
         
                                                          

                        
                         

                          

                      

ARPES: NOVEL EFFECT IN THE ENERGY AND MOMENTUM DISTRIBUTIONS 

J.R. SCHRIEFFER 
National High Magnetic Field Laboratory and Department of Physics Florida State University, Tallahassee, Florida 32306, U.S.A. 

A.P. KAMPF 
Institut fti Tbeoretische Physik, Universitit zu Koln 50937 Kiiln, Germany 

Abstract-The physical origin of two effects, i.e. shadow bands and three peaked energy spectra in the 
ARPBS and inverse photoemission spectra of strongly correlated electron systems, such as the cuprates, are 
discussed. Shadow bands arise from quasi elastic exchange Bragg scattering from residual antiferromagnetic 
spin correlations in the paramagnetic phase. Three peaked energy spectra arise as a superposition of the 
central Landau quasi particle peak of the weakly correlated system and the upper and lower band peaks 
split by the SDW and/or Mott Hubbard pseudo gap 2A of the strongly correlated system. The coexistence of 
these three resonances is explained in terms of quasi particles propating in a medium with Z(k, w) exhibiting 
strong anomalous dispersion, i.e. multiple fermiouic modes for ftxed k. 

The spectral function A(k, w) governing photo- and in- 
verse photoemission in antiferromagnets, like superconduo 
tars, is qualitatively different from that in weakly correlated 
metals in that two peaks at quasi particle energies +& = 

+ si L$ + Ahoccur in the energy distribution for fixed k in the 
former while a single Landau quasi particle peak occurs at 
ek in the latter. Furthermore, because of Bragg exchange 
scattering, the antiferromagnet (AF) exhibits quasi particle 
states 

& = uk&.r + 2flk&+Qs (particle-like) 

YL = vk& - 2mk&+Qs (hole-like) (1) 

which are linear combinations of the Landau-like states, 
where k is inthe first magnetic Brillouin zone, Q is the AF 
wavevector and s = ?f the spin quantum number along 
the AF sublattice direction. Thus, for fixed binding energy 
Ek, one has electron emission with momenta k and k + Q 
(“magnetic umklapp”) with relative intensities 4 and u$. In 
contrast, in fermi liquids electron emission occurs only at 
k (except for crystal lattice umklapp at k + G, where G is 
a reciprocal crystal lattice vector). 

AF spin fluctuation systems, with spin correlation length 
L, and characteristic frequency wg, were shown by the 
present authors to exhibit novel spectral features A(k, w) 
in both the momentum and energy distributions,[l] namely: 

(1) for fixed energy w, broadening magnetic umklapp 
beams occur in photoemission andare centered around 
k + Q, with integrated intensity, &where Q is mag- 
netic reciprocal lattice vector of the ordered AF, and 

(2) for fixed k, three peaks occur in the energy distribution 
corresponding to the coexistence of the split peaks 
+& of the ordered AF phase plus the Landau peak 
of the fermi liquid phase. 

The magnetic umklapp effect, i.e. presence of spectral 

weight for k not only in the first magnetic Brillouin zone 
(MBZ) is termed the shadow band effect. With an impres- 
sive experimental setup this shadow band effect (i) has re- 
cently been reported in room temperature ARPES exper- 
iments on the cuprate superconductor Bi2212.[2,3] While 
shadow band effects are clear from the physical point of 
view, less clear is how a Landau quasi particle peak (admit- 
tedly of small spectral strength) survives well into the spin 
fluctuation (SF) regime, where the SF frequency we is small 
compared to 2A and band tails into the pseudo gap are 
small. The explanation of this phenomenon is given below 
in terms of anomalous dispersion. This situation is analo- 
gous for the acoustic modes of an organ pipe containing a 
driven sound mode. 

Beginning with the ordered AF, the mean field energy 
bands are plotted in Fig. la in the reduced zone scheme, 
Fig. lb in the extended zone scheme, and in Fig. lc the 
periodic zone scheme. It is the latter representation which 
smoothly connects with the SF regime. To illustrate this 
point, we plot the AF bands as a function of Bloch mo- 
mentum k (labelling the h of the non-magnetic crystal 
schematically as opposed to the magnet eigenstate “Neel 
momentum”) labelling yk in the ordered AF. The shading 
of the lines represents the spectral weight at each k and w, 
namely 

##(l+Z) 

+f 1-2 
( > 

(upper band) 

(lower band) (2) 

with 4 and 4 plotted in Fig. Id. 
Working with a periodic Kondo or spin fermion model 
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Fig. 1. Energy bands in the SDW state along the zone diagonal k, = &in (a) the reduced magnetic Brillouin zone, (b) the extended hrst 
Brillouin zone, and (c) the repeated zone scheme. In (c) the shading of the lines represents their relative spectral weight. The dashed 
line indicates the expected dispersion in the spin fluctuation phase without long range magnetic order. (d) Spectral weight functions 

u2() and $(k) along the zone diagonal. 

or alternatively with a oncband Hubbard model, and as- 
suming a simple model form of the spin propagator 

x(4. w) = -AV(I-) 2 r 
Q=(+rr,*n) (4x - QA2 + I-2 x

I- s 2v 
x (qY - Qy)2 + l-2 gtv) (49 - v2 + i6 dv (4) 

the authors found the electron self-energy 

Z(k,w)=-iU2~~~~x(q,v)~(k-q,w-v) (5) 
(I 

shows anomalous behavior compared to that of a conven- 
tional fermi liquid;[l] examples are shown in Fig. 2. In Eq. 
(4) T is the inverse of the spin-spin correlation length and 
the frequency distribution function g( w ) is chosen linear up 
to a characteristic SF cutoff frequency WO. The prefactor 
a(I) normalizes the area of the Lorentxians around the AF 
wavevectors to unity. The authors showed why these results 
are very insensitive to the form of x(q, w), so long as x is 
strongly peaked about q = Q and wo is small compared to 
the fermionic pseudo gap 2A, as for the MMP“ forms of x. 

In the AF phase, the mean field self-energy is 

A2 
CAF(k, w) = - 

w + l k (6) 

as shown in Fig. 3a. ek is the tight binding dispersion for 
the noninteracting electrons, e.g. ek = -2t (COSk, + COSk,) 
for the square lattice. The divergence of I: at ek pushes up 
energy states above ek and pushes down states below ek. 
This is the cause of the gap 24 as in a superconductor. 
In contrast, in a fermi liquid, C typically depends weakly 
on k and Z has a negative slope near the chemical poten- 
tial p I 0 as shown in Fig. 3b, pushing down high energy 
states and up low energy states near w = 0; i.e. a mass 
enhancement m* /m 1. The remarkable result that both fea- 
tures are simultaneously present in this antiferromagnetical 
metal spin fluctuation phase, as shown in Fig. 3c, although 
the negative slope near w = 0 extends only tothe charac- 
teristic spin fluctuation energies = * ws significant strength 
(spectral weight) exists only for k near kF, i.e. (k - /cfl < 
WO/VF, where VF = IVeklkF. 

Since the poles of G(k, w ) give the quasi particle energies, 

G-‘(k,w)=W-eEk--Z(k,W)=O (7) 

it appears from Fig. 3c that five peaks would appear in 
A(k, w) for fixed k. It is readily seen that poles labelled 2 and 



                                  1675 

(b) 

(1) SDW self-energy 
=,; 

Fig. 3. (a) Real part of the mean-field selfenergy in the SDW state.(b) Typical shape for the frequency dependence of CRZ in a Landau 
fermi liquid. (c) Modified shape of TtX in the spin Buctuation regime. Indicated in the figure are the intersections op#): with w - es 

for k  =  k f determining the peak energies of the spectral function. 

-6 

Fig. 2. The real part of the one-loop self-energy calculated with the 
model susceptibility Eq. (4) for the parameter sets as indicated in 
the figure. Energies are measured in units of the hopping amplitude 
t for the tight binding dispersion on a square lattice. ZOr, w) has 
been calculated on a 108 x 108 lattice for a momentum k along the 
diagonal of the Brillouin zone (i.e. kx = k,); k has been chosen 

as the momentum closest below kF along the zone diagonal. 

4 are heavily damped and contribute only to the incoherent 
background, while poles 1 and 5 are the AF lower and upper 
bands and pole 3 is the Landau peak, whose weight zs is 
extremely small for L, > a e 1 (the crystal lattice spacing). 

Therefore, in addition to the shadow contours in A (k, w ) 
for tixedw there is also a novel structure in the binding 

energy distribution at fixed momentum k. In essence, the 
single peak Landau-like spectrum for very short L, crosses 
over to the two-peak spectrum of the ordered SDW in a 
smooth manner. Namely, rather than the Landau peak at 
ek splitting into two peaks at the energies Et = + F Ed + A 
of the energies of the SDW phase we found that the EC 
peaks grow out of the incoherent background of the Landau 
spectrum, while the Landau peak continues to exist but with 
strongly reduced weight.[l] 

The corresponding evolution of the spectral function 
A (k, w - p) as calculated from the model susceptibility Eq. 
(4) for a specific parameter set is demonstrated in Fig. 4. 
The density of states (DOS) which follows from the momen- 
tum integration of the spectral functions is shown in Fig. 
5. Remarkably, once the chemical potential has moved into 
the energy range near the top of the valence band for in- 
termediate and small I = 1 /L, a peak in the DOS appears 
close to p, quite similar to what is found in the numerical 
studies of the 2D Hubbard mode1.[5,6] 

Of course, in a complete analysis of a microscopic SF 
model the dynamical spin susceptibility x(q, w) would have 
to be determined self consistently from the model. Ls would 
diverge for the AF parent compound forp = 0 and fl would 
be negative for finite L, and ws > 0 in the hole doped 
material. Both Ls and p would have a model specific de- 
pendence on the doping. Nevertheless, it has proven to be 
instructive to varyl,. ws and M independently as a test for 
the sensitivity of A(k, w) to each of these parameters. 

In numerical simulations for the 2D Hubbard model the 
chemical potential has been found to move very rapidly with 
hole doping from fl = 0 in the AF insulator at half-filling 
into the energy range of the former SDW valence band.[5] 
We therefore have analyzed the electronic spectrum which 
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Fig. 4. Frequency dependence of the spectral functions A&, w - p)for the same parameter set as in Fig. 2. The figure shows the 
evolutionwith decreasing spin-spin correlation length Ls = l/f from the two-peak structure of the SDW state (dotted line) and to 
the three-peak structure at & = 20 (dashed dotted line), and to the Landau like single peak spectrum at & = 1 (solid line). In the 
intermediate case(dashed line) the chemical potential is located in the energy range ofthe remnant structure of the valence SDW band. 

(uJ12 = 2. , 0, = 0.3 (b) 

0 j.,_.-----’ m 
0.2 0.3 0.4 0.5 0.6 I 

k,flr = kylX 

Fig. 5. Densities of states for the same parameter sets as in Figs. 1,2, and 3 showing the evolution with increasing spin-spin correlation 
length to the pseudogap structure at large Ls. For the three different parameter sets the electron densities are 0.59 (solid line),O.‘ll 

(dashed dotted line), and 0.98 (dotted line), respectively. 

followsfrom the self-energy Eq. (5) for the situation of a 
rapidly moving /J at low hole doping under the assumption 
that fairly long range AF correlations [i.e. a small f in the 
model susceptibility Eq. (4)] still persist. This motivates the 
specific choice of parameters used in the calculations for 
Figs. 2,4, and 5. 

Clearly, the correlation of T with /.J determines the dop- 
ing window in which the three-peak spectrum is realized. 
Specifically, for the 2D Hubbard model the doping win- 
dow around half-filling for the threepeak structure must 
be tiny. For the small lattice sizes explored so far in numer- 
ical simulation studies the three-peak spectrum may be not 
observable, since on the small lattices already a single hole 
represents a doping concentration of afew percent and the 
three-peak spectrum may be inaccessible. Our phenomeno- 

logical model analysis is therefore not in conflict with the 
numerical simulation studies forthe 2D Hubbard model. 

The situation is different for the observability of the 
shadow band effect (i)when ARPES spectra are scanned in 
momentum. Figure 6 shows the k dependence along the Bril- 
louin zone diagonal at a fixed frequency (binding energy) 
below the chemical potential for the same parameter set as 
used above. Only a single Landau like quasiparticle peak is 
visible when the magnetic correlation length is comparable 
to the lattice spacing, i.e. for f = 1. The additional shadow 
peak rises with increasing L, at a large momentum above kF 
due to the magnetic umklapp effect described above mixing 
momentum states Ik) and (k + Q). Note, however, that in 
the case of the three-peak spectrum the central small weight 
quasiparticle peak does not have a shadow structure in the 
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Fig. 6. Spectral functions A(k, w - p) for a fixed frequency below the chemical potential plotted as a function of momentum k along 
the diagonal of the Brillouin zone. For the Landau like spectrum [solid line in Figs, (a) and (b)] only a single peak appears in the 
ARPBS spectrum. However, for sufficiently long range spin correlations [dashed line in (a)] a shadow peak with smaller weight appears 
at larger momentum above k~ besides the dominant quasiparticle peak. Note that no shadow structure of the Landau peak appears 

in the three-peak spectrum (dash-dotted line in Fig. (b), compared also with Fig. 4 for the same parameter set). 

momentum dependence of the spectral function. 
Thus, one sees that the persistence of Landau peak well 

into the spin fluctuation phase, L, > 1, and its coexistence 
with the Mott-Hubbard-Slater upper and lowerbands is sim- 
ply understood in terms of quasi particles propagating in 
a highly dispersive medium, in that C(k, co) has a pole at 
cc E Ek. This property leads to multiple zeros of G-'(k, w)
with nonzero residues of G (fermion quasi particlemodes) 
just as several (boson) modes of sound occur for given qin 
superfluid 4He. Details will be provided in a forthcoming 
paper. 
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