
                                      
                
             

                   

Microscopic conditions favoring itinerant ferromagnetism:
Hund’s rule coupling and orbital degeneracy?
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Abstract. The importance of Hund’s rule coupling for the stabilization of itinerant ferromagnetism is
investigated within a two-band Hubbard model. The magnetic phase diagram is calculated by finite-
temperature quantum Monte-Carlo simulations within the dynamical mean-field theory. Ferromagnetism
is found in a broad range of electron fillings whereas antiferromagnetism exists only near half filling. The
possibility of orbital ordering at quarter filling is also analyzed.

PACS. 71.27.+a Strongly correlated electron systems; heavy fermions – 75.10.Lp Band and itinerant
models – 75.30.Kz Magnetic phase boundaries

1 Introduction

Investigations of the microscopic mechanisms responsible
for the stability of metallic ferromagnetism have recently
received renewed attention. In particular, it was finally
established that itinerant ferromagnetism is indeed stable
in the one-band Hubbard model at intermediate on-site in-
teractions, an important condition being a properly tuned
kinetic energy with a pronounced peak in the density of
states (DOS) near the band edge [1–9]. For real ferromag-
nets, e.g., the transition metals Fe, Co, and Ni, quite a dif-
ferent microscopic mechanism for ferromagnetism, based
on Hund’s rule coupling in the presence of orbital degen-
eracy, is also expected to be relevant. It was first sug-
gested by Slater [10] and then stressed by van Vleck [11]
that the intra-atomic exchange leading to “Hund’s rule
atomic magnetism” might be responsible for bulk ferro-
magnetism, i.e., the hopping of electrons or holes might
lead to a bulk ordering of preformed atomic moments.

Concrete calculations based on microscopic models be-
gan with Roth [12] who considered a two-band extension
of the Hubbard model

Ĥ = −t
∑
〈ij〉νσ

ĉ†iνσ ĉjνσ + U
∑
iν

n̂iν↑n̂iν↓

+
∑

i;ν<ν′;σσ′

(V0 − δσσ′F0)n̂iνσn̂iν′σ′

−F0

∑
i;ν<ν′;σ 6=σ′

ĉ†iνσ ĉiνσ′ ĉ
†
iν′σ′ ĉiν′σ (1)

where ν denotes the two (or more) orbitals, σ the spin,
and i, j the lattice sites. In this model all interactions are
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purely local, i.e., occur only on a single site. Apart from
a Hubbard interaction U for electrons of opposite spin
on the same orbital, there is also a density-density inter-
action V0 between electrons on different orbitals, as well
as an intra-atomic exchange interaction F0 which is sep-
arated into its density-density and spin-flip contribution
(the spin-flip term is neglected in Sect. 3). An “on-site pair
hopping”-term of the same size is not considered since it
requires an empty and a doubly-occupied orbital to take
effect. Such configurations are strongly suppressed by the
Hubbard interaction U and the kinetic energy. The kinetic
energy describes the hopping of electrons of a given spin
between identical orbitals on neighboring sites 〈ij〉.

It is instructive to consider the two-site model with one
electron per atom, i.e., at quarter filling. In the strong-
coupling regime the ground state is a spin triplet and or-
bital singlet, i.e., on the two atoms different orbitals are
occupied. Within second order perturbation theory the en-
ergy of this state is readily calculated as −4t2/(V0 − F0).
This connection between staggered orbital ordering and
ferromagnetism was investigated already in 1966 by Roth
[12]: applying the random phase (or Hartree-Fock) approx-
imation to (1) she observed that, at T = 0 and quarter fill-
ing, a ferromagnetic state is unstable against an additional
staggered orbital ordering for V0 − U/2 − F0/2 > 0. For
decreasing temperatures the Hartree-Fock approximation
predicts first a phase transition from paramagnetic to fer-
romagnetic ordering, and at a lower temperature a second
transition to a phase with ferromagnetic and orbital or-
dering. We note that the phenomenon of staggered orbital
ordering may be a characteristic feature of any effective
two-band model with orbital degeneracy (as realized, for
example, in eg-bands).

A major step towards the understanding of the physics
of the two-band model was the derivation of an effective
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strong-coupling Hamiltonian at quarter filling by Kugel’
and Khomskĭi [13], and by Cyrot and Lyon-Caen [14] who
included the effect of on-site pair hopping. This effective
Hamiltonian has coupled spin and orbital (pseudo spin)
degrees of freedom. Within a self-consistent-field approx-
imation [13], where orbital and spin degrees of freedom
are decoupled, and also within the molecular field the-
ory [14], where correlations between different lattice sites
are neglected, the effective Hamiltonian shows an insu-
lating ferromagnetic ground state with staggered orbital
ordering. Contrary to the weak-coupling Hartree-Fock ap-
proximation this strong-coupling approach predicts that
orbital ordering occurs first when the temperature is de-
creased [14]. The ferromagnetic ground state at quarter
filling and sufficiently strong Coulomb interactions was
confirmed by exact diagonalization studies of finite sys-
tems in one dimension [15–17].

Off quarter or half filling the high degeneracy in the
atomic limit makes a perturbational analysis essentially
impossible [18]. Nevertheless, for infinite Coulomb inter-
action U = ∞ and one dimension, Müller-Hartmann [2]
proved that for F0 > 0 the ground state of (1) is ferro-
magnetic for fillings 0 < n < 2. Recently exact diagonal-
ization studies in one dimension were performed by Hirsch
[17]. The results depend sensitively on the boundary con-
ditions and the number of lattice sites: below quarter fill-
ing and for six lattice sites ferromagnetism is found for
the system with open boundary conditions, while it is ab-
sent when periodic boundary conditions are used. Insight
was also obtained by several approximative treatments,
in particular the Hartree-Fock theory [14,19], a gener-
alized Hartree-Fock approach [20], more complex varia-
tional wave functions [21], the local approach [22], and
the Gutzwiller approximation [23]. They all find ferromag-
netism to be stabilized by Hund’s rule coupling at inter-
mediate to strong Coulomb interactions. Clearly, in this
regime a proper treatment of correlation effects and the
dynamics of the quantum mechanical many-body problem
is essential. In the last few years the dynamical mean-field
theory (DMFT) has turned out to provide a reliable frame-
work and powerful method for the investigation of such
types of problems. Hence we use it in this paper to study
the stability of the ferromagnetic phase at and off quarter
filling for intermediate values of the Coulomb interaction,
and to determine transition temperatures.

The paper is structured as follows. In Section 2 the
quantum Monte-Carlo (QMC) algorithm to solve the
DMFT equations is introduced. The magnetic phase di-
agram is presented in Section 3.1, and the possibility of
orbital ordering is discussed in Section 3.2.

2 Quantum Monte-Carlo solution
of the dynamical mean-field equations

The DMFT [24–30] approximates the lattice model by a
single-site problem of electrons in an effective medium
(mean-field) that may be described by a frequency de-
pendent, i.e., dynamical, self-energy Σνσ(ω). The latter

has to be determined self-consistently via a k-integrated
Dyson equation that reads

Gνσn =

∞∫
−∞

dε
N0(ε)

iωn + µ−Σνσn − ε
(2)

with Matsubara frequencies ωn, Green function Gνσn =
Gνσ(iωn), and the DOS of the non-interacting electrons
N0(ε). In the case of the multi-band Hubbard model (1)
the single-site problem takes the form

Gνσn = −
1

Z

∫
D[ψ]D[ψ∗]ψνσnψ

∗
νσne

A[ψ,ψ∗,G−1] (3)

where ψ and ψ∗ are Grassmann variables, G−1 =
G−1 + Σ, and A[ψ,ψ∗,G−1] denotes the single-site ac-
tion including all local interactions

A[ψ,ψ∗,G−1] =
∑
νσ,n

ψ∗νσnG
−1
νσnψνσn

−U
∑
ν

β∫
0

dτ ψ∗ν↑(τ )ψν↑(τ )ψ∗ν↓(τ )ψν↓(τ )

−
∑

ν<ν′;σσ′

(V0 − δσσ′F0)

β∫
0

dτ ψ∗νσ(τ )ψνσ(τ )ψ∗ν′σ′(τ )ψν′σ′(τ )

+F0

∑
ν<ν′;σ 6=σ′

β∫
0

dτ ψ∗νσ(τ )ψνσ′(τ )ψ∗ν′σ′(τ )ψν′σ(τ ). (4)

As for the one-band model [27,28] equation (3) is equiva-
lent to a (degenerate) Anderson impurity model and can
thus be treated by standard techniques. In the present
paper the QMC algorithm of Hirsch and Fye [31] will
be used. In a first step each one of the four terms of
equation (4) are decomposed via the Trotter-Suzuki for-
mula, and imaginary time is discretized (τ = l ∆τ for
l = 1 . . . Λ and ∆τ = β/Λ). In the second step the interac-
tion terms are decoupled to obtain a quadratic action. For
the density-density interactions this is achieved as usual
by the Hubbard-Stratonovich transformation

exp

{
∆τ

2
(V0 − F0)(ψ∗νσlψνσl − ψ

∗
ν′σlψν′σl)

2

}
=

1

2

∑
s=±1

exp{λs(ψ∗νσlψνσl − ψ
∗
ν′σlψν′σl)}, (5)

where cosh(λ) = exp(∆τ(V0 − F0)/2). The same decou-
pling holds for the remaining V0 and the U terms. For N
orbitals this yields altogether (2N2−N)Λ auxiliary fields
for the density-density interactions.

By contrast, there does not exist a standard decou-
pling scheme for the last term of equation (4) describing
a spin-flip. Recently Motome and Imada [32] proposed a
decoupling scheme for this term: it avoids the minus-sign
problem in the symmetric case at half filling, but leads to a
phase problem off half filling due to the use of a complex
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Fig. 1. Curie temperature vs. Hund’s rule coupling F0 for
the two-band Hubbard model at U = 9, V0 = 5, and n =
1.25. Ferromagnetism is seen to be stabilized by Hund’s rule
coupling.

auxiliary field. Instead, we tried the following Hubbard-
Stratonovich decoupling:

exp(∆τF0ψ
∗
νσlψν−σlψ

∗
ν′−σlψν′σl) =

1

2

∑
s=±1

exp{µs(ψ∗νσlψν−σl + ψ∗ν′−σlψν′σl)}, (6)

with µ =
√
∆τ F0. Unfortunately, this transformation was

found to lead to a sign-problem, too, even within the
DMFT where the sign-problem is absent in the single-
band case. For this reason we neglect the spin-flip term
in the following. Hund’s rule coupling is thus restricted
to the direction of the quantization axis, i.e., the z-axis,
implying the breaking of the SU(2) spin rotation symme-
try. The restriction to an Ising-type Hund’s rule coupling
is commonly used in the investigations of the two-band
Hubbard model [12,14,19,20]. This restriction has no ef-
fect on the critical temperatures in the limits of weak and
strong coupling, i.e., in the Hartree-Fock approximation
and the Weiss mean-field theory of the corresponding spin
model, respectively. Therefore we expect that the spin-flip
term has no strong effect on the critical temperature at in-
termediate coupling. Note, that while the influence of the
spin-flip term on critical temperatures is probably small
the excitation spectrum at T = 0 depends sensitively on
this term. It shows a spin gap or not, respectively.

Based on the above Hubbard-Stratonovich decoupling
the Monte-Carlo method is employed to sample the auxil-
iary spin configurations and thus to calculate Green func-
tions and susceptibilities. The multi-band algorithm is a
generalization of the one-band algorithm. A similar gener-
alization was employed by Rozenberg [33] in the investiga-
tion of metal-insulator transitions in the two-band Hub-
bard model without Hund’s rule coupling.

Phase boundaries are determined by a Curie-Weiss fit
of the corresponding susceptibility in the homogeneous
phase. Since the corresponding critical temperatures still
depend on the unphysical time discretization parameter
∆τ a second order fit to ∆τ = 0 was performed from at
least six values of ∆τ ∈ [0.075, 0.5]. Besides the statisti-
cal error of the QMC simulation (propagated via T - and

∆τ -fit), there exists an additional systematic error due to
higher order contributions in the T and ∆τ fits. In par-
ticular the ∆τ dependence of the Curie temperature was
considerable for the data of Section 3. Therefore we esti-
mated this systematic error by comparing the Curie tem-
perature obtained from all ∆τ values to that calculated
without the ∆τ = 0.5 value. The individual and mean dif-
ference between these two fits was within the statistical
error of the Monte-Carlo data. This analysis implies that
the systematic error is smaller than the statistical error
shown in the figures.

3 Results and discussion

3.1 Ferromagnetism

In the present paper we investigate the Hund’s rule cou-
pling in the presence of orbital degeneracy as a possible
origin of itinerant ferromagnetism. This microscopic mech-
anism should be distinguished from the one found to be
important for the single-band Hubbard model, which is
based on an asymmetric DOS [1–9]. Therefore we employ a

symmetric semielliptic DOS N0(ε) =
√

(2t∗)2−ε2/(2πt∗2)
(in the following t∗ ≡ 1 will set our energy scale). For
this DOS and a symmetric Gaussian DOS no ferromag-
netism was found in the single-band Hubbard model up
to a Coulomb interaction of U = 30 [8,9].

In fact, even the two-band model without Hund’s rule
coupling does not indicate ferromagnetism at U = 9, V0 =
5, and n = 1.25 (see Fig. 1).

However, already a small Hund’s rule coupling, F0 =
1.61 ± 0.15, is sufficient to stabilize ferromagnetism [34].
This value is considerably smaller than that obtained by
Kuei and Scalettar [16]: in one dimension (six sites) at
n = 1 with U = V0 + F0 no ferromagnetism was found
below F0 ≈ 8 (in units rescaled to obtain a bandwidth of
four). This value of F0 is, however, comparable to the re-
sults of Hirsch [17]: in one dimension at n = 1 and n = 1.5
(six and four sites, respectively) with U = V0 + 2F0 no
ferromagnetism was found below F0 ≈ 1.5 and 2, respec-
tively. Note, that the relation U = V0 + F0 makes the
Hamiltonian (1) form-invariant w.r.t. orbital rotations,
while this holds for U = V0+2F0 if an additional pair hop-
ping term is added. The Hund’s rule coupling F0 must be
smaller than the density-density interaction V0 since oth-
erwise an unphysical attractive interaction between two
electrons on the same site (in different orbitals with the
same spin) exists.

The magnetic T−n phase diagram is presented in Fig-
ure 2 for U = 9, V0 = 5, and a relatively strong Hund’s
rule coupling F0 = 4. Ferromagnetism is found in a broad
range of electron densities n. Note, that the phase-diagram
is symmetric around n = 2 due to particle-hole symmetry.
The special case of quarter filling n = 1 does not mark a
pronounced point in the phase diagram. In particular the
maximal Curie temperature is found above quarter fill-
ing. Typical Curie temperatures are about 0.1, which for
a bandwidth of 4 eV (t∗ ≡ 1 eV) corresponds to 0.1 eV,
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Fig. 2. Magnetic T−n phase diagram for U = 9, V0 = 5, and
F0 = 4 with paramagnetic (PM), ferromagnetic (FM), and
antiferromagnetic phase (AFM). Ferromagnetism is found in a
broad range of fillings.
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Fig. 3. Same as Figure 2 but calculated within the Hartree-
Fock approximation (solid line: Curie temperature, dashed line:
Néel temperature, dotted line: first order transition between
FM and AFM).

i.e., about 1000 K. Near half filling the antiferromagnetic
Heisenberg exchange suppresses the ferromagnetic order
and a narrow antiferromagnetic phase with the usual AB
sublattice structure develops. Figure 2 suggests that Curie
and Néel temperature cross at a finite temperature and
not at T = 0. This is confirmed by the observation that
for n = 1.85 the Curie temperature extrapolated from the
paramagnetic phase lies only slightly below the Néel tem-
perature.

The same T−n phase diagram calculated within the
Hartree-Fock approximation is shown in Figure 3. The
Hartree-Fock approximation fails to describe the suppres-
sion of the magnetic order at the crossover from ferro-
to antiferromagnetism. Furthermore, the magnetic phases
are overestimated, i.e., the critical temperatures are more
than an order of magnitude too large and both magnetic
phases continue to extremely small values of n. Within
the Hartree-Fock approximation a first order phase tran-
sition between antiferromagnetic and ferromagnetic phase
occurs. It is not clear at present whether this is also true
within the DMFT.
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Fig. 4. Critical temperature for the instability against a state
with mixed ferromagnetic and orbital ordering (control param-
eter δ) as obtained from [χ(Tc, δ)]

−1 = 0. For U = 9, V0 = 5,
F0 = 4, and n = 1 the highest temperature is found at δ = 0,
indicating a transition into a purely ferromagnetic state.

3.2 Orbital ordering

As was pointed out in the introduction, at quarter filling
the Weiss mean-field theory for the effective Kugel’ and
Khomskĭi Hamiltonian [13,14] predicts an instability of
the paramagnetic phase against staggered orbital ordering
when the temperature is decreased, while a transition to
pure ferromagnetic order is suggested by the Hartree-Fock
approximation. The DMFT, containing both approxima-
tions as limits at strong and weak coupling, respectively,
is well suited to clarify this contradiction. To investigate
a possible transition from the phase without long-range
order to a phase with mixed ferromagnetic and staggered
orbital ordering we introduce a parameter δ that allows
one to investigate the instability w.r.t. a general mixed
ordering. For every δ the corresponding susceptibility is
defined through a field h, which modifies the grand po-
tential Ω by the term

Ĥh = −h
∑
iνσ

n̂iνσ (1−δ) σ + δ (−1)iν
}

(7)

χ = −
1

L

∂2Ω

∂h2
· (8)

Here L denotes the number of lattice sites. For δ = 0 one
obtains the (para-) magnetic susceptibility and for δ = 1
the susceptibility for orbital ordering. Figure 4 shows that
for U = 9, V0 = 5, and F0 = 4 the critical temperature
is maximal for δ = 0, i.e., the paramagnet is unstable
against pure ferromagnetic order. Thus, the phase dia-
gram Figure 2 need not be modified by phase transitions
from paramagnetic to orbital ordering. Whether the ferro-
magnetic phase becomes unstable against orbital ordering
at even lower temperatures cannot be answered by the
method employed here, i.e., by the calculation of suscep-
tibilities within the paramagnetic phase.

The scenario of Figure 4 qualitatively agrees with the
Hartree-Fock approximation, which even at T = 0 does
not predict orbital ordering since V0 − U/2 − F0/2 < 0.
The disagreement with Weiss mean-field theory can be
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Fig. 5. Same as in Figure 4 but for U = 8, V0 = 6, F0 = 2,
and n = 1. Here, the maximal temperature is found at δ = 1,
i.e., an instability against staggered orbital ordering occurs.
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Fig. 6. T − n phase diagram for U = 8, V0 = 6, and F0 = 2.
In addition to the phases in Figure 2 an orbital ordering (OO)
phase is found near quarter filling.

explained by the fact that the second order perturbation
theory leading to the effective strong-coupling Hamilto-
nian is controlled in t2/(V0 − F0) which is of O(1) here.

The considerations above suggest that orbital order-
ing may occur if the intra-atomic exchange F0 becomes
smaller. Indeed, for U = 8, V0 = 6, and F0 = 2 a phase
transition to pure orbital ordering (δ = 1) occurs (see
Fig. 5). Figure 6 shows the T−n phase diagram for these
parameters, including orbital ordering near quarter filling,
antiferromagnetism near half filling and ferromagnetism
in between. We should mention, that although at n = 0.9
the inverse orbital ordering susceptibility decreases with
decreasing temperatures in a Curie-Weiss like behavior,
suggesting a transition at T ≈ 0.04, it decreases again at
lower temperatures. Hence orbital ordering does not take
place at n = 0.9.

Even at n = 1.2, i.e., the crossing point of the orbital
ordering and ferromagnetic phase boundary in Figure 6,
no instability against a mixed ferromagnetic and orbital
ordering is found. Therefore we conclude that the two-
band Hubbard model with Hund’s rule coupling F0 shows
an instability towards either pure ferromagnetic or pure

orbital ordering. However, since these phases do not ex-
clude each other a phase with mixed order may appear at
even lower temperatures, as is predicted by Hartree-Fock
and Weiss mean-field theory.

Conclusion

We showed that even for a symmetric DOS the Hund’s
rule coupling provides an effective microscopic mechanism
for the stabilization of ferromagnetism in a broad range
of electron densities off half filling. This mechanism takes
effect at intermediate to strong values of the Coulomb in-
teraction and therefore requires a proper treatment of the
quantum mechanical correlations. It is different from the
mechanism based on an asymmetric DOS, which leads to
ferromagnetism even in the single-band Hubbard model.
The question which one of these mechanisms is the main
driving force for ferromagnetism in Fe, Co, and Ni remains
open, if it can be explained by a single mechanism at all.

The authors acknowledge helpful discussions with M. Ulmke,
J. Schlipf, and M. Kollar. A generous computing account on
the VPP 700 was provided by the LRZ München.
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(1973).
14. M. Cyrot, C. Lyon-Caen, J. Phys. C 36, 253 (1975).
15. W. Gill, D.J. Scalapino, Phys. Rev. B 35, 215 (1987).
16. J. Kuei, R.T. Scalettar, Phys. Rev. B 55, 14968 (1997).
17. J.E. Hirsch, Phys. Rev. B 56, 11022 (1997).
18. In the strong coupling limit a canonical transformation

was employed by K.A. Chao, J. Spa lek, A.M. Oleś, Phys.
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