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Conductivity of disordered electrons: Mean-field approximation containing vertex corrections
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The electrical dc-conductivity of disordered, noninteracting electrons is calculated in the asymptotic limit of
high lattice dimensiong—. To go beyond the lowest-order contribution in the expansion parameteaf 1/
the single bubble diagram, vertex corrections are calculated from an asymptotic expression for the two-particle
vertex. A mean-field approximation for the dc conductivity containing the leading high-dimensional vertex
corrections is proposed which is free of spurious nonanalyticities, i.e., the conductivity is non-negative and
shows no unphysical behavior d&3.
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Electronic problems with interactions or disorder can al-yond d=« is also evident from the fact that higher-order
most never be solved exactly, except for special limits. Thenonlocal Green functions are related to lower-order local
resolvent functions of an exact solution fulfill conservationGreen functions by functional derivatives via generalized
laws and have the correct analytiderglot properties, i.e., Ward identities, reflecting conservation laws. It was recently
do not contain spurious poles. This is generally not true folshown by one of usand by Hettleret alX° that, when only
approximate, e.g., perturbative, solutions. Only global, selfthe |eading asymptotic contributions to one- and two-particle
consistent approximations have a chance to be free of Ungreen functions are taken into account, the Ward identities
physical behavior and to yield the desired analyticity of a5 e ot fulfilled ind=o . One has to go beyond the leading

solution for all input parameters. order at the lower particle level, or introduce anomalous

F_or noninteracting tight-binding e_Iectro_ns in a random POtunctions, to restore conservation la&his shows that the
tential the first self-consistent solution with the correct ana- '

. . ) . . ., definition of two- and higher-order Green functions is am-
lytic properties was the “coherent potential approximation bi in the limitd = oo
(CPA).}? The Herglotz analyticity of the CPA equations was Iguous in the imi ' .
proved explicitly by Miler-Hartmanr® Only later the CPA A partlcularly Important _examp_le of a quantity whose
was found to be thexactsolution of the Anderson disorder Mean-field value ird=c vanishes, is the electrical conduc-
model in two particular limits. First, the CPA with a semi- Vit o~ Itis defined from a Kubo formula with the current-
circular disorder distribution was shown to correspond to thesurrent correlation function. In the limét— o the optical dc
exact solution of am-orbital model in the limih=c.* Then, ~ conductivity is given by a single bubble diagram, with
after the limit of high spatial dimensiond for fermionic ~ ~O(1/d).** In a formal 14 expansion this result would be
lattice models had been introduc®dt, was found that the the first nonvanishing contribution te. It is useful to con-
CPA represents the exact solution of the Anderson disordegider thisnonvanishing asymptotic resudts a “mean-field
model ind=o for arbitrary disorder distributiors’ Since  value” of the conductivity*? Likewise one may define a
then the limitd—« has served as a useful tool for deriving mean-field value of any physical quantity through its leading
self-consistent, fully dynamical approximation schemes fomonvanishing asymptotic result in the lingt— oo.
interacting lattice electron systerhseferred to as dynamical A mean-field result for the dc conductivity ~O(1/d)
mean-field theoryDMFT). defined in this way does not contain vertex corrections.

By calculating a physical quantity id=oc one obtains a Hence it does not include the physics of backscatterings.
particular mean-field value. The situation becomes subtle iHowever, in random systems vertex corrections are known to
the value obtained in this limit is zero. This is, for example,be extremely important since they are responsible for Ander-
the case fornonlocal quantities such as the off-diagonal son localization at zero temperature in sufficiently low di-
propagatoiG;; , i #j. They depend on the distance betweenmensions §=1,2) or for sufficiently strong disorder in 3
two or more different lattice site@.e., their Fourier trans- <d<o. At least from a diagrammatic point of view it is not
form is wave-vector dependerénd are thus necessarily pro- yet fully understood how the conductivity approaches zero
portional to some power of d/ e.g., G;;~O(1/(d), for  at the localization transitiofi** Clearly one has to go be-
nearest-neighbor sitésj. However, that does not imply that yond the mean-field single-site diagrams to incorporate lo-
these quantities can be neglecteddirr~. They may con- calization effects.
tribute, since they appear in lattice sums where the summa- Most recently, Jarrell and Krishnamurtyintroduced
tion over thed— o many sites compensates theid mall-  systematic nonlocal corrections to the CPA on the one-
ness. To include these quantities properly, one has tparticle level using the dynamical cluster approximation to
calculate their asymptotic behavior in the lintit=, thus  obtain results compatible with Herglotz analyticity, i.e., a
going beyond the strial = limit. The necessity to go be- non-negative density of states. Here we choose another route
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to go beyond the mean-field limit and calculate nonlocal cortor is denoted byG(z)=N"1=,G(k,2)=fdp(e)[z—2(2)
rections to the CPA two-particlereducible vertex function.  — €]~ wherep is the density of states. It is less evident how
The aim of our paper is to employ the limit of high lattice to derive expressions for averaged two-particle functions
dimensions to improve upon the mean-field conductivity which are consistent with the local self-energy, since we
~O(2/d) by including vertex corrections. We follow the have to work explicitly with nonlocal quantities. At the two-
proposal of Ref. 9 where the high-dimensional asymptoticparticle level one has to keep two separate lattice points to
of the full vertex function with leading vertex corrections to derive the leading asymptotics for largé It is more con-

the electrical conductivity was derived. Our main result invenient and practical to work with an averaged cumulant, or
this paper is a mean-field expression for the electrical conbetter with a verteX" defined in momentum space as
ductivity which includes leading asymptotic vertex correc-

tions ind— oo while remaining non-negative id=3. I'(ky,21,K2,25;0) =G Y(ky,2) G Y(ky,2,)

The vertex function from Ref. 9 contains the leading 1/ @)
asymptotics of all two-particle quantities. Employing the X[G*¥(k1,21.K2,2,;0)
Kubo formula for the electrical conductivity with the two- _
particle vertex we may derive the leading asymptotics for the (G (k1,21)G(k2.2,)]
conductivity and its vertex corrections. However, approxi- XG Yk +0,21)G Yky+0q,2y).
mations of the full vertex function in the Kubo formula can, 3
in principle, lead to unphysical results. Indeed, the vertex

corrections to the single-bubble term may have a negative . . . Lo

sign and hence positivity of the conductivity cannot be war- Str!ctly in d=c the tlwo—partlcle vertex functio is lo-
ranted. Clearly, a meaningful and consistent approximatioff& Since the one-particle propagators are local. For conve-
for the conductivity must never become negative. To obtaill€Nce we denote the local vertex obtained in this limit as
such an approximation we represent the full vertex function?=!Ma—.I"; it can be obtained from a local Bethe-Salpeter
by means of an irreducible vertex and a Bethe-Salpeter equgduation, and is given Dby ¥(z,2;)=A(z1,25)/[1

tion in the electron-hole channel. To produce the leading” A (21,22)G(21)G(22)], where

contribution to the vertex corrections th—«, the irreduc-

ible function must be evaluated with its leadimpnlocal 02(z1)

contribution. By simplifying the Bethe-Salpeter equation in A(z1,27)= 5G(z,)
high spatial dimensions we then obtain a closed, mean-field
expression for the conductivity with vertex corrections. _ 1
In the following we consider the Anderson disorder G(z1)G(zy)
Hamiltonian 1
t* ) : ok <l+(2(2)—Vi)G(21)
H——\/—Z% cicj+§i‘, Viclc, (1) . B
x "l e

to describe the effects of randomness. Hérés the hopping 1+E (@)= VIG(2) [,

matrix element between nearest neighbors, scaled in such a o ) )
way as to produce a meaningful limit—c, with Z as the IS the two-particle irreducible vertex in CPA. In the follow-
coordination number of the lattiGThe local, static potential Nd We sketch the derivation of the asymptotic form of the
V, is a random variable with site-independent distributionVertéxI' in d— o, exact up to order i, for the Anderson
function. The conductivity of a quenched random systenfnode! of disordered electroii) along the lines explained in
without interparticle interactions is described by averaged?ef- 9. For details we refer to Ref. 16, where it is shown that
one- and two-particle Green functiorigesolvents G;;(z) EEE s;yqﬂgftoélgufgtri?ngl;olrsnoobr:ﬁjlggldvaesrtitcr:]eesﬁm iteration of
(T3 _F_Y 2 T T v Ek T .
_g[z%__tl_v]‘ﬂa" and_G‘(J' 'L'(Z%’ZZ)_<_[le_t_V]ii [221_ In high dimensions, taking into account corrections to or-
—t=V]"av, respectively. It is our first goal to determine ger 14, two lattice sites #j can be connected by maximally
these functions in the asymptotic limdt—co. two one-particle propagatofge., G;;, G;;). Hence, in this
It is straightforward to derive thd— o limit of the self-  |imit two-particle functions only contribute if they carry at
energy which carries the information about how the randommgosttwo distinct lattice sites. Since there are three different
ness influences the motion of a Single electron. The Selfways to connect two tWO_partide functions by two one-
energy becomes local and can be obtained from the singlgrarticle propagators the exact asymptotic form of the vertex
site equation I' up to order 1d can be represented as a sum of three
contributions, i.e., solutions of Bethe-Salpeter equations in
< 1 > _1 @) three inequivalent channels. These channels are distin-
1+(2(2)—V,)G(2) guished by different types of two-particle irreducibility: the
av i
electron-hole, electron-electroithole-holg, and vertical
This is precisely the well-known CPA equation for the channel, respectiveR/The latter corresponds to the interac-
self-energyt Here the localdiagona) one-particle propaga- tion channel(” U-channel”) of Ref. 9 and represents non-
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FIG. 1. Diagrammatic representation of the Bethe-Salpeter 50
equationg5a and(5b) for the two-particle vertex functions defined The last term in the equation fdi” carries a minus sign to
from (a) the electron-holeI{®") and(b) the electron-electronl{*®) compensate for diagrams included in the two preceding
channels. Oriented solid lines represent nonlocal one-electroterms. Unlike the case of interacting electrons, the
propagators; the double-dashed line represents the local vertex asymptotic Bethe-Salpeter equations for noninteracting dis-
obtained in the limitd=c. The lattice indeX is summed over. ordered electrons can be solved explicitly, since they are

algebraic in momentum space. Instead of using the local ver-
local self-scattering corrections. The three contributibf%  tex y and the non-local part of the one-particle propagators
I'ee and I'” are represented diagrammaticallin lattice  in the Bethe-Salpter equations one may equally work with
space in Fig. 1 and Fig. 2. The verticeEe" andI'®® ob-  the irreducible vertexA from Eg. (4) and bubbles of one-
tained from the electron-hole and electron-electron channeparticle propagators, defined in momentum space as
respectively, are given by X (9;21,2,) =N"12,G(k,z;) G(q=*k,z,). Using the above

definitions the solutions of the Bethe-Salpeter equations in

the three two-particle channels take the faimmomentum
IeNzy,2,) = ¥(21.,25) 8, P “

space:
721,22 2 Gu(2)Gi(22)T(21,22), PN Q2 2 A(21,2,) .
(53 T 1 A@ @)
ee Fee( 21,2 )_ A(Zl’ZZ) (6b)
fizz) = (2020 T Nz G2z

+9(21,22) X, Gin(21)Gi(22)T§%(21,2,). 2 Al VG2 )Gl
1:22) g4 Bi(20)5i(22) 1171 21,22 F“(q;zl,22)=7(zl,zz)H 1-A(z,z)G(z)G(z)

S1[1-A(z . z)xH(9z,2)]
(5b) * (69

The Bethe-Salpeter equation for the sum of the reducibl@he full vertex is a sum of the above three contributions,
diagrams in the vertical channel is slightly more complicatedwhere the transferred momentughas a different meaning

(Fig. 2): in each channel. This is due to the fact that the irreducibility
i i’
, ‘Q O'XQ
’::' (4 é':‘ '::' A ‘:1‘
. . P So . . P o
7 i i 1 a0 L%t ] Lvs, 1 i i 2 L%l 1 Soo
" - - o o
I = Xi + I + I - I
"
Za % 29 2 o 2T e m*%’
J J J J s",‘l‘ . , i,"o A ‘:s . . ':‘ e
) ‘~‘~x",‘ (4 ) ‘~‘~x",‘ (4
J J

FIG. 2. Diagrammatic representation of the Bethe-Salpeter equ@iprior the two-particle vertex functioh’” in the vertical channel.
The lattice indices andm are summed over.
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channels are topologically inequivalent and differ in the mo-A solution of the Bethe-Salpeter equation for the two-
mentum that is conserved during multiple scatterings. If theparticle vertex A®" can formally be written asl'={1
incoming particle and hole carry momerktaandk, thenthe  —[A®"GG]e} A®" where the bullet indicates that, upon
conserved momentum Is,—k;, k;+k,+q, andq for the  expansion of ...} %, the two-particle functionfA®"GG]
electron-hole, electron-electron, and vertical channelsare multiplied according to Eq9b). Inserting this solution
respectivelyt’ The momentumq is the momentum trans- into Eq.(8) we obtain an equivalent representation for the
ferred during the scattering on impurities, i.e., the outgoingconductivity

particle and hole carry momentq +q andk,+q, respec-

tively. In order to avoid multiple summation on the same site e? 1

we must subtract the local vertex from the sum of the Reo.p=7— > vl(Kvgk) 2 (=) Gu(K)G(K)
channel-dependent vertex functions twice. We then obtain an Nk’ 7

explicit representation for the two-particle vertex in high di- X{1-[AS"G, G ]} L(K,k;k' —k), (10)
mensions in the notation of Ref. 9
['(Ky,21,Ko,25:0) ="Ky —Ky:21,20) + 8Ky + Ky i.e., the exact solutions for the full vertéxand the irreduc-
ible vertex A®" in the two representation®) and (10) are
+0;21,2,) +1°(0;21,2,) —29(21,25). identical. The vertex\ ®" contains all two-particle scatterings

7) that cannot be disconnected by cutting one electron and one

] ] ] _ hole propagator and hence includes all multiple scatterings
We note that the CPA vertex function derived in Ref. 18 isqescribed by the Bethe-Salpeter equations in the electron-
given by only the first term in the above equation, iI&%).  glectron and vertical channels.
Hence it does not contain the transferred momenwm  Expression(10) remains positive unless an eigenvalue of
needed to incorporate vertex corrections to the conductivitythe denominator becomes negative. For sufficiently weak
~ The static(dc) electrical conductivity at zero temperature gisorder it is known that imi>2 the eigenvalues are always
is defined by a Kubo formula with the full vertex aé (positive, i.e.A%"G,G.|=<1. The conductivity can only be-

=1) come negative if the maximal/minimal eigenvalue of the de-
e? 1 nominator goes through infinity/zero, respectively. In the
Reoap=7—"= > v(Kvgk) 2 (—om)G(K)G,(K) former case ¢—0) an Anderson transition to the localized
N ik o7 phase takes place, and in the latter—{«) the system be-
X[o(k—k")+ T, (k,kk' =k)G,(k")G,(k")], comes superconducting. For noninteracting disordered sys-

tems without electron-phonon interaction the latter transition
(8)  can be ruled out. In both cases one would have to take the
transition into the new phase explicitly into account to guar-
where o,7=%1, T,(kk";q)=T(k,Eg+ic0" k', Er  antee positivity of the conductivity.

+i70%;0), Go(k)=G(K,Eg+i00"), va(k)=m~*de(k)/ We note that only the nonlocal part with odd parity with
dk,, €(k) is the dispersion relation anu the mass of the respect to reflections ik andk’ of the vertexA"(k,k;k’
electron. —k) contributes to the conductivity. We obtain its leading
Equation(S) with the vertex fUnCti0n$6) contains non- asymptotic term if we use the representatid‘h:{l
trivial corrections to the one-electron conductivighe — —[Ae"GGJe}"1A®" and solve it for A" ie., A®"

single-bubble diagrajn However, Eq(8) is not appropriate =I'{[GGI']+1} 1. Using the verteX" from Eq. (7) one
for approximateevaluations in finite dimensions. Namely, fings in the ordeiO(1/d)
the vertex corrections are merely added to the one-particle
conductivity such that in an approximation negative contri- A%k, 7z, k,,2,;0)=A(z1,2,) + (1— A(z;,2,)G(zy)
butions may reverse the overall sign, thereby leading to un-
physical behavior. To avoid such a situation we will now X G(25))[I'(Ky,21,K2,22;0)
represent the conductivity in a different, but equivalent, way. CTeN(K,— Ky :2y,25)] (11)
We use a Bethe-Salpeter equation in the electron-hole chan- 2 “Lebe2
nel expressing the full vertek via an irreducible oneA®".  The jrreducible vertex11) together with the multiplication
The irreducible vertex\®" together withy ™ determine the  scheme(9b) used in Eq.(10) leads to an integral-equation
integral kernel of the Bethe-Salpeter equation explicitly andrepresentation of the conductivity. In the lingit- the mo-
define a matrix multiplication scheme in momentum spdce. mentum convolutions decouple. This fact helps us to further
The integral kernel and the multiplication rule for the simplify the expression for the conductivity. To derive the
electron-hole channel are given by leading asymptotic contribution from the nonlocal part of
[AS"G,G,](k,k";q)=AS"(k,K';0)G,(k+)G.(k'+q),  A®"to the conductivity we have to calculate the momentum
(9a)  convolutions on the level of ord@(1/d) so that the veloci-
ties appear in squares and the momentum integrals do not
. 1 . vanish.
[XeY](k,k ;Q):N E X(k,k";9") In the following we consider a hypercubic lattice where
q only the diagonal(longitudina) conductivity remains. We
xY(k+q',k'+9’;9—q’). (9b)  expand the denominator in E(LO) in powers ofA®" as
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e? e?
Revo=7— 2 (—07) | dkdk'v,(K)G,(K)G,(k) Reolii=7— 2 (~om)(viG,G.). (14)

This is precisely the mean-field conductivity defined from

x| s(k—k')+ >, fdkl---dkn<klAi'l|k1> the d— oo limit, with Re 0'$7A~0(1/d) due tov?~O(1/d).
n=0 The denominator in Eq(13a then contains the leading
asymptotic contribution from the vertex corrections to the
conductivity.

We note that the self-energy and the vertex function
vo(k"), (120  A®"are connected via a Ward identity. VelicRyshowed

that the CPA self-energy, Eq. (2), and the CPA-vertex,

where (K |A" k4 1)=A%"(K K :Kkis1—k), I<n, andk, EQ.(4), fulfill the Ward-identity exactly. In our case, where

oT

=k and k,.,=k’. Only odd powers ofk, k., in W& use the local CPA self-energy and the nonlocal part of the

A%"(k, ,k; ;k;1—k;) contribute to the integral. We expand VEtex function A", Eq. (11), or rather(A,7) from Eq.
each vertex functioth ®"in Eq. (12) in powers ofv ,(k;) and (13b), thf—:- Ward identity is fulfilled only .asympt.otl_cally in
v(Ki+1). In the leading asymptotic order, i.e., including the leading order of & for both quantities. This is fully
O(1/d), only linear terms in the velocities remain and the COnsistent with the spirit of the simplification we made in
momentum conservation in vertices is relaxed. Hence thd€riving the mean-field expression for the conductivity with
expansion coefficients of the vertices are momentum indeV€rtex correctiong13).

pendent and intermediate integrations over momenta de- CGenerally, i.e., in finite dimensions, one has to perform
couple. Using these simplifications we arrive at a mean-fieldk-intégrals in Eq(13). In this case the conductivity does not

X Gy(K1)GA(Ky) - . (Kl AZMK )G, (K')

XG(k')

like expression for the dc conductivity have the typical mean-field form where thedependence
enters only through the dispersie(k) such thak-integrals
e? (UiGUGT) can be replaced by integrals over the density of states. A
Reo40=7— > (—o7) 102G G A® (133 reduction to such a mean-field expression is possible if we
o ~(veBaG (A include only theleading contribution in 14 to (A.%), i.e.,
where(v3G,G,)=N"13,0,(k)?G,(k)G,(k) and include only the leading vertex corrections ird 16 the con-
ductivity. To do so, we insert Eqll) into Eq. (13b) and
1 52 eh make use of the simplified momentum dependence of con-
(A== 2 —————— AUk kk' k). volutions of one-particle propagators where the non-local

2 ) ’
NZ ik 00 4(K) v 4 (KT) part of two-particle dispersion relation is replaced by the

(130 function X(k)=(t*/d)2ﬂ:1coskv. When momenta in high
In the asymptotic limitd—o the irreducible vertexA®"is  dimensions are summed it behaves as a Gaussian random
determined from Eqg6), (7), and(11). We note that in this  variable with variance* 2/2d.}° On a hypercubic lattice the
limit one has(A/?)~0O(1) and(v3G,G,)~O(1/d). For  square of the velocity factorizes and contributes a factor
(A;7)=0 (as, for example, in the case ofkaindependent (y2)=t*2/2d. Thus, in leading asymptotic order onliycal
Af,';) the resulting expression for the conductivity reduces tovertices and integrals over the density of states determine the
the CPA result conductivity:

e’t*? (—071){G,G,)
8md ) o t*2 ' (15

Reaaaz(
1+ E<GGGT>A0’T(1_ AO'TGO'GT)[’)/O-T<G§.><GE> — 70'0'<G§->2_ 777<GE>2]

where (G,G,) is defined as in Eq(13) and y,,=y(Er  to be physical, e.g., the conductivity may become negative
+i00",Ex+i70"). We immediately see that expression and the self-energy non-Herglotz.

(15) is exact toO(1/d) for the conductivity and td(1/d?) Vertex corrections to the conductivity are particularly im-
concerning the vertex corrections. For the conductivity itselfportant in low dimensions d=1,2), where they lead to

to be exact taO(1/d?) an additional contribution in the nu- Anderson localization even for arbitrarily weak disorder.
merator due to self-energy corrections@fl/d) would have  This is due to the diffusion pole in the two-particle propaga-
to be included. This, however, would not affect the vertextor with energies from different complex half-planes. Equa-
corrections in the leading order. We note once more thation (13), which was derived in the limit of high dimensions,
results obtained from a direct expansion of the conductivityis not expected to be applicable in low dimensions, or to
or the self-energy in powers ofd Avould not be guaranteed describe Anderson localization. Nevertheless, it is apparent
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2 0
1.5 & FIG. 3. Mean-field conductivity with vertex
o 1 p - 0.02 correctionso=ReoP" from Eq. (163 and rela-
2 tive difference Ao/o PA=Red?*7Res AP
0.5 -0.04 —1 as a function of the concentratiorfor per-
colation disorder ird=3.
0 02 04 06 038 1 02 04 06 038 1
X X

from the form of the vertex in Eq11) that A®" includes a

diffusion pole(in I'¢®) and thereby also a Cooper pole de-

scribing coherent back scattering. For-§¢7)=+1 the
k-integrals over the bare Cooper poles in Etb) diverge
in dimensiongd<2. Henced= 2 naturally appears as a criti-

CPA,perc_
aa -

Reo

(16b)

e? )2(1—x)
47d X(2—X)

for all concentration values.
Another and more important example is the standard bi-

cal dimension in our high dimensional approximation wherenary alloy with two values of the random potentid]=

the mean-field description must break down.

+ A with equal probability, where we obtain

In dimensiongd>2 the effect of the diffusion pole ifi¢®

on the electrical conductivity is not as strong in general and 1-A2

depends on the strength and type of disorder, band filling and o2 A2

the lattice structure. Below we demonstrate this trend with Reo_bin:< )

the help of two different disorder distributions. We put the “ \4md 1 A%(1-A%)

Fermi energy into the band center and choose the dispersion T 2d (Z—T)Z

of a d=« Bethe lattice, with next-neighbor hopping ampli-

tudet* =1 to simplify the relation between the self-energy 1—A2

and the local propagator. First we choose the simplest disor- >

der model, i.e., a percolation-type disorder distribution with + 2-A (173
V,;=0,% occurring with probabilities % x,x, respectively. A 1 AY(1-A?)

lattice site with infinite potential is unavailable for the elec-
tron motion; the disorder strength is parametrized by the con-
centrationx. The conductivity from Eq(15) can now be  Figure 4 shows that vertex corrections cause the conductivity
evaluated explicitly. The result is to slightly increasewith respect to the CPA result

+ —
2d (1-2A2)%(2-A?)®

1-x 1-x 2 2
B —— . e | 2(1-A
e? X 2—X RegSPAbIn= (—) 21747 (17b)
ReoP?™= + 4md/A2(2-A?)
4md 3 x(1—-x) 1 x3(1—x)
+ E—(z—x)z 2d —(2—x)3 at weak and moderate disorder strength. Arodne1/4/2,

the two-particle scatterings described by the vertex correc-
tions result in adecreasef the CPA conductivity. For stron-
The conductivity(16a@ remains positive everywhere and is a ger disorder the conductivityl7g remains positive and is
monotonically decreasing function of the disorder strength always smaller than the CPA res({7b) up to the split-band
Note that in the limitx—1 the strength of the disorder be- limit A=1, where it vanishes due to the vanishing of the
comes effectively infinite since the local irreducible vertexdensity of states. Both conductiviti€s7g and(17b mono-
diverges as\ ,,=x/(1—x). However, in this limit the den- tonically decrease as functions of the disorder strength. How-
sity of states approaches zero ds—X. Hence(G,G,) = ever, the largest relative suppression of the CPA conductivity
—or(1—-x)/[1+o7(1—X)], so that the denominator of Eq. due to vertex corrections occurs &t=1/\2 where the de-
(15) remains positive and finite as expressed by @%a. nominator of the second term in E(L73, i.e., the terms
Figure 3 shows that the vertex correctiatecreasehe one-  with o7=1 in Eq.(15), diverges and changes sign. Note that
particle (i.e., CPA conductivity if the denominators in Eq.178 were expanded only to the

2
0
1.5 5 FIG. 4. Mean-field conductivity with vertex
o 1 b -0l correctionso=Rec®" from Eq. (173 and rela-
g tive difference Ao/oPA=Red”"/Reg AP
0.5 .02 —1 as a function of the disorder strengthfor
binary alloy ind=3.
0 02 04 06 08 1 02 04 06 08 1
A A
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leading order in M, the conductivity would turmegative  €xpressed as a functional of tireeducible vertex function

and hence become unphysical aroune 1/1/2. This explic- in the electron-hole channél®". We calculated the leading
itly demonstrates the importance of calculating the conduchigh-dimensional asymptotics of theonlocal part of A"
tivity via approximations to the irreducible vertex®" as and thereby derived an expression in closed form for the dc
proposed in this paper, instead of evaluating the conductivitgonductivity including vertex corrections. Although this
corrections to the single-bubble diagram directly from themean-field approximation does not describe Anderson local-
full vertexI'. ization, it goes systematically beyond the CPA. The result,
The results for the two models presented above demorkqg. (13), can be used as a mean-field formula for calculating
strate that the effect of vertex corrections in high dimensionshe effects of vertex corrections to the electrical conductivity
is in general nonuniversal, i.e., scattering processes from thie, e.g., three-dimensional alloys, and may serve as a starting
random potential described by the vertex corrections can deoint for improved approximation schemes beyond the CPA
crease or increase the single-bubble conductivity. The effedimit. To include the essentials of the physics of Anderson
of vertex corrections then depends on band structure, bangcalization one needs to improve the mean-field approxima-
filling, and disorder distribution and strength. This situationtion for the irreducible vertex presented in this paper. A
is very different from low dimensionsd2) where the ver-  minimal requirement for this is a self-consistent theory for

tex corrections imply universal behavior since they containpe nonlocal part of the vertex®" which may, for example
(Coopej poles which lead to the breakdown of diffusion, be obtained from a parquet approximati'@n., '

and hence to electron localization, irrespective of the disor-
der distribution and strengfti:*#

In conclusion, we derived a mean-field expression for the This work was supported in part by Grant No. 202/98/
vertex corrections to the electrical dc conductivity which be-1290 of the Grant Agency of the Czech RepulflitJ.) and
comes exact in the asymptotic limit of high lattice dimen-by the Sonderforschungsbereich 484 of the Deutsche For-
sions. To warrant the conductivity to be non-negative it wasschungsgemeinschatt.
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