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Conductivity of disordered electrons: Mean-field approximation containing vertex corrections
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The electrical dc-conductivity of disordered, noninteracting electrons is calculated in the asymptotic limit of
high lattice dimensionsd→`. To go beyond the lowest-order contribution in the expansion parameter 1/d of
the single bubble diagram, vertex corrections are calculated from an asymptotic expression for the two-particle
vertex. A mean-field approximation for the dc conductivity containing the leading high-dimensional vertex
corrections is proposed which is free of spurious nonanalyticities, i.e., the conductivity is non-negative and
shows no unphysical behavior ind>3.
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Electronic problems with interactions or disorder can
most never be solved exactly, except for special limits. T
resolvent functions of an exact solution fulfill conservati
laws and have the correct analytic~Herglotz! properties, i.e.,
do not contain spurious poles. This is generally not true
approximate, e.g., perturbative, solutions. Only global, s
consistent approximations have a chance to be free of
physical behavior and to yield the desired analyticity o
solution for all input parameters.

For noninteracting tight-binding electrons in a random p
tential the first self-consistent solution with the correct a
lytic properties was the ‘‘coherent potential approximatio
~CPA!.1,2 The Herglotz analyticity of the CPA equations w
proved explicitly by Müller-Hartmann.3 Only later the CPA
was found to be theexactsolution of the Anderson disorde
model in two particular limits. First, the CPA with a sem
circular disorder distribution was shown to correspond to
exact solution of ann-orbital model in the limitn5`.4 Then,
after the limit of high spatial dimensionsd for fermionic
lattice models had been introduced,5 it was found that the
CPA represents the exact solution of the Anderson diso
model in d5` for arbitrary disorder distributions.6,7 Since
then the limitd→` has served as a useful tool for derivin
self-consistent, fully dynamical approximation schemes
interacting lattice electron systems,8 referred to as dynamica
mean-field theory~DMFT!.

By calculating a physical quantity ind5` one obtains a
particular mean-field value. The situation becomes subtl
the value obtained in this limit is zero. This is, for examp
the case fornonlocal quantities such as the off-diagon
propagatorGi j , iÞ j . They depend on the distance betwe
two or more different lattice sites~i.e., their Fourier trans-
form is wave-vector dependent! and are thus necessarily pro
portional to some power of 1/d, e.g., Gi j ;O(1/Ad), for
nearest-neighbor sitesi , j . However, that does not imply tha
these quantities can be neglected ind5`. They may con-
tribute, since they appear in lattice sums where the sum
tion over thed→` many sites compensates their 1/d small-
ness. To include these quantities properly, one has
calculate their asymptotic behavior in the limitd→`, thus
going beyond the strictd5` limit. The necessity to go be
0163-1829/2001/63~12!/125112~7!/$15.00 63 1251
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yond d5` is also evident from the fact that higher-ord
nonlocal Green functions are related to lower-order lo
Green functions by functional derivatives via generaliz
Ward identities, reflecting conservation laws. It was recen
shown by one of us9 and by Hettleret al.10 that, when only
the leading asymptotic contributions to one- and two-parti
Green functions are taken into account, the Ward identi
are not fulfilled ind5` . One has to go beyond the leadin
order at the lower particle level, or introduce anomalo
functions, to restore conservation laws.9 This shows that the
definition of two- and higher-order Green functions is a
biguous in the limitd5`.

A particularly important example of a quantity whos
mean-field value ind5` vanishes, is the electrical conduc
tivity s. It is defined from a Kubo formula with the curren
current correlation function. In the limitd→` the optical dc
conductivity is given by a single bubble diagram, withs
;O(1/d).11 In a formal 1/d expansion this result would b
the first nonvanishing contribution tos. It is useful to con-
sider thisnonvanishing asymptotic resultas a ‘‘mean-field
value’’ of the conductivity.12 Likewise one may define a
mean-field value of any physical quantity through its lead
nonvanishing asymptotic result in the limitd→`.

A mean-field result for the dc conductivitys;O(1/d)
defined in this way does not contain vertex correctio
Hence it does not include the physics of backscatterin
However, in random systems vertex corrections are know
be extremely important since they are responsible for And
son localization at zero temperature in sufficiently low d
mensions (d51,2) or for sufficiently strong disorder in 3
<d,`. At least from a diagrammatic point of view it is no
yet fully understood how the conductivitys approaches zero
at the localization transition.13,14 Clearly one has to go be
yond the mean-field single-site diagrams to incorporate
calization effects.

Most recently, Jarrell and Krishnamurthy15 introduced
systematic nonlocal corrections to the CPA on the o
particle level using the dynamical cluster approximation
obtain results compatible with Herglotz analyticity, i.e.,
non-negative density of states. Here we choose another r
©2001 The American Physical Society12-1
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V. JANIŠ AND D. VOLLHARDT PHYSICAL REVIEW B 63 125112
to go beyond the mean-field limit and calculate nonlocal c
rections to the CPA two-particleirreduciblevertex function.
The aim of our paper is to employ the limit of high lattic
dimensions to improve upon the mean-field conductivitys
;O(1/d) by including vertex corrections. We follow th
proposal of Ref. 9 where the high-dimensional asympto
of the full vertex function with leading vertex corrections
the electrical conductivity was derived. Our main result
this paper is a mean-field expression for the electrical c
ductivity which includes leading asymptotic vertex corre
tions in d→` while remaining non-negative ind>3.

The vertex function from Ref. 9 contains the leading 1d
asymptotics of all two-particle quantities. Employing th
Kubo formula for the electrical conductivity with the two
particle vertex we may derive the leading asymptotics for
conductivity and its vertex corrections. However, appro
mations of the full vertex function in the Kubo formula ca
in principle, lead to unphysical results. Indeed, the ver
corrections to the single-bubble term may have a nega
sign and hence positivity of the conductivity cannot be w
ranted. Clearly, a meaningful and consistent approxima
for the conductivity must never become negative. To obt
such an approximation we represent the full vertex funct
by means of an irreducible vertex and a Bethe-Salpeter e
tion in the electron-hole channel. To produce the lead
contribution to the vertex corrections ind→`, the irreduc-
ible function must be evaluated with its leadingnonlocal
contribution. By simplifying the Bethe-Salpeter equation
high spatial dimensions we then obtain a closed, mean-fi
expression for the conductivity with vertex corrections.

In the following we consider the Anderson disord
Hamiltonian

H52
t*

AZ
(̂
i j &

ci
†cj1(

i
Vici

†ci , ~1!

to describe the effects of randomness. Heret* is the hopping
matrix element between nearest neighbors, scaled in su
way as to produce a meaningful limitd→`, with Z as the
coordination number of the lattice.5 The local, static potentia
Vi is a random variable with site-independent distributi
function. The conductivity of a quenched random syst
without interparticle interactions is described by averag
one- and two-particle Green functions~resolvents! Gi j (z)
5^@z1̂2 t̂2V̂# i j &av and Gi j ,kl

(2) (z1 ,z2)5^@z11̂2 t̂2V̂# i j
21@z21̂

2 t̂2V̂#kl
21&av, respectively. It is our first goal to determin

these functions in the asymptotic limitd→`.
It is straightforward to derive thed→` limit of the self-

energy which carries the information about how the rando
ness influences the motion of a single electron. The s
energy becomes local and can be obtained from the sin
site equation

K 1

11~S~z!2Vi !G~z!L
av

51. ~2!

This is precisely the well-known CPA equation for th
self-energy.1 Here the local~diagonal! one-particle propaga
12511
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tor is denoted byG(z)5N21(kG(k,z)5*dr(e)@z2S(z)
2e#21 wherer is the density of states. It is less evident ho
to derive expressions for averaged two-particle functio
which are consistent with the local self-energy, since
have to work explicitly with nonlocal quantities. At the two
particle level one has to keep two separate lattice point
derive the leading asymptotics for larged.9 It is more con-
venient and practical to work with an averaged cumulant
better with a vertexG defined in momentum space as

G~k1 ,z1 ,k2 ,z2 ;q!5G21~k1 ,z1!G21~k2 ,z2!

3@G(2)~k1 ,z1 ,k2 ,z2 ;q!

2d~q!G~k1 ,z1!G~k2 ,z2!#

3G21~k11q,z1!G21~k21q,z2!.

~3!

Strictly in d5` the two-particle vertex functionG is lo-
cal, since the one-particle propagators are local. For con
nience we denote the local vertex obtained in this limit
gª limd→`G; it can be obtained from a local Bethe-Salpe
equation, and is given by g(z1 ,z2)5L(z1 ,z2)/@1
2L(z1 ,z2)G(z1)G(z2)#, where

L~z1 ,z2!5
dS~z1!

dG~z2!

5
1

G~z1!G~z2!

3F12 K 1

11„S~z!2Vi…G~z1!

3
1

11„S~z!2Vi…G~z2!L
av

21G ~4!

is the two-particle irreducible vertex in CPA. In the follow
ing we sketch the derivation of the asymptotic form of t
vertex G in d→`, exact up to order 1/d, for the Anderson
model of disordered electrons~1! along the lines explained in
Ref. 9. For details we refer to Ref. 16, where it is shown t
this asymptotic form ofG is obtained as the first iteration o
the parquet equations for nonlocal vertices.

In high dimensions, taking into account corrections to
der 1/d, two lattice sitesiÞ j can be connected by maximall
two one-particle propagators~i.e., Gi j , Gji ). Hence, in this
limit two-particle functions only contribute if they carry a
most two distinct lattice sites. Since there are three differe
ways to connect two two-particle functions by two on
particle propagators the exact asymptotic form of the ver
G up to order 1/d can be represented as a sum of thr
contributions, i.e., solutions of Bethe-Salpeter equations
three inequivalent channels. These channels are dis
guished by different types of two-particle irreducibility: th
electron-hole, electron-electron~hole-hole!, and vertical
channel, respectively.9 The latter corresponds to the intera
tion channel~’’ U-channel’’! of Ref. 9 and represents non
2-2
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CONDUCTIVITY OF DISORDERED ELECTRONS: . . . PHYSICAL REVIEW B63 125112
local self-scattering corrections. The three contributionsGeh,
Gee, and Gv are represented diagrammatically~in lattice
space! in Fig. 1 and Fig. 2. The verticesGeh and Gee ob-
tained from the electron-hole and electron-electron chan
respectively, are given by

G i j
eh~z1 ,z2!5g~z1 ,z2!d i , j

1g~z1 ,z2!(
lÞ i

Gil ~z1!Gli ~z2!G l j
eh~z1 ,z2!,

~5a!

G i j
ee~z1 ,z2!5g~z1 ,z2!d i , j

1g~z1 ,z2!(
lÞ i

Gil ~z1!Gil ~z2!G l j
ee~z1 ,z2!.

~5b!

The Bethe-Salpeter equation for the sum of the reduc
diagrams in the vertical channel is slightly more complica
~Fig. 2!:

FIG. 1. Diagrammatic representation of the Bethe-Salpe
equations~5a! and~5b! for the two-particle vertex functions define
from ~a! the electron-hole (Geh) and~b! the electron-electron (Gee)
channels. Oriented solid lines represent nonlocal one-elec
propagators; the double-dashed line represents the local vertg
obtained in the limitd5`. The lattice indexl is summed over.
12511
l,

le
d

G i j
v ~z1 ,z2!5g~z1 ,z2!d i , j

1g~z1 ,z1!(
lÞ i

Gil ~z1!Gli ~z1!G l j
v ~z1 ,z2!

1(
lÞ j

G i l
v ~z1 ,z2!Gl j ~z2!Gjl ~z2!g~z2 ,z2!

2g~z1 ,z1! (
lÞ i
mÞ j

Gil ~z1!

3Gli ~z1!G lm
v ~z1 ,z2!Gm j~z2!Gjm~z2!g~z2 ,z2!.

~5c!

The last term in the equation forGv carries a minus sign to
compensate for diagrams included in the two preced
terms. Unlike the case of interacting electrons, t
asymptotic Bethe-Salpeter equations for noninteracting
ordered electrons can be solved explicitly, since they
algebraic in momentum space. Instead of using the local
tex g and the non-local part of the one-particle propagat
in the Bethe-Salpter equations one may equally work w
the irreducible vertexL from Eq. ~4! and bubbles of one-
particle propagators, defined in momentum space
x6(q;z1 ,z2)5N21(kG(k,z1)G(q6k,z2). Using the above
definitions the solutions of the Bethe-Salpeter equations
the three two-particle channels take the form~in momentum
space!:

Geh~q;z1 ,z2!5
L~z1 ,z2!

12L~z1 ,z2!x1~q;z1 ,z2!
, ~6a!

Gee~q;z1 ,z2!5
L~z1 ,z2!

12L~z1 ,z2!x2~q;z1 ,z2!
, ~6b!

Gv~q;z1 ,z2!5g~z1 ,z2!)
i 51

2
12L~zi ,zi !G~zi !G~zi !

@12L~zi ,zi !x
1~q;zi ,zi !#

.

~6c!

The full vertex is a sum of the above three contribution
where the transferred momentumq has a different meaning
in each channel. This is due to the fact that the irreducibi

r

n

FIG. 2. Diagrammatic representation of the Bethe-Salpeter equation~5c! for the two-particle vertex functionGv in the vertical channel.
The lattice indicesl andm are summed over.
2-3



o
th

el
-
in

it
he
a
i-

is

it
re

y,
tic
tri
u
w
ay
ha

n
e.
e

o-

n

he

s
one
ngs
ron-

of
ak
s
-
e-

he
d

sys-
ion
the

ar-

th

g

n

her
e
of
m

not

re

V. JANIŠ AND D. VOLLHARDT PHYSICAL REVIEW B 63 125112
channels are topologically inequivalent and differ in the m
mentum that is conserved during multiple scatterings. If
incoming particle and hole carry momentak1 andk2 then the
conserved momentum isk22k1 , k11k21q, andq for the
electron-hole, electron-electron, and vertical chann
respectively.17 The momentumq is the momentum trans
ferred during the scattering on impurities, i.e., the outgo
particle and hole carry momentak11q and k21q, respec-
tively. In order to avoid multiple summation on the same s
we must subtract the local vertex from the sum of t
channel-dependent vertex functions twice. We then obtain
explicit representation for the two-particle vertex in high d
mensions in the notation of Ref. 9

G~k1 ,z1 ,k2 ,z2 ;q!5Geh~k22k1 ;z1 ,z2!1Gee~k11k2

1q;z1 ,z2!1Gv~q;z1 ,z2!22g~z1 ,z2!.

~7!

We note that the CPA vertex function derived in Ref. 18
given by only the first term in the above equation, i.e.,Geh.
Hence it does not contain the transferred momentumq
needed to incorporate vertex corrections to the conductiv

The static~dc! electrical conductivity at zero temperatu
is defined by a Kubo formula with the full vertex as (\
51)

Resab5
e2

4p

1

N2 (
k,k8

va~k!vb~k8!(
st

~2st!Gs~k!Gt~k!

3@d~k2k8!1Gst~k,k;k82k!Gs~k8!Gt~k8!#,

~8!

where s,t561, Gst(k,k8;q)5G(k,EF1 is01,k8, EF
1 i t01;q), Gs(k)5G(k,EF1 is01), va(k)5m21]e(k)/
]ka , e(k) is the dispersion relation andm the mass of the
electron.

Equation~8! with the vertex functions~6! contains non-
trivial corrections to the one-electron conductivity~the
single-bubble diagram!. However, Eq.~8! is not appropriate
for approximateevaluations in finite dimensions. Namel
the vertex corrections are merely added to the one-par
conductivity such that in an approximation negative con
butions may reverse the overall sign, thereby leading to
physical behavior. To avoid such a situation we will no
represent the conductivity in a different, but equivalent, w
We use a Bethe-Salpeter equation in the electron-hole c
nel expressing the full vertexG via an irreducible one,Leh.
The irreducible vertexLeh together withx1 determine the
integral kernel of the Bethe-Salpeter equation explicitly a
define a matrix multiplication scheme in momentum spac17

The integral kernel and the multiplication rule for th
electron-hole channel are given by

@Lst
ehGsGt#~k,k8;q!5Lst

eh~k,k8;q!Gs~k1q!Gt~k81q!,
~9a!

@X•Y#~k,k8;q!5
1

N (
q8

X~k,k8;q8!

3Y~k1q8,k81q8;q2q8!. ~9b!
12511
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A solution of the Bethe-Salpeter equation for the tw
particle vertex Leh can formally be written asG5$1
2@LehGG#•%21Leh where the bullet indicates that, upo
expansion of$ . . . %21, the two-particle functions@LehGG#
are multiplied according to Eq.~9b!. Inserting this solution
into Eq. ~8! we obtain an equivalent representation for t
conductivity

Resab5
e2

4p

1

N2 (
k,k8

va~k!vb~k8!(
st

~2st!Gs~k!Gt~k!

3$12@Lst
ehGsGt#•%

21~k,k;k82k!, ~10!

i.e., the exact solutions for the full vertexG and the irreduc-
ible vertexLeh in the two representations~8! and ~10! are
identical. The vertexLeh contains all two-particle scattering
that cannot be disconnected by cutting one electron and
hole propagator and hence includes all multiple scatteri
described by the Bethe-Salpeter equations in the elect
electron and vertical channels.

Expression~10! remains positive unless an eigenvalue
the denominator becomes negative. For sufficiently we
disorder it is known that ind.2 the eigenvalues are alway
positive, i.e.,iLst

ehGsGti&1. The conductivity can only be
come negative if the maximal/minimal eigenvalue of the d
nominator goes through infinity/zero, respectively. In t
former case (s→0) an Anderson transition to the localize
phase takes place, and in the latter (s→`) the system be-
comes superconducting. For noninteracting disordered
tems without electron-phonon interaction the latter transit
can be ruled out. In both cases one would have to take
transition into the new phase explicitly into account to gu
antee positivity of the conductivity.

We note that only the nonlocal part with odd parity wi
respect to reflections ink and k8 of the vertexLeh(k,k;k8
2k) contributes to the conductivity. We obtain its leadin
asymptotic term if we use the representationG5$1
2@LehGG#•%21Leh and solve it for Leh, i.e., Leh

5G$•@GGG#11%21. Using the vertexG from Eq. ~7! one
finds in the orderO(1/d)

Leh~k1 ,z1 ,k2 ,z2 ;q!5L~z1 ,z2!1„12L~z1 ,z2!G~z1!

3G~z2!…2@G~k1 ,z1 ,k2 ,z2 ;q!

2Geh~k22k1 ;z1 ,z2!#. ~11!

The irreducible vertex~11! together with the multiplication
scheme~9b! used in Eq.~10! leads to an integral-equatio
representation of the conductivity. In the limitd→` the mo-
mentum convolutions decouple. This fact helps us to furt
simplify the expression for the conductivity. To derive th
leading asymptotic contribution from the nonlocal part
Leh to the conductivity we have to calculate the momentu
convolutions on the level of orderO(1/d) so that the veloci-
ties appear in squares and the momentum integrals do
vanish.

In the following we consider a hypercubic lattice whe
only the diagonal~longitudinal! conductivity remains. We
expand the denominator in Eq.~10! in powers ofLeh as
2-4
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Resaa5
e2

4p (
st

~2st!E dkdk8va~k!Gs~k!Gt~k!

3Fd~k2k8!1 (
n50

` E dk1 . . . dkn^kuLst
ehuk1&

3Gs~k1!Gt~k1! . . . ^knuLst
ehuk8&Gs~k8!

3Gt~k8!Gva~k8!, ~12!

where ^k l uLst
ehuk l 11&5Lst

eh(k l ,k l ;k l 112k l), l<n, and k0

[k and kn11[k8. Only odd powers of k l ,k l 11 in
Lst

eh(k l ,k l ;k l 112k l) contribute to the integral. We expan
each vertex functionLeh in Eq. ~12! in powers ofva(k l) and
va(k l 11). In the leading asymptotic order, i.e., includin
O(1/d), only linear terms in the velocities remain and t
momentum conservation in vertices is relaxed. Hence
expansion coefficients of the vertices are momentum in
pendent and intermediate integrations over momenta
couple. Using these simplifications we arrive at a mean-fie
like expression for the dc conductivity

Resaa5
e2

4p (
st

~2st!
^va

2GsGt&

12^va
2GsGt&^Lst8a&

, ~13a!

where^va
2GsGt&5N21(kva(k)2Gs(k)Gt(k) and

^Lst8a&5
1

N2 (
k,k8

d2

dva~k!dva~k8!
Lst

eh~k,k;k82k!.

~13b!

In the asymptotic limitd→` the irreducible vertexLeh is
determined from Eqs.~6!, ~7!, and~11!. We note that in this
limit one has^Lst8a&;O(1) and ^va

2GsGt&;O(1/d). For
^Lst8a&50 ~as, for example, in the case of ak-independent
Lst

eh) the resulting expression for the conductivity reduces
the CPA result
n

e
-

e
h
it

12511
e
e-
e-
-

o

Resaa
CPA5

e2

4p (
st

~2st!^va
2GsGt&. ~14!

This is precisely the mean-field conductivity defined fro
the d→` limit, with Resaa

CPA;O(1/d) due tova
2;O(1/d).

The denominator in Eq.~13a! then contains the leading
asymptotic contribution from the vertex corrections to t
conductivity.

We note that the self-energyS and the vertex function
Leh are connected via a Ward identity. Velicky´18 showed
that the CPA self-energyS, Eq. ~2!, and the CPA-vertexL,
Eq. ~4!, fulfill the Ward-identity exactly. In our case, wher
we use the local CPA self-energy and the nonlocal part of
vertex functionLeh, Eq. ~11!, or rather ^Lst8a& from Eq.
~13b!, the Ward identity is fulfilled only asymptotically in
the leading order of 1/d for both quantities. This is fully
consistent with the spirit of the simplification we made
deriving the mean-field expression for the conductivity w
vertex corrections~13!.

Generally, i.e., in finite dimensions, one has to perfo
k-integrals in Eq.~13!. In this case the conductivity does no
have the typical mean-field form where thek-dependence
enters only through the dispersione(k) such thatk-integrals
can be replaced by integrals over the density of states
reduction to such a mean-field expression is possible if
include only theleading contribution in 1/d to ^Lst8a&, i.e.,
include only the leading vertex corrections in 1/d to the con-
ductivity. To do so, we insert Eq.~11! into Eq. ~13b! and
make use of the simplified momentum dependence of c
volutions of one-particle propagators where the non-lo
part of two-particle dispersion relation is replaced by t
function X(k)5(t* /d)(n51

d coskn . When momenta in high
dimensions are summed it behaves as a Gaussian ran
variable with variancet* 2/2d.19 On a hypercubic lattice the
square of the velocity factorizes and contributes a fac
^va

2&5t* 2/2d. Thus, in leading asymptotic order onlylocal
vertices and integrals over the density of states determine
conductivity:
Resaa5S e2t* 2

8pd D(
st

~2st!^GsGt&

11
t* 2

2d
^GsGt&Lst~12LstGsGt!@gst^Gs

2&^Gt
2&2gss^Gs

2&22gtt^Gt
2&2#

, ~15!
tive

-

r.
a-
a-

s,
to

rent
where ^GsGt& is defined as in Eq.~13! and gst5g(EF
1 is01,EF1 i t01). We immediately see that expressio
~15! is exact toO(1/d) for the conductivity and toO(1/d2)
concerning the vertex corrections. For the conductivity its
to be exact toO(1/d2) an additional contribution in the nu
merator due to self-energy corrections ofO(1/d) would have
to be included. This, however, would not affect the vert
corrections in the leading order. We note once more t
results obtained from a direct expansion of the conductiv
or the self-energy in powers of 1/d would not be guaranteed
lf

x
at
y

to be physical, e.g., the conductivity may become nega
and the self-energy non-Herglotz.

Vertex corrections to the conductivity are particularly im
portant in low dimensions (d51,2), where they lead to
Anderson localization even for arbitrarily weak disorde
This is due to the diffusion pole in the two-particle propag
tor with energies from different complex half-planes. Equ
tion ~13!, which was derived in the limit of high dimension
is not expected to be applicable in low dimensions, or
describe Anderson localization. Nevertheless, it is appa
2-5
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FIG. 3. Mean-field conductivity with vertex
correctionss5Resaa

perc from Eq. ~16a! and rela-
tive difference Ds/sCPA5Resaa

perc/Resaa
CPA,perc

21 as a function of the concentrationx for per-
colation disorder ind53.
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from the form of the vertex in Eq.~11! that Leh includes a
diffusion pole ~in Gee) and thereby also a Cooper pole d
scribing coherent back scattering. For (2st)511 the
k-integrals over the bare Cooper poles in Eq.~13b! diverge
in dimensionsd<2. Henced52 naturally appears as a crit
cal dimension in our high dimensional approximation whe
the mean-field description must break down.

In dimensionsd.2 the effect of the diffusion pole inGee

on the electrical conductivity is not as strong in general a
depends on the strength and type of disorder, band filling
the lattice structure. Below we demonstrate this trend w
the help of two different disorder distributions. We put t
Fermi energy into the band center and choose the disper
of a d5` Bethe lattice, with next-neighbor hopping amp
tude t* 51 to simplify the relation between the self-ener
and the local propagator. First we choose the simplest di
der model, i.e., a percolation-type disorder distribution w
Vi50,̀ occurring with probabilities 12x,x, respectively. A
lattice site with infinite potential is unavailable for the ele
tron motion; the disorder strength is parametrized by the c
centrationx. The conductivity from Eq.~15! can now be
evaluated explicitly. The result is

Resaa
perc5S e2

4pdD 5
12x

x

11
3

2d

x~12x!

~22x!2

1

12x

22x

11
1

2d

x2~12x!

~22x!3
6 .

~16a!

The conductivity~16a! remains positive everywhere and is
monotonically decreasing function of the disorder strengthx.
Note that in the limitx→1 the strength of the disorder be
comes effectively infinite since the local irreducible vert
diverges asLst5x/(12x). However, in this limit the den-
sity of states approaches zero asA12x. Hence^GsGt&5
2st(12x)/@11st(12x)#, so that the denominator of Eq
~15! remains positive and finite as expressed by Eq.~16a!.
Figure 3 shows that the vertex correctionsdecreasethe one-
particle ~i.e., CPA! conductivity
12511
e

d
d

h

on

r-

n-

Resaa
CPA,perc5S e2

4pdD 2~12x!

x~22x!
~16b!

for all concentration valuesx.
Another and more important example is the standard

nary alloy with two values of the random potentialVi5
6D with equal probability, where we obtain

Resaa
bin5S e2

4pdD 5
12D2

D2

12
1

2d

D2~12D2!

~22D2!2

1

12D2

22D2

11
1

2d

D4~12D2!

~122D2!2~22D2!3
6 . ~17a!

Figure 4 shows that vertex corrections cause the conduct
to slightly increasewith respect to the CPA result

Resaa
CPA,bin5S e2

4pdD 2~12D2!

D2~22D2!
~17b!

at weak and moderate disorder strength. AroundD51/A2,
the two-particle scatterings described by the vertex corr
tions result in adecreaseof the CPA conductivity. For stron-
ger disorder the conductivity~17a! remains positive and is
always smaller than the CPA result~17b! up to the split-band
limit D51, where it vanishes due to the vanishing of t
density of states. Both conductivities~17a! and~17b! mono-
tonically decrease as functions of the disorder strength. H
ever, the largest relative suppression of the CPA conducti
due to vertex corrections occurs atD51/A2 where the de-
nominator of the second term in Eq.~17a!, i.e., the terms
with st51 in Eq.~15!, diverges and changes sign. Note th
if the denominators in Eq.~17a! were expanded only to the
FIG. 4. Mean-field conductivity with vertex
correctionss5Resaa

bin from Eq. ~17a! and rela-
tive difference Ds/sCPA5Resaa

bin/Resaa
CPA,bin

21 as a function of the disorder strengthD for
binary alloy ind53.
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leading order in 1/d, the conductivity would turnnegative
and hence become unphysical aroundD51/A2. This explic-
itly demonstrates the importance of calculating the cond
tivity via approximations to the irreducible vertexLeh, as
proposed in this paper, instead of evaluating the conducti
corrections to the single-bubble diagram directly from t
full vertex G.

The results for the two models presented above dem
strate that the effect of vertex corrections in high dimensi
is in general nonuniversal, i.e., scattering processes from
random potential described by the vertex corrections can
crease or increase the single-bubble conductivity. The ef
of vertex corrections then depends on band structure, b
filling, and disorder distribution and strength. This situati
is very different from low dimensions (d<2) where the ver-
tex corrections imply universal behavior since they cont
~Cooper! poles which lead to the breakdown of diffusio
and hence to electron localization, irrespective of the dis
der distribution and strength.13,14

In conclusion, we derived a mean-field expression for
vertex corrections to the electrical dc conductivity which b
comes exact in the asymptotic limit of high lattice dime
sions. To warrant the conductivity to be non-negative it w
ys

d

.

-
m
m
tic
a

of

12511
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expressed as a functional of theirreducible vertex function
in the electron-hole channelLeh. We calculated the leading
high-dimensional asymptotics of thenonlocal part of Leh

and thereby derived an expression in closed form for the
conductivity including vertex corrections. Although th
mean-field approximation does not describe Anderson lo
ization, it goes systematically beyond the CPA. The res
Eq. ~13!, can be used as a mean-field formula for calculat
the effects of vertex corrections to the electrical conductiv
in, e.g., three-dimensional alloys, and may serve as a sta
point for improved approximation schemes beyond the C
limit. To include the essentials of the physics of Anders
localization one needs to improve the mean-field approxim
tion for the irreducible vertex presented in this paper.
minimal requirement for this is a self-consistent theory
the nonlocal part of the vertexLeh which may, for example,
be obtained from a parquet approximation.16
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