Cu and 0 orbitals.
Typical numbers for the parameters of the three-band Hubbard Hamiltonian H = H0 + H1 as obtained
from quantum chemical, constrained density functional methods [167,263] and multiband cluster
calculations [121] are given in Tab. 3.

From Tab. 3 we find that the largest Coulomb interaction is the on-site interaction between d-holes
on Cu-sites, Ud, and the largest hopping integral is tpd (for the u bond) between a Cu 3d~2..~2and
a neighboring

02PX or O2p
3. orbital. With respect to the excitation spectra exact diagonalization

studies have shown [122]that for low hole doping concentrations the Coulomb repulsion within
oxygen orbitals is of minor importance. UPd is found to be small and does not appear to have an
important influence on the physics of the Cu02 planes [320]at least for the parameter set of Tab. 3.
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Table 3
T~’picalparameter values (taken from Refs. [167,121,2631) for the three-band Hubbard Hamiltonian. Energies are given in
eV.

Hybertsen et al. [167] Eskes—Sawatzky [121] McMahan et al. [263]

— Ed 3.6 2.75—3.75 3.5
tpd 1.3 1.5 1.5

0.65 0.65 0.6
U,, 10.5 8.8 9.4
U,., 4.0 6.0 4.7
U,.,,, 1.2 < 1.0 0.8

(For a different point of view see e.g. Refs. [438,341].)
The two key parameters of the three-band Hubbard model are Ud and the charge-transfer (CT)

energy zl = — ~ For cuprate materials Ud >> zl > tpd and the parent compounds fall into the class
of the so-called CT insulators [470,471]. As a consequence of the large Hubbard Ud the antibonding
band of the noninteracting Cu02 tight binding band structure is split into a lower Hubbard band
(LHB) pushed below the oxygen level  ,, and a high energy upper Hubbard band (UHB) which
corresponds to states involving Cud~2_v2 orbitals doubly occupied with two holes [163].

Besides the Hubbard Ud splitting there is another important correlation effect which modifies
also the bonding band of the tight-binding band structure. Photoemission spectroscopies have shown
that holes doped into the antiferromagnetic insulators preferentially occupy the oxygen orbitals in
the CuO2 planes [295,127]. The created oxygen hole and the nearest local Cu spin interact by a
strong Kondo exchange coupling. In perturbation theory with respect to the small parameter tpd/.~
the corresponding exchange energy is given by (neglecting the effects of U,., and U~d)

JCu~O = tp~(~+ Ud ~ (4.16)

The oxygen hole may be viewed to be localised on the four oxygen ions surrounding a given Cu
moment and the exchange interaction J~,,0splits the oxygen hole state entering the bonding band
into triplet and singlet states. Since the latter state is found to be higher in energy and pushed above
the nonbonding states [389],doped holes tend to form singlet states with Cu moments as has been
proposed originally by Zhang and Rice [474]. As a consequence of this picture the bonding band
splits into a triplet and a so-called Zhang—Rice singlet band leading to the qualitative band scheme
shown in Fig. 28. In undoped La2CuO4 the filled Zhang—Rice singlet band is separated from the
upper Hubbard band by an effective CT insulating gap of about E~~ 1.7 eV [333].

Antiferromagnetism of the Cu moments arises by the superexchange mechanism via the intermediate
oxygen orbitals. In terms of the three-band Hubbard model parameters the exchange coupling constant
between the Cu moments is given by [123]

— 4t~ (-~.—+ 2 (417)
Cu—Cu (~i+U~d)

2KU,, 2ii+U~

In the case of exactly one hole per Cu and for strong Hubbard U Coulomb repulsions the low
energy Hamiltonian of the three-band model reduces to a Heisenberg spin Hamiltonian with exchange
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Fig. 28. Qualitative picture for the density of states in the three-band Hubbard model: (a) band structure results in the
half-filled case, (b) charge-transfer insulator with and (c) without singlet—triplet splitting. NB, LHB and UHB denote the
non-bonding, lower and upper Hubbard band, respectively. T and S indicate the triplet and the Zhang—Rice singlet bands,
respectively. (Figure reproduced from Ref. [1631.)

coupling ~ since the charge excitations have a gap E~.By fitting the results of exact small
cluster diagonalizations of H0 + H1 to a Heisenberg model, Hybertsen et at. [168] have extracted a
value J~_~ 0.13 eV agreeing favorably with the experimental value as obtained from neutron or
two-magnon Raman scattering.

4.2.2. One-band Hubbard and t—J model
Due to its several parameters the three-band Hubbard model is a complicated starting point for

the study of the electronic properties in the Cu02 planes. Many theoretical studies have considered
instead the simpler one-band Hubbard model to get insight into the low energy physics of the
electronic states in the vicinity of the charge-transfer gap. In this sense the effective parameters of the
one-band Hubbard model serve to model the charge-transfer gap in terms of a Mott—Hubbard picture
with U E~.The one-band Hubbard model contains only one orbital per site and is defined by

H = —t ~(C~Cjcr+ h.c.) — t’ >(c~0cjc~+ h.c.) + ~ (4.18)
(ij)o (ii’)cr

The hopping term t is restricted to the nearest-neighbor (nn) sites of a square lattice while an
additional t’ hopping process is also included between next-nearest-neighbor (nnn) sites. A parameter
set with t = 0.43 eV, t’ = —0.06 eV and U = 4.1 eV (i.e. U/t 9.5 and t’/t = —0.16) has been found
to reproduce approximately the low energy spectrum of the three-band model [169] with parameters
as given in Tab. 3. The parameter set for the one-band model is appropriate for La2.~Sr~Cu04and
approximately valid also for the electron doped 214 compounds. The tight-binding band parameters
alone are able to reproduce the Fermi surface of this material (see Fig. 29a) through the dispersion
relation ~k = —2t(cos k~+ cos k3,) — 4t’ cos kX cos k~.

In the 123 O6+r system, band structure calculations indicate that the Fermi surface shape is rotated
by 45°relative to that of the 214 material. This rotation has been claimed to be associated with the
hybridisation between the apical 0 and the planar Cu [18]. Also the Cu—O chains do play a role
in the more complex band structure of the 123 compounds [307,168]. Within the t—t’ tight binding
scheme this situation can be effectively modeled by choosing t’ —~ 0.45t [468]leading to the Fermi
surfaces shown in Fig. 29b.

By means of the on-site Coulomb U the single band of the Hubbard model Eq. (4.18) is split
into a lower (LHB) and an upper Hubbard band (UHB) where the LHB is meant to represent the
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(a) (b)

t’ =—0.16 j.L=0. —0.4 —0.7 =_~ i.t=O.7 0.5 0.3 0.1
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Fig. 29. Tight-binding Fermi surfaces for the square lattice with nearest- and next-nearest neighbor hopping t and t’,
respectively. (a) for t’/t = —0.16, appropriate for 214 materials. The Fermi surface is shown for three different fillings:
o = —14.8% corresponds to electron doping, 8 = 0.3% is near half-filling, and 8 = 17.4% corresponds to hole doping. (b)
Fermi surfaces for t’/t = —0.45 appropriate for 123 compounds. Here, the Fermi surfaces are shown for four different hole
concentrations.

“Zhang—Rice singlet band” of the original three-band model. The validity, however, of the reduction
of three-band model to the single-band Hubbard model is still controversial. The ongoing discussion
[117,475]on this issue has focused on the question whether a strong coupling version of the Hubbard
Hamiltonian, i.e. the t—J model, is appropriate to describe correctly the low-energy physics of the
original three-band model. The t—J model is in the strong coupling limit U/t >> 1 obtained by a
canonical transformation which eliminates configurations with doubly occupied sites [154,160]. To
leading t2/U-order the single-band Hubbard model reduces by this transformation to

H,,~
3= —t ~ [(1 — nju)c~cjcr(I — n1..~.)+ h.c.] + H1~+ J~ (S,. S~— ~n~n~), (4.19)

(ij)cr (if)

with an exchange coupling energy J = 4t
2/U. Si = c,~g.,,

13c1~is the spin operator at site i for S =

where denotes the components of the Pauli spin matrices. The hopping term explicitly excludes
the double occupancy of sites due to the projection operators (1 — fl_cr) and only states with a single
up- or down-spin electron or a hole are allowed at each lattice site. In addition to the exchange
interaction between neighboring spins, there is another hopping term H,~of the same order in t

2/U,
i.e. t’ = 2t2/U. lJ,~ involves three distinct sites (ilk) where i and k are nearest-neighbor sites of site
j. Explicitly, H, is given by

H
13 = _t’ ~ (ê~êk~njcr — C~jCkcrC~..crCjcr). (4.20)

(ijk)cr
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Here, we have used c~icr = cicr (1 — nicr) which already incorporates the projection operator to ex-
clude double occupancy. The H13 hopping is commonly dropped in t—J model calculations, and its
importance has so far not been explored in detail.

4.2.3. Spin-Fermion model
The simplified t—J model or the one-band Hubbard model serve as minimal models to study the

correlated motion of holes in an environment with antiferromagnetic spin fluctuations. Still, their
applicability to the real cuprate materials requires further discussion. A justification may be given
a posteriori from comparison of model-specific results to the experimental data. In the subsequent
chapters we will present evidence that some of the experimentally established electronic properties
are indeed at least qualitatively captured by the simple one-band models.

Yet, some groups have argued that it may be necessary to start from the more realistic three-band
Hubbard model itself. Considering the strong coupling limit in this case [116,438] leads to the so
called spin—fermion model [316,471,290,297] defined by the Hamiltonian

HSF = ~ t11’ (c~c1’~+ h.c.) + ~ 4~’S,. ~ + ~ ~ S~. Si,. (4.21)
(jj’)cr (jj’i)a13 (ii’)

The site indices i and j denote the Cu and 0 sites, respectively, in the Cu02 plane. The hopping
term in Eq. (4.21) contains both, a direct 0—0 hopping as well as an effective hopping between 0
sites mediated by a nearest-neighbor Cu site. The second term in Eq. (4.21) is a nonlocal Kondo
like interaction between the spin on the Cu site and the holes on the surrounding 0 sites. Not only
pure exchange parts are present in the spin-fermion model, but also the possibility of a spin-exchange
process with hopping appears. Orbital phase factors are included in ~ as well as in J~’.In the
following we will, however, not consider this model further and focus instead on the Hubbard and the
t—J model. For recent results on the spin-fermion model we refer the reader e.g. to Refs. [139,291]
and the references therein.

5. Theoretical results for the magnetically ordered and the metallic state

5.1. Magnetic order in the insulators

In this chapter we briefly summarize some results for electronic densities with exactly one hole
per Cu02 unit where long range AF order is known to occur. This is the case for which the most
firmly established results are available. We will consider both the weak coupling itinerant limit where
antiferromagnetism arises from the formation of a spin density wave (SDW) and the strong coupling
limit with localised spins as described by the Heisenberg model. Both limits have been argued to
serve as a valid starting point for model studies with a small concentration of doped carriers. The
arguments are derived from the effective parameters for the cuprates as described by the three-band
Hubbard model [169] and the truncated one-band models which may place these models rather into
the intermediate coupling regime than into the truely strong coupling limit.
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5.1.1. Heisenberg antiferromagnet
Considering e.g. the strong coupling t—J Hamiltonian, at half-filling, i.e. for precisely one electron

per site, this model contains only the Heisenberg exchange coupling
H=—J>~Sj.Sj (5.1)

(if)

for localised spins on a square lattice — apart from a constant energy shift. The charge excitations
have a gap (in fact, an infinitely large gap in this model) and the low energy physics is entirely
determined by the spin degrees of freedom. Extensive analytical and numerical studies have given
evidence that the ground state of the square lattice AF Heisenberg model has long range order at
zero temperature (for recent reviews see e.g. Refs. [74,249,29] and references therein) although a
rigorous proof is still lacking. More exotic spin liquid scenarios like the resonating valence bond
(RYB) or the flux phase state have been suggested but they have not been found to be realised in
this model [96].

The magnetization (SZ) of a given sublattice serves as a staggered order parameter for the ground
state. The approximate ground state from linear spin wave (LSW) theory is the quantum Néel state
(see e.g. Ref. [255])

IqN) = exp(~~a;a~q~) IN) (5.2)\q Uq /

with the usual expressions for the coherence factors

Uq = (1 ±P~)h/
2 Vq = —sgn ~ (1 vq)’/2 (5.3)

The spin-wave operators a~in Eq. (5.2) act on the classical Néel state IN), and the magnon dispersion
in LSW theory is given by o..~q= 2JPq = 2J(l Yq)~2with ~ = ~(cosk~+cosk

5). As we outline
below LSW theory has proven to provide an even quantitatively reasonable approximation to the
ground state properties of the Heisenberg model.

Most accurate estimates for (Se) have been obtained from series expansions [3721 ((Si) = 0.3025)
or asymptotic 1/S expansions [73,173] up to O(1/(2S)2) where S is the length of the spin.
Quantitative calculations of static T = 0 properties have focused on the renormalization factors
Z,~,Z5 and Z,, for the spin wave velocity c, the uniform magnetic susceptibility x±in the direction
perpendicular to the staggered magnetization and the spin-stiffness constant p5. respectively. p., is
determined by the response to a twist of the staggered order parameter [128]. The renormalization
factors are defined through the relations (in units where h = 1 and the lattice constant has been set
to unity)

=2Si~hJZ~, x±= (1/8J)Z~, Ps = JS
2Zp. (5.4)

These “Z factors” contain the effects of quantum fluctuations present in the ground state which are
expected to be large due to the smallness of the spin S = 1/2 and the low dimension D = 2. They
are in fact not independent quantities due to the hydrodynamic Halperin—Hohenberg relation [150]
Ps = c2Xj.
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Table 4
Renormalization factors for the spin wave velocity Z~,the perpendicular susceptibility Z,1. and the spin stiffness constant Z~,
as well as the sublattice magnetization (SZ) for the square lattice Heisenberg spin-i antiferromagnet.

Theory Z~ Z~. Z,., KS~)

1/S expansion (Holstein—Primakoff) [173] 1.1794 0.514 0.724 0.3069
1/S expansion (Dyson—Maleev) 1.1765 [72] 0.30069 [73]
Series expansion [372] 1.176 0.52 0.72 0.3025
Schwinger bosons (mean field theory) [25] 1.159 0.53
Quantum Monte Carlo 1.14 [433] 0.796 [247] 0.31 [433]

Some numbers for the renormalization factors as obtained by different techniques are collected
in Tab. 4 giving an example for the achieved accuracy of quantitative results for the Heisenberg
model. Generally it is found that already linear spin-wave theory (LSW), i.e. the leading order of
the asymptotic 1/S expansion, gives quantitatively satisfying results. The result for the spin-wave
velocity in Eq. (5.4) and with Z,, ~ 1.18 has e.g. been used in the analysis of the neutron scattering
data on the spin-wave excitations [158] to extract the bare value for the exchange coupling J.

A separate important quantity, also for the comparison to experimental data, is the temperature
dependence of the dynamic structure factor and in particular of the spin—spin correlation length ~.
The decay at finite T of the spin—spin correlation function (S0 . Sr) at long distances is represented
in the general form

(S0. Sr) CX r~exp(—r/~). (5.5)

The best fit to Monte Carlo data has been obtained with the power law exponent [106] A 0.4
which is close to the result A = 0.5 obtained for the classical nonlinear cr-model [82]. The correlation
length ~ has an exponential temperature dependence [25,81] at low T. We quote the result of Ref.
[81] for the asymptotic low temperature behavior T ~ irp. obtained on the basis of a dynamical
scaling ansatz (we set kB = 1)

— tic exp(21Tp~/T)
27rp. 1 + T/2irp.

In the low temperature regime T < irp,. the correlation length is determined predominantly by classical
thermal fluctuations while quantum fluctuations only renormalize the values of c and p~.The magnetic
neutron scattering data [462] on La2CuO4 have been fitted quite well by Eq. (5.6).
The correlation length ~ also enters the expression for the NMR relaxation rate which has been

calculated for the Cu site with a field applied along the c-direction. Explicitly, it is given by [75]
~ (T~~3/2( 1 ~2 (5.7)63T

1 ti J a Z, ‘\
2ITPS) \~I + T/2irp~)

where A is the hyperfine coupling and a is the lattice constant. This form for I /63T
1 has been found to

properly describe the observed temperature dependence [180] in undoped La2CuO4 giving confidence
that indeed the AF insulating cuprates are well described in terms of the 2D Heisenberg model (or
more precisely its description in terms of the nonlinear cr-model for which the results Eqs. (5.6),
(5.7) have been derived). Still, in the comparisons to the experimental data one has to keep in mind
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that the model considered is in D = 2 for which TN = 0. The successful comparison to the data for
the cuprate insulators above their Ndel temperature of a few hundred degrees K therefore implies that
their spin correlations are dominantly two-dimensional.
Long range AF spin order has also been established in the half-filled one-band Hubbard model

for weak and intermediate coupling values of U/t [161,456,381] as well as in the three-band model
[347,108,348]for a density of one hole per Cu02 unit. The long range spin order in the one-band
model has been convincingly demonstrated by evaluating the spin—spin correlation function

C(r) C(r, — r3) = ~ (5.8)

on finite size systems with quantum Monte Carlo (QMC) [283] as well as Lanczos diagonalization
techniques [125,99]. In Eq. (5.8) a notation has been used where r, = (ii, i,) indicates the coordinates
of a site on the square lattice. C (r) clearly extrapolates to a finite value near 0.13 for the largest
distances on increasingly larger clusters with up to 8 x 8 lattice sites [283,103]. These results have
supported the belief that the ground state of the one-band Hubbard model at half-filling is magnetically
ordered for all finite values of U/t.

5.1.2. Weak coupling spin density wave analysis
The magnetic ordering at small or intermediate values of the Hubbard U is more appropriately

described in terms of a spin density wave (SDW) with itinerant electrons rather than localised spins.
This situation is conceptually simple described in the Hartree—Fock scheme originally introduced by
Schrieffer, Wen and Zhang [398] for the half-filled one-band Hubbard model. We will describe this
scheme in detail below because in subsequent chapters we will use it again several times to discuss
results in the weak coupling limit.

The mean-field treatment of the SDW state starts by introducing the spin density operator

Sq = ~ c~~q~q~pck,p. (5.9)

Antiferromagnetism or equivalently the formation of the SDW amounts to a finite expectation value
of the staggered magnetization

S~(Q) = ~-f~>ock+Qcrckcr (5.10)

which we assume to be polarised along the z-direction. Here, Q = (ir, IT) and u = +1 for up
and down spins, respectively. m = (S~(Q)) serves as the magnetic order parameter which accounts
for the two-sublattice spin structure. Spin-up electrons reside mainly on the, say, even sites while
down-spin electrons reside primarily on the odd sites of the square lattice. Introducing S~(Q) into
the interaction part of the Hubbard Hamiltonian allows a straightforward mean-field decoupling and
the Hartree—Fock factorised form of the Hamiltonian follows as

HMF = ~Ekck,,yck,cr — Um~crc~crck+Q,cr. (5.11)

Here, e,, = —2t(cos k~+ cos k)~)is the tight-binding dispersion for nearest-neighbor hopping on the
square lattice. The two-sublattice structure of the SDW state doubles the unit cell and the extended
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Fig. 30. (a) The first Brillouin zone and the reduced magnetic Brillouin zone (inner square) of the square lattice with the
two nesting vectors Q1 = (ii-, —ir) and Q2 = (ir, ir). (b) Quasiparticle spectrum in the Hartree—Fock description of the
SDW state in the half-filled Hubbard model. The lower valence band is filled and the upper conduction band is empty.

first Brillouin zone is reduced to the magnetic Brillouin zone (MBZ) given by the momenta for
which ~k <0 as shown in Fig. 30a.

Very reminiscent of the weak-coupling BCS theory, the quadratic Hamiltonian Eq. (5.11) is
diagonalized by means of a transformation to valence and conduction band quasiparticle operators
[398]

‘/k,cr = ukck,cr + vkcrck+Qcr, (5.12a)
Ytk,o. VkCk,cr — ukcrck+Q,cr. (5.12b)

The momenta of YCk,cr and y~0are restricted to the MBZ to avoid double counting. The coherence
factors Uk and Vk are given by

Uk = \/~(1+ k/Ek), Vk = ~/~(1 — ek/Ek). (5.13)

The diagonalised mean-field Hamiltonian Eq. (5.11) following from this linear transformation then
reads

HMF = ~:i:Ek(Y~TYkcr— Y~,rY~,cr)’ Ek = ~/~i~
1(mU)2, (5.14)

where the single particle energies of the new valence (yD) and conduction (yC) band quasiparticles
are determined by Ek giving rise to the split band structure schematically shown in Fig. 30b. The
primed sum indicates the restriction of the momenta to the MBZ. The self-consistency condition for
the magnetization requires that (S

5(Q)) ~ >~‘UkVk which leads to the “gap equation”

1/U= (1/N) ~‘1/Ek. (5.15)

~isnw= ImUI is the energy gap which splits the lower filled valence band and the upper conduction
band which is empty for a filling of one electron per site. In this weak coupling scheme the gap
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arises from the umklapp scattering in the static periodic potential provided by the two-sublattice spin
structure. For U << t the gap is exponentially small, ~

1SDW ‘~~‘texp(—2IT~,/i7U),while for t << U the
solution of the gap equation approaches the Mott—Hubbard value 2ZI5DW = U.
The two limits are therefore smoothly connected within the Hartree—Fock SDW scheme. This

allows a continuous crossover from the itinerant to the localised regime where it is the large on-site
Coulomb repulsion that suppresses the charge fluctuations and leads to the Mott insulating state. There
is, however, an important difference between the weak and the strong coupling regime. For weak U,
well above the Ndel temperature (assuming for the moment the three-dimensional situation) the gap
will essentially vanish with the disappearance of the magnetic SDW order. The gap will, however,
persist for large U in the spin disordered regime since the charge fluctuations remain suppressed due
to the large Coulomb repulsion.

In the two-sublattice structure of the SDW state, the single particle c electron propagator G~( k, k’, to)
as well as the response functions depend on two momenta where the umklapp scattering allows k and
k’ either to be equal or to differ by Q. This is taken into account by using a 2 x 2 matrix formulation
with respect to the momentum arguments. In matrix form the Hartree—Fock c-electron propagator is
written as (using ~k+Q= —Ek)

G°’~(k,co)= G~(k,k,to) GOc(kkH~Qto)U G~(k+Q,k,to) GOc(k+Qk+Q,w)

1 (0+6k crASDW
= . . (5.16)~ oZlsDw to6k

Before we proceed we take a closer look at the origin for the appearance of the SDW in the itinerant
weak coupling limit. For this purpose we consider the spin-density correlation function

= (i/2N)(TS~(t)S~i.q(0)) (5.17)

assuming the absence of any broken symmetry. Summing the infinite series of bubble diagrams in
the random phase approximation (RPA) leads to the well known result

xRpA(q,°-”) = 1 _‘~(~w)ôii (5.18)

where Xo( q, to) is the zeroth order U = 0 particle—hole bubble as given by

- 1 ( fk+q(1 — fk) fk(1 — fk+q)
_____________ — . . (5.19)N k \(0+EkEk+q+1ô (0+EkEk+q15

fk is the Fermi function for the electron occupation number. At half-filling the Fermi surface of
the tight binding band is a perfect square (see Fig. 30a) which has the nesting property, i.e. the
wave vectors Q = (±IT, ±ir) span opposite, parallel sides of the Fermi surface. As a consequence
XRPA (Q, to = 0) at half-filling is logarithmically singular at T = 0 in 2D for arbitrarily weak U,
signaling an instability of the normal Fermi surface. Thus, it is the nesting instability for weak U that
leads to a ground state with commensurate (i.e. with wavevector Q) static SDW order [398].
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Taking the broken symmetry state for granted we recalculate the spin density~correlationfunctions.
We define ISDW) as the vacuum for the y-quasiparticles, i.e. y~ISDW) y~,~ISDW)= 0 and
evaluate

,~‘1(q,q’, t) = (i/2N) (SDWITS~(t)S~_q
3(0) ISDW) . (5.20)

Due to the broken spin rotation invariance we have to distinguish between the longitudinal and
transverse susceptibilities with respect to the direction of the staggered magnetization. In the matrix
notation both susceptibilities — in the absence of the residual interactions between the y-quasiparticles

are obtained as [398,374,442]
/ \ 2

1 , ( I I \ Pk,k+q~0(q,w)=~~ ~ EE .6_EE+i8) 0 ~2 (5.21a)

k~(q,to)=i~f(I+ wEkEk+q+j~)

fllj~j~.q —olk,k+qmk,k+q , (5.21b)
0lk,k+qmk,k+q

where the upper (lower) sign in the transverse susceptibility Eq. (5.21b) refers to the diagonal
(off-diagonal) matrix elements. The superscripts in the transverse susceptibility distinguish between
~ and x~which differ in the sign of the off-diagonal matrix elements. In Eqs. (5.21a), (5.21b)
we have introduced the combinations of coherence factors

= UkUk’ + VkVk’ Pk,k’ = UkUk’ — VkUk’

mkk’ UkVk’ + VkUk’ ~k,k’ = UkUk’ — VkVk’. (5.22)

Gaussian fluctuations around the SDW state resulting from the residual interaction between the y-
quasiparticles are included by summing the RPA diagram series as shown in Fig. 31 for the transverse
and longitudinal susceptibility, respectively, leading to

~ [I —U,~~(4,q’,w)]
1,

xRPA(q, q’, to) = 8q,q’ 1 X~(~W)). (5.23b)

[I — k~°~°(q,q’, )]_1 is a 2 x 2 matrix inverse with respect to the momentum indices. The broken
spin rotation invariance in the SDW state implies the presence of gapless Goldstone spin wave modes
which are determined by the poles in the transverse susceptibility. Explicitly, the spin wave dispersion
is obtained from

det [1— U~~°(q,q’, to)] = 0. (5.24)
The condition that the spin wave spectrum is gapless as required by the Goldstone theorem is found
to be identical to the gap equation showing the internal consistency of the RPA calculation [398].
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Fig. 31. RPA diagrams for the calculation of the (a) transverse (ladder diagrams) and (b) longitudinal (bubble diagrams)
spin susceptibility. The double fermion lines represent Hartree—Fock propagators in the presence of the static SDW order
and the dashed lines the Hubbard interaction U.

It is instructive to consider formally the large U limit, U>> to, t. This may appear unjustified since
the RPA is considered to be valid in the weak coupling regime only. However, as we noted already
for the gap equation, also the RPA transverse susceptibility connects smoothly to known results for
the large U limit which justifies a posteriori the extension to large U. For U>> to, t, ~ takes the
very transparent form

_+_ u,’t>>i 1 2J(1 +eq/4t) to
XRpA(q,to) —+ , (5.25)

to —2J(1 —e~/4t)

displaying explicitly propagating spin wave modes. The spin wave dispersion is given by toq =
2J[ 1 — (eq/4t)2] 1/2 This is a remarkable result, since it is identical to the result from linear spin
wave (LSW) theory for the Heisenberg antiferromagnet with an exchange coupling J = 4t2/U as it
also appears in the t—J limit of the Hubbard model. Thus, there is a smooth crossover for the spin
excitations from the weak coupling SDW to the strong coupling Heisenberg limit. This is shown
in Fig. 32 for the spin wave dispersion and the velocity c obtained from the small q limit where

cq. For weak U we have [83]c = (2/~/~)(U/t)’/4t and for large U we recover the LSW
result c = ~ J.

An interesting result is also obtained when the same analysis is performed with an additional t’
hopping between next-nearest neighbor sites. For a finite t’ it is known that antiferromagnetism in
the half-filled Hubbard model sets in above a finite critical value of U [230]. In this case we obtain
again the spin wave dispersion from the poles in ~ In the large U limit the result is [198]

/ t’2 \2 ~ 2 1/2
toq2J ~ _(~!) . (5.26)

Introducing the exchange coupling J’ = 4t’2/U the small q expansion of Eq. (5.26) reads

toq ~/~Jq~/1 — 2J’/J. (5.27)

The spin wave velocity vanishes for J’ = J/2 and no propagating Goldstone spin wave exists for
correspondingly larger values of t’ indicating the loss of AF order. We therefore recover the result
for the classical frustrated Heisenberg J—J’ model on a square lattice

Hjj~=J>JS~.Sj+J’>St.S~, (5.28)
fin nnn



282 A.R KampflPhysics Reports 249 (1994) 219—351

U =5.13 A=2. 1.4 (b) I

1.6 1.2
(~~) HeisenbergAF O•~~

>~ 10
1.2

-a-a.. 7 0.8

•. SDW SDW

o 0.5 1.0 15 0 0 U 10

T
Fig. 32. (a) SDW spin-wave dispersion for U/t = 5.13 for which ~is0w/t = 2, compared to the linear-spin-wave theory
result for the Heisenberg antiferromagnet with exchange coupling J = 4t

2/U. In the strong coupling limit both curves
smoothly merge. (b) SDW spin wave velocity as a function of the coupling strength U/t. The dashed line shows the strong
coupling limit c =

where the nearest-neighbor sublattice Ndel state is known to survive until J’ = J/2 (see e.g. Refs.
[96,266] and references therein).

We return to the Hubbard model in the absence of t’ hopping and evaluate the self-energy correction
to the quasiparticle propagator from the coupling to transverse and longitudinal spin fluctuations. On
the one-loop level the self-energy is calculated by summing the diagrammatic series shown in Fig.
33. Using the original c-electron representation of the Hubbard model the elements of the 2 x 2
self-energy matrix are readily expressed as

.~(k, k’, to) = _iU2~>f ~(G0c~(k — q, k’ — q, ~ — p)~~UU(qq ~)

+ G°±~(k+ Q — q, k’ — q, to— p)~_trU(q + Q, q, ~)

+G~(k—q,k’—q,to—~) ~ (5.29)I — [U~
0 (q,q,~)]

The first two terms result from the coupling to the transverse spin fluctuations contained in the ladder
series of the self-energy diagrams Fig. 33b, including the umklapp contribution from the off-diagonal
matrix elements of the transverse susceptibility. The third term arises from the odd-bubble-number
diagram series Fig. 33a which contains longitudinal spin as well as charge ~

The corresponding elements for the self-energy matrix of the y SDW-quasiparticles is then obtained
by the linear transformation

= UZ~.U’, (5.30)

Note that the lowest order single-bubble diagram in Fig. 33a is already included in the first two terms and has to be
omitted in the third term in order to avoid double counting.
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Fig. 33. Self-energy diagrams from the coupling to (a) transverse spin and (b) longitudinal spin and charge fluctuations.
Note that the first diagrams in each series are identical and have to be included only once in the expression for the
self-energy. The broken lines represent the Hubbard interaction U and the fermion lines the c-electron propagators in the
SDW state.

Uk o1~kU~U(k,o)= . (5.31)
Vk —UUk

With G°~= UGOcU~we obtain the y-quasiparticle propagator from the Dyson equation

= [G~]~’ — X~.. (5.32)

We postpone the discussion of the renormalized single particle properties contained in the self-energy
correction Eq. (5.29) to chapter 5.4.2. Instead, we use here the single particle propagator to calculate
the reduction of the sublattice magnetization which arises from the self-energy correction.

A simple derivation shows that the staggered magnetization (S~(Q)) is obtained from [398]

(S~(Q))_——~>‘f~{G~(k,Q_k,w)_G~(k,Q_k,to)]. (5.33)

The Hartree—Fock result for m = (S~(Q)) is directly related to the SDW energy gap by m = ~~/JSDW /U.
In the large U limit, m therefore approaches 1/2 as expected for the localised spin system. On the
one-loop level for the self-energy Eq. (5.29) the Gaussian spin fluctuations reduce the sublattice
magnetization from its Hartree—Fock value as shown in Fig. 34. Extending the results again to the
large U limit one finds [374]

~ 1 =0.3035. (5.34)N q — (eq/4t)2

The crossover from weak to large U for the magnetization is represented in Fig. 34 as well. The
result Eq. (5.34) agrees with the linear spin wave analysis [321] and the Schwinger boson mean-
field theory [25] of the 2D Heisenberg model. It is also in good agreement with the QMC results
[325,433] (see Tab. 4), a further example that the weak coupling RPA calculation for the SDW state
leads to meaningful results when U is formally increased into the strong coupling regime.
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Fig. 34. Sublattice magnetization as a function of U/t in the Hartree—Fock approximation (dashed line) and with the RPA
spin-fluctuation correction (solid line). (Note that in this plot M~is minus two times the magnetization m as used in the
text.) (From Ref. [195].)

5.1.3. Static vacancies in a Heisenberg antiferromagnet
As we know, the important physics of weakly doped metallic cuprates arises from the correlated

motion of holes or electrons in an environment with short range AF spin correlations. Before we
consider this central issue it is worthwhile to consider first the simpler problem of static vacancies
in a Heisenberg antiferromagnet. The creation of vacancies can be modeled by adding the impurity
term [611

HIMp=—J~~S,•S~ (5.35)
R1 j(1)

to the Heisenberg Hamiltonian. HIMp effectively cuts all bonds to the spins located at the randomly
distributed positions {R1} and j(l) denotes the corresponding nearest neighbor sites on the lattice.
The isolated spins therefore act for the host system like a static vacancy. Propagating spin waves
are scattered from these impurity vacancies and the same techniques can be applied as for impurity
scattering of electrons in metals.

It is instructive to solve first the case of a single vacancy. This problem can be treated exactly within
linear-spin-wave (LSW) theory since the impurity potential is local. Bulut et al. [611 have solved
for the renormalized spin-wave Green’s functions which allows one to obtain the spin correlation
functions in the neighborhood of a vacancy. One interesting result of this calculation is that the local
staggered magnetization on the next-nearest neighbor sites of the vacancy is actually found to be
enhanced by 3.5% relative to the host value in the absence of the vacancy [61]. This follows from
the suppressed zero-point fluctuations on these sites due to the absence of the S~S~terms which
involve the nearest-neighbor vacancy site.

In the limit of a small vacancy concentration one may resort to the standard many-body techniques
for impurity scattering. Applying these techniques for the spin-wave Green’s functions in LSW theory,
the renormalized spin-wave properties are obtained from the single-impurity scattering T-matrix [50].
In the dilute limit it is sufficient to consider the diagram series for the self-energy as shown in Fig. 35.
In this limit only the diagrams to lowest, linear order in the vacancy concentration nv = (1/N) >

1R,

have to be included within the averaging procedure over the impurity positions. This is equivalent
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Fig. 35. Diagrams for the self-energy of the spin-wave propagator. Scattering off a specific impurity vacancy is represented
by a full circle attached to a dashed line. Configurational averaging over the positions of the static vacancies is symbolised
by a cross. (From Ref. [50].)

to treating the single-site scattering process exactly and neglecting all correlations between different
vacancy sites.

Given the self-energy from the diagram series in Fig. 35 it is straightforward to evaluate the
renormalized spin-wave properties. Due to the impurity scattering the spin wave excitations acquire a
finite lifetime, and the spin-wave dispersion is softened at long wavelengths [50]. For a comparison
to experimental results it is useful to obtain a quantitative estimate for the reduction of the spin-wave
velocity c. To leading linear order in the vacancy concentration this reduction of c is approximately
given by

c = i../~J(1— 3.lnv). (5.36)

Interestingly, a similar magnitude for the slope is found experimentally [205,206] for the reduction of
the Néel temperature in the electron doped material Nd2....~Ce~CuO4where a finite Néel temperature TN
is still observed for x as high as 0.14 [4211. Also the temperature dependence of the spin correlation
length in this material has been found to be properly described by a “diluted” Heisenberg model
[250].This supports the view that at small x the doped electrons seem to be favorably localised on
the Cu ions creating locally a Cu~d’°configuration which carries no magnetic moment. Vacancies
of magnetic moments are similarly created by Zn doping in La2CuO4 where they have a comparably
weak effect on TN [205,206] (see the more detailed discussion of experimental results in chapter
3.5.2).

The situation is different in La2_~Sr~CuO4where the mobility of the holes doped primarily into
the oxygen orbitals leads to a much more effective disruption of the magnetic order. A description in
terms of localised static holes is clearly inappropriate in this case. The considerably more involved
situation of hole doping in 214 and other cuprate materials will be the central subject of the next
chapters.

5.2. Spin correlations in the doped metallic state

Two central questions arise when a small concentration of mobile holes is doped into an anti-
ferromagnet: The first question addresses the magnetic properties, in particular, how are the static
and dynamic spin correlations affected due to the presence of mobile holes? The second question is
related to the single particle properties and the charge dynamics of the doped holes themselves as
they move in an AF correlated environment. We will in the following chapters discuss the magnetic
properties first. Before the discussion of the dynamic spin susceptibility in chapter 5.3, we start by
illustrating some of the intuitive pictures for the hole motion and discuss magnetic structures which
have been suggested to replace the Néel order in the presence of a small amount of holes.
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Fig. 36. (a) Schematic figure of hole motion in an antiferromagnetically ordered spin background. In this example the hole
hops twice along the x-axis creating a string of five misaligned spin pairs (indicated by the thin broken lines) along its
path. (b) Sublattice hole motion accompanied by a two-spin flip process from S~5~ acting on the spin pair at sites I and
i+ 1 on the hole’s path. (c) The Trugman loop [427,428]:with six individual hops the hole moves around a plaquette 1 ~
times and finds itself translated to the next-nearest neighbor site without disturbing the spin background. In between two
adjacent plaquettes the hole has performed one counter-clockwise hop to a next-nearest-neighbor site on the plaquette.

5.2.1. Spin disorder from hole motion
Numerical evidence for the Hubbard model seems to indicate that for any finite amount of hole

doping AF long range order is immediately lost [161]. In the strong coupling limit of localised
spins doped, mobile holes create misaligned spins along their hopping paths and thereby disrupt
the spin order [60,551. This is shown schematically in Fig. 36a where a single hole hops two
lattice spacings away from its originally position in an ordered antiferromagnet. The hole leaves
behind a string of misaligned, i.e. ferromagnetically aligned, spin pairs. The number of misaligned
spin pairs grows linearly with the number of hoppings leading to a competition between the kinetic
energy gain of the hole and the cost in magnetic energy. Nearest-neighbor pairs of disordered spins,
however, are eventually repaired by transverse quantum spin-fluctuations (see Fig. 36b). In the t—J
model these processes arise naturally from the S~S terms acting on the misaligned spin pair. Spin
fluctuations therefore prevent the holes from being localised and allow for coherent hole propagation
[351,200,113,255].

Even in an Ising spin background where transverse spin fluctuations are absent the hole can move
along a spiraling path without destroying the AF spin order. As has been first pointed out by Trugman
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[427,428] a hole can travel around a plaquette 1 ~ times without disturbing the AF spin alignment
and finds itself translated to the next-nearest neighbor site as shown in Fig. 36c. This means that
the hole can “unwind” the string of misaligned spins it leaves behind on its path and self-generate a
next-nearest neighbor hopping.

Ideally, a hole moving on the same given sublattice of a quantum antiferromagnet would leave
the AF order perfectly intact. In fact, as we will see below in chapter 5.4.3, the effective motion of
holes doped into a quantum antiferromagnet appears to generate indeed a dispersion which closely
resembles the sublattice hopping motion along the next-nearest neighbor sites of the square lattice
[255,236]. Since there are two sublattices, the hole motion in an AF spin background gives rise to two
degenerate hole bands. Any spatial modulation of the commensurate spin order will lift the degeneracy
of the two hole bands, offering a possible way to gain further energy by occupying dominantly the
lower one of the two hole bands [171]. This is the origin for the instability of commensurate AF
order under doping. Within mean-field theory spin textures with a spiral pattern are indeed found to
have a lower energy in the presence of a finite amount of doped holes [186,201,26]. In these spiral
states the staggered magnetization is not fixed along a certain direction but rather it slowly rotates
with a wavenumber proportional to the density of doped holes [3661.

5.2.2. Spiral spin patterns
The concept of a spiral phase has originally been discussed for the t—J model by Shraiman and

Siggia [364—366].Most of their results have been derived in the quasiclassical limit J>> t. The spin
background is assumed to be classical but the distortion of this background due to the hole motion is
taken into account. In their picture the motion of a hole doped into an antiferromagnet creates a long
range dipolar distortion of the staggered magnetization [364]. The associated dipole moment Pa is
found to be related to the direction of the staggered magnetization ~ by

(ii X 3a11) = Pa, (5.37)

where 9a = . V is a discrete gradient along the direction a. The dipole moment is proportional to
the density of doped holes and Eq. (5.37) tells that it induces a slow twisting of the direction of
the order parameter 12. In the spiral state the staggered magnetization rotates in a plane with a spiral
pitch scaling inversely proportional to the density of holes [366]. Quantum spin fluctuations have not
been included by Shraiman and Siggia and the spin distortion discussed by them is the long distance
behavior, i.e. far away from the hole location.

A conceptually transparent formulation for the spiral state can be achieved within a Hartree—Fock
scheme for the one-band Hubbard model. For each lattice site i we assign a unit vector ñ1 pointing
in the direction, or opposite direction, of the on-site magnetization, depending on the different
sublattices. ñ, is chosen as the local spin quantisation axis and can be specified by the two spherical
angles 12, = (9,, çb). With the unitary transformation [452,22]

d~ff ~ [~~(~j)]UU’ = ~ [exp(i(O,/2)cr~) exp(i(/~/2)crZ)]UU,~ (5.38)

the Hubbard Hamiltonian then takes a form which explicitly accounts for the new set of local spin
quantization axes,
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= —t ~ {d~[7t(Qj)R.~(f2j)IUIff2dfU2~ (5.39)
(ij)uio-2

The Hubbard U term is naturally invariant under the unitary transformation Eq. (5.38). The subset
of homogeneous spiral phases which preserve the discrete translational symmetry of the lattice is
selected by the choice of the angles

ei=qS.Ri, (5.40)

where the wavenumber qS characterizes the pitch of the spiral. This choice restricts the spiral ar-
rangements of the magnetic moments into the x—z plane, i.e. (SI) = m[sin(q5 R,), 0, cos(q~. R,)].

In the new local set of spin quantisation axes the interaction term can be decoupled in the standard
way. Introducing (n~)= ~n+ urn, we may look for solutions with a uniform hole density. The
diagonalised Hartree—Fock Hamiltonian leads to two quasiparticle bands with the dispersion

E~(k)= e~±~/(~~)2 + (Um)
2, (5.41)

~ +cos(ka+~q~)]. (5.42)
ax.

The corresponding free energy has to be minimised with respect to the magnetization m and the
spiral wave vector qS for fixed density n. The SDW-quasiparticle dispersion derived in chapter 4.3.2
is included in Eq. (5.41) for qS = (IT, IT). The mean-field U/t vs. filling phase diagram turns out to
have a series of transitions between different spiral phases characterised by the wavenumber qS (for
the one-band Hubbard model see e.g. Ref. [112], for the three-band Hubbard model see Ref. [23]).
For arbitrarily small hole (or electron) doping the commensurate antiferromagnetic state is generally
found to be unstable against the diagonal spiral with qS along the (1, 1) direction. The deviation of
qS from (IT, ir) starts out linearly with the dopant concentration. At a critical, U dependent doping
n~(U),a first order transition occurs to a (1,0) spiral for which qS = (ir,ir) — ôq(l,0). A pictorial
view for the (1, 1) and (1, 0) spiral is given in Fig. 37.

It is tempting to relate the incommensurate spin modulation of the spiral states with the splitting
of the magnetic peak seen in the neutron scattering data for La

2_5Sr~CuO4[80]. The experimentally
observed discommensuration would correspond to the wavenumber of the (1, 0) spiral state. This
connection has been made on the basis of a more sophisticated slave boson treatment [1351. The
obtained energies for the spiral states in the slave boson formulation agree within 2% with QMC
results indicating that spiral states are good approximate candidates for the ground state of the
Hubbard model near half-filling and at intermediate to large values of U/ t [134]. Further possible
spin textures have been suggested which include spin canted states, double spirals [201], or soliton
lattice states [170].

A separate interesting observation is made when a t’ next-nearest-neighbor hopping is included
in the kinetic energy of the Hubbard Hamiltonian to model more closely the bandstructure and the
Fermi surface of the 214 materials. In this case the commensurate antiferromagnetic state is found
to be stabilised against spiral distortions for a finite range of electron doping [197]. A (1, 1) spiral
state is instead immediately favored if holes are added. This asymmetry between hole and electron
doping arises here obviously from a bandstructure effect due to the inclusion of t’ hopping. This result
provides another possible origin for the robustness of the Ndel state in the electron doped materials.
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(a) (b)

t_...~\

(1,1) spiral (1,0) spiral

Fig. 37. Schematic figure for the two spiral spin states with q5 along the (1, 1) direction (a) and along the (1,0) direction
(b). The dotted line indicates the spins whose directions remain untwisted.

It also agrees with the neutron scattering data which show that the magnetic correlations in Pr2CuO4
remain commensurate under Ce doping [421] which adds electrons to the Cu02 planes.

There is, however, a caveat concerning the stability of homogeneous spiral states. In the t—J model
they show a tendency to a local increase of the hole density as is signalled by a negative mean-field
compressibility [26]. This implies phase separation into hole rich and hole pure domains [1181. For
the t—J model it is known that in the unphysical large J/t limit the holes will cluster in order to
minimise the number of broken antiferromagnetic bonds [3311. For smaller values J/t < 1 the issue
is still controversial. For the one-band Hubbard model no evidence for phase separation has been
found in quantum Monte Carlo studies. (For an extensive discussion see Ref. [103].)

5.3. Dynamic spin susceptibility x ( q, to)

Calculations of the dynamic spin susceptibility allow one to test the applicability of the Hubbard
models for the magnetic correlations in the metallic cuprates. In particular the neutron scattering and
NMR data have provided detailed information on x(q, to) to be compared with theory. On the one
hand the validity of the models themselves is in question. In particular, do the Hubbard Hamiltonians
provide the minimal models which contain the essential physics of cuprate superconductors? To
answer this question rigorous results are needed which are so far available mainly from numerical
calculations on small clusters. This topic has been extensively discussed in a recent review article
by Dagotto [103]. Separately, different levels of approximation schemes have been developed which
are not limited to finite size systems. Their quality can often be tested against QMC and exact
diagonalization results. As we will see below it is generally found that the single-band Hubbard model
does very well in describing the magnetic properties of the cuprates. More detailed comparisons with
experiment, however, show that also band structure effects do play a role, e.g. for the understanding
of the different neutron scattering results obtained for the 214 and 123 materials.
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Fig. 38. RPA fit of the spin-lattice relaxation rates ~°T1 and 17T’ with the Hubbard model parameters U/t = 2, filling
(n) = 0.86 and 8t = 1.2 eV. (From Ref. [62].) The data points for 12307 are from Refs. [151,405].

5.3.1. RPA in the normal state: application to NMR and Raman scattering
The weak-coupling RPA treatment for the paramagnetic state of the one-band Hubbard model

provides the simplest parametrisation of x ( q, to) in the form of Eq. (5.18) which includes strong
AF spin fluctuations. Within this approach a very exhaustive quantitative analysis has been performed
for the NMR relaxation rate and the neutron scattering intensity [62,37]. Using the form factors of
Mila and Rice [264] and the experimentally determined hyperfine coupling constants [405,30] the
spin lattice relaxation rate 1/Ti at the oxygen and copper sites has been fitted with a weak-coupling
U = 2t and a filling (n) = 0.86 as shown in Fig. 38. The large AF spin fluctuations which are implied
by the enhancement for the Korringa ratio at the Cu site (see chapter 3.3.2) require a tuning of the
parameters right on the boundary of the magnetic instability. Thus, for the chosen value of U/t = 2
the critical filling is (n) = 0.865 which is only 0.5% larger than the filling used to fit the NMR data.
Yet, if one accepts to view U/t and the filling as adjustable parameters and not to be fixed a priori for
the considered material, then the RPA with this delicately balanced parameter set allows a reasonable
fit of the experimental data.

The RPA analysis is straightforwardly extended to the three-band model as well [62]. If on-
site oxygen and intersite copper—oxygen Coulomb repulsions are ignored the result for the spin
susceptibility is written in terms of partial susceptibilities in the form,

~R~A(q~) =~~~,(q,&)+x~(q,w) x~~,(q,w). (5.43)
— dx~~(q,w)

Here, r, r’ E {d, p’, P2} denote the Cu and 0 orbitals within the three-site unit cell of the CuO
2

lattice. The noninteracting U = 0 partial susceptibilities are calculated by transforming to the energy
band basis in which the kinetic energy of the three-band Hamiltonian is diagonal:
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1 f(E~ )—f(E~’)
x~(q, to) = a,.,., (k + q) a~,.,( k) ,. — L’v’ k (5.44)

k;v,v’=0~ — \ k+q ‘—‘k I + ~7

E~are the energies of the bonding and antibonding Cu (3d) —O( 2pu) bands as given by

— I .j. 1 2 n 2 ,~ 2 lj 2 1 , \ 11/2

1-’k _ P~1_P+-rtPdkcos ~~+cos
E~= 6~, is the energy of the nonbonding oxygen band. For simplicity the results here apply in
the absence of oxygen—oxygen hopping t,,,~,, = 0 and energies are measured relative to the Cu 3d
level 6d = 0. In Eq. (5.44) a~,are the coherence factors with band index v introduced in order to
diagonalise the kinetic energy term [62,226]. In the NMR analysis the partial susceptibilities Xdd and
Xpp have to be inserted for the Cu and 0 Knight shift and relaxation rates, respectively. Generally,
the RPA three- and one-band analyses give qualitatively similar results [62].

As we know, the RPA susceptibility contains an unphysical instability of the paranlagnetic phase
at any finite hole doping as signalled by the Stoner condition, i.e. by 1 — U~

0(q,0, T) = 0 in
the one-band model. Purely as a consequence of the tight-binding band structure Xo ( q, 0), at zero
temperature has degenerate maxima at Q1 = (IT ±8, IT) and Q2 = (IT, IT ±8). The instability is
therefore towards incommensurate antiferromagnetism with the modulation wavevectors Q1 or Q2 in
the weak U approximation [354]. At T = 0 the magnitude of the discommensuration is determined
by the chemical potential, S = ,a/t.

Naively, one might have expected that the maximum occurs somewhere along the diagonal of the
Brillouin zone. But it is in fact the wavevectors Q1 or Q2 which favourably connect flat parts of the
Fermi surface for the 2D tight binding band [354]. At finite but low temperatures the discommensu-
ration occurs above a critical concentration of doped holes as shown in Fig. 39. While the instability
is itself an artifact of the RPA, the discommensuration wavevectors Q1 and Q2 are in qualitative
accordance with the magnetic neutron scattering experiments on La2_~Sr5CuO4[80,257]. However,
the magnitude of the discommensuration obtained within RPA is much smaller than experimentally
observed. This can be remedied in part by the inclusion of a t’ next-nearest neighbor hopping term
which effectively modifies the tight binding Fermi surface. For t’ = —0.1 6t the Fermi surface for
the tight binding dispersion is found to be consistent with local-density-approximation (LDA) cal-
culations and comparisons with X-ray-absorption experiments [169] (see Fig. 29 in chapter 4.2.2).
Still, the positions of the peaks in the magnetic structure factor cannot agree quantitatively with the
neutron results if the band structure parameters are assumed to be independent of the concentration
of doped holes [37].

In view of the qualitatively reasonable results the RPA is able to provide for the NMR experiments
a similar calculation has been applied to Raman scattering from AF spin fluctuations. Due to the
persisting short range AF order in the doped metallic materials local two-spin flip processes will
still contribute to the Raman scattering intensity. In order to separate this magnetic contribution a
diagrammatic repesentation as shown in Fig. 40 is more appropriate [196] instead of the general
calculational scheme outlined in chapter 3.4.

The diagram in Fig. 40A has two separate parts: a scattering vertex V~describing the coupling
of the photon to the electron, and two spin-fluctuation propagators carrying momenta q and —q,
respectively. Specifically for the one-band Hubbard model this gives a spin-fluctuation contribution
to the total Raman scattering intensity of the form [196]
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Fig. 39. Phase diagram in the temperature versus density (n) plane for U = 2t with commensurate (C) and incommensurate
(IC) antiferromagnetic phases, and the paramagnetic state. Most of the C—IC line is drawn only schematically. (Reproduced
from Ref. [354].)

I(to,T)=[1 + n(to)]~~fdto’IV~(w~+i8,w,w’)I2[n(to’)— n(to’ — to)]

x U2Im~(q,to’+to)U2Imx(—q,w’), (5.46)

Here, to = to, — to0 is the shift between the frequencies of the incoming and outgoing photon to
1

and to0, respectively. The structure of the vertex function V1~, is shown diagrammatically in Fig. 40B.
V~contains four different contributions from the coupling of the photon to the current operator and
the “inverse mass tensor” (i.e. the density). The elementary scattering vertices (represented by black
dots in Fig. 40) contain the photon polarization vectors for the different scattering geometries

6 of
Aig, Big and B2g symmetry.

For the calculation of the spin susceptibility which enters into Eq. (5.46) we apply the weak
coupling RPA approximation and sum the standard ladder and bubble diagrams for the Hubbard
model. The different lowest order contributions are shown in Fig. 41. Spin constraints impose an
even (odd) number of closed particle—hole loops between the fermion lines of opposite (parallel)
spin which are part of the scattering vertex. The two separate contributions are given by

U2x’~(q,w)=U+ U2~o(q,to) + U3~~(q,to) , (5.47a)
I — U~o(q,to) 1 — U2~

0(q,to)

U
2x11(q,to)=—

1 ~ (5.47b)

6 See Fig. 15 in chapter 3.4 for the definition of the different symmetries and Ref. [1961 for a table of the different
scattering vertices.



A.P Kampf/Physics Reports 249 (1994) 219—351 293
(A)

q -. 1

v~ ~
.- 10) 10)1 ~ —q,io~ V 0

(B) (a) (b)

: I:::.II=:;;::::~~~IIII÷: I::;~~~~iiIII÷
~I::~IIcI:I-frII1!c~~I

(c) (d)

Fig. 40. (A) General diagram for the Raman intensity from two-spin fluctuation scattering. The broken lines represent the
incoming (i) and outgoing (o) photon and the wiggly line the propagator (susceptibility) for the spin fluctuation. (B)
Scattering-vertex function Vq from the coupling to the “inverse mass tensor” r (a) and the current operator [j(b) ,(c) and
(d)] for different time orderings. ( For the definition of r and j see chapter 3.4). Full lines represent the single electron
propagator. (From Ref. [196].)

The elementary bubble xo(q, to) is the Lindhard function Eq. (5.19) for U = 0. Due to the spin
constraints only the combination 2(ImX11 ImXt1 + ImX1~ImX1~)enters into the Raman intensity
formula Eq. (5.46).

A difficulty arises from aproper treatment of the vertex function which has a complicated frequency
and momentum dependence. As a first step free tight-binding electron propagators have been used
for the evaluation of 14 together with the RPA form of the spin susceptibility [196]. The large
spectral weight of XRPA near Q = (IT, IT) in the vicinity of the magnetic instability leads to a peaked
contribution to the Raman scattering intensity I(w, T) even in the paramagnetic phase (see Fig.
42). This two-spin fluctuation contribution is the analog of the two-magnon Raman scattering in the
ordered antiferromagnet. The relative strength of the intensities in the different scattering geometries
roughly corresponds to the intensity ratios in the doped cuprates. Similar results have been obtained
in the more phenomenogical analysis of Brenig and Monien [52].

The magnitude and shape of the two-spin fluctuation peak in this one-band model calculation bears
unfortunately only little resemblance with the experimental Raman data. As discussed in chapter
3.4 the strength of the two-magnon peak is enhanced by a resonance effect with the incoming light
frequency. An inclusion of these effects into a model calculation requires an improved treatment
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Fig. 41. (a) Effective vertex used in (b), (c) and (d). (Note that these elementary photon—electron scattering vertices also
appear as partof the vertex function in Fig. 40.) (b)—(d): lowest order diagrams in U which are summed in the RPA series
for the susceptibility, separated into (b) the “even-bubble”, (c) the “odd-bubble”, and (d) the ladder contributions. (From
Ref. [196].)

of the Raman vertex function which has to account for interband transitions to intermediate states.
This could appropriately be done within the three-band Hubbard model. No attempt has, however, so
far been made in this direction. We have also learned from the experimental data that the resonant
enhancement of the two-magnon peak rapidly weakens with increasing hole content. This points to the
necessity of using dressed propagators in the Raman vertex function to account for doping dependent
changes in the electronic spectrum. A formidable task for future work!

5.3.2. Beyond RPA
So far, we have used the simple RPA form of the dynamic spin susceptibility to describe the spin

fluctuations in the doped Hubbard model. Naturally, we have to ask how good an approximation the
RPA really is, in particular whether it is still approximately valid when the Hubbard U is increased
into the intermediate to strong coupling regime. For this purpose a quantitative comparison has been
performed to the magnetic structure factor obtained from Monte Carlo simulations on Hubbard clusters
with 8 x 8 lattice sites [76,63,66]. In these comparisons the RPA susceptibility has been found to
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Fig. 42. Raman intensity (divided by the Bose factor) from two-spin fluctuation scattering evaluated with the vertex function
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provide a surprisingly, even quantitatively accurate parametrisation of the Monte Carlo results if the
Hubbard U in XRPA is replaced by the particle—particle scattering T-matrix. This renormaiization of U
was originally introduced by Kanamori [199], and has recently been renamed the generalised RPA
(GRPA) [76,37].

The renormalized interaction U in this extension of the RPA has been found by Chen et al. [76]
to be only weakly temperature dependent, in particular when the temperature scale is much less than
the Fermi energy. U can be approximately obtained from the simple formula

U=U/(l+UA). (5.48)

in terms of a renormalization parameter A. For example with U = 4t the renormalized U decreases
monotonously from 2.5t to 1 .9t with increasing band-filling, and with U 2.2t the QMC data for
the dynamic spin susceptibility are fitted within 15% accuracy [76]. Near the magnetic instability
at half-filling mode—mode coupling effects are found to become important and the GRPA is less
accurate. The renormalization in the GRPA arises from summing the ladder diagrams in the particle—
particle channel. Physically, it accounts for short range electron—electron correlations which reduce the
probability for two electrons with antiparallel spins to occupy the same site. This effectively weakens
the Hubbard interaction reducing U from the bare value by roughly a factor of 2 at intermediate
values of U. Similar conclusions have been reached by Bulut et al. [63,66]. As a consequence, weak
coupling approaches can still give accurate results for x ( q, to) even for the intermediate coupling
regime if the bare U is replaced by its renormalized value. This shifts e.g. the RPA Stoner-instability
closer to half-filling.

A similar shift of the instability is found when the RPA is extended to include the effects of
anharmonic local-moment-fluctuations [51]. These fluctuations are expected to be important in the
intermediate coupling regime when local magnetic moments begin to develop. One way to investigate
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local-moment fluctuations is to consider the functional integral representation for the partition function
of the Hubbard model [1241. In this approach an interesting trick is commonly used to isolate the
effects of spin fluctuations by rewriting the Hubbard interaction in terms of the identity

ii — Irii \ in,’— ~.‘ ~n1~—~-n~~ — ~L’ ~fl,1 — n,~)

The second term can be decoupled by introducing an imaginary-time dependent auxiliary field in a
Hubbard—Stratonovich transformation for the partition function Z. Then, one is left with the following
functional integral [124]

1/1’ )
Z=JD[xlTr1Trexp _f(~U~x~(r)+H({x})) dr ~, (5.50a)

H({x}) = —t ~ c~c1,,.— U> ux~(r)n~~— (,a — ~U) >n,,~. (5.50b)
(ij)o io ‘CT

This equation represents a one-particle problem in which the auxiliary fields x,(r) play the role of
fluctuating site-diagonal exchange fields. Taking the trace in Eq. (5.50) over the fermion degrees of
freedom leads to

z=~fD[x]eA~~, (5.51)

with the action functional

A({x}) = —(U/2T)~IIxj(iwn)I
2+Trln(i—M). (5.52)

Z
0 is the partition function of the noninteracting system for U = 0, and x1(ito~) is the Fourier

transform of the auxiliary field. The trace in A({x}) refers to a matrix in real, frequency and spin
space where the matrix elements of M are defined as [511

~ = —u&,.,,.’ Ux,(ito,,,)G11(v~). (5.53)

In Eq. (5.53) G~denotes the lattice Green’s functions for the 2D tight-binding model [284] and
to,, = 2ITrnT and i-’,, = (2n + ] ) ITT are bosonic and fermionic Matsubara frequencies, respectively.
Considering only Gaussian fluctuations of the x1-fields around the saddle point of the action Eq.
(5.52) is equivalent to the RPA approximation. This is sufficient in the weak-coupling limit when
the action is dominated by harmonic fluctuations around a single minimum with respect to the
auxiliary-field configurations.

With increasing U/t the static, zero-frequency part of the action develops a double-well structure
with respect to the static exchange fields x~[2091. This is the signature of local-moment-formation.
Short range AF correlations between the local moments can be treated in the functional integral
scheme by cluster coherent-potential methods [194]. As a consequence of the double well structure
of the action, anharmonic and slow mode fluctuations with large amplitude of the x~-fieldsbecome
important, and non-Gaussian terms in A({x}) have to be retained in the expansion of the logarithm
in Eq. (5.52) [51]. The simplest such extension includes a fourth-order quartic term in x~(ito,,)



AR Kampf/Physics Reports 249 (1994) 219—351 297

in the action. As expected, the quartic term counteracts the RPA instability [51]. The quartic term
is, however, even more sensitive to nesting features than the Gaussian RPA term of the action. The
local moment scenario is physically appealing, yet, the approximation scheme is unfortunately not
controlled by a small parameter. Preliminary results have been obtained by Monte Carlo sampling
techniques for the partition function with a quartic term included in the action [54], but a detailed
analysis stills waits for further improvements.

An extension along these lines has been obtained within the self-consistent renormalization (SCR)
scheme of Moriya et al. [1551. The SCR method has originally been developed for the description of
itinerant electron ferro- and antiferromagnets and includes mode—mode coupling effects near the mag-
netic instability. As applied to two-dimensional metallic systems in the vicinity of antiferromagnetism
the SCR theory suggests the existence of a small crossover temperature scale T* from low-temperature
Fermi liquid behavior to anomalous temperature dependences above T* [436]. SCR results in this
anomalous regime have been compared to the normal state resistivity and optical conductivity of
the cuprates with some success [286], but no specific results for the dynamic spin susceptibility of
the Hubbard model are so far available which allow a direct comparison with the other schemes
mentioned above.

5.3.3. x(q, to) in an almost-localised Fermi liquid
The RPA theories and their extensions we have discussed so far are based on the vicinity to a

magnetic instability. A separate concept has been put forward by the Chicago group of Levin et al.
which emphasizes that the underlying insulating state of the cuprates should be more appropriately
described in terms of Mott localisation (for recent reviews on this approach see Refs. [226,369] and
references therein). In thispicture the transition to the insulating state is driven by a diverging effective
mass of the charge carriers, rather than by a vanishing number of carriers as in the Mott—Hubbard
picture.

Based on the idea of “almost localised” d-electrons a large U mean-field theory has been chosen
as the starting point to obtain a renormalized band structure for the three-band Hubbard model.
Introducing auxiliary bosons by the transformation [2941

d,~= s~e~+ usfr.~CTf1 (5.54)

the three possible valence states Cu
3~,Cu2+, and Cui+ are explicitly represented by the creation

operators e~,s,+
0. and f~,respectively. The first and last of these are boson operators while s,,,. is

a fermion operator which creates a Cu
2+ state with spin index o-. In terms of e, s and f operators

and using otherwise the notation of Eqs. (4.15) and (4.13) the three-band Hubbard Hamiltonian is
rewritten as

H=>eds~sjCT+ ~(2Ed + Ud)f,~f~+ ~ epp~p~

+ ~ t~(p~p
1~.+ h.c.) + ~ t~d[ (s~e~+ us~CTf~)pJCT+ h.c.], (5.55)

(jj’)o. (ij)o’

where the index i (j, f’) refers to a copper (oxygen) site in the Cu02 plane. In order for this
Hamiltonian to be equivalent to the original three-band model the auxiliary operators have to satisfy
the local constraint equation
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1. (5.56)

This constraint is imposed by introducing a Lagrange multiplier A, at each lattice site. In mean-field
approximation the boson and constraint fields are replaced by static uniform c-numbers whose values
have to be determined self-consistently. In this way a renormalized band structure is obtained which
closely resembles the result Eq. (5.45) of the RPA calculation for the three-band Hubbard model.
The important difference is that the hybridisation tpd and the Cu d-level are renormalized due to the
large Coulomb repulsion in the Cu d-orbitals. In the limit U —# oc, in the “electron picture” the Cu’~
valence state is removed from the Hilbert space and tpd and ~d are renormalized as [208,2261

tpd (e)t~d, ~d e~+ Ao. (5.57)

A systematic extension beyond mean-field theory is obtained by allowing formally for a large spin
degeneracy N of the copper and oxygen orbitals and performing an expansion in 1/N. To order
I/N2 the quasiparticle exchange interaction — in the following denoted as JH — contains both, a
superexchange contribution as well as a RKKY-type interaction [367,2391. To the 1/N2 level the
RPA-like series for the partial dynamic spin susceptibilities are resummable as

( \_ 0,’ \i 0,’ H 0,’
Xrr’ ~.q, ~i — Xrr’ ~.q,(0) T Xrd ~,q, (0) r i \ 0 ,. ~Xdr’ ~,q, to,

I m ~ to,,

where, as before in the discussion of Eq. (5.43), r, r’ refer to the p- and d-orbitals, respectively.
Implicitly, JH depends on the band-filling, but in a moderate hole doping range the momentum
dependence of J

11(q) is argued to be well approximated by the tight-binding form [3671

J~(q) = J0 (cosq~+ cosq,.). (5.59)

J~(q) is negative, i.e. antiferromagnetic around q = (IT, IT) but has also a ferromagnetic part at
long wavelengths. The susceptibility Eq. (5.58) has been used to investigate and contrast the spin
dynamics in 214 and 123 materials [241,473,368]. For a given set of three-band Hubbard model
parameters only the J0 has been used as a single adjustable parameter to model the data. Fixing J0
once for a single selected stoichiometry the same parameter set has been applied to the compounds
with other hole concentrations as well. In this way, the different band structures and the related Fermi
surface geometries have been found to naturally explain the temperature independent commensurate
peaks in the magnetic structure factor of 123 materials. In the same approach, temperature dependent
incommensurate peaks are found in the 214 compounds for comparable hole concentrations as ob-
served in the neutron scattering experiments. Two examples of the corresponding theoretical results
for the magnetic structure factor S(q, to) are shown in Fig. 43.

Three important low energy scales appear in this fermiology scheme: acharacteristic spin-fluctuation
frequency, a crossover coherence temperature below which coherent Fermi liquid behavior sets in, and
the third scale is associated with the vicinity to a van Hove singularity in the band-structure density
of states. All three energy scales are comparable in magnitude to the superconducting transition
temperature T~.The existence of the different low energy scales arises in this formalism from the
band narrowing effects of strong Coulomb interactions combined with spin fluctuations of moderate
strength. In particular, the vicinity to the van Hove singularity is offered as an explanation for the
low energy peak appearing in the magnetic structure factor of the neutron scattering data in 123
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Fig. 43. Plots of the magnetic structure factor S(q, w) versus momentum q = (qx, qy) for (a) LaI.
9jSro,o9Cu04 and for

(b) YBa2Cu3O67. The temperature and frequency are 1 and 10 meV, respectively. (From Ref. [368].)

materials. This scheme of an almost-localised Fermi liquid has been quite successful in modeling
the neutron scattering data. However, Korringa behavior of the oxygen NMR relaxation rate and the
origin for the temperature dependent Knight shift and the related spin-gap effects remain problems
so far unresolved within this Fermi-liquid scheme [473,368].

5.3.4. Spin susceptibility in the t—J model
A spin susceptibility with a q-dependent exchange interaction has also been derived on a mean-field

level for the t—J Hamiltonian by Tanamoto et al. [411]. The method of choice has been the slave-
boson technique in which the electron operators c,,. are decomposed into the so-called spinon f,,,,. and
holon operators b by c1,,. = btf1~.f,,,. removes a spin o at site i and b~creates a hole. The spinons
carry zero charge and spin 1/2 while the holons have charge e and spin 0. Since in the t—J model
there is either a hole or an electron with spin 0~at a given site the constraint bt b, +>~f,~f,,,,.= 1 has
to be enforced locally. In terms of holon and spinon operators the t—J model Hamiltonian — including
the constraint condition with a Lagrange multiplier — is written as

H= —t>(b~bjx1j+ h.c.) — —

(1,)) (ii) jtT

—~A1 ~ i). (5.60)

[Note, that in this version the term —~n,n~has been dropped from the t—J Hamiltonian Eq. (4.19).]
= >,., ~ is a bond operator for spinons, defined similarly as the valence bond operators

in the gauge theory of Affleck and Marston [51. For the mean-field decoupling scheme the spin
and charge degrees of the electrons are treated separately and the local constraint is replaced by a
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global constraint. Two sets of order parameters are introduced [411,138]: “diagonal” order parameters
(f~fjCT) and (b~’b1) for the coherence of holons and spinons, and an “off-diagonal” order parameter
(1/\/~)c(f11fJ~— ~ Various forms of mean-field approximations have been studied in this
framework with different kinds of solutions depending on the parameters in the model (see e.g. Refs.
[396,5,147,137,222]). Fluctuations around mean-field solutions have been systematically investigated
by Wen, Wilczek, and Zee [4511 and loffe and Larkin [1821 based on the original gauge-field
approach of Baskaran and Anderson [32].

In the so-called singlet resonating-valence-bond (RVB) state all three order parameters introduced
above are assumed to be finite. The magnetic properties of this state have been analysed on the basis
of the RPA form for the dynamical susceptibility given by

x(q,to) = 1 +~~~to)’ JqJ05~+c05~, (5.61)

where Xo (q, to) is the Lindhard function of free spinons in which the order parameters for nearest-
neighbor sites (i, J) enter the spinon dispersion e~by [4111

e~=—2(t(b~b1) + ~J(~,1))(cosk,.+cosk~). (5.62)

The spin susceptibility Eq. (5.61) has been applied and compared to the data from NMR measure-
ments [411,413]. Distinct differences between the magnetic properties at low and moderate hole
doping have been obtained and it is argued that these differences explain part of the NMR data in
fully oxygenated and underdoped 123 compounds. In particular, the spin-gap phenomenon is sug-
gested to arise from subtle dependences on temperature and energy of the single-plane magnetic
excitations near Q = (IT, IT). Similarly to the analysis in the almost-localised Fermi liquid scheme,
for the detailed comparison to the NMR and neutron scattering data it has been found necessary to
include band structure effects in terms of longer range hoppings into the starting Hamiltonian [4121.
Yet, it still remains open whether the mean-field decoupling of spinons and holons — which amounts
to the assumption of the separation of spin and charge excitations — is a valid concept for the t—J
model in two dimensions.

An analytic calculation for the t—J model which does not rely on a mean-field decoupling scheme
has been performed by Singh and Glenister for the static q-dependent magnetic structure factor using
a high-temperature expansion technique [378], i.e. an expansion in powers of J/T. More specifically,
a series expansion is obtained for the spin—spin correlation function S(r) = 4(S~S~)in the form

I “J/4T~
S(r) = — ~ ‘ ~ s(n, m, p)p”(4t/J)

2”, (5.63)4g n!
n ,n,p

where g counts the number of lattice vectors r, which are equivalent by symmetry, and p =
(1/N) ~

1(n1) is the density of electrons. The expansion has been performed up to 9th order in J/T. The
corresponding expansion coefficients s(n, m, p) are tabulated in Ref. [3781. Padé approximants have
been used to extrapolate S(r) and the static magnetic structure factor S(q) = >~,.S(r) exp (iq. r) to
low temperatures. This controlled high-temperature series expansion is not limited to calculations on
small clusters and provides results which are valid in the bulk limit. Only the uncertainties in the low
temperature extrapolations limit the application to couplings J/ t > 1/2 and temperatures T/ J > 2
[378].
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Fig. 44. Temperature dependence of the uniform susceptibility x = S(q = 0) /4T obtained from high-temperature series
expansions for the t—J model at different electron densities. (From Ref. [378].)

Fig. 44 shows the temperature dependence of the uniform susceptibility for t/J = 2, a value
smaller than suggested by microscopic calculations [168] which put t/J around 3. Plotted in Fig.
44 is ~ = JS( q = 0) /T. Evidently, the peak in x shifts to lower temperatures with doping
away from its position at T = J in the 2D Heisenberg model or, equivalently, the half-filled t—J
model [299,375]. Moreover, the uniform susceptibility increases with doping at low temperatures
and reaches a maximum around a density p = 0.85. At higher dopings, not shown in Fig. 44, the
susceptibility decreases and X(T) is essentially flat, i.e. Fermi-liquid like. This is qualitatively the
behavior observed in the bulk-susceptibility measurements of doped 214 compounds (see chapter
3.1). It is explained in terms of a weakening of the effective exchange interaction Jeff in the presence
of holes and a susceptibility x which scales as i/Jeff. The increase of x with doping is absent in
RPA calculations for the one-band Hubbard model [62,240]. One may suspect that this is a genuine
difference between the weak and strong coupling regime. But instead, it is rather a shortcoming of
the RPA approximation [781.

5.3.5. Numerical results
Complementary to the above approximation schemes we finally review a few numerical results

for the magnetic spin susceptibility in the Hubbard model. These results are unbiased against any
approximation scheme and help to identify intrinsic properties of the model itself. We resume the
discussion of the static spin susceptibility as started in the preceding chapter by comparing it to QMC
results.

In the numerical simulations of the one-band Hubbard model the maximum of x is observed for a
filling near (n) = 0.85 in the strong coupling regime with U/t = 10 at a fixed temperature T = 0.25t
[283] (Fig. 45a). The maximum persists also into the intermediate coupling regime U/t = 4 where the
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Fig. 45. QMC results for the uniform magnetic susceptibility for the one-band Hubbard model on a 4 x 4 lattice as a
function of electron filling: (a) U/t = 10 and T/t = 1/4 (from Ref. [279]),(b) U/t = 4 and T/t = 1/6 (from Ref. [78]).

same feature is observed at the lower temperature T = t/6 [78] (Fig. 45b). Although no QMC data
have so far been reported for weaker couplings these results suggest that most likely the maximum
persists to even smaller U/ t at lower temperatures. Furthermore, no indication has been found for a
spin-excitation gap in the susceptibility and the available data support the expectation that x remains
finite at low temperatures for the half-filled as well as the doped case.

QMC simulations for the Hubbard model [279,140] and Lanczos exact diagonalization studies
[2811 have also clearly established the incommensurate structure of the equal-time spin correlations
in the doped case. One example is shown in Fig. 46. The corresponding QMC data have been analysed
by assuming a single-peak Lorentzian around the incommensurate wavenumber Q* which means that
the spin correlations are assumed to decay exponentially as

(S0 Sr) o exp(iQ* . r) e’”-~. (5.64)

From a least square fit to the QMC data the doping dependence of the spin—spin correlation length ~
for the exponential decay Eq. (5.64) is deduced to be approximately given by [1401

(5.65)

with A 0.96±0.03. 5,, has been found to be very small and could not be resolved to be nonzero in
the finite size systems studied so far. This means that a diverging ~ and hence a long range ordered
magnetic state is realized at half-filling, i.e. S = 0, only. The behavior Eq. (5.65) is very close to the
inverse square root dependence on the hole doping S found in the magnetic neutron scattering data in
lightly doped 214 compounds [421. This is a very convincing agreement with the experiments and
suggests that the magnetic correlations in the doped cuprates are well represented by the one-band
Hubbard model.

5.4. Single particle properties

In the previous chapter we have reviewed results and concepts developed to describe the magnetic
susceptibility in the doped materials. In the present chapter we switch to the properties of the
doped charge carriers themselves and discuss how their dynamics is in turn affected by the AF spin
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Fig. 46. QMC results for the equal-time spin—spin correlation function 5(q) of the one-band Hubbard model on a 10 x 10
lattice for a filling of 41 up and down spin electrons each. (From Ref. [140].)

Fig. 47. Schematical picture of a spin bag. A hole inserted into a spin-density-wave (SDW) state suppresses locally the
amplitude of the SDW in a “bag region” of size d = ~SDW = tWF/1T~1SDW leaving the magnetic order essentially intact in the
bag’s environment.

correlations in their environment. A pictorial view on the motion of holes in an antiferromagnet has
already been given in chapter 5.2.1. In the present chapter we will be more specific and review results
for the single particle properties arising from the coupling to AF spin fluctuations. As an application
to an experimentally accessible quantity we will give particular emphasis to the optical conductivity
as a direct probe for the carrier dynamics in the Cu0

2 planes.

5.4.1. SDW quasiparticles, spin bags
Following the same route as we have done in the previous chapter on the dynamic spin susceptibility

we start again with the weak-coupling limit of the single-band Hubbard model. As we have outlined
before, in this limit the antiferromagnetism is appropriately described in terms of a spin-density-wave
(SDW). In chapter 5.1.2 we have described already in detail the RPA calculation for the self-
energy correction of the Hartree—Fock y-quasiparticles of the SDW state arising from the coupling
to transverse (x~ ) as well as longitudinal (Xzz) spin fluctuations. We emphasize that this one-
ioop calculation for the self-energy matrix is strictly valid only at half-filling where the ground
state is known to have a broken symmetry due to the long range magnetic order of the SDW. It
should be noted, however, that contrary to the common expectation of an immediate instability of
the commensurate SDW order upon doping [26,377] this point of view has been challenged recently
by Chubukov and Frenkel [83]. They have argued that the vacuum renormalization of the effective
interaction between doped holes together with Fermi surface effects prevent an immediate instability
of commensurate antiferromagnetism until a finite concentration of holes is reached. While this issue
remains to be clarified the assumption of a persisting commensurate SDW should still serve as a
proper approximation for weak U and very low doping.

For the weak coupling SDW regime Schrieffer, Wen and Zhang [397] have originally invented
the idea to describe the quasiparticle excitations in terms of spin bag entities. Intuitively, an added
hole or electron locally weakens antiferromagnetism and leads to a dressing of the fermion with a
cloud of spin fluctuations. The dressed excitation is called a spin bag or a one-band polaron. It is
important to note that the dressings with longitudinal or transverse spin fluctuations have distinct



304 A.R Karnpf/Physics Reports 249 (1994) 2 19—351

a) °~ = ~

b) ~ .,(T’~’\-.f...+ -

Fig. 48. (a) One-loop self-energy correction from the coupling to transverse spin fluctuations in the RPA ladder series.
(b) “Rainbow” (polaron) scheme for the self-energy in the self-consistent non-crossing approximation. The wiggly line
represents the RPA ladder series of Fig. (a). (From Ref. [53].)

effects: The coupling to XZZ fluctuations leads to a local reduction of the amplitude for the staggered
magnetization, i.e. within the bag of size ~SDW = hvr/IT/isDw (see the schematic picture in Fig.
47). The coupling to x~ fluctuations on the other hand creates a long range dipolar spin distortion
around the bag with the spatial variation given by an inverse power law falloff [364,133]. In its
original formulation the spin-bag concept has focused on the longitudinal spin-amplitude fluctuations
in the SDW environment. But soon afterwards it has been demonstrated that transverse fluctuations
are equally important [133], even in the weak coupling limit. The spin-bag or one-band polaron
idea serves as an appealing physical picture for the quasiparticles moving in an AF background. In
subsequent chapters we discuss the properties of these quasiparticles, as they arise more generally
from the spin-fluctuation dressing.

5.4.2. Polaron scheme in the SDW limit
We start from the weak-coupling SDW limit and discuss the propagator of a single hole inserted

into the SDW state at half-filling. We consider specifically the effects from the coupling to transverse
spin fluctuations as described by the RPA spin susceptibility ~ (see chapter 5.1.2). The coupling
to the low energy spin-wave modes is assumed to be the dominant source for the renormalization of
the single particle properties. The distortive motion of holes or electrons in the SDW is accompanied
by the continuous emission and absorption of spin wave excitations. In order to account for these
multiple spin-wave shakeoffs we go beyond the lowest order one-loop corrections to the self-energy
as given by Eq. (5.29). Diagrammatically, this procedure is equivalent to a summation of all non-
crossing (NC) diagrams for the self-energy as shown in Fig. 48. The evaluation of the NC diagram
series amounts to using fully dressed Green’s functions in the calculation of the self-energy, and in
the 2 x 2 matrix formulation of the split-band SDW state a set of four nonlinear coupled integral
equations for the elements of the single particle propagator matrix has to be solved [53].

To reduce the mathematical complexity of the non-crossing equations we use ~ in the limit
U>> t — which we denote by x~- — with the same arguments outlined in chapter 5.1.2. The strong
coupling version of the NC equations represented by the diagram series of Fig. 48 then takes the
following simple form for the self-energy matrix elements of the y-quasiparticles [531

I~(k,to)=—iU2(l/N) ~‘f(dv/2IT)

x

x GI~1(k—q,to—~), (5.66a)
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.~‘(k, to) = —iU2( i/N) ~ ‘f(dP/2IT)

x [~~°~(q,q,v) ~ (5.66b)

2~’(k, to) and G~’(k, to) are the momentum diagonal components of the y-quasiparticle self-energy
and the dressed y-Green’s function for band indices 1, 1’ = ±1 refering to the SDW valence and
conduction band, respectively.

The virtue of the limit U/i’ >> 1 is that, starting from the Hartree—Fock SDW propagator, the
iterative solution of Eqs. (5 .66b) and (5 .66b) leads to a vanishing interband self-energy and a
vanishing interband Green’s function. This leaves only the two equations (5.66b) for the intraband
Green’s functions to be solved. Both Green’s functions are related by particle—hole symmetry at
half-filling as is reflected by the symmetry relation A;~1(k,to) = A~(k, —to) for the spectral
functions A~( k, to) = Im [G~ (k, to + iS) 1/IT. Due to the particle—hole symmetry relation we are left
with a single integral equation. For the valence band the retarded self-energy has to be determined
self-consistently from [531

~ + jô~= ti~~‘[(i +~-~)J dto’

+ ~ fdto/A;1_1k_~]~’] (5.67)
\ toqj toq to’tolS

We discuss the iterative solution of this equation by showing in Fig. 49 the resulting spectral
function for fixed momenta k = (IT/2, IT/2) and k = (0,0) as obtained on a 16 x 16 sites lattice.
Besides the renormalized quasihole peak, the figures display a considerable shift of spectral weight
into a spin wave shakeoff structure below the quasihole energy as well as into the upper conduction
band. The loss of spectral weight into the incoherent part is much stronger for the zone center holes
than for holes on the boundary of the MBZ.

This behavior is made more explicit in Fig. 50 which shows the quasihole’s spectral weight factor
z (k) together with its dispersion for momenta along a closed path in the MBZ. z (k) is obtained from
the area under the quasihole peak in the spectral function. A comparison to the Hartree—Fock SDW
dispersion demonstrates the significant band narrowing of the polaron band, i.e. the effective mass
enhancement from the multiple spin-wave dressing. Most striking is the result that the degeneracy
of the Hartree—Fock band dispersion along the MBZ boundary is barely lifted. This means that the
Fermi surface shape is hardly changed when compared to the Fermi surface of the non-interacting
tight-binding band. The same conclusion has been drawn from the results of QMC simulations [2791
and Lanczos diagonalization studies on 4 x 4 Hubbard clusters [224,100,2791.

Although not clearly visible in the figures, the energy maximum of the quasiparticle band occurs
at k = (IT, 0). This is a result which arises only on the multi-loop level since for the one-loop
calculation of the self-energy the maximum does appear at k~= (ir/2, IT/2). The same result for
the one-loop level has also been obtained Singh and Te~anovid[374]. The dispersion maximum
also remains at k~when longitudinal XZZ spin and charge fluctuations are included in the one-loop
self-energy [442]. Besides the substantial quantitative difference which is demonstrated in Fig. 51



306 A.R Kampf/Physics Reports 249 (1994) 219—351

U = 4, 24 x 24
16X 16, U

0.4 - (k11k,)=(ir/2,ir/2) - $
—3.0LU

0.2 - - • sc

° ~ :‘- ~ °SDW•~••E 0.4 - (k~.k,)=(0,0) - 0.8

°: ~ ~,, \\~~______________
—10 —~ ° 5 (it/2jc/

2) (0,0) (ir,0) (it/2,m/2)
cI,/t

Fig. 49. Single hole spectral function for a moderate value of U/t = 4 and the two momenta k = (ir/2,ir/2) and k = (0,0)
obtained from the self-consistent non-crossing approximation on a 16 x 16 lattice. Energies are given in units of t. (From
Ref. [53]).

Fig. 50. Quasiparticle properties for U = 4 on a 24 x 24 lattice along a closed triangular path in the magnetic Brillouin
zone. The upper panel shows the valence band dispersion for the self-consistent non-crossing calculation as compared to the
Hartree—Fock SDW dispersion E( k) = [~2 ( k) + i2]~2for 2~1= U. The lower panel shows the corresponding quasihole
spectral weight factor z(k). (From Ref. [53].)

there is another more important qualitative difference between the one- and the multi-loop calculation.
The incoherent spectral weight on the low energy side of the quasihole peak in the spectral function
Fig. 49 arises only from the coupling to mutiple spin-wave excitations. This incoherent part of the
spectrum will be discussed again in more detail below in the context of the t—J model.

5.4.3. Hole motion in a quantum ant~ferromagnet
The problem of holes doped into a Heisenberg antiferromagnet is clearly one of the key issues

that most of the theoretical work has focused on trying to understand the quasiparticle properties in
the low doping region of cuprate superconductors. The majority of theoretical model calculations has
been performed in one-band models for strong-coupling parameters. In order to contrast some of the
related concepts to the SDW scheme discussed in the previous chapter we first consider an analogous
polaron picture for the t—J model as earlier proposed by Schmitt—Rink et al. [351]. We choose to
discuss this spin-polaron picture for a single hole in more detail because it has proven to give results
which are in quantitative agreement with numerical diagonalization studies and allows for a physical
description of the hole dynamics in the t—J model [200,255,252,236].

The basic idea in the spin-polaron picture is to treat the exchange interaction in the t—J model in
linear-spin-wave (LSW) theory and to represent the hole in terms of a spinless fermion operator7.

For an outline of the important calculational steps we follow closely the derivation given by Martinez and Horsch [255].
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Fig. 51. Comparison of the quasiparticle properties resulting from a single iteration of Eq. (5.67), i.e. the one-loop level,
versus the self-consistent non-crossing solution. (From Ref. [53].)
It is convenient to perform first a sublattice rotation on the, say, B sublattice of the antiferromagnet

by 180°about the S~axis. The spin operators on sublattice B are thereby transformed according to

S~E~+S~F, ~ cJCT—+cJ_,,, jEB, (5.68)

creating a ferromagnetic spin alignment in the new reference frame. This removes the further necessity
to distinguish between the two sublattices. After the sublattice rotation the t—J Hamiltonian takes the
form

LI — 1/1 \+ 11 \ 1..
— nI_CT,c~CTcJ_,J~1— ‘~jCT) +ii.c.

(ij)o’

+ J~[~a(S~S~+ STS7) — S~S~— ~ (5.69)
(ii)

For later discussion Eq. (5.69) allows for an anisotropic exchange interaction controlled by the
parameter a. The Heisenberg (Ising) limit is recovered by a = 1 (0). Next, we introduce boson
operators at, a~by means of the Holstein—Primakoff transformation in the LSW approximation

St=i~/(1—ata1)ai’-~ai, S1=ati/(1—ataj)~at, S~=~—ata1. (5.70)
Creation operators ht for spinless holes, referred to as holons, are defined by ht = c,1. Similarly

the original fermion operator c1~is expressed as a composite operator [3511 by c1~= htSt. It is
important to note that this introduction of boson and holon operators enlarges the original Hilbert
space of the t—J model which contains only the three states I .t) and 0) at each site corresponding
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to the occupation with a single up- or down-spin electron or a hole. Double occupancy is excluded
in the t—J model. In spin-holon notation there is a spin at each site even in the presence of a hole.
This is remedied by adding a constraint term to the Hamiltonian of the form

H~= A>hthjataj (5.71)

which with A>> 1 ensures that there is only one object on each site, either a spin or a hole.
Following these steps of the transformation the resulting Hamiltonian can be diagonalised if the

density of holes S is introduced on the mean-field level by replacing h~ht= (1 — hth1) by (1 — 8).
After spatial Fourier transformation this leads to the spin-polaron Hamiltonian [351,200,252,255,2361

H,_~= ~ >[h~Ihkaq(uqyk_q + VqYk) + h.c.I + >toqa~4~aq+ E~, (5.72)

where aq = uqaq — vqa~q and E~3is a constant energy shift. The spin-wave energy is

toqSzJ(l 8)
2~qSzJ(i _S)2~/l— (ayq)2 (5.73)

for spin S = 1/2 and with the coordination number z = 4 of the square lattice. Eq. (5.73) also
defines r’q in terms of Yq = ~(cos q.,. + cos q.,,). The coherence factors Uq and Vq are given by the usual
expressions familiar from LSW theory:

Uq = i±Pq Vq = — sgn Y~~/lPq (5.74)

Note that there is no bare kinetic energy term for the spinless fermions in the Hamiltonian Eq.
(5.72), but otherwise it resembles closely the polaron Hamiltonian in the electron—phonon problem.
The vertex function M(k, q) = UqYk.q + VqYk in Eq. (5.72) describes the coupling of the holons to
the spin-wave excitations.

In order to explore the holon properties Martinez and Horsch have calculated the Green’s function
for a single holon from [255]

Gh(k,to)=(OIhk I h~I0). (5.75)
to_(H

1~_E~)

0) is the vacuum state without holes and with respect to the spin wave operators it is the quantum
Néel state

~ = exp(~~ia;aiq~) IN), (5.76)\q Uq /

where IN) is the classical Néel state. (Note, however, that the holon Green’s function is not identical
to the Green’s function of the original c~,,,.fermion operators. Only in the presence of the two-sublattice
structure do the two bear a close resemblance. For a discussion of this issue see Ref. [255].)

The holon Green’s function can be calculated self-consistently by the non-crossing diagrammatic
series similar to the SDW polaron scheme in the previous chapter. As a result of this so-called
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Fig. 52. (a) Single hole spectral function A ( k, w) for momentum k = (ir/2, IT/2) in the self-consistentBorn approximation
for the t—J model with J/t = 0.1 on a 32 x 32 lattice. (b) Hole dispersion for J/t = 0.2, plotted along the path
r —* M —* X —+ I’ in the first Brillouin zone (see inset) of the square lattice. (From Ref. [236].)

self-consistent Born (SCB) approximation the holon self-energy at zero temperature is determined
by the equation

M
2(k,q) . (5.77)N q totoq ..~(k—q,to—wq)

Several authors have derived the self-consistency equation (5.77) for the holon self-energy and have
considered its solution on finite lattices (see e.g. Refs. [255,351,200,236,252]). In the following we
disscuss some of the results obtained for the spectral properties of a single hole in the t—J model.

A representative plot of the holon spectral function A (k, to) is shown in Fig. 52a obtained from
solving the SCB equation (5.77) on a 32 x 32 lattice. A pronounced quasihole peak is located at the
low energy side of the spectrum indicating the coherence of the hole motion. The quasihole peak is
separated from an incoherent part which is the analog of the spectral weight arising from multiple
spin-wave excitations in the SDW based polaron scheme. The dispersion of the hole as obtained from
the momentum dependence of the quasihole-peak in A (k, to) can be modeled by a tight-binding form
which includes hopping processes to first- and second-nearest neighbor sites on the same sublattice
[255]. This corresponds to the most efficient way a hole can move (with the help of transverse spin
fluctuations) leaving the magnetic order along its path undistorted. The minimum of the quasihole
band is found to be located at k~= (IT/2, n-/2) (see Fig. 52b). This result of the SCB approximation
is in agreement with a series of other approximate analytical and numerical studies (see e.g. Refs.
[427,364,342,93,313] and references therein). Despite the apparent agreement on the minimum of
the quasihole dispersion from various single-hole model studies in the t—J model the true position of
the minimum still remains a subtle quantitative issue. No conclusive answer has yet been obtained
from numerical diagonalization studies. (For a discussion of this issue see Ref. [103]).

Useful insight into the physics of the t—J model is gained from the J dependence of the single-
hole ground state energy E

1,,. The result of the SCB calculation for a single hole with momentum
k = (IT/2, 17-/2) on a 4 x 4 lattice is best fit by the power law [255] Elh/t = —3.11 + 3.05(J/t)°

69
in the coupling range 0.1 ~ J/t ~ 1.5. This result is very close to the exact diagonalization result
[399,94] Elh/t = —3.17 + 2.83(J/t)°73.The power law is very intriguing because it tells that the
so-called string picture applies for the hole motion in quantum antiferromagnets (see also chapter
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5.2.1).
This picture is most transparent in the Ising t — J~limit corresponding to a = 0 in the Hamiltonian

Eq. (5.69): Suppose a hole is created in an Ising antiferromagnet at a given site of the square
lattice. The kinetic energy term in the Hamiltonian makes the hole hop some distance away from its
initial position leaving behind a string of overturned spins. Pairs of misaligned spins are not healed by
quantum fluctuations since 5~5’ terms are absent in the t—J~Hamiltonian. The number of misaligned
spin pairs and therefore the magnetic energy cost grows linearly with the distance d from the hole’s
initial position creating an effective confining potential for the hole [365,115].This problem can be
solved numerically [365] giving a ground state energy for the hole of EIh = —2v’~+ 2.74(J~/t)213.
The energy of excited string states scale as (J~/t)213,too.
As we have discussed in chapter 5.2.1 this is not the whole story of the t— J~model since the more

complicated spiraling Trugman-paths [427,4281 allow the hole to escape the string potential [427].
Yet, Monte Carlo [28] and exact diagonalization studies [102] have given results for the single
hole energy in excellent agreement with the 2/3 power law. Obviously the string picture alone does
already contain the important physics for the hole’s hopping motion. It is more surprising, though,
that also for the t—J model the single hole energy is close to the 2/3 power law which means that
even in the presence of transverse spin fluctuations the string picture works. For small J/t the hole
can create and retrace a string path on a time scale set by 1 /t before transverse spin fluctuations cut
the string on the longer time scale 1 /J [94]. Since the energy of the smaller peaks in the incoherent
part of the spectral function in Fig. 52 scale with the same power law in J/t in the limit of small
f/i’, they have been identified as string excitations as well [236].

Finally, we mention the results for the quasihole spectral weight Zk and for the coherent bandwidth
of the hole, both are shown in Fig. 53. In the strong coupling, i.e. small J/t, limit the weight of the
quasihole peak in the spectral function is strongly suppressed. For J —÷0 Zk vanishes with a power
law [255,236]. For J = 0, Zk = 0 and the hole motion is totally incoherent. In the strong coupling
limit the holes acquire a large effective mass and the bandwidth for coherent hole motion is no longer
proportional to t but rather proportional to J [94,428,314]. These results are important since they
suggest that the quasiparticle pole strength of the propagator remains finite for all finite values of J.
The holes, though heavily dressed by spin fluctuations, move coherently through the antiferromagnetic
background and behave like ordinary quasiparticles with charge e and spin 1/2. Other scenarios have
been suggested in favour of a vanishing Zk factor [365]. But they have not found support from the
present results, neither from the polaron calculations nor from exact diagonalization studies on small
clusters [97].

From the results obtained for a single hole doped into a quantum antiferromagnet one may attempt
to describe the case of a finite but small hole density by a gas of noninteracting, spin fluctuation
dressed holes in terms of a rigid band picture. This has been done in a first step by Trugman using
only the renormalized quasihole dispersion to calculate the magnetic susceptibility and transport
coefficients in the relaxation-time approximation [4291.The incoherent contributions to the single-
hole propagator have been completely neglected. The temperature and doping dependence of the
transport coefficients therefore arises solely from the Fermi surface topology. Inherent in this rigid
band scheme is that at low hole concentrations, the Fermi surface in the first Brillouin zone forms
four hole pockets centered around the minima of the hole dispersion at k~= (±IT/2,±IT/2), as
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Fig. 53. (a) Quasihole spectral weight Zk [inthe figure denoted by a(k)] at different k points on a 16 x 16 lattice in the
strong coupling, small J/r regime as obtained from the self-consistent Born approximation. The solid lines represent power
law fits zk x f with e ~ 0.7. (From Ref. [255].)(b) Coherent bandwidth W for a single hole in the t—J model as a
function of J (with t = 1) from Lanzcos diagonalization studies for different cluster sizes. (From Ref. [314].)

shown in Fig. 548~
Clearly, in the case of hole pockets the Hall coefficient is positive, i.e. hole-like. With adding

more holes the pockets grow until they touch at a filling of about 26% holes changing the Fermi
surface into electron-like and the Hall coefficient changes sign [429].Surprisingly, this result agrees
qualitatively with the Hall effect data measured in La2_,.Sr,.CuO4 [400]. This picture is appealingly
simple and bears obviously some resemblance to experimental data, not only for the Hail coefficient
but also for the doping dependence of the magnetic susceptibility and the thermopower [4291. Still,
it remains dubious that the assumption of a gas of non-interacting holes is justified away from the
very low density limit.
The possible appearance of hole pockets in the Fermi surface of the doped t—f model is a subtle

and unresolved issue. Generally, in all calculations for the motion of a single hole in a quantum
antiferromagnet the hole momentum is found to be k~= (IT/2, IT/2) (see also Refs. [113,428,174]).
It is therefore expected that for low hole densities the holes will preferentially occupy momentum
states in the vicinity of k~,eventually forming pockets around k~and the equivalent momenta in the
Brillouin zone. High-temperature expansion studies for the momentum distribution function [378] and
exact diagonalization studies with various numbers of holes [3881 were, however, unable to detect
any signature of hole pockets. Due to the relation of the t—f model to the strong coupling Hubbard
model these results appear consistent with the QMC results on small Hubbard clusters [100,2791

8 Note that the long range antiferromagnetic order is still assumed to be present at finite hole densities. The wave vector
(ir, ir) is therefore a reciprocal lattice vector and the hole pockets appear in the extended magnetic zone scheme.
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Fig. 54. Fermi surface in the repeated-zone scheme for a gas of non-interacting holes with a spin-fluctuation renormalized
bandstructure calculated variationally in the t — t’ — J model as defined in chapter 4.2.2). As the hole doping x is varied the
Fermi surface has three distinct topologies. For x < xj = 0.26 it consists of eccentric ellipses (heavy solid line) enclosing
quasiholes, for XI < x < X2 it consists of two disconnected parts (dashed lines for x = 0.277). For x > x2 = 0.31 the Fermi
surface is an ordinary closed curve centered at the origin (thin line for x = 0.66).(From Ref. [429].)

which show a Fermi surface barely distinguishable from the free tight-binding Fermi surface, which of
course does not have any pockets. We will discuss these results in chapter 5.4.7. A similar conclusion
has been drawn above from the SDW based polaron scheme.

It remains possible that the hole pockets do exist but are very shallow so that they rapidly merge
at very low hole densities, forming a large electron-like Fermi surface. This, however, leaves the
problem to explain the positive Hall constant observed in low doped cuprate materials. (For an
early discussion of this problem see Ref. [2231).A possible solution to these conflicting issues has
been suggested in the work of Dagotto, Nazarenko and Boninsegni [105]. From a Green Function
Monte Carlo method for the t—f model they have obtained quasihole bands which are very flat for
momenta near the Fermi surface. The near degeneracy of these momentum states provides a hidden
small energy scale which is found responsible for a strongly temperature dependent and positive Hall
coefficient.

5.4.4. Application to the optical conductivity
One of the outcomes of the model studies for hole motion in a quantum antiferromagnet is the large

incoherent contribution in the spectral function arising from the coupling to spin-wave excitations.
In turn, when the spin-wave renormalization due to the motion of holes in an antiferromagnet is
considered, the incoherent part of the spectrum has been found responsible for a substantial spin-
wave softening [207,172,310,141,214]. The magnitude of the softening compares favourably with
neutron scattering data for spin-wave excitations in oxygen deficient 123 compounds [339,336]. It
is significantly stronger than for the case of a finite density of static vacancies in a Heisenberg
antiferromagnet as discussed in chapter 5.1.3.

In the present chapter we will discuss yet another example which underlines the significance of the
incoherent part of the spectrum. We will show that it creates oscillator strength in the low-frequency
regime of the optical conductivity. Due to the magnetic origin of the incoherent part of the spectrum
we will argue that the spin fluctuations give rise to optical absorption for mid-infrared frequencies.
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The conductivity describes the current response to an externally applied electromagnetic vector
potential. We therefore consider the one-band Hubbard model in the presence of a time-dependent
vector potential A~(r, t) applied in the x-direction, r denotes a site on the square lattice. The presence
of the vector potential modifies the hopping term ~ in the kinetic energy by introducing a Peierls
phase factor exp [ieA~ ( r, t) 1. Similarly to the derivation of the Raman scattering intensity in chapter
3.4 the kinetic energy is expanded to second order in A~(r,t) (units are chosen such that 11, = c = 1
and the lattice constant is set to 1),

Hj~= Hg~~— >[j~P(i)A~(i, t) + ~e2h~
0(i)A~(i, t)]. (5.78)

Here, j~is the x-component of the paramagnetic current-density operator
•J)f •\ — . ,. ( + . — + . (5 79

— ie ~c1+5~c,,0. ~
U

and h~0( i) is the kinetic-energy density associated with the links along the x-direction,
1.~ (~\..... I + I +

— —~ ~ -i- ~
U

The total physical current is then obtained from (fr) = — (dH~”/dA~)and contains as usual both,
the paramagnetic plus a diamagnetic contribution. The optical conductivity at frequency to is defined
by the linear response of the total current to an electric field E~(q= 0, to) = E~~ = j(to +
iS)A~(q= 0, to). Applying the standard linear response theory to the Hubbard Hamiltonian, containing
the kinetic energy in the form Eq. (5.78), we obtain the formula for the complex, frequency-dependent
conductivity

~ z=to+iS, (H~0)=((i/N)~h~~(i)). (5.81)

Here (Hj~0)is the expectation value of the kinetic energy per site from hopping along the x-direction.
C~(to + iS) is the retarded current—current correlation function for the paramagnetic current operator
.J~’=>~j~~(i),

C~~(to+ iS) = ~ f e’~’
8~’dt([J(t), J(0) ]_), (5.82)

which has to be evaluated for the Hubbard model in the absence of the external vector potential. The
real part of the optical conductivity as obtained from Eq. (5.81) contains the two contributions

Reo
1~(to+ iS) = DS(to) + Creg(to) (5.83)

with the Drude weight

D = —ITe
2ReC~(to—÷0+ iS) — ITe2(H~

0), (5.84)
and the regular, finite-frequency part of the conductivity

tTreg(to) = (e
2/to)ImC~~(to+i8). (5.85)
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Fig. 55. Schematic diagram for the calculation of the current—current correlation function. Black circles indicate the coupling
to the current and the set of vertical lines represents the current vertex function r~.

Fig. 56. Regular part of the optical conductivity evaluated in the SDW based self-consistent polaron scheme extended to
finite hole doping (see text). The different curves correspond to hole concentrations S = 0% (solid line), 4% (dashed
line), 10% (dotted line) and 20.4% (dashed—dotted line). This result has been obtained on a 24 x 24 lattice, with a finite
imaginary part is7 = i/48 added to the frequency co for better convergence. (From Ref. [197].)

The regular part Oreg of the conductivity is generally present in both metallic and insulating systems
and arises from the electromagnetic field induced transitions to excited states. The Drude weight D of
the S-function at zero frequency is a consequence of the free acceleration of the quasiparticles. This
is possible because the Hubbard model is purely electronic and contains no dissipative mechanism,
which would e.g. arise in the presence of disorder or from a coupling to phonons (or at finite
temperature). For an insulator D = 0; afinite Drude weight instead characterises a perfect metal or a
superconductor [215,346]. D > 0 is, however, not sufficient for superconductivity, independently the
existence of the Meissner effect has to be verified by evaluating the current response to a transverse
static vector potential [346,3521 (see also chapter 6.2.1).

We postpone the discussion of superconductivity to chapter 6 and focus now on the charge dynamics
of the spin-fluctuation dressed quasiparticles. We begin again with the polaron quasiparticles in the
SDW limit of the Hubbard model as introduced in chapter 5.4.2. We calculate the current—current
correlation function C~.for the renormalized SDW quasiparticles as represented by the general
diagram in Fig. 55.
The result for the current correlator may be written in the form

C~~(to)=i(1/N) (dP/2IT) F,,(k,to,~)

x {[G~(k, ~)G~(k, to + ii) + G~~’(k,v)G;’~(k, to + z.’)]n2(k, k)
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+ [G~(k, v)G’~(k, to + i.’) + G~*~(k,v)G~(k,to + v)]m2(k, k)]}y(k). (5.86)

Here, r~(k,to, to’) is the current vertex function which includes the effects of repeated interactions
between excited particle—hole pairs and y(k) = c9e(k) 8k~= 2t sink

5. The coherence factors m(k, k’)
and n(k, k’) are the same as introduced in chapter 5.2.1, Eq. (5.22). In Eq. (5.86) we have omitted
already those terms which involve the interband Green’s functions G~” and G”~because in the
following we will use the SDW polaron results in the large U/i’ limit for which the Green’s function
matrix G

11’ becomes diagonal. Furthermore, we will neglect vertex corrections which amounts to the
replacement of f’(k, to, i.’) by y(k). Assuming that the SDW order is approximately preserved for a
small but finite hole density we introduce a finite chemical potential into the Green’s functions G~.
This is somewhat similar to a rigid band calculation, but we emphasize that the Green’s functions
contain the full incoherent background contributions from the spin-fluctuation dressing.

The results of this calculation are shown in Fig. 56 for the regular part of the optical conductivity at
different hole doping concentrations S. At half-filling, S = 0, there is a gap to optical excitations across
the insulating energy gap of the renormalized SDW state. For finite S oscillator strength appears inside
the gap. The corresponding spectral weight is removed from the high-energy interband contributions
and shifted to low frequencies. In fact, the optical absorption at low frequencies is entirely due to
the spin fluctuation dressing of the quasiparticles, i.e. the incoherent part of the propagator. Coherent
particle—hole excitations in the valence band at finite hole doping contribute only to the zero-frequency
Drude weight. In a rigid band picture for the Hartree—Fock SDW quasiparticles the regular part of
Re u(to) would therefore contain only high-energy interband contributions. We may therefore directly
identify the low frequency optical conductivity with the spin fluctuations accompanying the doped
holes. The sharpness of the peak near to = 0 in Fig. 56 (which is not the Drude S-function contribution
omitted in this plot of Ureg for frequencies to > 0) is a density of states effect and due to the flat
quasiparticle dispersion along the magnetic Brillouin zone boundary (see the discussion in chapter
5.4.2 and Fig. 50).
To justify the qualitative relevance of these results to the measured optical conductivity in the

normal state of lightly doped cuprates we show in Fig. 57a Uchida et al.’s data for the evolution
of o~(to) with doping in a sample series of La

2.. ,~Sr~CuO4between x = 0 and x = 0.34 [434].
Undoped La2CuO4 has a charge transfer gap of about 1.5—2 eV. For finite, small x the optical
conductivity above 1.5 eV is reduced and a new feature grows at about 0.5 eV. This feature has
been called the mid-infrared (MIR) band. The reported integrated conductivity in La2....~Sr~CuO4
up to 4 eV remains approximately constant showing that oscillator strength is redistributed from
the charge-transfer excitations to lower energies. At low x the MIR band is clearly distinct from a
far-infrared Drude-like band peaked at to = 0. With increasing x the far infrared absorption increases
rapidly and merges with the MIR band.

Similar MIR band absorption is observed in a number of other doped cuprates as well, as e.g.
in the electron doped 214 compounds [434,90] or in the 123 materials [302,190]. (For a recent
review on optical properties in cuprate superconductors see Ref. [414].) It is tempting to assume
that the MIR band in the optical conductivity is common to all doped cuprate materials and related
to the dressed, mobile charge carriers. However, it may often be masked by other sources for optical
absorption in the infrared energy range. In this respect Uchida et al.’s data in Fig. 57a provide an
exceptionally clean example for the MIR band and its evolution with doping.

A measure of the spectral weight transfer with doping in the optical conductivity used in the
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Fig. 57. (a) Frequency dependence of the optical conductivity for a sample series of La2..~Sr~CuO4at a temperature of
300 K obtained from the Kramers—Kronig transformation of E i c spectra. (From Ref. [434].) (b) The total integrated
spectral weights of the optical conductivities in both Pr2...XCeXCuO4 (~)and La2...XSrXCuO4 (.) up to cv = 1.5 eV, plotted
as a function of concentration x. N0~is the effective carrier density as defined in the text below. The dashed lines represent
the anticipated spectral weight contributions from Ce or Sr substitution alone, assuming an effective mass m* = me and that
each Ce or Sr atom donates one mobile carrier/unit cell. (Figure taken from Ref. [90].)

analysis of experimental data [434,901 is a normalised effective carrier density Neff defined by

Neff(to) = ~ f Reu(w’) dto’, (5.87)

where e and me are the bare electronic charge and mass, respectively, and V,,eIl is the unit cell volume.
The significance of Neff may be appreciated from the sum rule for the conductivity

~ f Reo(to) dto = n (5.88)

with n the total density of electrons. As shown in Fig. 57b Neff, with u(to) integrated to the charge
transfer gap edge ‘-.~ 1.5 eV has been found to rise more rapidly than expected from the doped carrier
density alone in both electron- and hole-doped 214 compounds [434,90]. The excess contribution to
Neff is therefore a direct measure of the absorption in the MIR band which arises in addition to the
Drude-like free carrier part in u(w) near to = 0.

The calculations of the conductivity from spin-fluctuation dressed quasiparticles are suggestive
for a magnetic origin of the MIR band. This assertion has already been made earlier from exact
diagonalization studies for the one-band Hubbard model [981 and the t—J model [355,387,280,3121.
As an example we show in Fig. 58A results for the optical conductivity for the Hubbard model on a
4 x 4 lattice with U/t = 10 [981. In particular the appearance of the MIR band in the t—J model is
significant since this result ascertains that it is not related to charge excitations but results from the
spin fluctuations. Importantly, the presence of the MIR band is a 2D effect since it is absent in the
ID t—J model [3871.
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Fig. 58. (A) The real part of the optical conductivity cr~(cv) for a 4 x 4 Hubbard cluster with U/t = 10 and band fillings
(a) x = 0 (half-filled band) and (b) x = 0.125. A small shift from the real-frequency axis was used (S = 0.Olt) to plot
the individual S-functions of the finite system. TheDrude peak at cv = 0 is included only for illustration, its intensity in the
figure is not proportional to its real magnitude. The MW band is clearly visible in the doped case, centered around cv ‘~-~3t.
(From Ref. [98].) (B) Same as in (A) for different hole doping concentrations but with a large broadening S = t. (From
Ref. [103].)

The comparison of the exact diagonalization results to Uchida’s experimental data becomes striking
when the individual S-functions in the spectrum are broadened to a width of the order of t. The
corresponding result of Dagotto [103] for the optical conductivity is shown in Fig. 58B for different
hole concentrations. For U/t = 10 the result resembles closely the experimental data for hole and
electron doped 214 materials. In addition, the low-frequency part of u( to) has been found in this
analysis to follow a power law o-(to) “~ to~ for x = 0.25 and x = 0.375 in the frequency range
t < to < St. This agrees remarkably with the experimental observation that the decrease in the
normal state conductivity is closer to to~ than to to

2 as would be expected for a free carrier Drude
contribution [3351.

5.4.5. Pseudogap: RPA in the paramagnet
The preceding chapters have dealt with the problem of holes moving in an ordered (or nearly

ordered) antiferromagnetic environment. As we have seen the specific spectral properties of doped
holes arise from the coupling to strong spin fluctuations in the vicinity of the magnetic instability.
On the other hand the spin-fluctuation dressing of quasiparticles or holes is expected to become less
important in the large doping limit. In the present chapter we will take this weakly correlated limit
as a starting point to ask how the growing magnetic correlations begin to influence the single particle
properties when the electron density is increased to the vicinity of the magnetic instability [192,195].

Starting from the weak U and low density limit it is appropriate to consider the self-energy from
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Fig. 59. Spectral function A(k, cv) for the Hubbard model in the RPA approximation for the self-energy Eq. (5.89). The
momentum is k = (ir/2, ir/2). For fixed chemical potential the spectral function is shown for (a) U/t = 2 and closer to
the magnetic instability for (b) U/t = 2.5. (Note that the quasiparticle peak has moved below the chemical potential ,a, an
effect related to the omission of the Hartree term in the self-energy which will renormalize the value of ic.) (From Ref.
[1911.)

the RPA ladder and bubble diagram series in the paramagnetic state of the one band Hubbard model
(here written without the Hartree term),

.~(k,to) = —i~>f~G0(k — q, to — P)~~A(q,l.’), (5.89)

U
2~o(q,ii) U3~~(q,r’)

xRpA(q,v)= 2 + . (5.90)1— LP,~’
0(q,v) I — U~o(q,v)

G0(k, to) and xo(q, to) are the free electron propagator and particle—hole bubble for the nearest-
neighbor tight-binding dispersion, respectively, as introduced in previous chapters. We know that the
RPA series carries an unphysical magnetic instability for finite U and electron densities away from
half-filling. Yet, we may push the parameters in the RPA form of the self-energy Eq. (5.89) to near
the instability by either changing the filling (or equivalently the chemical potential) or the coupling
U/t and follow the changes in the single particle properties.

Fig. 59 shows the spectral function A(k, to) = (1/ir)ImjG(k, to + ,a)~obtained with the RPA
self-energy correction Eq. (5.89) for the propagator G(k, to) = [to — — 2~(k,to)]’. Away from
the magnetic instability, the spectral function in Fig. 59a for U/t = 2 has the conventional Fermi liquid
behavior with a dominant sharp quasiparticle peak near the Fermi energy and a featureless incoherent
background. For the same fixed chemical potential Fig. 59b shows the corresponding spectral function
for a larger value of U/t, i.e., closer to the magnetic instability. The quasiparticle peak has lost
spectral weight, and in addition the incoherent background develops two broad peak structures nearly
symmetrically above and below to = 0. This redistribution of spectral weight continues with further
increasing U/i’. The peak features in the incoherent part of the spectrum grow and will ultimately
develop into the sharp quasiparticle peaks of the valence and conduction bands of the spin-density-
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Fig. 60. Pseudogap formation in the density of states of the one-band Hubbard model calculated with the RPA self-energy
correction Eq. (5.89) at fixed chemical potential p./t = —0.375 for different values of U/t. Plotted in this figure is N( w+~).
(Note that the logarithmic singularity for U =0 is broadened due to a small finite imaginary part added to the frequency.)
(From Ref. [192].)

wave state. Clearly, the RPA self-energy would be pushed too far to explore this most interesting
regime near the Mott—Hubbard metal—insulatortransition, but already on this level remarkable changes
in the spectrum are observable.

The appearance of the broad peak structures in the spectral function and the accompanying re-
distribution of spectral weight leads to the development of a pseudogap in the density of states
N(to) = (1/N) >k A(k, to) as shown in Fig. 60. This is an immediate consequence of the quasipar-
tides near the Fermi surface loosing spectral weight to the developing upper and lower SDW bands.
The changes in the spectrum lead to a smooth evolution from Fermi liquid to pseudogap behavior. The
source of these qualitative changes in the spectrum can be traced to the enhanced large momentum
scattering from AF spin fluctuations near the magnetic instability where XRPA (q, to) develops a large
peak near Q = (ir,ir) [192].

If the dynamic spin susceptibility x ( q, to) varies slowly on the scale of the Fermi momentum and
the Fermi energy — a situation appropriate for U small compared to the bandwidth — the familiar
mass renormalization of Fermi liquid theory is obtained. As U increases x becomes peaked as a
function of q near Q = (ir, ir) and its characteristic frequency is reduced from the Fermi energy
to the spin-fluctuation energy. It is in this regime when the one-particle spectral weight begins to
develop the two new peak structures, rather than the one peak of conventional Fermi liquid theory
whose weight vanishes as antiferromagnetic order sets in.

More about the qualitative details of the large momentum scattering has been learned from a
model study [193] in which the RPA susceptibility is replaced by a Lorentzian centered at the AF
wavevectors Q = (±iT,±ir).If x is sharply peaked at Q, “backward scattering” contributions to the
self-energy dominate. They are positive for electrons and negative for holes. The resulting changes in
the real part of the self-energy at frequencies away from the Fermi energy are found to be responsible
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Fig. 61. Qualitative behavior of the real part of the self-energy in the (a) Fermi liquid and (b) the pseudogap regime.
Indicated is also the graphical solution of the equation cv — Ek — Re I(k, cv) = 0. (From Ref. [193].)

for the development of the two new peak structures in the spectral weight function. This is shown
schematically in Fig. 61. In the conventional Fermi-liquid regime (Fig. 61 a) we find one solution
of to — — Re..~(k,to) = 0 leading to a single quasiparticle peak in A(k, to). In the pseudogap
regime with finite range AF spin correlations changes in the self-energy lead to additional solutions
of to — — Re .~(k, to) = 0. Still, the spectral function evolves smoothly due to the presence of the
imaginary part of £ In Fig. 61 b the solutions 1 and 5 correspond to the developing valence and
conduction band of the SDW state, solution 3 still describes the quasiparticle that was present in
the weakly correlated Fermi liquid in Fig. 61a. The solutions 2 and 4 are accompanied by a large
imaginary part of .~ and contribute only to the incoherent background of the spectral function.

Extended self-consistent calculations, using the RPA as well as the model susceptibility, have
shown that the pseudogap development is weakened when dressed Green’s functions are used in the
calculation of the self-energy [191]. But we will see in following chapters that a pseudogap feature
is also present in more elaborate calculational schemes. The pseudogap development may deserve
more work in the future to clarify its role for the Hubbard model when doped slightly away from
half-filling.

5.4.6. Conserving approximations, FLEX
One direction to improved results for the renormalized quasiparticle properties in the Hubbard

model has been based on self-consistent conserving approximation schemes. These calculations fol-
low a method which was originally devised by Baym and Kadanoff [35]. Conserving approximations
guarantee that microscopic conservation laws for particle number, energy and momentum are au-
tomatically fulfilled. One such approximation scheme which has been found to be computationally
tractable for the 2D Hubbard model is the fluctuation-exchange-approximation (FLEX) worked out in
detail by Bickers and Scalapino [40]. The basic step in this approach is to derive the single-particle
self-energy ~ or the irreducible vertex part F of two-particle correlation functions by functional
differentiation of an approximate free energy functional ~P(G),

I=&li/SG, F=S.~/SG. (5.91)

In the FLEX approximation the free energy functional ‘P is taken as the sum of ring diagrams shown in
Fig. 62 which account for the interaction of electrons with spin, density and two-particle fluctuations.
The fermion lines in Fig. 62 represent fully dressed Green’s functions which have to be determined
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Fig. 62. Hubbard model diagrams for the fluctuation-exchange-approximation (FLEX). The interaction U is represented
by a dashed line. (a) Lowest order Z’ diagram, (b) di ring diagrams representing the interaction of longitudinal-spin and
density fluctuations, (c) transverse spin fluctuations, and (d) particle—particle fluctuations. (Figure reproduced from Ref.
[40].)

self-consistently. The Green’s and correlation functions generated in this way are consistent with
Luttinger’s theorem and lead to Fermi liquid behavior at low temperatures (see also Ref. [356]).

The solution of the FLEX equations and their extensions [41,454,455,320] is very involved and
relies heavily on computer power. As with the simple RPA calculations their accuracy is often
judged from the comparison to available QMC results. One important outcome of the conserving
approximation calculations by Wermbter and Tewordt [454] is that for weak to intermediate couplings
vertex corrections give negligibly small corrections to the RPA spin susceptibility — supporting the
conjecture discussed in chapter 5.3.2. However, the feedback effect of the self-energy correction on
the RPA spin susceptibility is quite large. As mentioned in the previous chapter, this weakens the
pseudogap formation, but a remnant of the pseudogap dip in the density of states has still been found
to survive a self-consistent conserving approximation scheme [455].

5.4.7. Numerical results (QMC, Lanczos)
We close the chapter on single particle properties with a brief look on the spectrum obtained

from finite cluster studies for the Hubbard model. Lanczos diagonalizations are restricted to 4 x 4
lattices, while quantum Monte Carlo (QMC) calculations have been extended to larger lattices of up
to 16 x 16 sites. The finite temperature QMC algorithms provide results on the imaginary-time axis or
equivalently on a discrete set of Matsubara frequencies for the measurement of Green’s functions or
susceptibilities, and they have to face the additional problem of the analytic continuation to the real
frequency axis. While the recent application of the maximum entropy method [371] promises some
progress to circumvent this problem, an annoying minus-sign problem still restricts the parameter sets
for which reliable results are available with the presently existing computer power. Unfortunately,
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this problem is most severe in the most interesting regime of low doping, strong coupling and low
temperature. Small cluster studies, however, provide in principal exact results and have proved to be
very valuable, in particular in the field of correlated electron theory where rigorous results in space
dimensions 1 < D < oc are rare. In this article we have not discussed the methods themselves or
their limitations, but rather we have focused on the results they have provided for the Hubbard model
and on the anticipated relevance for the physics of cuprate superconductors. In the remainder we
will continue to do so and discuss numerical results for the spectrum of the single-band Hubbard
model. (For recent comprehensive overviews on the QMC methods and their application to many-
body problems we refer the reader to the review articles of von der Linden [231] and Dagotto [103]
and the references therein.)

In order to avoid the complications still involved in the analytic continuation of QMC data we
select for our discussion the exact results obtained from the diagonalization of 4 x 4 Hubbard
clusters [100,236,126]. The Lanczos diagonalization method provides the exact eigenenergies E~
and eigenfunctions 11’~’) for the system with Ne electrons. Or alternatively, the algorithm can be
used to determine the coefficients of a continued fraction expansion of the single-particle Green’s
function (see e.g. Ref. [94]). The spectral functions — ~ (k, to) for adding an electron with spin
u, momentum k and energy to to the ground state and ~ (k, to) for removing an electron from the
ground state — are given by

A~(k, to) = ~ I( upc±I~N~)I2S(to — (Er’ — E~)),

A~(k, to) = i~c~~II(I~kdrI!1to~)I2S(to+ (E~~’— E~)). (5.92)

In angular resolved (AR) experiments, A~~(k,to) is measured by photoemission (PES) and
~ (k, to) by inverse photoemission spectroscopy (IPES), respectively. The corresponding densities
of states (DOS) are obtained from summing over all momenta and spin

N~(w) = (1/N) ~A~(k,to). (5.93)

Exact results of the DOS for U/i’ = 8 obtained by Dagotto, Ortolani and Scalapino for the 4 x 4
Hubbard cluster [1001 are shown in Fig. 63. The particle—hole symmetric DOS at half-filling (Fig.
63a) shows the clear gap of the magnetically ordered, insulating ground state. The large structures
near the gap edges result from the quasiparticles which form the upper and lower Hubbard band.
The additional structure in the DOS above and below the quasiparticle band features results from the
incoherent spin-fluctuation shakeoffs as discussed in the previous chapters.

Fig. 63b shows the corresponding DOS in the presence of two doped holes [100]. The effect of
the doped holes amounts to a redistribution of spectral weight from the upper and lower Hubbard
bands of the insulators to near the upper edge of the lower Hubbard band. New spectral weight has
been created in the gap of the insulating state, but a pronounced pseudogap feature remains. The
quasiparticle dispersion is found to follow closely the simple tight-binding form for nearest-neighbor
hopping on the square lattice. The bandwidth of the quasiparticle bands is, however, strongly reduced
by about 50%.
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Fig. 63. Density of states from Lanczos calculations for the Hubbard model with U/t = 8 on a 4 x 4 lattice, at (a)
half-filling, (n) = 1 with the chemical potential at ~ = 0, and (b) for a hole-doped case, (n) = 0.875 with 1L/t = —2.4. The
solid and dashed—dotted lines mark the IPES and the PES parts of the spectrum, respectively. (Results from Ref. [100],
figure taken from Ref. [103].)

Fig. 64. The figure shows the allowed k points in the Brillouin zone for a 16 x 16 lattice. The solid squaresmark k points
at which (nk) > 0.5 for a band-filling of (n) = 0.87 with U/t = 4 and T = t/6. Extrapolating the QMC data for (nk) on the
16 x 16-sites lattice to the points in the Brillouin zone where (nk) would equal 0.5 gives the crosses (x). The solid line
is the noninteracting (U = 0) Fermi surface for (n) = 0.87 and the dashed line is the noninteracting Fermi surface for the
half-filled band (n) = 1. (From Ref. [2791.)

The persisting approximate tight binding form of the dispersion in the presence of the interaction
already implies that the Fermi surface remains essentially unchanged by the Hubbard interaction term,
and agrees with the QMC results of Moreo et a!. for the momentum distribution function [279]

(nk) = T> exp(—ito~0)G(k,ito~). (5.94)

(0 represents an infinitesimal number less than zero.) Note that (nk) does not suffer the analytic
continuation problem and is obtained from the single-particle Green’s function G( k, itoh) at the
discrete set of Matsubara frequencies to,, = (2n + 1) irT. The approximate form of the Fermi surface
on a 16 x 16 lattice has been obtained [279] by mapping the momenta for which (flk) > 0.5 (see
Fig. 64). In particular, no indication of Fermi surface pockets has been found for U/t = 4.

Clearly, the redistribution of spectral weight in the DOS with doping is beyond the scope of any
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rigid band approximation. The PES part of the spectrum in Fig. 63 has shrunk due to the reduced
number of electrons. Importantly, the chemical potential has moved across the gap into the spectral
range of the former lower Hubbard band. This is a significant result since there is no obvious way to
reconcile this with some of the results of photoemission experiments. Photoemission data have found
the chemical potential to remain pinned and hole doping to basically fill in spectral weight into the gap
of the insulator [8,77,334]. Other sources, not included in the Hubbard model, may be responsible
for the discrepancy with these experimental results. Contrary experimental results, however, have been
reported from valence- and core-level spectroscopy which show instead a rather large shift of the
chemical potential [440]which are much closer to the results for the one band-Hubbard model. The
clarification of these problems remains a challenge for future work.

6. Pairing from antiferromagnetic spin fluctuations

In the final chapter we will discuss the possibility of a magnetic pairing mechanism for high-
temperature superconductivity. In several instances in the previous chapters we have found that the
2D Hubbard model — one-band or three-band — appears to represent some of the essential features
relevant to the physics of the CuO2 planes in the cuprate superconductors. In particular, the Hubbard
model is doing well in describing the magnetic properties. The obvious question to ask is whether the
Hubbard model has a superconducting ground state, at least in some parameter range, despite the fact
that it contains only repulsive interactions between the electrons. A lot of efforts have been devoted
to answer this question, especially with powerful computational techniques. So far, no convincing
quantum Monte Carlo evidence has been found for superconductivity in the Hubbard model. This
may either mean that the electrons in the Hubbard model do not superconduct at all, or that the
presently available numerical techniques are not accurate enough to find the presumably weak signals
of superconductivity. The corresponding numerical results for the t—J model are more promising,
in particular for electron densities and couplings in the vicinity of phase separation [101,102].
Generally in the one-band models, the dominant enhancement in the pair-field susceptibilities, as an
indicator for superconducting correlations, occurs in the d~2~,2channel. As discussed in chapter 3.6,
this symmetry for the gap function in the superconducting state has been found compatible with a
number of experimental observations. This points to a possible electronic origin of high-temperature
superconductivity and motivates the subsequent detailed discussion of the pairing correlations in the
Hubbard model.

6.1. Spin-fluctuation-exchange mechanism

An early suggestion that AF spin fluctuations could give rise to singlet d~2_~2-wavepairing in the
cuprate superconductors was already made in 1987 by Bickers, Scalapino and Scalettar [39], i.e. one
year after the pioneering discovery of Bednorz and Muller [36] was published. The early suggestion
of d-wave pairing in the cuprates was based upon previously developed ideas of d-wave pairing near a
spin-density-wave instability in heavy fermion superconductors [345]. Similar ideas were developed
simultaneously by Miyake et a!. [270]. The first calculations for this problem which hereafter took
into account the full frequency and momentum dependence of the spin-fluctuation mediated pairing
interaction were carried out based on the FLEX approximation to the Hubbard model (see chapter
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Fig. 65. Berk—Schrieffer diagrams for the single spin-fluctuation exchange interaction. The dashed line represents the bare
Coulomb repulsion U.

5.4.6) [40]. These calculations gave a first estimate for a maximum T~~ 0.01St from the magnetic
pairing interaction. The continuing search for an instability towards superconductivity has since then
focused on quantum Monte Carlo simulations, accompanied by diagrammatic studies for the Hubbard
model, or exact diagonalization techniques for the t—J model.

6.1.1. Antiparamagnon exchange
As originally proposed by Berk and Schrieffer [38] the exchange of longitudinal and transverse

spin fluctuations is described by the set of diagrams shown in Fig. 65. These diagrams contribute to
the irreducible particle—particle interaction in the singlet channel. The Berk—Schrieffer diagrams lead
to an effective interaction which in the zero center-of-mass momentum and zero-frequency channel
is given by [38]

tr2 ei
1 1 (~\ r~3 2ji’ I

rs~~1kFk~—U Xo’~” r’~w Xo’.” 61)
I,’ ‘ 1—U~o(k’+k,0) 1~U2X~(k’~k,0)

with Xo given by Eq. (5.19). Here, F~(k’,k) is used as a short notation for F~(k’,—k’;k,—k).
At small doping away from half-filling Xo peaks at an incommensurate wavenumber Q* near (ir, ir)

which dominates the interaction p~F, and the spin fluctuations are therefore referred to as antifer-
romagnetic paramagnons. As is obvious from Eq. (6.1) the effective particle—particle interaction is
positive in the paramagnetic phase away from the RPA—Stoner instability. The exchange of a single
paramagnon is therefore repulsive, and strong for large momentum transfer q = k — k’ near (ir, ir).

One may wonder how pairing should come about if the interaction between the electrons is
repulsive! The answer is hidden in the momentum dependence of the interaction. To see this it is
instructive to examine the spatial Fourier transform of the interaction [345,110,109],

F~(l) F~(l
1,l~)= ~ ~exp[i(k — k’) .1] Fr(k’, k). (6.2)
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Fig. 66. Schematic picture for the spatial variation of F~F(l~,lv). The sign and the strength of the interaction are indicated
at the lattice sites (li, lv), the strength is given relative to the on-site interaction which has been arbitrarily set to 1. (From
Ref. [109].)

Fig. 67. Extended s and d~2.~2 pairing symmetry. The + and — signs are placed on the links that connect site 1 (•) with
site 1 + 8 (0), and they represent the values of the function g~,(ô)in Eq. (6.3). (Reproduced from Ref. [282].)

Fig. 66 shows the sign and strength of the effective interaction near half-filling between two electrons
of opposite spin separated by a lattice vector (lx, lx). It is not surprising that the interaction is
repulsive if the electrons are sitting on the same site due to the Hubbard U term. But the interaction
is attractive if the electrons are located on nearest-neighbor sites. At larger distances the interaction
oscillates in sign and its strength weakens. The oscillatory spatial structure of the interaction has
the character of a large Friedel oscillation. If two electrons can arrange themselves in an orbital
state which takes advantage of the attractive spatial region of this interaction and avoid the repulsive
regions, pairing can take place

9.
Singlet pairing correlations for superconductivity are measured by the correlation functions of the

pair-field operators [344,2821

= ~=~zi~(l) = ~ —ct~c,~
1). (6.3)

Here, 8 = (8~,6.~,)with 8~,6~> 0 runs over selected neighbors of the lattice site 1, and g~(ô) = +1
specifies the symmetry of the electron pair field. From the spatial structure of the antiparamagnon
exchange interaction we may already guess that there are the following two candidates for even-parity
pair-field symmetries which can take the best advantage of the attraction,

A+(\_lf+ + + + \jlf+ + + +

~ — c11c1~.~— c1~c~~1,-i- ~ — cc,~-~
+ + + \ 1/+ + + + ~64d ~ — ~ ~ — c,1c,+~1,— ~ ~c11c1~~— c1~c1~,11,

as is schematically shown in Fig. 67. These operators create electron pairs on nearest neighbor sites.
In momentum space they correspond to the familiar forms

= ~ ~d= —=~(coskX—coskY)c~lc~kl, (6.5)

~ These arguments have been discussed in two recent lectures by D.J. Scalapino, see Refs. [110,109]
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for extended s-wave and d52_~2pair field operators, respectively.
Which one of these two pairing states will be preferentially selected by the single-paramagnon

exchange interaction can be qualitatively argued [110,109] from the BCS weak coupling gap equation,

= —(1/N) >rr(k,k’)/ik~/2Ek~, E,, = ~/ej +Li~. (6.6)

Since from Eq. (6.1), F~(k,k’) > 0, a solution of the gap equation requires that the gap function
zi,, must change sign on the Fermi surface. Among the two options we consider, this is fulfilled by the
d52_~2-formof the gap function, Li,, = zi0 (cosk~— cos kr). So we have to expect that if the electron—
electron interaction in the Hubbard model is dominated by the Berk—Schrieffer single-paramagnon
exchange, a pairing state with dX2),2 wave symmetry is the favourable candidate for superconductivity.

6.1.2. Spin-bag pairing
Beyond the repulsive single-spin-fluctuation exchange interaction there is a higher order attractive

contribution to the pairing interaction F,. The origin of this attraction was originally discussed by
Schrieffer, Wen and Zhang (SWZ) [397,398] for holes doped into a spin-density-wave (SDW)
environment. The arguments are based on the spin bag idea which suggests that holes sharing locally
their regions of suppressed SDW amplitude experience an attractive potential. Since in this picture
the reduced amplitude of the SDW in the vicinity of the hole is important for the pairing, SWZ
have explored the interaction mediated by the exchange of longitudinal XZZ spin fluctuations. Later
on Frenkel and Hanke [133] have shown that the exchange of transverse x~ spin fluctuations is
equally importantand has to be included on equal footing for a complete picture of the spin-fluctuation
induced pairing interaction in the SDW state.

In order to calculate the effective particle—particle interaction in the SDW state (see chapter 5.2.1)
one considers a similar set of diagrams as for the Berk—Schrieffer interaction diagrams in Fig. 65.
The difference is that the required spin susceptibilities have to be evaluated in the broken symmetry
state of the SDW. This leads to the following expressions for the effective interaction between the
valence band y-quasiparticles at zero-energy transfer and in the singlet channel [398,133,441]

F~(k’, k) = V~(k’— k)n
2(k’, k) — V~(k’— k — Q)p2(k’, k),

F~(k’,k) =Vzz(k’ — k)12(k’, k) — Vzz(k’ — k — Q)m2(k’, k), (6.7)

with

V~(q)=U2 k~~o) , Vzz(q)=U2 ,~Z(q,O) (6.8)
1—U~

0 (q,0) 1—Ux~(q,0)

Here, n, p, 1 and m are the coherence factors and ~ and ,~are the intra-valence-band (1, 1) matrix
elements of the non-interacting response functions as defined in chapter 5.2.1. SWZ have focused on
the interaction F7aZ which gives indeed rise to attraction for small momentum transfer k’ — k ~ 0 as
anticipated in the spin bag idea. The attraction is accompanied by a repulsion at large q ~ Q which
is the analog of the repulsion arising from the exchange of one spin fluctuation in the paramagnetic

. . . zz zz zzphase. The antipenodicity of the painng potential, F, (k ,k) = —F, (k +Q, k) = —F, (k , k+Q),
implies that the solution of the corresponding superconducting gap equation satisfies Li,, = —

which is e.g. fulfilled by the extended s-wave or the d~2..,2-wavegap functions [see Eq. (6.5)].
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Fig. 68. Lowest-order spin-bag contribution to the irreducible pairing interaction in the paramagnetic state of the one-band
Hubbard model. (From Ref. [192].)

Since the coherence factors n(k, k’) and p(k, k’) vanish for momenta on the Fermi surface of
the non-interacting tight binding, F,~ appears to be less relevant for the interaction. However, the
vanishing of p(k, k’) is cancelled by a pole in V~(k’— k — Q) for q = k’ — k —+ 0 as pointed out
by Frenkel and Hanke [133]. In fact, in the large U/t limit one finds [133]

V~(q+ Q)p2(k + q, k) ~ 2U(q~+ q~)2/q2. (6.9)

Remarkably, this limit for the transverse spin-fluctuation channel leads to the same result for the
pairing interaction as obtained in the context of a spiral phase for the t—J model [366]. This
underlines again that strong coupling results can be smoothly connected to weak coupling RPA
calculations for the Hubbard model in the SDW state. Interestingly, the spatial Fourier transform
of Eq. (6.9) has a long range inverse power law contribution to the interaction. This long distance
behavior is related to the spiral twist of the magnetic background as induced by the presence of the
holes [366,133]. The spatial Fourier transform of the transverse F,~hinteraction, however, shows
that it does not lead to an attraction in the usual spin-antisymmetric channel [831.

The analysis so far presumed the existence of long range SDW order in the environment of the
interacting electrons. As has been discussed by Schrieffer [353] and Kampf and Schrieffer [1921 a
pairing mechanism similar to the spin-bag attraction in the SDW state exists also in the paramagnetic
metal phase of the doped one-band Hubbard model. It originates from the same effects which lead to
the development of the pseudogap in the single-particle density of states (see chapter 5.4.5). Electrons
mutually “help” each other to reduce their self-energy ~5SF from the coupling to spin fluctuations.
These self-energy effects enhance the energy of the electrons (or reduces the energy for holes) in the
pseudogap regime. The suppression of .~SFdue to the presence of another electron therefore lowers
the energy of the electron and provides a source for an attractive contribution to the pairing potential.
As described in detail in Ref. [1921, this spin-bag effect in the paramagnetic phase is in lowest
order 0(U6) represented by the crossed-line diagram shown in Fig. 68. This diagram contains an
attractive part for small momentum transfer q = k’ — k. It gives another contribution to the effective
particle—particle interaction F,(k’, k) with a physical origin different from the single-paramagnon
exchange, which is strongly repulsive at large k’ — k ~ Q.

6.1.3. Effective particle—particle interaction
In order to test the relative importance of the Berk—Schrieffer single-spin fluctuation exchange and

the crossed exchange spin-bag contribution to the irreducible particle—particle vertex F,, Bulut et al.
[66,671 have performed a comparison to QMC results obtained for the Hubbard model on a 8 x 8
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Fig. 69. (a) Quantum Monte Carlo results for the irreducible particle—particle interaction F,(p’,icv,,’;p, icv~) for
U/t = 4, (n) = 0.87 and ~ = cv~= irT on an 8 x 8 lattice at T = 0.5t (.) and T = 0.25t (o). The momentum p
is kept fixed at (ir, 0) and p’ is taken along the path shown in (b). The error bars are of order twice the size of the circles.
(From Ref. [67].)

lattice doped away from half-filling. Fig. 69a shows QMC results for F, (p’, ito,,~p, ito,,) for the
lowest Matsubara frequencies to,,~= to, = irT, for fixed momentum p = (0, ir), and with p’ moving
along the path shown in Fig. 69b. Note that the repulsive F, peaks for large momentum transfers and
that the strength of this peak increases as the temperature is lowered and short range AF correlations
become stronger.

Corresponding diagrammatic results — which we denote by F~F— for the single-spin fluctuation
Berk—Schrieffer exchange and the crossed two-spin fluctuation exchange spin-bag contributions are
presented in Fig. 70. The figure shows results in the singlet channel F~,obtained from the sym-
metrised F~F,

F~(p’,p)= 1[F,SF(pf p) + Fr(—p’,p)]. (6.10)

In the diagrammatic contributions the bare U has been replaced by an effective U = U/2, a procedure
which has proved to give a successful parametrisation of the QMC dynamic spin susceptibility by
an RPA form of ~(q, ito,,) [76,63,67] (see also chapter 5.3.2). The results in Fig. 70 have been
obtained on a 128 x 128 lattice, p is kept fixed at (PF, 0) and p’ is taken along a path on the Fermi
surface.

Fig. 70a shows the single paramagnon exchange contribution which has a structure similar to the
QMC result in Fig. 69, with a large peak near momentum transfer p’ — p = q ‘~ (ir, ir) and a
large constant background of order St. The contribution from the sum of crossed two-spin fluctuation
exchange diagrams, shown in Fig. 70b, exhibits the momentum structure proposed by Kampf and
Schrieffer in the spin bag/pseudogap approach [194];it is repulsive for momentum transfers q
(ir, ir) and attractive for q (0, 0). But its magnitude is small relative to the single-paramagnon
exchange in Fig. 70a. Similarly small are the contributions from additional vertex corrections [66].
The overall structure of the single-paramagnon exchange F~resembles closely the QMC result. But a
comparison of the magnitude to the symmetrised singlet QMC F,~still shows that F~underestimates
the strength of the interaction.
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Fig. 70. (a) Momentum dependence of the irreducible particle—particle interaction Ii (p’. p) for the single-spin fluctuation
exchange. Here, p (p,iirT) with p = (pp,O) and p’ (p’,iirT) with ~ritaken on the Fermi surface for a 128 x 128
lattice. Also, 9,,, = tan~(p~/p~),U/t = 4, U/t = 2 (see text), (n) = 0.87 and T/t = 0.1 and T/t = 0.2. (b) Same as in (a)
but for the crossed two-spin fluctuation exchange T~~(p’,p).(From Ref. [66].)

Fair agreement with the QMC F,~,is obtained when the interaction is modeled by [1111

F~(p’,ito,,~p,ito,,)= U+ ~g2U2x(p’P,lton’ — ito,,), (6.11)

with QMC results inserted for the susceptibility x ( q, to). The factor 3/2 is motivated by the Berk—
Schrieffer interaction and arises from the two transverse and one longitudinal spin fluctuations. The
factor g is introduced to account for the renormalization of U to an effective coupling gU (in Ref.
[111] g = 0.8 has been used for QMC runs with U/t = 4). The success of this model form suggests
that a properly renormalized single-spin fluctuation exchange interaction is capable of reproducing
the basic features of the effective particle—particle interaction in the weak to intermediate coupling
one-band Hubbard model [1111.

6.2. Pairing correlations from small cluster studies

Having learned about the structure of the effective particle—particle interaction in the single-band
Hubbard model we discuss in this chapter the results for pairing correlations obtained from numerical
studies on small size clusters. It is not at all obvious what the appropriate measures in these small
systems are to tell whether a superconducting state occurs at low temperatures and in the bulk limit.
We therefore consider first different techniques which have been applied to the Hubbard model in
searches for superconductivity. Separately we discuss numerical results for pairing correlations in the
t—J model obtained by exact diagonalization or Green’s function Monte Carlo studies.

6.2.1. Criteria for superconductivity
Pair-field susceptibilities. The clear indication for superconductivity in a bulk system is the finite

expectation value for the pair-field operator Eq. (6.3) in a selected orbital symmetry. But for any
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finite system (Lit) vanishes identically, and one has to resort to measuring the equal-time pair-field
correlation function 10

Pa(T) =~Lia~(l)Lia(T+l)), (6.12)

and the pair-field susceptibility x~= ~r Pa(T) [344,456,282].Early studies by White et a!. [456]
for the one-band Hubbard model reported an enhancement at low temperatures in the dX2_).2-wave
channel of x~(T), and a weaker enhancement also in the extended s-wave channel. Similar results
have been reported for the pair-field susceptibilities in the three-band Hubbard model [347,108].
However, the distance dependence of the pair-field correlation function in the one-band model has
revealed that the observed enhancement in x~(T) is only a short distance effect, and none of the
pairing channels has been found to develop pairing correlations beyond one lattice spacing down
to the lowest temperature T = t/6 reached in these numerical simulations [282]. (For a similar
conclusion see also the results of Imada in Ref. [175]).

One possible reason for the negative result for pairing correlations obtained from this method has
been pointed out by Dagotto and Schrieffer [97]. The bare electron operators c,..,. used to construct 4~
may have only a small overlap with the true physical quasiparticles, because the quasiparticle spectral
weight factor z~is small. The correlation functions Pa(T) are therefore suppressed by a factor z,,2,
which makes it difficult to detect superconducting pairing correlations in terms of c-fermion operators.

Bethe—Salpeter eigenvalues Another route to look for a superconducting instability is to consider
the eigenfunctions ~a (p) and eigenvalues Aa of the Bethe—Salpeter equation [40,67,68]

A,,4~(p)= —(T/N) ~ F,(p,p’)G
1(p’)G~(—p’)ç~(p’), (6.13)

where p is a short notation for (p, ito,,). QMC data have been used for the irreducible particle—
particle interaction F, and the single-particle Green’s function G,,. (p) in Eq. (6.13). As is well
known, when the largest eigenvalue Aa reaches 1, an instability to a superconducting state with the
pair wavefunction çb0 (p) occurs. The advantage of this approach is that it does not a priori select
any pairing state by prejudice to be tested by numerical simulations, but rather the favoured pairing
channel, its orbital symmetry and its spin state, are provided by the eigenfunction with the largest
eigenva!ue.

The results of this analysis by Bulut, Scalapino and White [68] for a half-filled 8 x 8 Hubbard
lattice have shown that at low temperatures the pair eigenfunction with the largest eigenvalue has
dX2)~2 symmetry. Away from half-filling, at the lowest temperature, T = t/4, reached in the QMC
simulations of Bulut et a!. an odd-frequency s-wave triplet has the largest eigenvalue, but p- and
d~2~,2-wave singlet states grow the most rapidly with decreasing temperature and are expected to
dominate at low temperatures [671.

Superfluid density. As we know the signature of superconductivity is the onset of the Meissner
effect. A sufficiently weak magnetic field is expelled from a bulk superconductor except for a thin
penetration depth A. A—

2 is a measure for the superfluid density D
5 [352]. For models of lattice

electrons it has been shown by Scalapino et al. [346]that D5 is obtained from

10 Note that we have used a singlet pair-field operator in Eq. (6.3) slightly different from the operators introduced in Ref.
[282] which contain a combination of singlet and triplet pair-fields.
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Ds/ire2 = ~ — C~~(q~= 0, qy 0, ~tom = 0), (6.14)

where C~is given by the correlation function of the paramagnetic current-density operator along the
bonds in the x-direction,

lIT

C~~(q,ito,,,)= ~ fdre1&~T(j~(q,r)j~(_q,0)), (6.15)

with to,,, = 2irmT. As in the derivation of the optical conductivity in chapter 5.4.4, (Hj~~)is the kinetic
energy per site along the x-oriented bonds. Crucial in Eq. (6.14) is the order in which q~and to,,,
are taken to zero. This accounts for the Meissner effect as the current response to a static transverse
vector potential, with q~A (q, to = 0) = 0. A superconductor is characterised by a finite superfluid
density D~and a finite Drude contribution Dô(to) in the conductivity [346]. This provides another
criterion for superconductivity which does not specify the symmetry of the superconducting state.

QMC simulations have been applied to look for a finite superfluid density D~in the one-band
Hubbard model [346]. For U/ t = 4 and down to temperatures T = t/ 10 the results suggest that the
non-half-filled Hubbard model is metallic but not superconducting with a finite Drude weight D > 0
and D

5 ~ 0. This is consistent with a recent projector-QMC result of Assaad, Hanke and Scalapino
[24] at T = 0 for quarter filling (n) = 1/2. No signature of flux quantisation has been detected for
the Hubbard model in a cylinder geometry threaded by a magnetic flux.

In summary, only negative results have so far been reported regarding superconductivity in the re-
pulsive 2D Hubbard model. A parameter window between quarter and half-filling at low temperatures
and strong coupling remains, however, still open where present day QMC studies are unable to reach
a conclusive answer due to the unsolved fermionic sign problem. If there is superconductivity in the
one-band Hubbard model, the numerical results suggest that it will most likely occur in the d~2,2
singlet pairing channel.

6.2.2. Superconductivity in the t—J model
In contrast to the Hubbard model there are stronger indications for superconductivity in the t—J

model. A first indication of hole—hole attraction in the t—J model comes from the observation that
in the two-hole ground state a bound state is formed between the holes [44,331,156,95,315] for
couplings larger than a critical value which has been estimated to be J~/t‘-.-~0.27 [46]. The internal
symmetry of the bound state is d~2~2.The physical picture for the origin of binding is simple: Two
holes added to a quantum antiferromagnet can minimize the magnetic energy cost by occupying
nearest-neighbor sites. In this way only seven AF bonds are cut instead of eight, if the two holes
were moving independently. In some sense this is similar to the spin bag pairing attraction in a SDW
environment.

At larger couplings J/t it is well established that there is phase separation into hole-rich and hole-
poor regions [118,318,991. The region in the phase diagram in the vicinity of the phase separation
boundary has been argued to be the most promising for a search of superconductivity, because in this
regime the pair binding forces are strongest [101,1021. Furthermore, a signal for superconductivity
should be favorably detectable for electron densities near quarter-filling (n) since for these fillings the
number of electron or hole pairs available for pairing is maximised. Based on these ideas Dagotto and
Riera have indeed observed for the first time positive evidence for a superconducting ground state with
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Fig. 71. Phase diagram for the 2D t—J model. d-wave denotes the phase where the d~2.~2 correlations have been found
to be strong in exact diagonalizations. s-wave denotes the regime where variational Monte Carlo studies have shown the
presence of a stable s-wave condensate. The dashed line separating d-wave from s-wave is schematic since results have
been obtained only at a small number of electronic densities. AF denotes the antiferromagnetic region close to half-filling
where not enough accuracy has been reached to complete the phase diagram. PM denotes the paramagnetic metal state.
(From Ref. [104J.)

d~2.,2-symmetryin the t—J model at quarter-filling and near phase separation [101,102,104]. This
conclusion rests on the exact diagonalization results for the pair-field susceptibility, as well as flux
quantisation, and a finite superfluid density [102]. These results of diagonalization and variational
Monte Carlo studies are summarised in the schematic phase diagram shown in Fig. 71 for the t—J
model as proposed by Dagotto et al. [104].

The slight caveat remains that the cleanest evidence for superconductivity has so far only been
obtained in an unphysical parameter region at large values of J and for large doping near the phase
separation boundary at quarter-filling. Superconductivity has still to be detected in the more realistic
region of small J/t and densities near half-filling.

6.3. Phenomenologies for d-wave pairing

Given the as yet preliminary and unconclusive results of the numerical searches for superconduc-
tivity in the Hubbard or t—J models in the regime relevant to cuprate superconductors, one may
follow another route for a theoretical discussion of the superconducting state. One possible way is to
test various symmetries for the superconducting state against available experimental data. This may
be done in the context of the BCS pairing theory appropriately extended to include magnetic corre-
lations. Another approach has been chosen by Pines and coworkers which takes the experimentally
determined dynamic spin susceptibility — as analysed in the NAFL phenomenology — as input into a
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pairing theory based on the exchange of AF spin fluctuations. While the latter approach is destined
to favor a d-wave pairing state due to the large momentum dominated pairing interaction (see the
discussion in chapter 6.1.1), the former less biased attempts have reached similar conclusions. The
subsequent two chapters will summarise some of these results and theoretical considerations for the
superconducting pairing state.

6.3.1. NAFL superconductivity
Monthoux, Balatsky and Pines have suggested an effective model which assumes that the planar

excitations in metallic cuprates form a nearly antiferromagnetic Fermi liquid (NAFL) made up of
quasiparticles coupled to spin fluctuations [275]. Experimental NMR results for the normal state are
used as input to fix the spectrum of the spin excitations and their coupling to the quasiparticles. The
specific model Hamiltonian which has been considered by Monthoux et al. is given by [275]

H=~e,,(c,,~,.c,,~+h.c.)+ ~~~g(q)s(q) .S(—q), s(q) = ~ (6.16)
where s (q) is the spin operator of the lattice quasiparticles. The dynamic properties of the “spin-

fluctuation operator” S(q) are determined by its susceptibility,

x~(q,to) = ~ I + ~2(q Q)2 — lto/toSF’ (6.17)
where XQ is the static spin susceptibility at wave vector Q = (ir, ir). The dynamic spin susceptibility
Eq. (6.17) is of the MMP form [272] as discussed in chapter 4.1.2. The parameters XQ’ ~ and toSF

are determined such as to provide a quantitative fit to NMR experiments above T~[272,273,289];
they are taken to be constant below T~with the argument that the NMR data are suggestive for the AF
spin correlations to become frozen in the superconducting state. The coupling functions g( q, T) in Eq.
(6.16) are adjusted appropriately for the different materials 123 07, 123 0663, and La

1 85Sr0 15Cu04 to
ensure the observed linear temperature dependence of the normal state resistivity in all three materials.

Having set up the model in this way Monthoux et a!. have investigated first the linearised gap
equation in the vicinity of T~which in the singlet channel takes the approximate, simple form

~ (6.18)

Here, ~ T) is an effective momentum averaged coupling constant, and the interaction is cut off in
the frequency argument of Re~when  ~‘ —  tosF(~/a)

2.The gap equation (6.18) leads uniquely
to a solution Li(k) = Li

0(cos k~— cos k~)with dX2...)2 symmetry due to the strong, repulsive structure
of the pairing interaction Re~at large momenta q Q. (The origin of this result has been discussed
in chapter 6.1.1).

Besides the achieved high transition temperatures, two further principal results of the numerical
solution of the gap equation as reported in Ref. [275] are the approximate formula for the transition
temperature

T~= ahtosF(T~)[~
2(T~)/a2] exp[—1/~g~ff(T~)xo(T~)N(0)1. (6.19)

and the temperature dependence of the maximum value Li
0(T) of the gap function. The coefficients

a, ~ in Eq. (6.19) are material dependent constants of order unity and N(0) is the density of states at
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Fig. 72. The temperature dependence of the maximum value of the d~2 ~2 energy gap for the three high-Ta compounds
YBa2Cu1O7 (T,. = 95 K), YBa2Cu3O663 (T~= 60 K) and La185Sro15CuO4 (T,. = 40 K) as obtained in the NAFL pairing
theory of Monthoux, Balatsky and Pines. (From Ref. [275J.)

the Fermi energy. The long-wavelength spin susceptibility Xo(T) enters the MMP model susceptibility
Eq. (6.17) as discussed in chapter 4.1.2. Although the coupling strength in this approach is weak to
intermediate the energy gap opens up rapidly below T~in agreement with the Knight shift experiments
[30], reaching a maximum magnitude about two times larger than the BCS weak-coupling result

= 1.76k8T~(see Fig. 72).
Objections which may arise against this weak coupling treatment of superconducting pairing in-

duced by the exchange of AF paramagnons have been subsequently addressed by Monthoux and
Pines in a strong coupling calculation [276,2771. In the Eliashberg formalism this treatment includes
in particular the lifetime effects from the quasiparticle scattering against spin fluctuations. It has
proven that despite their short lifetime and despite the related, indeed severe, reduction of T~,the
quasiparticles can still take sufficient advantage of the spin-fluctuation induced pairing interaction to
superconduct at high temperatures. Large coupling constants are necessary to obtain superconducting
transition temperatures near 100 K. Even with the required large coupling constants the normal state
properties in this model still compare reasonably well with experimental data on the resistivity and the
optical conductivity [277]. To obtain high transition temperatures it has been found crucial to take
into account the full momentum and frequency dependence of the effective interaction. In contrast,
the standard Fermi-surface-restricted Eliashberg treatments generally lead to an order of magnitude
lower T~values [453,267,324].

The strong coupling calculations of Monthoux and Pines have shown that low- frequency spin
fluctuations serve as a very effective candidate mechanism for high-temperature superconductivity.
An unambiguous prediction of the theory of paramagnon induced superconductivity in a NAFL is the
d~2~,2symmetry of the pairing state in 123 07 [2771. As the authors admit, if experiments prove a
different pairing state to be realised in this 123 material, the NAFL pairing concept will have to be
discarded as a valid theory for HTSC.

Doubts against d-wave pairing may be inferred from the apparent insensitivity to impurities in
cuprate superconductors, since it is known that elastic scattering of quasiparticles from nonmagnetic
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impurities gives rise to significant pair-breaking effects in a d-wave superconductor. However, Mon-
thoux et a!. have argued that the lifetime effects caused by impurity scattering are smaller than those
attributed to the spin-fluctuation scattering [275]which have been included in their strong coupling
calculations [276,2771.

Besides the selected experiments discussed in chapter 3.6 some of the characteristic NMR results
below T~have in fact been favourably interpreted in terms of a dXz),2 pairing state. For example
the absence of a Hebel—Slichter peak in the spin—lattice relaxation rates close below T~is naturally
obtained for a d-wave pairing state [287,631.It offers an alternative explanation to the suggestion of
an s-wave gap function together with a large temperature dependent pair-breaking rate and a large
value for the ratio 2Li(0)/kBTC which equally leads to a suppression of the Hebel—Slichter peak
[87,219,63]. Separately, the line nodes of the d-wave gap function on the Fermi surface lead to the
development of a T3 behavior of 1/T

1 at low temperatures [287,63,65,4161 as is observed in the
oxygen and copper relaxation rate data of Martindale et al. [2541. As we will outline in the next
chapter further analyses of the pairing state has been based on a phenomenological description of the
dynamic spin susceptibility below T~.This has allowed to derive useful predictions for different gap
functions for a comparison to experimental results.

6.3.2. Phenomenological analysis of the pairing state
In order to obtain information about the symmetry of the gap function a simple phenomenological

ansatz has been considered for the dynamic spin susceptibility below T~which includes the effect
of AF spin fluctuations on the RPA level. Explicitly, x( q, to) in the superconducting state has been
modeled in the form [63—65,69,227,228]

BCSç \

x(q, to) = ‘~ ~ , (6.20)
‘‘—‘effXo (q,w)

with [352]

BCS — I ~ 1 (~+ ~k + ~thk+ Li~+qLi~~\f(Ek+q) — f(Ek)x0 (q, to) — N 2 Ek+qEk ) to — (Ek+q — Ek) + iF

+ -~-(~— ~ + ~k+q1~~\ l — f(Ek+q) — f(Ek)4 Ek+qEk ) to + (E~+q+ Ek) + iF

+ 1 (~— ~k+q~k+ Li~+qLi~~\f(E~+q)— f~,,)— I (621)
4~ Ek+qEk Jto_(Ek+q+Ek)+iF

This expression for x~ contains inside the square brackets the usual coherence factors. The dis-
persion in the superconducting state is E(k) = (~+ Li~)’/

2with ~,,= e,, — p.. The first term in Eq.
(6.21) is due to the scattering of quasiparticles. At low temperatures it dominates the last two terms
which arise from the creation and destruction of particle—hole pairs. Lifetime effects are incorpo-
rated by a scattering rate F(T) which has been either set to a constant or has been modeled by a
power law temperature dependence F(T) = F

0 + F1 (T/T~)”.The specific choice of F(T), however,
does not qualitatively change the results and is only important near T~where it controls logarithmic
Hebel—Slichter divergences [651.
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x (q, to) has been investigated in comparison to NMR and neutron scattering data for gap functions
Li,, with different symmetries such as

.d(k) =Li0(T), isotropic s wave,
Li(k) = Li0(T) (cos k5 — cos k,~), d~2.,.2 wave,
Li(k) =Li0(T) sink,, sink.,,, ~ wave,
Li(k) = Li1 (T) + iLi2(T) (cos k~— cos k)), s + id state. (6.22)

The temperature dependence of the gap amplitudes Li0,12 has been commonly assumed to follow the
BCS behavior. The ratio for the maximum gap amplitude 2Li(0) /kBTC has been adjusted as a fit
parameter.

In testing the different gap functions in Eq. (6.22) against experiments, also extensions of the
RPA formula Eq. (6.20) have been considered which include band structure effects and a momentum
dependent exchange coupling J( q) instead of an effective Ueff, for a one-band model [416] as well
as for a three-band model, the latter in the context of the almost localised Fermi liquid theory (see
chapter 5.3.3) [473]. Most of the reported results have found a d~2..,,2pairing state to be compatible
with NMR and neutron data. A different conclusion has e.g. been reached by the authors of Refs.
(227,228], which argue that only the s+id state [withLi2 (T) = 2Li1 (T)] is in qualitative agreement
with both the Knight shift and the 1/Ti measurements.

Two particularly interesting examples for the RPA/BCS analysis of NMR data in the supercon-
ducting state are given in Fig. 73 as obtained by Bulut and Scalapino [65,64]. The figures show
a comparison between the results for an isotropic s-wave and a d5i~i-wavegap function for the
anisotropy ratio of the Cu spin—lattice relaxation rate

63R 63 T~3~/63~~ and the transverse spin—spin
relaxation rate 1/T2G. (For a discussion of the corresponding experimental data see chapters 3.3.5 and
3.3.6, respectively.) These examples show clear qualitative differences in the temperature dependences
for s- and d-wave gaps. The observed nonmonotonic behavior of the anisotropy ratio finds indeed a
possible explanation in terms of a d-wave pairing state and the predicted only very weak temperature
dependence of T2G below T~has been confirmed experimentally, too [1841.

Still, it remains premature to argue that the correctness of the d
12~,2pairing description of the

superconducting state in the high-Ta cuprates has been firmly established by experiments. (For a
recent discussion of this issue see Ref. [225]). In particular, the pairbreaking effects of impurity
scattering need to be further examined. But a decisive answer may soon be obtained e.g. by refined
measurements of the phase differences of the superconducting order parameter on the Fermi surface
by the SQUID experiments initiated by Wollman et al. [457] (see chapter 3.6.3).

7. Summary and conclusion

In this review we have tried to summarize results for the magnetic correlations in high-temperature
superconductors. In the chapters on experimental work we have selected the results of experimental
techniques which specifically probe the magnetic properties of insulating and metallic or supercon-
ducting cuprate materials. NMR measurements have provided very detailed information on the local,
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Fig. 73. The temperature dependence of the planar Cu anisotropy ratio for (a) an isotropic s-wave gap with Ue~/t= 2,
2L1(0) = 8k,,T~and I’ = 2.571(T/T~)3,and (b) for a d~2_~2-wavegap with the same parameter set. The points are the
experimental data of Takigawa et al. from Ref. [4081, the dashed line represents the experimental data by Barrett et al.
from Ref. [31]. (c) The temperature dependence of the transverse nuclear relaxation rate 1 /T2G (denoted by r in the
figure) in the superconducting state for the isotropic s-wave (solid line) and the d~2_~2-wavegap symmetries. (Figures a
and b taken from Ref. [65], figure c taken from Ref. [64].)

low-frequency spin dynamics in the Cu0
2 planes. Many features of NMR data have found a natural

explanation in terms of strong antiferromagnetic spin fluctuations on the planar Cu sites. Still, there
are mismatches to the results obtained from neutron scattering experiments which remain to be re-
solved. The quality of neutron scattering data continues to improve in a remarkable way and may soon
further refine our present knowledge of the momentum, temperature and frequency dependence of
the magnetic spin susceptibility, in particular for samples near optimum stoichiometry. Two-magnon
light scattering has provided complementary information on the magnetic excitations in insulating
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and metallic materials. Only few efforts on the theoretical side have so far been made to describe
the magnetic light scattering in doped cuprates and the further development of tractable calculational
schemes for electronic Raman scattering in correlated electron systems is very desirable.

We have included in this article also some of the experimental results which are suggestive of the
important role that spin fluctuations play in the normal state properties of cuprate superconductors.
For example the simultaneous appearance of a spin-excitation gap in the spin—lattice relaxation
rate and a drop in the resistivity, or the mid-infrared band in the optical conductivity indicate the
intimate coupling of the charge carrier dynamics and the spin fluctuations. Also the rapid drop of the
quasiparticle scattering rate below T~tells that the dominant source for scattering of charge carriers
is electronic in origin. A Fermi-liquid picture of quasiparticles heavily dressed from the coupling to
antiferromagnetic spin fluctuations may be adequate for a description of the normal state transport
properties, with bandstructure effects included appropriately.

Microscopic Hubbard-type models, devised to describe the electronic correlations in the CuO2
planes, have been the starting point to discuss theoretical results for the magnetic correlations as well
as model calculations for the motion of holes in quantum antiferromagnets. At several instances we
have given examples for qualitative agreement with experimental data for the magnetic properties.
These results argue in favour of the 2D Hubbard models of various types to represent minimum models
which contain the essential physics relevant to the electronic properties of cuprate superconductors.

Unanswered remains the question whether any of these models has a superconducting ground state
forparameter sets which are supposed to describe the real materials. If the electrons in these models do
indeed superconduct at low temperatures due to a magnetic pairing mechanism, the superconducting
pairing state will most likely have d52~2 symmetry. As we have emphasised in different chapters,
the hypothesis of d-wave superconductivity in the cuprates would be compatible e.g. with the NMR
relaxation rates or the linear temperature dependence of the London penetration depth, and would
also naturally explain the peculiar paramagnetic Meissner effect observed in some granular samples.

From angular resolved photoemission data it seems established experimentally that the energy gap
function is highly anisotropic. Again we emphasize the importance of the Wollman et al. SQUID
experiments [457] on YBa2Cu3O7 single crystals to determine the phase differences of the super-
conducting order parameter on the Fermi surface. If the superconducting state proves to have d~2....,,2
symmetry, this would be a strong impetus for theories which rely on the exchange of antiferromagnetic
spin fluctuations as the pairing mechanism for high-temperature superconductivity.
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