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Abstract: Metallic ferromagnetism is in general an intermediate to strong coupling
phenomenon. Since there do not exist systematic analytic methods to investigate such
types of problems, the microscopic origin of metallic ferromagnetism is still not suf-
ficiently understood. However, during the last two or three years remarkable progress
was made in this field: It is now certain that even in the one-band Hubbard model
metallic ferromagnetism is stable in dimensions d = 1, 2, and < on regular lattices
and at intermediate values of the interaction U and density n. In this paper, the basic
questions and recent insights regarding the microscopic conditions favoring metailic
ferromagnetism in this model are reviewed. These findings are contrasted with the
results for the orbitally degenerate case.

1 Introduction

What is the microscopic origin of ferromagnetism? Exactly seventy years ago, in 1928,
Heisenberg addressed this question [1] after having discovered the phenomenon of quan-
tum mechanical exchange and the corresponding exchange interaction. He formulated a
spin model (the Heisenberg model), hoping to be able to answer precisely this question.
However, it was pointed out by Bloch [2] that a model of localized spins cannot explain
metallic ferromagnetism as observed in iron, cobalt, and nickel, and that a proper model
would have to include the itineracy of the electrons, i.e. the band aspect. Based on the
observation that the Curie temperature T, ~ 10° K ~ 0.1 eV in these systems it is clear
that the kinetic energy and the spin-independent Coulomb interaction, together with the
Pauli principle, must ultimately be responsible for metallic ferromagnetism. Ever since
one has been looking for the simplest microscopic model and mechanism explaining the
origin of metallic ferromagnetism and, equally important, for analytic solutions or at least
controlled approximations for these models [3]. Today we know that even with the “right”
model these answers are not easily obtained since metallic ferromagnetism generally oc-
curs only at intermediate to strong coupling and off half filling [4,5]. Thus, it belongs to
the class of problems for which systematic theoretical approaches do not exist. Namely,
weak-coupling theories or renormalization group approaches [6] which are so effective
in detecting instabilities with respect to antiferromagnetism or superconductivity, do not
work in this case. Instead, nonperturbative methods are required.
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During the last two or three years significant progress was made in our understanding
of the microscopic foundations of metallic ferromagnetism. These insights were made
possible by both new analytic methods and new numerical techniques. In this paper, some
of these recent developments will be reviewed. In particular, the microscopic conditions
for metallic ferromagnetism in the one-band Hubbard model (Section 2) and in the case of
orbital degeneracy (Section 3) are explained and the differences discussed. A conclusion
(Section 4) closes the presentation.

2 The One-Band Hubbard Model

The simplest lattice model for correlated electrons, the one-band Hubbard model
Hyup = — z t,-_,~(cjccjU +h.c.)+ UZ”iT”il 2.1
i

ij,o

was proposed independently by Gutzwiller [7], Hubbard [8], and Kanamori [9] in 1963,
with the explanation of metallic ferromagnetism in 3d transition metals in mind. Concern-
ing the suitability of (2.1) to describe metallic ferromagnetism for general U and electron
densities #» the three authors came to different conclusions. In any case, the theoretical
methods used at that time were not controlled enough to provide definitive conclusions.
This is also true for most of the research following their original work, with a few excep-
tions such as Nagaoka’s theorem for a single hole at U = e [10]. We note that in the past
the kinetic energy in (2.1) was usually restricted to nearest-neighbor (NN) hopping; then
it is useful to divide the underlying lattices into bipartite and nonbipartite ones. About
ten years ago the interest in the subject started to rise again [11]. In particular, by re-
ducing Kanamori’s [9] model density of states (DOS) of noninteracting electrons, NY(E )
(Fig. 1a), to its barest minimum (Fig. 1b) Mielke [12] began to investigate the stability of
ferromagnetism in systems with flat, i.e. dispersionless, bands. He [13] and Tasaki [14]
were able to derive rigorous criteria for the existence of ferromagnetism in these particular
systems [15]. Generalizations to nearly-flat bands are also possible [16]. Ferromagnetism
is proven to exist when the lowest band is half-filled and the system is insulating, as well
as close to half filling. Due to the pathological degeneracy of the ground state it is still not
exactly clear whether away from half filling one really obtains metallic ferromagnetism
[17].

A different route to ferromagnetism was taken by Miiller-Hartmann [18] who investi-
gated the 7-t' Hubbard model
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Figure 1 (a) Model DOS favoring ferromagnetism in the Hubbard model as suggested by
Kanamori [9]; (b) DOS for flat-band ferromagnetism (schematic) {15].
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Figure 3 Flat, symmetric DGS for (a) unpolarized and (b) fully polarized electrons; (c) and
(d): same as in (a), (b) but for a strongly peaked DOS.

is not so strongly shifted upwards, i.e. fewer high energy states are populated, which is
clearly energetically favorable. The energy difference between the fully polarized state
and the unpolarized state

AE = LZ —2—Zl ] dEN°(E)E (2.3)

must become negative for the ferromagnetic state to be stable. Of course, in the nonin-
teracting case AE > 0 [24]. Nevertheless, even for U = 0, AE attains its lowest value for
a DOS with peaked spectral weight at the lower band edge for all n [5]. To show that
AE < 0 for U > 0 requires a good estimate of the energy of the correlated paramagnet
— this is indeed a central problem of any correlation theory. It should be noted that the
above discussion concerning the shape of the DOS goes beyond the well-known Stoner
criterion which predicts an instability of the paramagnet for U equal to the inverse of the
DOS precisely at the Fermi level.

Another possibility to stabilize ferromagnetism is to consider those interactions which
are neglected in the Hubbard interaction, in particular the NN direct-exchange interaction.
The effect of this and other terms will be discussed in Section 2.3.

2.2 Numerical Investigation of the Hubbard Model on Frustrated Lattices
ind=1, 2, and

Since metallic ferromagnetism is an intermediate coupling problem purely analytic ap-
proaches meet only with limited success, in particular in dimensions d > 1. In this situa-
tion the development of new numerical techniques in the last few years was of crucial im-
portance for progress in this field. In particular, the density matrix renormalization group
(DMRG), applicable mostly in d = 1, the projector quantum Monte Carlo method, and
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Here the first term corresponds to a density-density interaction, the second term to a
density-dependent hopping, and the fourth term describes the hopping of doubly occu-
pied sites. In particular, the third term (with F = F*/Z > 0)

Fraz
Hp=-2=35§; (2.6)
z NN

describes the direct ferromagnetic exchange between electrons on NN sites. 1t is this spin-
type interaction which Heisenberg in his original model singled out as the main source
of ferromagnetism. It should be noted, however, that this interaction is present even when
the electrons are not localized but are free to move. The exchange interaction will be
quite small, but nevertheless it favors ferromagnetic ordering in the most obvious way.
Hirsch [36] argued that this term is the main driving force for metallic ferromagnetism in
systems like iron, cobalt, and nickel. Indeed, one can show rigorously that a next-neighbor
direct exchange interaction, if chosen large enough, can easily trigger the ferromagnetic
instability [37,5]. To investigate the importance of the direct exchange interaction we
supplement the Hubbard model by this term, H = Huuw + HF, neglecting all the other
NN interactions. We note that within the DMFT the Heisenberg exchange reduces to the
Weiss/Hartree-Fock contribution. In Fig. 10 the influence of the exchange interaction on
the stability regime of ferromagnetism is depicted {33]. For F* = 0 ferromagnetism is
unstable down to the lowest temperatures for U = 4. However, by taking into account a
small value of F* ~0.15 < U at T =0, the ferromagnetic phase is stabilized. Likewise, at
larger values of U the critical temperature for the onset of ferromagnetism is significantly
enhanced. Hence, F* (and also the other neglected interactions) may well be important for
systems on the verge of a ferromagnetic instability. Nevertheless, since we now know that
the Hubbard interaction U together with a suitable kinetic energy is sufficient to trigger
a ferromagnetic instability the ferromagnetic exchange interaction does not, in general,
play an unrenounceable role and is thus less important than U itself.
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Figure 10

Direct exchange F* vs. T
phase diagram for the gener-
alized model H = Hyyp + HrF
for different values of U in
the case of a strongly peaked
DOS (a = 0.98, see Fig, 8b)
at n = 0.6. The linear extra-
polation to T = 0 shows that
there exists a critical value of
U above which ferromagnetism
is stable even in the absence of
the direct exchange {33].

v=1

Figure 11
Illustration of the local interactions between electrons
1n a two-band model.

v=2

3 Orbital Degeneracy

The properties of the metallic ferromagnets iron, cobalt, and nickel are determined by 3d
electrons, implying a five-fold degeneracy. Therefore it has long been speculated that band
degeneracy is an essential precondition for metallic ferromagnetism. Band degeneracy
leads to additional on-site matrix elements of the Coulomb interaction describing intra-
atomic interactions

_ i
Vinterband = Z 2 (VO - SchO)nivo'niv’c’ —Fy z Civccivc’cjv'c’civ’q (3.7
i Lv<vhoo v<vo#G

as shown in Fig. 11 in the case of a two-fold degeneracy. In particular, they imply a
density-density interaction Vy and a (ferromagnetic) exchange interaction Fp between
electrons on different orbitals. These “Hund’s rule couplings” are responsible for the fer-
romagnetic alignment of the spins on an isolated atom. Slater [38] and van Vieck [39]
suggested that this “atomic magnetism” may be transmitted from one atom to another by
the kinetic energy, leading to coherent bulk order in the system. The relevant Hamilto-
nian is then a sum of Hubbard models for each orbital, complemented by the purely local
interband coupling terms in (3.7):

H= 2 - ’Ng. CIvonvg +U Y nivihivy | + Vinterband- (3.8)
v Ko} i

This model has received wide attention [40], especially most recently [41]. Away from
quarter or half filling the model is particularly difficult to treat due to the high degeneracy
in the atomic limit. Quite generally ferromagnetism is found to be stabilized by Hund’s
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Curie temperature T; vs. Hund’s rule
exchange coupling Fp for a two-band
Hubbard model with symmetric nonin-
teracting DOS (see inset) as obtained
within DMFT at U =9, V = 5, and
n=1.25[42].
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rule coupling at intermediate to strong interactions. In this regime the DMFT, solved by
QMC, once more provides a powerful method for the investigation of (3.8) [42].

To identify the main mechanism responsible for ferromagnetism in the band-degenerate
model and to distinguish it from that relevant for the one-band Hubbard model (namely,
the strongly peaked DOS near the band edge) we here choose a featureless, symmetric
Bethe-DOS as shown in the inset of Fig. 12. For such a DOS no ferromagnetic instability
was found in the one-band model up to the largest U values within the DMFT [33] (see
also [34]). In the following we restrict our discussion to a two-fold degeneracy. As can
be seen from Fig. 12 no ferromagnetism occurs in the orbitally degenerate model even
at U = 9 if the Hund’s rule exchange interaction Fp is absent. However, already a com-
paratively small value of Fj is sufficient to make the ferromagnetic state favorable. The
magnetic phase diagram 7 vs. n is shown in Fig. 13a for the same interaction parameters
as in Fig. 12 at Fy = 4 [42] (here we took into account the relation U = Vy + Fy which
makes (3.8) form-invariant with respect to orbital rotations). Close to half filling (n = 2)
the antiferromagnetic state is found to be stable, while for lower filling ferromagnetism
is stable in a broad range of densities. The maximum critical temperature is 7;"> ~ 0.1
which, for a band width of 4 eV, coiresponds to about 1000 K. This result should be
compared with the Hartree-Fock result (Fig. 13b) which is both qualitatively and quanti-
tatively insufficient. In particular, Hartree-Fock theory does not describe the suppression
of T caused by the antiferromagnetic super-exchange near half filling. Furthermore, the
critical temperatures are by more than an order of magnitude too high, reflecting the ab-
sence of dynamical fluctuations in this approximation. Fig. 12 clearly shows that already
moderately large Hund’s rule couplings are able to mediate metallic ferromagnetism even
in a system with an unspecific, symmetric DOS. It is interesting to see that the magnetic
phase diagrams T vs. n for the one-band model (Fig. 6a) and the band-degenerate model
(Fig. 13a) look very similar, although the origin for the ferromagnetic phase is quite dif-
ferent.

Here we did not discuss the possibility of orbital ordering where the electron densities
alternate on the two orbitals on neighboring sites. In [42] it is found that orbital ordering
sets in around quarter filling (n = 1) when Fp is decreased.

4 Discussion

In this paper we discussed recent developments in our understanding of the origin of
metallic ferromagnetism both in the one-band Hubbard model and the band-degenerate
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Figure 13 Magnetic phase diagram 7 vs. n of a two-band Hubbard model for the same U
and Vj as in Fig. 12, and Fy = 4: (a) DMFT, (b) Hartree-Fock [42].

model. Analytical results for d = 1 and, in particular, numerical results ford = 1, 2, and
oo were finally able to show convincingly that the one-band Hubbard model has a metallic
ferromagnetic phase in a surprisingly large region of the on-site interaction U and den-
sity n. A stabilization of this phase at intermediate U values requires a sufficiently large
spectral weight near the band edge. Such a DOS is typical for frustrated lattices which
optimize the kinetic energy of the polarized state and at the same time frustrate the para-
sitic antiferromagnetic ordering. By contrast, the origin of metallic ferromagnetism in the
band-degenerate Hubbard model need not primarily be due to a DOS effect but is rather
caused by (moderate) Hund’s rule couplings. In this respect the origin of ferromagnetism
in the orbitally degenerate model is more straightforward than in the one-band case. In the
absence of orbital ordering the resulting magnetic phase diagrams are remarkably similar.

The identification of a single main driving force for the stabilization of metallic ferro-
magnetism in the one-band and the band-degenerate model, respectively, helps to differ-
entiate between different effects. In real systems these effects will tend to conspire, as is
evident, for example, in nickel where an fcc lattice leads to a strongly asymmetric DOS
and the band degeneracy provides for Hund’s rule couplings. The combination of these
effects will be investigated in the future.
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