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We use quantum Monte Carlo simulations to determine the ground state phase diagram of the Bose-

Hubbard Hamiltonian with long-range repulsive interactions.

At half filling one finds superfluidity

and insulating solid phases. Depending on the relative sizes of near-neighbor and next-near-neighbor

interactions, this solid follows either a checkerboard or a striped pattern.

In neither case is there a

coexistence with superfluidity. However, at incommensurate densities “supersolid” phases appear with
simultaneous diagonal and off-diagonal long-range order.

PACS numbers: 67.40.Db, 05.30.Jp, 67.90 +z

Supersolids are defined by the simultaneous presence
of two types of long-range order: superfluidity coexisting
with a periodic modulation of the density. The concept
of supersolids has been studied intensely for the past
three decades. Yet even their very existence remains
completely unresolved. Anderson argues against their
existence [1], while previous papers of Andreev, Fisher,
Leggett, and Nelson affirm it [2—6]. To date there is one
promising experimental result indicating supersolidity in
4He [7], but the situation is controversial [8]. It is quite
remarkable that in spite of these essential disagreements
until recently there were no numerical studies aimed at
settling the controversy. Our work provides exactly such
a numerical analysis.

The issue at hand is very broad. Besides bosonic sys-
tems, there is a large class of electronic materials, such
as NbSe, and A15 compounds, which form a charge den-
sity wave at higher temperatures, and which upon cooling
exhibit a second, superconducting phase transition, thus
defining the class of “fermionic supersolids.” Extensive
Raman data are available on these materials [9], and the
corresponding theories are well developed [10].

The possibility of supersolids naturally occurs in mag-
netic materials as well. Recalling that hard-core Bose
systems map to spin-1/2 models, simultaneous ferromag-
netic ordering in the x-y plane and antiferromagnetic or-
dering in the z direction is equivalent to a supersolid
phase. The ordered phase of the Heisenberg model is a
very clear example of this. A central theoretical issue
is whether this coexistence at the special point of spin-
rotational symmetry can be expanded to a finite region
of the parameters by introducing additional couplings.
These couplings may frustrate the Heisenberg system,
giving rise to exotic phases besides the well-known Néel
phase: a collinear phase with alternating lines of up and
down spins [11], and disordered spin-liquid and dimer
crystal phases [12]. The equivalent of the supersolid
phase would further enrich this complex phase diagram.

Finally, studies of exotic phases in interacting boson
models are closely related to other systems as well, for
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example, to the Abrikosov phase in type-II superconduc-
tors [13]. Here the world lines of the bosons propagating
in 2 + 1 dimensions map onto the flux lines of the three-
dimensional bulk material. A recent paper explicitly iden-
tifies a supersolid phase in high 7, superconductors [14].

In the present work we report numerical investigations
concerning supersolids. Our central result is that strong
evidence favors the existence of supersolids in a broad
range of parameters for incommensurate boson densities.
In fact, we identify two types of supersolid phases, in
analogy to the magnetic Néel and collinear phases.

We will explore the question of supersolid order within
the context of the two-dimensional (2D) Bose-Hubbard
Hamiltonian [15]

t
H = — tZ(aiaj + a;-rai) - /.LG,'
(ij) i
+ VOZn? + V Zn,-nj + V, Z ning . (1)
i (ij) ik))

Here q; is a boson destruction operator at site i, and
n; = a,-‘r a;. The transfer integral + = 1 sets the scale of
the energy, and u is the chemical potential. Vy, Vy, and V,
are on-site, near-neighbor, and next-near-neighbor boson-
boson repulsions.

In the hard-core limit, the Bose-Hubbard Hamiltonian
maps onto the quantum spin-1/2 Hamiltonian,

H=—1Y(S5S; +S/S7)+ V1> Siss
@ @
+ Vo > SISE — H, > SE. )
» i

The field H, = u — 2V, — 2V,. Ordering of the den-
sity corresponds to finite wave vector Ising-type order,
whereas superfluidity is described by ferromagnetic order-
ing in the X-Y plane. The Heisenberg point is given by
Vi =2V, = H, = 0.

We begin with a brief review of the mean field phase
diagram of Eq. (2) [16]. Increasing the density from
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half filling the following phases can be expected: a Néel
state, corresponding to a checkerboard Bose solid with an
ordering vector k. = (7, 7); a ferromagnetic phase, with
the net moment M,, # 0 and M, # 0, corresponding to a
superfluid; and a fully polarized magnetic phase, where
only M, # 0, corresponding to a Mott insulator. As
the solid and superfluid phases possess different broken
symmetries, it is expected that the transition between
them is first order. In an alternative scenario it was
proposed that instead there could be two distinct second
order transitions, where the two order parameters vanish
at separate points [2,5,17]. In the regime between the
two transitions both order parameters are nonzero; hence
it has been termed a supersolid [4,16,17]. The mean
field analysis revealed that long-range forces (V, # 0)
are needed to stabilize the supersolid. Recently it was
claimed that this conclusion changes in the soft-core case,
and a supersolid phase exists with V; alone [18]. To
gain an independent test of these results, we conducted
numerical simulations of the problem.

Quantum simulations.—We have used the world
line quantum Monte Carlo method. For details of
the technique, see [20,21]. We work in the canonical
ensemble, mostly near the special ‘“half-filled” point
p = Np/N =1/2. Solid ordering is demonstrated
by measuring the equal time density-density correla-
tions, and their Fourier transform, the structure factor,
Sk) = % Y™ n(j,m)n(j + 1,7)). Long-range solid
order in the thermodynamic limit is signaled by a linear
growth of S(k.) with the number of lattice sites, N, at
some ordering vector k.. In Eq. (1), V; drives the for-
mation of a checkerboard phase with k. = (7, ), where
sites are alternately empty and occupied, an Ising-type
Néel antiferromagnet in the spin language. V, favors a
striped phase where lines of occupied sites in either the x
or y direction alternate with lines of empty sites. In this
case the structure factor peaks at either k. = (0,7) or
(7,0). We will measure the superfluid density by looking
at a topological property of the boson world lines, the
winding number [20,21].

One can determine the ground state phase diagram ei-
ther by simulating lattices with large B or else by ap-
propriately scaling B o« L* with linear spatial lattice size
L. Here z is the dynamic critical exponent. The lat-
ter technique assumes foreknowledge of z which is later
justified by appropriate scaling behavior, but has advan-
tages in the precise determination of phase boundaries.
We shall use it for that purpose when required. How-
ever, as has been done extensively in simulations of both
fermion [22] and boson [20] systems, we will primarily
choose B large enough so that ¢ > L and so observables
no longer change and we are assured of measuring ground
state properties.

Results at half filling.—Our first question is whether
the supersolid phase can exist without a finite V> [18,23].
Figure 1 shows the staggered structure factor S(a,r)
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and superfluid density p; as a function of near-neighbor
interaction strength V| at Vo = 7 and V, = 0. We see a
sharp transition in both quantities at V; =~ 2.5. The raw
data already strongly suggest that there is no supersolid
phase intervening between the superfluid and solid. We
performed the appropriate finite size scaling analysis
and found that the transition points differ by at most
0.5%, which we regard as statistically insignificant. We
also tried to drive the supersolid by turning on V, near
the transition found in Fig. 1. Therefore we studied
S(ar, ), S(7,0),5(0, ), and p; at Vo = 7,V, = 2.75 (i.e.,
just inside the solid phase), sweeping V,. We found that
V> induces a nonzero value of p, while simultaneously
destroying the checkerboard order. For V, > V,/2 we
enter the striped solid phase [S(7,0) # 0], and again p,
vanishes. Supersolids were not found anywhere in the
phase diagram.

We have also explored a case of very soft-core bosons
where Vo = 3. At V, = 0 a transition from a superfluid
(SF) to checkerboard solid occurs at V| = 3.35, with no
supersolid in between. Nor does turning on V, help create
one. Our conclusion is that, in agreement with mean
field theory, and contrary to what has recently been found
[23], no supersolid phase exists at p = 1/2 in the Bose-
Hubbard model.

Supersolids in the defect phase.—We turn next to the
doped phase where 6 = p — 1/2 # 0. In Fig. 2 we show
a plot of p; and S(#7,7) vs V| at V, = 0 and & = 0.03.
We see that a tail of nonzero p; persists beyond the point
where the solid has formed. Figure 3 contains data for
two lattices sizes, 8 X 8 and 10 X 10, at the same doping,
demonstrating that the tail is not a finite size effect.
We have also studied 12 X 12 lattices, establishing this
point conclusively. p, drops considerably, but remains
nonzero, as the supersolid is entered. Our picture is that
N, = N/2 bosons freeze into a solid, leaving only the
remaining bosons mobile. These then condense into a
superfluid proportional to 8, indicating that indeed only
defect bosons make up the superfluid condensate within
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FIG.1. p, and S(w, 7) are shown for V, = 7, V, = 0.
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FIG.2. p, and S(ar, 7) are shown at V, = 7.0,V, = 0.0.

the solid. Systems with densities up to p = 0.675 exhibit
a supersolid phase, further doping destroys the diagonal
long-range order and drives a transition into a pure
superfluid phase. S(7r, 7) scales linearly with lattice size,
thus long-range crystalline order is indeed present in the
checkerboard supersolid.

Figure 2 exhibits the superfluid in coexistence with
the checkerboard solid. One can also get superfluidity
in a striped solid phase. This is illustrated in Fig. 3
where we show S(7,0), S(0,7), and p, at Vo = 7,V; =
2.75, and 6 = 0.06 as a function of V,. At small V,
we are in the superfluid phase, where all the bosons
participate in the condensate. At larger V, the striped
supersolid emerges. Note that in Fig. 3 we separately
plot the superfluid fraction in the x and y directions. In
the checkerboard supersolid and in the pure superfluid
we find p,, = p;,. However, in the striped supersolid
this rotational symmetry is broken and p,, # p,,. The
symmetry is broken randomly in the different runs, and
there is the expected correlation between ps, [ psy], and
which of S(7,0) [S(0, 7)] is large. The one-dimensional
superfluid flows down only the appropriate channels left
open by the striped solid phase. The boson wave function
is localized in the orthogonal direction. However, there is
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an exponentially small overlap between the wave functions
of different rows, giving rise to a small but nonzero
stiffness also in the perpendicular direction. This effect
is so small that the Monte Carlo results cannot resolve it.

Sweeps of V| and V, in the hard-core case give the
phase diagram in Fig. 4 for p = 0.56. At weak couplings
we have a superfluid phase, while at strong couplings two
types of supersolids emerge, following the checkerboard
and striped patterns. The superfluid phase extends out
along the strong coupling line V, = V;/2 in a very robust
manner, as opposed to the situation in 1D, where the
superfluid window was rather narrow [24]. This is a
consequence of the highly degenerate nature of the strong
coupling (r = 0) ground state. As can easily be seen,
not only do the Néel and checkerboard solids have the
same energy, but an infinite number of defect states are
degenerate as well. For example, in a horizontally aligned
collinear solid a whole column can be shifted up and
down without energy cost [25]. This large degeneracy
stabilizes superfluidity, even at large coupling. At p =
0.5, we find that along the strong coupling line the
superfluid phase vanishes around V| = 6.

The phase diagram shown in Fig. 4 has important con-
nections to the behavior of the J,-J, Heisenberg Hamil-
tonian [11,12]. In this model, the addition of a frustrat-
ing next-near-neighbor J, interaction drives a transition
from an ordered Néel state to a quantum disordered phase.
Further increase of J, promotes collinear order, and it is
believed that there is no intervening superfluid phase be-
tween the two solids. We find instead a superfluid exist-
ing along the strong coupling line. This arises because
our J, couples only the z components of spin. Order in
the x-y plane, and hence superfluidity is not frustrated.

For our zero temperature quantum phase transition, the
static periodic potential of solid bosons does not confine
defects in the Néel supersolid. The wave functions of the
defect or doped bosons are extended Bloch states, thus
they can condense into a superfluid phase. A doped boson
can move either through an intermediate state of double
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FIG.4. The ground state phase diagram of the BH model at
half filling.
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occupation of energy cost A = V; or through a move of
two neighboring bosons of energy cost A = 2V;. The
excess bosons have extended superfluid wave functions
with a mass renormalized to m. = /1 + (A/16¢)%2/2t
from the bare m = 1/2¢t. This value for m. comes from
considering a single noninteracting boson moving over
the rigid “solid” of background bosons, with alternating
0 and A site energies. That bosons can move in the solid
without double occupancy explains that the supersolid is
present in the hard-core limit as well. Meanwhile, in the
striped supersolid, the doped bosons move entirely freely
along the lines of unoccupied sites. We find p; is larger
by about a factor of 2 in the striped supersolid than in the
Néel supersolid at the same doping.

We note that we have studied a lattice model, whereas
in the bulk helium problem there is no such underlying
periodic potential. Thus the relevance of our results for
the continuum case is limited and a direct continuum
formalism is needed to study supersolids in bulk helium.
However, our results do apply naturally for helium on
substrates, and predict the existence of supersolid phases.
It is as yet unclear whether this scenario for supersolids
is realized experimentally. There is one positive [7] and
numerous negative experiments in bulk “He [8]. Some
thin film studies indicate the existence of superfluidity in
incomplete layers on top of close-packed solid ones [2].
In this situation one might imagine though that different
layers are giving rise to the two types of order, rather than
a single layer being both solid and superfluid.

In conclusion, we studied the formation of supersolid
phases in interacting boson systems. Strong correlations
lead to the formation of Néel and collinear solid phases.
Defects introduced into these solid do not destroy the
diagonal long-range order, but rather Bose condense into
a superfluid. These supersolid phases, instead of existing
in some narrow range of the parameter space, are a rather
generic feature of the Bose-Hubbard model.
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