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Abstract  
Mass-backed piezoelectric conical sensor elements are investigated 
by modeling and corresponding experiments for their response to 
pencil lead breaks on an aluminum plate. For the experiment and 
modeling investigation, the plate is chosen large enough to avoid 
interference of the detected signal by edge reflections within a time 
frame of 150 µs. Signals from conical elements with varying cone 
angle are investigated. For simulation of the sensor signals an 
approach using multi-scale finite element modeling with coupled partial 
differential equations is presented. The simulation approach takes into 
account the signal excitation by pencil lead fracture, formation of Lamb 
waves, signal propagation and the details of the detection process. 
This process includes piezoelectric conversion and the influences of 
the complex impedance of the attached cables and circuitry. 
Experimental signals and simulated signals are compared as a 
function of the tip diameter of conical sensor elements. Using the 
presented method the absolute sensor response can be predicted for 
arbitrary propagation media and geometries like plates or rods, as well 
as for alternate sensor geometries. 
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1 Introduction  
 
In solid materials, rapid transient displacements like formation of cracks, dislocations, 
corrosion or stick-slip friction can cause small acoustic waves in the ultrasonic range. 
This phenomenon is known as acoustic emission (AE) and is a valuable tool to 
investigate failure of engineering materials [1-3]. In order to detect these transient 
acoustic waves, various detection methods were investigated in the past. The most 
common type of measurement uses the sensitivity of piezoelectric materials to detect 
the wave amplitudes down to 2.5×10-14 m [4, 5]. Based on their frequency response 
those sensors can be categorized into resonant sensors having one major frequency 
response, multi-resonant sensors with two or more resonant frequencies and 
broadband sensors. Typically, the latter ones show relatively flat response within a 
frequency range that is of interest for AE investigations. These sensors have 
achieved much attention within the last decades [6-9] and are still being optimized 
[10]. In addition, various other detection methods were proposed. While mostly 
capacitance sensors were used in the past decades for broadband applications [11, 



12], recently other methods using fibre-bragg gratings (resonant) [13, 14] or laser 
interferometers (broadband) have demonstrated their feasibility as approaches to 
detect AE [15, 16]. Independent of the principle of detection, it is costly and time 
consuming to develop broadband and high sensitivity AE sensors by purely 
experimental methods. A cost and time saving approach is the combination of 
experiments and a multi-scale finite element modeling approach with coupled partial 
differential equations that can cover all aspects of the measurement chain. 
 
In recent years finite element modeling was successfully applied to independently 
model wave propagation in plates [19-23]. The solution for wave propagation with 
traction free boundary conditions was first described by H. Lamb in 1917 [24], thus 
these waves are named Lamb-waves. Lamb-waves are guided waves of symmetric 
and anti-symmetric motion with respect to the mid-plane of the plate. In principle 
there are unlimited numbers of symmetric and anti-symmetric guided wave modes, 
but the types of modes faced most often in practical testing are the fundamental 
symmetric mode (S0) and anti-symmetric mode (A0).  
 
Moreover, recent attempts demonstrate the feasibility to model response of 
piezoelectric sensors [25, 26]. For realistic modeling of sensor signals, aspects of 
signal propagation and sensor modeling have to be combined as demonstrated in 
our previous work for a commercial sensor type [18]. This strategy enables a 
dedicated analysis of the key factors in sensor design, which are responsible for the 
different transfer functions observed for the various sensor types [17]. Also, a 
comprehensive modeling strategy of AE sensors enhances the possibilities to 
investigate new sensor designs [27-29], or it could give new insight into different 
sensor concepts to detect AE [29-31]. 
 
The purpose of the current work is to develop the specifics of finite element 
implementation and validate by experiment the finite element method for the case of 
conical elements of different apertures. In contrast to previous work for sensor 
modeling [22, 23, 25, 26, 32], the current approach includes signal excitation and 
signal propagation in a 3-dimensional propagation medium as well as coupled 
piezoelectric equations to calculate signal voltages based on the deformation of the 
piezoelectric element. Finally, for the first time, the interaction of the piezoelectric 
element and the attached circuitry is included by SPICE3 electrical circuit simulation 
in one software environment. 
 
 
2 Modeling of acoustic emission sensors 
 
While acoustic wave propagation is sufficiently described by solving the constitutive 
equations of structural mechanics, the interaction between acoustic waves and a 
piezoelectric sensor requires new approaches using coupled partial differential 
equations [18, 32]. In particular, the generation of electrical charges due to 
deformation of the piezoelectric material requires simultaneous solving of the 
electrical and structural mechanics constitutive equations. Another important aspect 
in simulation of transfer functions of piezoelectric sensors is the interaction between 
the sensing material and the attached circuitry. In contrast to conventional open loop 
simulations of sensor response, additional input impedances of preamplifiers and 
cables can change the sensor response significantly and have to be taken into 
account for realistic simulations.   



To include these effects, a finite element modeling approach using the modules 
“Structural Mechanics” and “AC/DC” of the software COMSOL Multiphysics is applied 
in this research. In the following, the Einstein summation convention is used. 
 

2.1 Simulation methodology 
The description of signal excitation and signal propagation within a solid is based on 
the structural mechanics constitutive equations. Based on the principle of virtual work 
for an external stimulation the finite element method solves the partial differential 
equations for equilibrium conditions, expressed in global or local stress and strain 

tensors ik  and lm .  

 

Assuming that the only source of stress ik  is due to strain lm  resulting from signal 

excitation, for linear elastic media with elastic coefficients iklmC , Hook’s law is the 

appropriate constitutive equation. 
 

lmiklmik C  =   (1)  

 
For piezoelectric materials, the generation of electrical charges, due to deformation of 
the crystal lattice, have to be taken into account. Fundamentally, generation of 

charge density displacements iD  is the response of a material due to an external 

electric field with strength mE  linked by the materials electrical permittivity im . The 

coupled piezoelectric equations use the direct ikmS  and inverse 
1−

ikmS  piezoelectric 

constants to connect the structural deformation with the electric response of the 
material. The formulation of equations (2a) and (2b) in stress-charge form replaces 
equation (1) as the appropriate constitutive equations for those domains acting as 
piezoelectric materials. 
 

mikmlmiklmik ESC −=
−1

   (2a) 

mimlmikmi ESD +=    (2b) 

 
The generation of charges is used as a voltage source input for an electrical circuit 
simulation following the SPICE format developed at University of California, Berkeley. 
This simulation methodology is based on Kirchhoff’s circuit laws and is 
comprehensively described, i.e. in the original work introducing SPICE3 [33]. 

 
2.2 Simulation setup 
 
In order to reflect the experimental conditions, a full 3-dimensional approach making 
use of one xz-symmetry plane introduced at the middle of the sensor (see figure 1-a) 
was investigated. As the propagation medium, an AlMg3 plate with dimensions of 
0.75 m x 0.5 m and thickness 3.0 mm was chosen. The geometry of the conical PZT-
5A elements and the brass backing mass are the same as the experimental values. 
The piezoelectric elements are truncated cones with a base diameter of 6.5 mm, 
length of 2.5 mm and various tip diameters between 0.25 mm and 4.0 mm. The 
elastic and piezoelectric properties of the brass backing mass, the PZT-5A conical 
elements and the aluminium plate are given in table 1. For simulation of pencil lead 
breaks (PLB), a point loading is applied to one node of one mesh element located at 



0.25 m from the sensor position on the top surface of the plate. As source function, a 
linear ramp function following [19] is used.  
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Within equation (3) et  refers to the excitation time and maxF  refers to the maximum 

out-of-plane force. The excitation time is based on typical values found in literature 
[34-36]. An evaluation of values between 0.3 µs and 2.5 µs yielded best 
comparability with the experimental signals for 1 µs, which was also confirmed by a 
previous investigation [37]. The maximum force was estimated as 3 N by loading until 
failure the angled (similar to the angle normally used for pencil lead breaks) pencil 
with the lead extended in a test machine with a sensitive load cell and is found to be 
in good agreement with experimental data by Scruby et al. [35]. 
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Fig. 1: 3-dimensional  model setup of experimental configuration(a) and details of 3-dimensional 
geometry of sensor for simulation of electric properties (b). 

 
The weight of the sensor was modeled by a -0.6 N force applied on top of the 
backing mass acting in negative z-direction.  
 
For the sensor element, an approach using Rayleigh damping with α = 200000 s-1 
and β = 1 x 10-8 s was chosen following the approach of Cervena et al. [25]. As 
structural boundary conditions, all geometries were connected to form a union. For 
the boundary conditions of the piezoelectric conversion, the bottom part of the 
conical sensor element is attached to ground and a terminal circuit boundary 
condition is used at the top part. The simulated voltage is fed into the circuit 
simulation shown in figure 2. The attached circuit consists of a cascade of resistor 
and capacitor elements. The first cascade simulates the impedance of the BNC cable 
used for electrical connection between preamplifier and sensor. The second cascade 
is used to model the input impedance and capacitance of the preamplifier. The 
values for input impedance and capacitance found in figure 2 are chosen based on 
the manufacturers’ datasheets. Finally a 7th order Butterworth high-pass filter at 
10 kHz is applied to take into account the systems built-in filter system. 
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Fig. 2: Drawing of electrical circuit used for simulation of connection cable and preamplifier. 

 
The sensor element and the backing mass were meshed with tetrahedral elements 
with a maximum size 0.5 mm. The aluminum plate was meshed with increasing mesh 
size in the y-direction at a growth rate of 1.2. The minimum mesh size was chosen at 
the xz-symmetry plane to be 1.0 mm. To better resolve the geometry of round 
structures, for the resolution of curvature a factor of 0.6 was used. This setting 
determines the maximum edge element length, which is given by 0.6 times the 
curvature radius.  All mesh elements are of quadratic geometry shape order. As 
temporal resolution, a step of 100 ns was chosen to calculate the first 140 µs after 
signal excitation by simulated PLB.  
Convergence of the numerical solution was investigated by calculation of reference 
cases with higher mesh resolution and higher temporal accuracy. Comparison 
between signals of the reference case and the calculated signals is based on the 
coherence level of the signal within the frequency range of interest between 1 kHz 
and 2 MHz. As reference case for spatial mesh resolution a minimum size of 0.4 mm 
was found to have a coherence level ≥ 0.99801, whereas the curvature reference 
case with curvature factor of 0.1 had a coherence level ≥ 0.99982. As temporal 
resolution reference case a 5 ns step size was chosen, which had a coherence level 
≥ 0.99996 to the signals calculated with 100 ns step size. Hence the used settings 
are suitable to obtain converged results in the frequency range of the experimental 
signals.  

 
Property AlMg3 Brass PZT-5A 

Density  [kg/m³] 2660 8530 7750 

Elastic Modulus [GPa] 70.0 113.4 C11 = C22 = 120.3 
C12 = 75.2 
C13 =C23=75.1 
C33 =110.9 
C44 = C55 = 21.1 
C66 = 22.6 

Poisson ratio 0.33 0.33 - 

Piezoelectric constants ikmS  [C/m²] - - S31 = S32 = -5.4 
S33 = 15.8 
S24 = S15 = 12.3 

Electrical permittivity im  - - 11 = 919.1 

22= 919.1 

33 = 826.6 

Tab.1: Elastic and piezoelectric properties of the materials used in the simulation. Subscript indices 
follow the conventions for piezoelectric materials. 

 
To characterize the sensors electric properties simulations of the impedance and 
capacitance of the sensor as a function of frequency were performed. Here the full 3-
dimensional sensor model shown in figure 1-b was used. For the boundary 
conditions, the bottom part of the conical sensor element was grounded and a 



voltage of 1 V was applied at the top part with fixed constraint for the  structural 
boundary condition. The resolution of the tetrahedral mesh elements had a maximum 
size of 0.5 mm. The model was solved as a function of frequency with a step of 
10 kHz between 20 kHz and 2 MHz. 

 
3 Experimental 
 
For comparison with the simulation results experimental signals obtained from PLBs 
on a 2 m x 1 m wide and 3 mm thick AlMg3 aluminum plate were used. Similar to the 
modeled size of 0.75 m x 1 m, these dimensions are sufficient to exclude reflections 
from the plate edges within the first 150 µs after signal excitation, since the conical 
sensor element with its brass backing are placed at the center of the aluminum plate. 
For precise positioning and as a stabilizing element (since the brass backing mass 
balances on top of the conical element), a PMMA tube was used, which allows sliding 
of the backing mass within. As couplant between brass, conical element and the 
aluminum plate viscous silicone grease (Apiezon A) is used. The electrical signal 
connection was made by a twisted and shielded BNC cable attached with the wire at 
the top of the brass backing mass and with the ground to the aluminum plate. Ten 
PLBs with 3.5 mm length, hardness 2H and diameter 0.5 mm were applied at 
250 mm from the midpoint of the sensor. The signals were recorded by a commercial 
AE preamplifier and a data acquisition card with 16 bit resolution (model PCI-2). For 
all signals a bandpass range from 10 kHz to 2 MHz at 40 dB preamplification and 
10 MSP/s sampling rate was used. To provide a stable trigger, a commercial AE 
sensor was placed close to the PLB position to act as guard sensor for the conical 
sensor under investigation.  

 
4 Results and Discussion 
 
In the following, experimental signals and those of the modeling approach are 
compared to each other. Based on this comparison the change in signal response for 
different conical element geometries is discussed using additional simulation results.  
 
In principle, a plate thickness of 3.0 mm as used in this study allows excitation of S1, 
S2, A1 and A2 Lamb wave modes within the frequency range up to 2 MHz in addition 
to the fundamental modes. However, for out-of-plane sources applied to the surface 
of a plate (e.g. PLBs), signals were found to show only the fundamental Lamb wave 
modes with dominating A0-mode [38]. This is confirmed by modal analysis of the 
experimental signals as shown in a Choi-Williams distribution with overlapping 
dispersion curves (see [39, 40] for details). Clearly the signals are dominated by the 
A0-mode as seen from figure 3-a, while use of a truncated time range reveals the 
contribution of the S0-mode at the beginning of the signal (figure 3-b). In figure 4-a, a 
comparison of four PLB based experimental A0-mode signals detected by a conical 
element with 1.5 mm tip diameter is shown. The inset shows details of the S0-mode 
between 40 µs and 77 µs. Although the basic shape of the signal is reproducible, 
there is some scatter in magnitude and the details of the signals, as was expected 
due to the nature of PLBs.  
 
Figure 4-b shows a comparison between a representative experimental signal and 
the simulation result for a respective conical sensor element. The shape of the S0-
mode as shown in the inset of figure 4-b and of the A0-mode shown in figure 4-b is 
described well by the simulation approaches taking into account the scatter of 



experimental signals as seen in figure 4-a. Discrepancies exist in the magnitude at 
the beginning of the S0-mode and A0-mode. At these points, the simulated signals 
have lower amplitudes than the experimental signals.  
In both the experiment and modeling, the tip diameter of the conical elements was 
varied over a significant range with a constant base diameter and length to 
investigate the influence of the geometry on the detected signals. Figure 5 shows a 
comparison (with a scale appropriate for the A0 mode) of the experimental results 
(fig. 5-a) and simulation results (fig. 5-b). There are two tendencies observed in both 
the experimental and simulated signals. First, with increasing tip diameter, the signal 
amplitude is increasing. The increase in absolute voltage values is described well by 
the simulations. Similar behavior is found for the S0-mode, which is shown in more 
detail in figure 6-a for experimental signals and figure 6-b for simulation results, 
respectively. Second, with increasing tip diameter, the A0-mode becomes somewhat 
distorted after 100 µs. 
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Fig. 3: Choi-Williams distribution of experimental signal in full scale (a) and truncated scale to 
investigate modal composition of signal (b).  
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Fig. 4: Scatter of experimental signals of four PLBs (a) and comparison of one experimental signal to 
simulation results for 1.50 mm conical element tip diameter (b). Insets show S0-mode arrival between 
40 µs and 77 µs after signal excitation. 
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element geometries for S0-mode arrival between 40 µs and 75 µs after signal excitation.  

 
In order to discuss changes in signal amplitude and signal shape, further simulations 
of the electrical and structural properties of the various conical element geometries 
were performed. 
 
The calculated sensor capacitance and impedance for the various conical sensor 
element geometries are shown as a function of frequency in figures 7-a and 7-b, 
respectively. There is a clear tendency observed in the calculated capacitance 
values. For decreasing tip diameter, the curves become flatter, i. e. less dependent 
on frequency and the capacitance value decreases significantly. Similarly, the sensor 
impedance increases with decreasing tip diameter, but the characteristic dependency 
on frequency is retained. Thus all elements show an increase of one to two orders of 
magnitude in their impedance values when approaching smaller frequencies. Overall, 
the orders of magnitude calculated for the conical elements agree with values as 
given by Greenspan et al. [6]. However, based on the current calculated result, it is 
not suitable to describe piezoelectric elements by one unique value of capacitance or 
impedance. Instead, those properties should be understood as frequency dependent 
values. Both properties contribute to the changes in the detected AE signals, since 
the internal impedance and capacitance of the sensor element form different 
electrical boundary conditions as a function of frequency. And moreover, the 
impedance and capacitance are also dependent on the geometry of the sensor 
element.  
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Fig. 7: Calculation results for impedance (a) and capacitance (b) of various conical element 
geometries as a function of frequency. 

 
To demonstrate the interaction with the attached electrical circuitry, simulations for 
one conical element with 1.5 mm tip diameter were performed. First, the capacitance 
of the cable model was systematically changed between 10 pF and 1000 pF, while 
holding all other circuit parts constant as given in figure 2. The resulting sensor 
signals of the simulation are shown in figure 8-a. Similarly, the resistance value of the 

preamplifier was changed from 1 k to 100 k (see fig. 8-b), while the cable 
capacitance was retained. Since the ranges of both cover a broad range of sensor 
impedance and capacitance (cf. fig. 7-a and fig. 7-b) a strong interaction between the 
piezoelectric element and the circuitry is found. The change in signal amplitude due 
to changes in the resistance and capacitance was found to be similar in magnitude to 
the changes observed from changes in the geometry of the conical elements. For 
example, an increase in the capacitance of the element has the same effect as a 
decrease in the circuit capacitance. This is a consequence of the coupled electrical 
system of piezoelectric material and the attached circuit. Thus, the increase in 
internal capacitance and the change in impedance of the sensor elements are taken 
to be a significant cause for the increase in signal amplitude with increasing tip 
diameter as observed in the experiments and modeled results.  
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Fig. 8: Variation of cable capacitance for 1.50 mm conical element diameter (a) and preamplifier 
impedance (b). Insets show S0-mode arrival between 40 µs and 75 µs after signal excitation.  

 
In addition to the above, other effects are likely to contribute to the change in shape 
as well. As discussed previously [6, 10, 23, 18] one major influence on the signal 
shape is the aperture effect due to the wavelengths of the propagating wave. This 
influence is pointed out in figure 9-a. A comparison of a simulated signal without 
presence of the sensor reveals the ideal shape of the Lamb wave in the aluminum 



plate used. An overlay with the normalized simulated sensor voltage signal for 
0.25 mm and 4.00 mm tip diameters demonstrates the characteristic differences in 
the signal shape. The out-of-plane signal is in phase with the sensor signals at the 
beginning of the A0-mode, but increasingly deviates at times larger than about 80 µs. 
This is caused by the intrinsic phase shift of the piezoelectric conversion and the 
attached circuit. Despite the phase shift, a better match to the simulated out-of-plane 
displacement is found for the 0.25 mm tip diameter. Since this diameter approaches 
a point contact, the effects of aperture become more negligible. In comparison the 
4.00 mm tip diameter suffers more from an aperture effect and thus shows a signal 
with more differences compared to the original Lamb wave. Thus, the aperture effect 
is expected to be responsible for significant changes in the detected signal shapes 
for the different conical element geometries, but it also contributes to the change in 
the detected signal amplitudes. 
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Fig. 9: Comparison between out-of-plane displacement at position of sensor midpoint without 
presence of sensor model and simulated signal voltage for conical elements with 0.25 mm and 
4.00 mm tip diameter (a). Absolute sensitivity curves for various conical element geometries as a 
function of frequency (b).  

 
Using the simulated ideal out-of-plane displacement signal it is possible to discuss 
the influence of the conical element geometries based on the sensors transfer 
functions. The calculated absolute sensitivity in dB with reference to 1 V/µm are 
shown in figure 9-b for four of the conical element geometries investigated. Similar to 
the change in signal voltages seen in figures 5 and 6, there is a significant change in 
the calculated absolute sensitivity of the various conical element geometries. For the 
conical element tip diameters between 0.25 mm and 1.00 mm the absolute sensitivity 
increases steadily, while the frequency response is almost retained within the shown 
range up to 1 MHz. For the conical elements tip diameters above 1.00 mm, the 
sensitivity still increases below 500 kHz, but the frequency response above 500 kHz 
suffers from higher attenuation. Generally, at frequencies above 500 kHz all curves 
show stronger distortions, i.e. the curves become less flat. 

 
5 Conclusion 
 
It has been demonstrated how finite element modeling strategies can be used to 
calculate AE sensor signals and AE sensor transfer functions. The simulation method 
uses a comprehensive approach taking into account in-situ placement of an AE 
sensor on a propagation medium, piezoelectric conversion and the interaction of the 
sensor material with an electric circuit. For validation of the simulation method, 
experiments on an aluminum plate using PLBs as an AE source were conducted. 



The simulated signals obtained for seven different conical element geometries show 
systematic agreement to the experimental signals. In the experiments, the electrical 
signal strength increases with increasing diameter, but the shape of the Lamb wave 
modes gets distorted. Using additional simulations of electrical and structural 
properties of the sensor, reasons for these changes in the sensor response were 
investigated. 
Based on these simulations it was demonstrated, that one major influence on the 
shape and amplitude of the detected signals is the attached circuit. It is worth noting, 
that simulations conducted without attached electrical circuit (open loop) turned out to 
yield an inverse evolution of signal amplitudes as a function of conical element tip 
diameter. Thus a simulation neglecting the influence of the attached circuitry cannot 
explain the behavior seen in the experiment. Moreover, the interaction between the 
internal capacitance and impedance of the conical sensor element with the attached 
electronic devices can significantly influence the signal shape. 
It was found that the aperture effect has significant impact on the signal shape. This 
partially explains why conical elements typically show flat frequency response. Since 
the tip of the conical element is of smaller diameter than most commercial AE 
sensors and is smaller than the signal wavelengths, the aperture effect becomes 
negligible. For the widely used piezoelectric disc or ring elements the influence of the 
aperture effect was already found to be even more significant [18, 23]. 
In general, the presented approach is feasible for simulation of all piezoelectric 
sensing elements that focus on detection of acoustic waves. In particular, this refers 
to the widely used commercial AE sensors, given that the internal structure of the 
sensor and the materials used are well known. 
 
Therefore, the combination of finite element simulations and experiment has 
demonstrated that the proposed method can be used to predict sensor transfer 
functions in arbitrary geometries of propagation media and for arbitrary materials. 
Ultimately, the presented method can also be used as a tool to conduct numerical 
studies within the scope of sensor optimization in terms of sensitivity or frequency 
response. In the current examination, both the modeled and experimental results 
pointed to a 1.5 mm tip diameter for conical elements to be the best when 
considering both highest amplitude response sensitivity and the best flatness of the 
spectral response. 
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